
Improvement of One Anonymous Identity-Based Encryption

Zhengjun Cao 1, Lihua Liu 2,∗

Abstract

In 2009, Seo et al. proposed an anonymous hierarchical identity-based encryption (IBE).

The ciphertext consists of (C1, C2, C3, C4), where C1 is the blinded message, C4 is the blinded

identity, both C2 and C3 are used as decrypting helpers. To prove its security, the authors

defined five games and introduced a strong simulator who is able to select different Setups for

those games. In this paper, we optimize the IBE scheme by removing one decrypting helper and

the strong simulator. We show its security under the ℓ-computational Diffie-Hellman assumption

with a normal simulator who only requires a unique Setup.

Keywords: Anonymous identity-based encryption; bilinear groups of composite order; dou-

bly randomized key; strong simulator.

1 Introduction

The concept of identity-based encryption (IBE) was introduced by Shamir in 1984 [12]. In the

scenario, one can encrypt messages using a ure’s identity information. Of course, some system

public parameters should be involved. In 2002, Horwitz and Lynn [10] defined the notion of

hierarchical ID-based encryption (HIBE), which can handle IDs hierarchically. In 2005, Abdalla et

al. [1] introduced the concepts of anonymous IBE and anonymous HIBE. But they did not give a

concrete construction of anonymous HIBE. An anonymous IBE requires that the ciphertext does

not leak any information about the receiver’s identity. In 2006, Gentry [9] proposed a concrete

construction of anonymous IBE in the standard model. Boyen and Waters [5] provided a concrete

construction of anonymous HIBE. In 2009, Seo et al. [14] proposed an anonymous HIBE that

has constant size ciphertexts, i.e., the size of the ciphertext does not depend on the depth of the

hierarchy. The SOKS-IBE scheme [14] is based on bilinear groups of composite order, which was

introduced by Boneh, Goh, and Nissim [4]. The SOKS-IBE is inspired by BBG-HIBE [2]. The

BBG-HIBE provides constant size ciphertexts but does not satisfy the requirement of anonymity.
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In the SKOS-IBE scheme, the ciphertext consists of (C1, C2, C3, C4), where C1 is the blinded

message, C4 is the blinded identity, both C2 and C3 are used as decrypting helpers. But the

two helpers are generated and used in parallel. To reduce its cost, it is better to remove one

helper. We also observe that the ciphertext is repeatedly randomized. Concretely, in the ciphertext

(MEs, GsZ1, F
sZ2, (V

∏k
i=1H

Ii
i )sZ3), the session key s is used for randomizing the message M

and the ID as MEs and (V
∏k

i=1H
Ii
i )s, respectively. The other session keys Z1, Z2, Z3 are used for

randomizingGs, F s, (V
∏k

i=1H
Ii
i )s, respectively. That means C2, C3, C4 are repeatedly randomized.

Apparently, it will incur more computational cost.

To prove the security of SKOS-IBE, the authors defined five games: CT1 = (C1, C2, C3, C4),

CT2 = (C1 · Rp, C2, C3, C4), CT3 = (C1 · R = R1, C2, C3, C4), CT4 = (R1, R2, C3, C4), CT5 =

(R1, R2, R3, R4), where Rp is a randomly chosen element from GT,p; R,R1 are uniformly distributed

in GT ; and R2, R3, R4 are uniformly distributed in G (GT,p,GT ,G are different bilinear groups).

To deal with different games, it has to introduce a strong simulator who is able to select different

Setups for those games.

Our contribution. In this paper, we improve the SKOS-IBE scheme by removing one decrypting

helper and the strong simulator. We show its security under the ℓ-computational Diffie-Hellman

assumption with a normal simulator who only requires a unique Setup. The analysis skills developed

in the paper, we believe, are helpful to optimize other cryptographic protocols.

2 Preliminary

Bilinear groups of composite order [4]. Let G be a group generation algorithm that takes

security parameter 1λ as input and outputs tuple (p, q,G,GT , e) where p and q are distinct primes,

G and GT are cyclic groups of order n = p q, and e : G × G → GT is a non-degenerate bilinear

map; i.e., e satisfies the following properties:

(1) bilinear: for ∀ g1, h1 ∈ G and ∀ a, b ∈ Z, e(ga1 , hb1) = e(g1, h1)
a b;

(2) non-degenerate: for generator g1 of G, e(g1, g1) generates GT .

