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Abstract. Several lattice-based cryptosystems require to sample from
a discrete Gaussian distribution over the integers. Existing methods to
sample from such a distribution either need large amounts of memory
or they are very slow. In this paper we explore a different method that
allows for a flexible time-memory trade-off, offering developers freedom
in choosing how much space they can spare to store precomputed values.
We prove that the generated distribution is close enough to a discrete
Gaussian to be used in lattice-based cryptography. Moreover, we report
on an implementation of the method and compare its performance to
existing methods from the literature. We show that for large standard
deviations, the Ziggurat algorithm outperforms all existing methods.

Keywords Lattice-Based Cryptography, Gaussian Sampling, Practical-
ity, Implementation

1 Introduction

The object of study of this paper is the discrete Gaussian probability dis-
tribution over the integers. Sampling elements from such a distribution is
widely used in lattice-based cryptography [GPV08,LP11,BGV12,GGH12].
It is a critical technical challenge to sample from a discrete Gaussian over
the integers accurately and efficiently. Weiden et. al. [WHCB13] report
that sampling from it takes more than 50% of the running time of the
signing algorithm in their implementation of Lyubashevsky’s signature
scheme [Lyu12].

All existing methods to sample from a Gaussian distribution over
the integers either need large amounts of memory or they are very slow.
For example, Galbraith and Dwarakanath estimate that Peikert’s sam-
pler [Pei10] requires around 12MB of storage [GD12] for some parameters.
Such a large memory requirement might be acceptable on a PC but not
on the diversity of devices that demand cryptographic solutions today.



In this paper we explore a different alternative for sampling from
a Gaussian distribution over the integers that offers a flexible trade-off
between speed and memory. Moreover, for big standard deviations, this
method beats commonly used methods. We call the method discrete Zig-
gurat because it adapts the Ziggurat algorithm [MT00] for the discrete
case.

The discrete Ziggurat is specially appealing for cryptographic applica-
tions because of its flexibility. The method uses precomputed rectangles
of equal ‘size’ to cover the area under the probability density function
(PDF). Increasing the number of rectangles increases speed but also in-
creases the memory used. Therefore, it offers an easy-to-tune trade-off
between speed and memory. This is a desirable property because devel-
opers of cryptographic primitives can easily adjust it to fit the particular
characteristics of different devices. On memory constraint devices like
smartcards or microcontrollers they could use a low-memory low-speed
setting, while on a high performing server they could use a high-memory
high-speed configuration.

Originally, the Ziggurat sampler was developed for a continuous dis-
tribution. In order to adapt it to the discrete case some care must be
taken. In particular the notion of ‘size’ of a rectangle must be redefined
from the narrow concept of ‘area’ to the more general “probability to
sample points inside the rectangle”. We discuss the implications of this
generalization.

It is also challenging to analyze the quality of the discrete Ziggurat
because of the subtleties of an actual implementation. In this paper we
provide a careful analysis that takes into consideration the loss of precision
due to the tailcut, the precision in sampling from the y-axis and the
precision in calculating the PDF. The techniques used and the way they
are combined in this analysis might show valuable for the analysis of other
samplers. For developers we explain how to achieve a desired accuracy by
setting the precision for representing numbers.

We implemented the discrete Ziggurat in C++ using the Number
Theory Library (NTL) [Sho]. The implementation can be downloaded
at the authors’ homepage1. We compare the efficiency of the discrete
Ziggurat with existing methods and analyze the speed-memory trade-
off. For example, we used the parameters proposed by Galbraith and
Dwarakanath [GD12] for the normal distribution in Lyubashevsky’s sig-
nature scheme [Lyu12]. For this illustrative setting, the discrete Ziggurat

1 In particular at https://www.cdc.informatik.tu-darmstadt.de/~pschmidt/

implementations/ziggurat/ziggurat-src.zip.



produces about 1.13 million samples per second, using only 524 kilobytes
of memory. In comparison, Peikert’s sampler outputs 281,000 samples per
second for a memory usage of 33.55 megabytes. The Knuth-Yao algorithm
is only slightly faster (it produces about 4% more samples), but increases
the memory-consumption by a factor of more than 400.

Related Work. We briefly survey existing alternatives to sample from a
discrete Gaussian probability distribution over the integers, denoted Dσ.
For parameter σ > 0, Dσ assigns x ∈ Z a probability proportional to
ρσ(x) = exp(−1

2x
2/σ2). It is important to note that sampling from Dσ is

different to sampling from a (continuous) normal distribution [TLLV07].
Another related problem is that of sampling from a Gaussian distribution
over a generic lattice, a more complex problem, whose solutions often
require sampling from Dσ as a subroutine [GPV08,Pei10,DN12,AGHS12].

For cryptographic applications it is sufficient to sample from the boun-
ded subset B := Z ∩ [−tσ, tσ], where the tailcut t > 0 is chosen large
enough to guarantee a desired precision [GPV08]. One alternative to sam-
ple from Dσ is to do rejection sampling on B. Another alternative is to
precompute the cumulative distribution function (CDF) for x ∈ B, sam-
ple a uniform element y ∈ [0, 1) and perform a binary search on the CDF
table to output the “inverse CDF” of y [Pei10]. To the best of our knowl-
edge, no work analyzes the accuracy or efficiency of any of these methods
in detail.

Yet another alternative, explored by Galbraith and Dwarakanath
[GD12], is the Knuth-Yao algorithm. The algorithm first precomputes
a binary tree with leaves labeled by the elements of B. For x ∈ B, if the
probability of sampling x has a one in the i-th place of its binary repre-
sentation, there is a leaf labeled x at height i of the tree. Then it samples
by walking down the tree using one uniform bit at each step to decide
which of the two children to move to. Galbraith and Dwarakanath present
a very detailed analysis of the accuracy of the sampler and of the number
of random bits it uses. They also propose ways to reduce the memory
requirements. However, they do not assess the speed of the sampler.

Ducas and Nguyen propose an enhancement for rejection sampling.
They observe that the sampler can compute at a low precision by de-
fault and only use high precision computation when a certain threshold
is reached [DN12]. To the best of our knowledge, no work evaluates the
effect of this enhancement in detail.



Organization. In Section 2 we explain the Ziggurat algorithm and we
describe in detail its discrete variant. In Section 3 we analyze the quality
of the distribution. Finally, in Section 4 we report on experimental results.

2 The Discrete Ziggurat Algorithm

The Ziggurat algorithm belongs to the class of rejection sampling algo-
rithms and was introduced by Marsaglia and Tsang for sampling from a
continuous Gaussian distribution [MT00]. Here we adapt it for the dis-
crete case. After explaining the setting, we give a short overview over
Ziggurat in the continuous case and shortly explain how to control the
trade-off. Afterwards, we show how we adapted it to the discrete case
and explain how to perform the necessary precomputing. Subsequently,
we discuss the implementation-details and finish the section with further
improvements.

2.1 Setting

We are concerned with sampling from a discrete Gaussian distribution
centered at zero with bounded support B := [−tσ, tσ] ∩ Z for some pa-
rameter t > 0. This bounded support is sufficient for the application in
lattice-based cryptography as long as t is chosen large enough. Moreover,
we show in Section 3.2 how to select parameters such that the sampled
distribution is within a certain statistical distance to a (truly) discrete
Gaussian distribution. The assumption that the distribution is centered
at zero is also fine, as we can add a constant offset to transform samples
into a distribution centered around any other integer.

2.2 Intuition

We briefly review the continuous Ziggurat for the above setting to give
some intuition. As the target distribution is symmetric, we can proceed
as follows. We use the method to sample a value x ≤ tσ within R+

0 .
Afterwards, if x = 0 we accept with probability 1/2. Otherwise, we sample
a sign s ∈ {−1, 1} and return the signed value sx.

Now, how do we sample x within R+
0 ? During set-up, we enclose the

area of the probability density function (PDF) in an area A consisting of
m horizontal rectangles with equal area as shown in Figure 1. How the
rectangles are computed is described below. Next, we store the coordi-
nates (xi, yi) of the lower right corner of each rectangle Ri, 1 < i < m−1.
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Fig. 1. Ziggurat for m = 7 with covering area A and the partition into rectangles.

Please note that each rectangle Ri can be split into a left rectangle Rli
that lies completely within the area of the PDF and a right rectangle
Rri that is only partially covered by the PDF. For an example, see R3 in
Figure 1.

Now, to actually sample a value x ≤ tσ within R+
0 we first sample an

integer 1 ≤ i ≤ m uniformly at random, to select a random rectangle.
Next, we sample an x-coordinate inside Ri, by sampling a uniformly ran-
dom x′ within [0, xi]. If x′ ≤ xi−1, i.e. if x′ is inside Rli, we directly accept
and return x′. Otherwise, x′ lies within Rri . In this case, we do rejection
sampling. Namely, we sample a value γ within [yi+1, yi] uniformly at ran-
dom. Then, if γ + yi+1 ≤ ρσ(x′), i.e. we hit a point in the area below the
PDF, we accept and return x′. Otherwise, we reject and restart the whole
process by sampling a new i.