Let Gp and Gq denote the subgroups of G of order p and q, respectively. Then G = Gp×Gq. If g1

is a generator of G, then gq1 and gp1 are generators of Gp and Gq, respectively. Let gp and gq denote

generators of Gp and Gq, respectively. Notice that e(hp, hq) = 1 for all random elements hp ∈ Gp

and hq ∈ Gq because e(hp, hq) = e(gap , g
b
q) for some integers a, b, and e(gap , g

b
q) = e(gq a1 , gp b1 ) =

e(g1, g1)
p q a b = 1 for some generator g1 in G.

ℓ-computational Diffie-Hellman assumption. Given a cyclic group G of prime order p, a

random generator g and (ga, ga
2
, · · · , gaℓ) for some random a ∈ Z∗

p, it is computationally intractable
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to compute ga
ℓ+1

.

Security definitions of anonymous HIBE. We refer to [1, 3] for the formal security defi-

nitions of anonymous HIBE, and refer to [6, 7] for a weaker notion of security that the adversary

commits ahead of time to the public parameters that it will attack.

3 Analysis of the SKOS-IBE scheme

3.1 Review

Setup: Given a security parameter λ and the maximum hierarchy depth L, the algorithm generates

(p, q,G,GT , e). Pick random elements

g, f, v, h1, · · · , hL, w ∈ Gp, Rg, Rf , Rv, R1, · · · , RL ∈ Gq.

and compute G = gRg, F = fRf , V = vRv, H1 = h1R1, · · ·, HL = hLRL, E = e(g, w). Publish the

description of a group G and public system parameters as [gq, G, F, V,H1, · · · ,HL, E]. The master

secret key is set as [p, q, g, f, v, h1, · · · , hL, w]. The group description contains n but not p, q.

KeyGenerate: Given ID=[I1, I2, · · · , Ik] ∈ (Zn)
k, pick random r1, r2, s1, s2, t1, t2 ∈ Zn such

that s1t2 − s2t1 ̸= 0mod p and ̸= 0mod q. Output

PvkIDd = [w(v
k∏

i=1

hIii )
r1f r2 , gr1 , gr2 , hr1k+1, · · · , h

r1
L ].

PvkIDr = [[(v

k∏
i=1

hIii )
s1f s2 , gs1 , gs2 , hs1k+1, · · · , h

s1
L ], [(v

k∏
i=1

hIii )
t1f t2 , gt1 , gt2 , ht1k+1, · · · , h

t1
L ]].

where PvkIDd is used for decryption and delegation, and PvkIDr is used for re-randomization.

Derive: Given a private key for the parent,

PvkID|k−1 = [Pvk
ID|k−1

d ,Pvk
ID|k−1
r ]

= [[a0, a1, a2, bk, · · · , bL], [[α0, α1, α2, βk, · · · , βL], [α′
0, α

′
1, α

′
2, β

′
k, · · · , β′

L]]],

pick random γ1, γ2, γ3, δ1, δ2, δ3 ∈ Zn such that gγ2δ3−γ3δ2
p ̸= 1 and gγ2δ3−γ3δ2

q ̸= 1. Output

Pvk
ID|k
d = [ζ0θ

γ1
0 θ′δ10 , ζ1θ

γ1
1 θ′δ11 , ζ2θ

γ1
2 θ′δ12 , ηk+1ϕ

γ1
k+1ϕ

′δ1
k+1, · · · , ηLϕ

γ1
L ϕ′δ1

L ]

Pvk
ID|k
r = [[θγ20 θ′δ20 , θγ21 θ′δ21 , θγ22 θ′δ22 , ϕγ2

k+1ϕ
′δ2
k+1, · · · , ϕ

γ2
L ϕ′δ2

L ],

[θγ30 θ′δ30 , θγ31 θ′δ31 , θγ32 θ′δ32 , ϕγ3
k+1ϕ

′δ3
k+1, · · · , ϕ

γ3
L ϕ′δ3

L ]]

where

[ζ0, ζ1, ζ2, ηk+1, · · · , ηL] = [a0 · bIkk , a1, a2, bk+1, · · · , bL]
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[θ0, θ1, θ2, ϕk+1, · · · , ϕL] = [α0 · βIk
k , α1, α2, βk+1, · · · , βL]

[θ′0, θ
′
1, θ

′
2, ϕ

′
k+1, · · · , ϕ′

L] = [α′
0 · β

′Ik
k , α′

1, α
′
2, β

′
k+1, · · · , β′

L]

Encrypt: To encrypt message M ∈ GT for a given identity ID = [I1, · · · , Ik] ∈ (Zn)
k, pick a

random s ∈ Zn and random Z1, Z2, Z3 ∈ Gq. Output the ciphertext

(MEs, GsZ1, F
sZ2, (V

k∏
i=1

HIi
i )sZ3).

Decrypt: To decrypt ciphertext (C1, C2, C3, C4) with respect to ID = [I1, · · · , Ik], using the

first three elements of subkey PvkIDd = [a0, a1, a2, bk+1, · · · , bL], compute

M = C1 · e(a1, C4) · e(a2, C3)/e(a0, C2)

3.2 Analysis

On the doubly randomized key. The ciphertext consists of (C1, C2, C3, C4), where C1 is the

blinded message, C4 is the blinded identity, both C2 and C3 are decrypting helpers. The reason to

set two decrypting helpers is that the authors adopt the doubly randomized key, i.e.,

PvkIDd = [w(v
k∏

i=1

hIii )
r1f r2 , gr1 , gr2 , hr1k+1, · · · , h

r1
L ].

Notice that a1 = gr1 and a2 = gr2 are used for decryption in parallel. But we know the setting is

unnecessary because it incurs more computational cost. Based on this observation, we can set the

decrypting key as

PvkIDd = [w(v
k∏

i=1

hIii )
r1 , gr1 , hr1k+1, · · · , h

r1
L ],

and the re-randomizing key as

PvkIDr = [[(v

k∏
i=1

hIii )
s1 , gs1 , hs1k+1, · · · , h

s1
L ], [(v

k∏
i=1

hIii )
t1 , gt1 , ht1k+1, · · · , h

t1
L ]].

Correspondingly, the system parameters can be optimized as

[G,V,H1, · · · ,HL, E], [p, q, g, v, h1, · · · , hL, w]

for the public system parameters and the master secret key, respectively.

Taking into account that the fixed argument for bilinear map using the Miller algorithm [11] is

more efficient than that for unfixed argument, we can further optimize the SKOS-IBE scheme by

setting that w = v. We will show the change does not endanger its security.
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On repeatedly randomizing the ciphertext. To encrypt a message M ∈ GT for a given

identity ID = [I1, · · · , Ik] ∈ (Zn)
k, it randomly picks s ∈ Zn, Z1, Z2, Z3 ∈ Gq, and computes the

ciphertext (MEs, GsZ1, F
sZ2, (V

∏k
i=1H

Ii
i )sZ3). We here stress that it is unnecessary to repeatedly

randomizing Gs, F s, (V
∏k

i=1H
Ii
i )s with Z1, Z2, Z3, respectively. The structure of (V

∏k
i=1H

Ii
i )s

suffices to blind the identity [I1, · · · , Ik] because one can not recover the secret exponent s, which

is usually called session key. Therefore, it is better to remove those redundant blinders Z1, Z2, Z3.

On the strong simulator. To prove its security, the authors defined five games and introduced

a strong simulator who is able to select different Setups for those games. See Lemma 1, Lemma 3,

and Lemma 4 in the Section 3.2 [14] for details. We will show the security of the improvement

under the ℓ-computational Diffie-Hellman assumption with a normal simulator who only requires

a unique Setup.