In order to understand why this sampling-algorithm works, think of it
as an efficient implementation of rejection-sampling in the area A. More
precisely, the implementation of the first step (sampling a point in the
enclosing area) is improved. Since all the rectangles have equal size, the
probabilities of sampling a point in a given rectangle are equal. Therefore,
one can sample the rectangle first and a point in the rectangle afterwards.

The expensive part of the algorithm is computing ρσ(x′) if x′ does
not lie within Rli. It becomes even more expensive whenever a value is re-
jected. For this reason Ziggurat provides a time-memory trade-off, which
is controlled by the number of rectangles used, as follows. If we use more
rectangles, the ratio between the left and the right rectangle within one



rectangle is changed in such a way that the left rectangle becomes com-
paratively bigger. Hence, we accept an x′ without computing ρσ(x′) with
higher probability. Moreover, using more rectangles, the area A tighter
encloses the area C below the PDF. Thereby, the area A \ C that leads
to a rejection shrinks and with it the overall probability of a rejection.
However, for each additional rectangle the coordinates of one additional
point have to be stored, increasing the memory requirements.

2.3 Adaption to the Discrete Case

In the discrete case, the algorithm works quite similar. The whole pseu-
docode can be found in Appendix A.1. As before, a sign s, a rectangle
with index i and a potential sample x′ are sampled. If x′ lies in a left
rectangle and is non-zero, sx′ is returned immediately. If x′ equals zero,
it is returned with probability 1/2, like in the continuous case. If not,
exactly the same rejection sampling procedure as in the continuous case
is used to decide whether sx′ is returned or the whole process is restarted.

In contrast to the continuous case, the notion of ‘size’ defined using
the area of a rectangle can not be used in the discrete case. We have seen
in the last section that the size of a rectangle has to be proportional to
the probability to sample a point in it. In the discrete case, we therefore
define the size of a rectangle as the number of integer x-coordinates in
the rectangle times its height. For instance, the rectangle R3 has size
(1 + bx3c) · (y2 − y3).

The second difference between the continuous and the discrete case
is the way the rectangles are computed. While we did not explain how
this is done in the continuous case, as it would go beyond the scope of
this work, we give a description for the discrete case. We explain how to
obtain a partition for the Ziggurat algorithm for a given number of m
rectangles where each rectangle has exactly the same ‘size’ S. Therefore,
we set

ym := 0, x0 := 0 and xm := tσ,

and we iteratively compute a possible partition “from right to left” via

ym−1 =
S

1 + bxmc
, xm−1 = ρ−1σ (ym−1),

for i = m− 2, . . . , 1 : yi =
S

1 + bxi+1c
+ yi+1, xi = ρ−1σ (yi),

y0 =
S

1 + bx1c
+ y1.



Recall that ρσ is a scaled density function with ρσ(0) = 1. Therefore, a
valid partition for Ziggurat requires y0 ≥ 1, since only then the partition
completely covers the area under the curve ρσ on the support B+

0 :=
[0, tσ] ∩ Z+

0 . Since the value y0 depends on the ‘size’ S of the rectangles,
any value of S for which y0 ≥ 1 leads to a valid partition. We heuristically
determine S as follows. We set S = σ/(m·

√
π/2)·c with initial value c = 1,

compute the corresponding partition, and increase c stepwise as long as
y0 < 1. (To improve the quality of the input partition, i.e. minimizing
y0 − 1, one can perform a binary search for S in [σ/(m ·

√
π/2), tσ + 1].)

In the case that no valid partition is found, we increase xm by one and
restart the whole process. Reaching xm = (t + 1)σ, we abort. We note
that this method ended with no partition being output in only about
1.3% of our computations. In these cases, i.e. when no valid partition is
found, one can re-run the procedure with one or more of the following
changed: number of rectangles m, Gaussian parameter σ (if possible), or
upper bound on xm.