4 Improvement of SKOS-IBE

4.1 Construction

Setup: Given a security parameter λ and the maximum hierarchy depth L, the algorithm generates

(p, q,G,GT , e). Pick random elements

g, v, h1, · · · , hL ∈ Gp, Rg, Rv, R1, · · · , RL ∈ Gq.

and compute G = gRg, V = vRv, H1 = h1R1, · · ·, HL = hLRL, E = e(g, v). Publish the description

of a group G and public system parameters as [G,V,H1, · · · ,HL, E]. The master secret key is set

as [p, q, g, v, h1, · · · , hL].

KeyGenerate: Given ID=[I1, I2, · · · , Ik] ∈ (Zn)
k, pick random r1, s1, t1 ∈ Zn, output

PvkIDd = [v(v

k∏
i=1

hIii )
r1 , gr1 , hr1k+1, · · · , h

r1
L ].

PvkIDr = [[(v
k∏

i=1

hIii )
s1 , gs1 , hs1k+1, · · · , h

s1
L ], [(v

k∏
i=1

hIii )
t1 , gt1 , ht1k+1, · · · , h

t1
L ]].

Derive: Given a private key for the parent,

PvkID|k−1 = [Pvk
ID|k−1

d ,Pvk
ID|k−1
r ]

= [[a0, a1, bk, · · · , bL], [[α0, α1, βk, · · · , βL], [α′
0, α

′
1, β

′
k, · · · , β′

L]]],

pick random γ1, γ2, γ3, δ1, δ2, δ3 ∈ Zn such that gγ2δ3−γ3δ2
p ̸= 1 and gγ2δ3−γ3δ2

q ̸= 1. Output

Pvk
ID|k
d = [ζ0θ

γ1
0 θ′δ10 , ζ1θ

γ1
1 θ′δ11 , ηk+1ϕ

γ1
k+1ϕ

′δ1
k+1, · · · , ηLϕ

γ1
L ϕ′δ1

L ]
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Pvk
ID|k
r = [[θγ20 θ′δ20 , θγ21 θ′δ21 , ϕγ2

k+1ϕ
′δ2
k+1, · · · , ϕ

γ2
L ϕ′δ2

L ],

[θγ30 θ′δ30 , θγ31 θ′δ31 , ϕγ3
k+1ϕ

′δ3
k+1, · · · , ϕ

γ3
L ϕ′δ3

L ]]

where

[ζ0, ζ1, ηk+1, · · · , ηL] = [a0 · bIkk , a1, bk+1, · · · , bL]

[θ0, θ1, ϕk+1, · · · , ϕL] = [α0 · βIk
k , α1, βk+1, · · · , βL]

[θ′0, θ
′
1, ϕ

′
k+1, · · · , ϕ′

L] = [α′
0 · β

′Ik
k , α′

1, β
′
k+1, · · · , β′

L]

Encrypt: To encrypt message M ∈ GT for a given identity ID = [I1, · · · , Ik] ∈ (Zn)
k, pick a

random s ∈ Zn and output the ciphertext

(MEs, Gs, (V

k∏
i=1

HIi
i )s).

Decrypt: To decrypt ciphertext (C1, C2, C3) with respect to ID = [I1, · · · , Ik], using the first

two elements of subkey PvkIDd = [a0, a1, bk+1, · · · , bL], compute

M = C1 · e(a1, C3)/e(a0, C2)

Correctness.

C1 · e(a1, C3)/e(a0, C2) = MEs · e(a1, (V
k∏

i=1

HIi
i )s)/e(a0, G

s)

= Me(g, v)s ·
e
(
gr1 , (vRv

∏k
i=1(hiRi)

Ii)s
)

e
(
v(v

∏k
i=1 h

Ii
i )

r1 , Gs
)

= Me(g, v)s ·
e
(
gr1 , (v

∏k
i=1 h

Ii
i )

s
)

e
(
v(v

∏k
i=1 h

Ii
i )

r1 , gs
)

= Me(g, v)s/e(v, gs) = M

Notice that we here have to use the property that e(hp, hq) = 1 for all hp ∈ Gp and hq ∈ Gq.

Table 1: SKOS-IBE and the improvement

SKOS-IBE The improvement

Setup PK: gq, G, F, V,H1, · · · ,HL, E PK: G,V,H1, · · · ,HL, E

SK: p, q, g, f, v, h1, · · · , hL, w SK: p, q, g, v, h1, · · · , hL

KeyGenerate Pick r1, r2 ∈ Zn, compute PvkIDd as Pick r1 ∈ Zn, compute PvkIDd as

a = (w(v
∏k

i=1 h
Ii
i )r1fr2 , gr1 , gr2 , hr1

k+1, · · · , h
r1
L ) a = (v(v

∏k
i=1 h

Ii
i )r1 , gr1 , hr1

k+1, · · · , h
r1
L )

Encrypt Pick s ∈ Zn, Z1, Z2, Z3 ∈ Gq, compute Pick s ∈ Zn, compute

C = (MEs, GsZ1, F
sZ2, (V

∏k
i=1 H

Ii
i )sZ3) C = (MEs, Gs, (V

∏k
i=1 H

Ii
i )s)

Decrypt M = C1 · e(a1, C4) · e(a2, C3)/e(a0, C2) M = C1 · e(a1, C3)/e(a0, C2)

6



4.2 Security proof

Theorem 1. If the Setup and KeyGenerate algorithms satisfy the (t, ϵ)− ℓ-computational Diffie-

Hellman assumption, then there is no adversary with running time t that succeeds to decrypt a

ciphertext with advantage ϵ.

Proof. We assume there exists adversary A that succeeds to decrypt a ciphertext with advantage

ϵ. We show that there is a simulator B using A to solve the ℓ-computational Diffie-Hellman problem

with advantage ϵ. The adversary A and simulator B run the following game.

Initialization. A chooses identity ID = [I1, I2, · · · , Im], and sets Im+1 = · · · = IL = 0. Then

A picks a random a ∈ Zn and sets Ai = ga
i

p for 1 ≤ i ≤ L. A sends ID and Ai (1 ≤ i ≤ L) to the

simulator B, and keeps the secret a.

Setup. B picks random integers and random elements

y, x1, · · · , xL ∈ Zn, Rg, Rv, Rh,1, · · · , Rh,l ∈ Gq.

Notice that a random element of Gp(Gq) can be chosen by raising gp (gq, respectively) to random

exponents from Zn. B computes v = gyp
∏L

i=1(AL−i+1)
Ii and sets

G = gpRg, V = (gyp

L∏
i=1

(AL−i+1)
Ii)Rv, E = e(A1, v), Hi = gxi

p /AL−i+1Rh,i, for 1 ≤ i ≤ L.

Then B sends (v, h1, · · · , hL) to A, where hi = gxi
p /AL−i+1 for 1 ≤ i ≤ L. B finally publishes these

parameters (G,V,E,H1, · · · ,HL).

Query. For ID∗ = [I∗1 , I
∗
2 , · · · , I∗u], where u ≤ L is distinct from ID and all its prefixes, B

chooses random integers r1 ∈ Zn and sends (r1, ID
∗) to A.

Response. Let k be the smallest integer such that Ik ̸= I∗k . A sets r̂1 = r1 + ak/(I∗k − Ik) and

picks random s1, t1 ∈ Zn. Then A computes

PvkIDd = [v(v

k∏
i=1

h
I∗i
i )r̂1 , gr̂1 , hr̂1k+1, · · · , h

r̂1
L ],

PvkIDr = [[(v
k∏

i=1

h
I∗i
i )s1 , gs1 , hs1k+1, · · · , h

s1
L ], [(v

k∏
i=1

h
I∗i
i )t1 , gt1 , ht1k+1, · · · , h

t1
L ]],

and sends PvkID to B.