2.4 Implementation

For an implementation, we have to analyze the effect of computing with
limited precision. We use a dash over numbers or functions to indicate the
use of their corresponding n-bit fixed-point approximation, e.g. y and ρσ
denote the n-bit approximation of y ∈ R and the function ρσ, respectively.
Since we can exactly calculate ρσ, we can find a partition such that the
rectangles have exactly the same ‘size’ and represent it with the vertical
bounds yi (which we store with n bits fixed point precision) and the
rounded horizontal borders bxic. The last problem is to sample uniformly
at random in the infinite sets [yi, yi−1]. Our solution is to discretize the
set: We define hi := yi−1 − yi to be the height of the i-th rectangle,

sample y′
$← {0, 1, . . . , 2ω − 1} for a parameter ω ∈ Z+

0 and transform
the samples to y = hiy

′ ∈ [0, 2ωhi]. Instead of transforming y into the
interval [yi, yi−1] we replace the condition y ≤ ρσ(x) for y ∈ [yi, yi−1]
with y ≤ 2ω(ρσ(x) − yi) for y ∈ [0, 2ωhi]. We show in Section 3 how
to choose the parameters t, ω and n in order to bound the statistical
distance between the distribution defined by our algorithm and Dσ by a
given value.

2.5 Further Improvement

Since the most time-consuming part of the discrete Ziggurat is the com-
putation of ρσ, we want to avoid it as often as possible. As mentioned



above, it is only necessary if (x, y) is contained in a right rectangle Rri .
But even in this case, depending on the shape of ρσ inside of Rri , we can
avoid the evaluation of ρσ in nearly half of the cases and more easily reject
or accept x as follows.

We divide Rri by connecting its upper left and lower right corner by
a straight line s. Since ρσ has inflection point σ, it is concave-down for
x ≤ σ, and concave-up otherwise. In the concave-down case (xi ≤ σ) all
points (x, y) in Rri below s implicitly fulfill the acceptance condition, thus
x is instantly output. In the concave-up case (σ ≤ xi−1) all points above
s lead to immediate rejection. In all other cases we have to evaluate ρσ(x)
and check the acceptance condition. For the discrete Ziggurat we have to
adjust this approach to our way of sampling yi and our use of the values
bxic instead of xi (for an idea how to accomplish this see Figure 2).

R̂ri

0
xi−1
bxi−1c

xi
bxic

2ωhi

s

ρσ

(a) The concave-down case

R̂ri

0
xi−1
bxi−1c + 1

xi
bxic + 1

2ωhi

s

ρσ

(b) The concave-up case

Fig. 2. Optimization to discrete Ziggurat (R̂ri is Rri vertically shifted and stretched)

3 Quality of our Sampler

In this section, we show how to choose parameters for the algorithm such
that it achieves a given quality in the sense of statistical distance to a
discrete normal distribution. We begin with a theorem that bounds the
statistical distance between the distribution produced by the sampler and
a discrete normal distribution. Afterwards, we show as an example how
to select parameters such that the statistical distance is smaller than
2−100. The methodology can be used to select parameters for any given
statistical distance.



3.1 Statistical Distance Between Sampled and Gaussian
Distribution

No practical algorithm outputs samples exactly distributed according to
a Gaussian distribution. Therefore, it is important to understand how
much the produced output distribution differs from the normal distribu-
tion. This difference is measured by the statistical distance. Recall that
t determines the tailcut and ω the precision of the sampled y-values.
As explained before, we use numbers with n-bit fixed-point precision.
Similar to the definition of the support B+

0 = [0, tσ] ∩ Z+
0 , we define

B+ := [0, tσ]∩Z+. The next theorem gives a lower bound on the quality
of our sampler depending on the used parameters.

Theorem 1. The statistical distance between the discrete Gaussian dis-
tribution Dσ and the distribution Dσ output by our algorithm is bounded
by

∆(Dσ, Dσ) < te(1−t
2)/2 +

∣∣B+
0

∣∣
ρσ(B+) + 1

2

(2−ω+1 + 2−n). (1)

For readability we solely give an intuition of the proof here, while the
complete proof is given Appendix A.3. The proof follows a hybrid ar-
gument. We introduce intermediary distributions. The first intermediary
distribution differs from a Gaussian distribution by the tailcut. The sec-
ond intermediary distribution takes the limited precision of the stored
numbers and the sampled y-values into consideration. After bounding
the statistical distances between the consecutive distributions, we apply
the triangle inequality to show the main result.