Output. Denote the first component of PvkIDd by

τ = v(v
k∏

i=1

h
I∗i
i )r̂1 ,
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then we have

τ/v = (v

k∏
i=1

h
I∗i
i )r̂1 = (v

k∏
i=1

h
I∗i
i )r1 · (v

k∏
i=1

h
I∗i
i )a

k/(I∗k−Ik)

= (v

k∏
i=1

h
I∗i
i )r1 ·

(
gyp

L∏
i=1

(AL−i+1)
Ii

k∏
i=1

(gxi
p /AL−i+1)

I∗i

)ak/(I∗k−Ik)

= (v
k∏

i=1

h
I∗i
i )r1 ·

(
gypA

Ik−I∗k
L−k+1

L∏
i=k+1

(AL−i+1)
Ii

k∏
i=1

g
xiI

∗
i

p

)ak/(I∗k−Ik)

= (v

k∏
i=1

h
I∗i
i )r1 ·

(
Ay

kA
Ik−I∗k
L+1

L∏
i=k+1

(AL+k−i+1)
Ii

k∏
i=1

A
xiI

∗
i

k

)1/(I∗k−Ik)

= (v
k∏

i=1

h
I∗i
i )r1 ·A−1

L+1

(
Ay

k

L∏
i=k+1

(AL+k−i+1)
Ii

k∏
i=1

A
xiI

∗
i

k

)1/(I∗k−Ik)

Hence,

ga
L+1

= AL+1 =
v

τ
· (v

k∏
i=1

h
I∗i
i )r1 ·

(
Ay

k

L∏
i=k+1

(AL+k−i+1)
Ii

k∏
i=1

A
xiI

∗
i

k

)1/(I∗k−Ik)

.

Since B knows k, L, τ, v, y, r1, xi, Ai, hi, for all 1 ≤ i ≤ L, he can compute the right side. Thus, B
can obtain ga

L+1
. That is, B can solve the ℓ-computational Diffie-Hellman problem. (We refer to

the following Table 2 for the security proof simulation) �

5 Conclusion

In this paper, we improve the SKOS-IBE scheme and prove its security under ℓ-computational Diffie-

Hellman assumption. The original scheme adopts the paradigm of doubly randomized key which

incurs more computational cost. Although the paradigm is rarely used in those practical protocols,

such as, RSA, DSA and Schnorr cryptosystem [13], the setting is more apt for constructing a

subliminal channel [8] because the redundant keys can be privately shared by the users who want

to communicate over the channel. It seems possible to further improve the SKOS-IBE scheme by

blinding the message and the identity simultaneously with a single blinder. But it seems difficult

to prove its security under the general ℓ-computational Diffie-Hellman assumption with a normal

simulator.

Table 2: Simulation for our construction
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A B

Pick ID = [I1, I2, · · · , Im] and,

set Im+1 = · · · = IL = 0.

Pick a ∈ Zn and set

Ai = ga
i

p , 1 ≤ i ≤ L.
ID,Ai,i=1,···,L
−−− 99K

Pick y, x1, · · · , xL ∈ Zn,

Rg, Rv, Rh,1, · · · , Rh,l ∈ Gq.

Compute v = gyp
∏L

i=1(AL−i+1)
Ii

and set G = gpRg, E = e(A1, v),

V = (gyp
∏L

i=1(AL−i+1)
Ii)Rv,

Hi = gxi
p /AL−i+1Rh,i, 1 ≤ i ≤ L.

Set hi = gxi
p /AL−i+1, 1 ≤ i ≤ L.

Publish (G,V,E,H1, · · · ,HL).
(v,h1,···,hL)

L99 −−−−
For ID∗ = [I∗1 , I

∗
2 , · · · , I∗u], u ≤ L,

pick r1 ← Zn.
(r1,ID∗)

L99 −−−
Set k be the smallest integer

such that Ik ̸= I∗k .

Set r̂1 = r1 + ak/(I∗k − Ik) and

pick s1, t1 ∈ Zn. Compute

PvkIDd =

[v(v
∏k

i=1 h
I∗i
i )r̂1 , gr̂1 , hr̂1k+1, · · · , h

r̂1
L ],

PvkIDr =

[[(v
∏k

i=1 h
I∗i
i )s1 , gs1 , hs1k+1, · · · , h

s1
L ],

[(v
∏k

i=1 h
I∗i
i )t1 , gt1 , ht1k+1, · · · , h

t1
L ]]

PvkID

−−− 99K
Output AL+1 =

v
τ · (v

∏k
i=1 h

I∗i
i )r1 ·(

Ay
k

∏L
i=k+1(AL+k−i+1)

Ii
∏k

i=1A
xiI

∗
i

k

) 1
(I∗

k
−Ik)
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