3.2 Parameter Selection

We now show how to choose t, n and ω such that the statistical distance
of our distribution and the discrete Gaussian distribution is below 2−100

for σ = 10. We choose t to be the smallest positive integer such that
t exp((1 − t2)/2) < 2−101, which is t = 13. Furthermore, we choose ω =
n + 1 and obtain 2−ω+1 + 2−n = 2−n+1. We can now find an n such
that the second addend of inequality (1) is bounded by 2−101. Since this
calculation is a little bit complex, we try to get a feeling for the expected
result first. Since t was chosen such that the probability of sampling an
element in the tail is extremely small, we obtain

ρσ(B+) +
1

2
≈ ρσ(B+) +

1

2
≈ ρσ(Z+

0 ) ≈
∫ ∞
0

ρσ(x)dx = σ

√
π

2



and expect

2−n+1

∣∣B+
0

∣∣
ρσ(B+)

≈ 2−n+1 tσ

σ
√
π/2
≈ 2−n+1t ≈ 2−n+5.

The smallest n satisfying 5− n ≤ −101 is n = 106. An exact calculation
shows indeed that n = 106 suffices.

4 Experiments and Results

In this section we discuss the performance of our implementation of the
discrete Ziggurat algorithm. We first describe the experiments we per-
formed to test the efficiency, then present their results and analyze the
gathered data. Furthermore, we compare our sampler to implementations
of existing samplers for discrete Gaussians.

4.1 Environment and Setup

The experiments were carried out on a Sun XFire 4400 server with 16
Quad-Core AMD Opteron 8356 CPUs running at 2.3GHz (we only used
one CPU), having in total 64GB of RAM and running a 64bit Debian 7.1.
All implementations use the Number Theory Library (NTL, cf. [Sho])
with precision n = 106 bits in consistency to our choice of parameters
in Section 3.2 to assure a statistical distance for Ziggurat of at most
2−100. Furthermore, we used the tailcut t = 13 and the discrete Gaussian
parameters σ ∈ {10, 32, 1000, 1.6 · 105}. The value σ = 32 maintains the
worst-to-average-case reduction [Reg05] in several schemes for a certain
parameter set, and the rather large value σ = 1.6 ·105 is chosen according
to Galbraith and Dwarakanath [GD12]. The other two values σ = 10, 1000
were chosen arbitrarily inbetween and at the lower end to allow a better
comparison.

We queried each algorithm iteratively 1 million times to output a
single sample per call. These experiments were applied to the discrete
Ziggurat with the optimization using the straight line s (ZigguratO), dis-
crete Ziggurat without optimization (Ziggurat), inverse CDF (invCDF),
rejection sampling with precomputed lookup-table (rejSam), and Knuth-
Yao (KY). Furthermore we tested both Ziggurat algorithms with a pre-
computed lookup-table for the support B+

0 (ZigguratOP and ZigguratP,
respectively).

For each algorithm we measured the running time using the (Linux-
internal) function clock gettime with clock CLOCK PROCESS CPUTIME ID.
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Fig. 3. Results for inverse CDF, rejection sampling, Knuth-Yao, and discrete Ziggurat
with and without optimization for parameters σ = 10, 32, 1000, 1.6 · 105, respectively.

In order to have non-distorted results we excluded all pre- and post-
computations (e.g. setting up lookup-tables) from the measurements.
Regarding the memory, we did not perform per-runtime analyses, but
computed the amount of memory by adding up the number of fixed
variables in regard to their types in NTL. For our choice of parame-
ters, in Ziggurat(O) the values on the x-axis need 8 bytes and on the
y-axis 24 bytes of memory. With m rectangles the total amount of mem-
ory is thus 32(m + 2) bytes (including σ, t, ω,m). For both invCDF and
rejSam we need to store a lookup-table of tσ values à 16 bytes, result-
ing in 2080 bytes for σ = 10. The same amount of memory is used by
Ziggurat(O) with m = 63 rectangles. The size of Knuth-Yao is approx-
imated by (#intermediates + #leaves)/2 bits, where #intermediates =
n · 2dlog log(n·tσ)e and #leaves = n · 2dlog log(tσ)e for precision n = 106 bits
as above.

4.2 Results

Figure 3 shows results for inverse CDF, rejection sampling, Knuth-Yao,
and discrete Ziggurat with and without optimizations for different num-
bers of rectangles. It shows four different graphs for different values of σ.
For small values of σ, the inverse CDF method outperforms both discrete



Ziggurat and rejection sampling for the same fixed amount of memory.
For example, our implementation invCDF samples about 1.37 million
samples per second for σ = 32. On the other hand, rejection sampling is
quite slow due to a large rejection area. Even with a precomputed lookup-
table, rejSam only achieves about 327,000 samples per second, which is a
factor 4.2 slower than invCDF. The näıve approach without lookup-table
solely achieves 2,500 samples per second, being a factor 558 slower than
invCDF. For the same amount of memory, ZigguratO achieves an over-
all number of about 753,000 samples per second, while Ziggurat outputs
718,000 samples per second. Compared to the other two methods, Ziggu-
rat is 1.91 times slower than invCDF and a factor 2.19 faster than rejSam.
Our implementation of Knuth-Yao outperforms all the other methods by
at least a factor of 3.53, outputting 4.85 million samples per second. This
comes at the cost of nearly doubled memory usage.

In the extreme case σ = 1.6 · 105, the fastest instantiation of Ziggurat
outputs 1.13 million samples per second with a memory usage of 524
kilobytes. Inverse CDF creates 281,000 samples per second while using
33.55 megabytes, thus being about a factor 4 slower than Ziggurat. For
rejSam the situation is even worse: Using the same amount of memory
as invCDF, it only outputs 185,000 samples per second – a factor 6.1
slower than Ziggurat. The Knuth-Yao algorithm still performs better than
Ziggurat, but only by 4.26%. On the other hand, KY needs more than
424 times the memory storage of Ziggurat. Concluding we state that for
larger values of σ the Ziggurat algorithm beats both inverse CDF and
rejection sampling. Compared to Knuth-Yao, Ziggurat achieves almost
the same speed but reduces the memory consumption by a factor of more
than 400.

Figure 3 shows that we can beat invCDF in terms of speed and com-
pete with Knuth-Yao. The reason for this is the simplicity of the algo-
rithm. If many rectangles are stored, the rejection-probability gets very
small. Likewise, the probability to sample an x in a right rectangle Rri
gets very small. Therefore, the algorithm only samples a rectangle and
afterwards samples a value within this rectangle, which can be done very
fast.

As one can furthermore see in Figure 3, the discrete Ziggurat algo-
rithm shows a large flexibility in regard to the speed-memory trade-off.
For a small amount of memory (i.e. number of rectangles) it is quite slow,
e.g. for σ = 32 and 8 rectangles it obtains about 57,000 samples per sec-
ond. For increasing memory allocation the speed of Ziggurat(O) increases.
This statement holds for all values of σ we tested. As can be seen by the
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graphs, the speed of Ziggurat decreases for increasing number of rectan-
gles. This was first surprising to us. Further analysis showed that this is
due to the fact that with increasing number of rectangles (i.e. amount of
allocated memory) the processor cannot keep the partition table in the
fast caches, but has to obtain requested memory addresses from slower
caches on demand. In addition, the large number of rectangles requires
more bits to be sampled in a single step of the algorithm.

The trade-off provided by the Ziggurat-algorithms is indeed a prop-
erty the other approaches do not share. InvCDF assigns every possible
value to an interval on the y-axis. Consequently, one has to store at least
the borders if the intervals. Decreasing the precision of the borders will
decrease the memory consumption, but as well decrease the quality of
the sampler. Increasing the precision or storing intermediate values, on
the other hand, will not decrease the running time. The same happens to
rejection sampling if the precision of the precomputed values is changed.
Knuth-Yao stores for every element in the support the probability to
sample this element. Decreasing the precision of the stored probabilities
would (like for invCDF) decrease the quality of the sampler. While there
might be efficient ways to store those values, there is a minimal amount
of space required to store this information. Knuth-Yao as well as invCDF
and rejection sampling therefore only provide a trade-off between quality
and speed/memory consumption.

In Figure 4 we draw the time-memory trade-off for the Ziggurat algo-
rithm for different values of σ. One can see that the performance of the
Ziggurat algorithm decreases for larger σ. What is interesting in the graph
is that the Ziggurat algorithm for σ = 10 is slower for a large amount of
rectangles than for σ = 32. This is puzzling as we cannot directly explain



the described behaviour. We want to state that during our experiments
we saw quite large fluctuations for several runs of the algorithm. Maybe
this could explain the better performance for σ = 32 in comparison to
σ = 10.

We also compared ZigguratO and Ziggurat in regard to speed.2 The
improvement rate increases up to 30% for a total memory of 320 bytes,
then decreases to around 6% for 2080 bytes, until finally for 130KB
and bigger there is no improvement. Overall, the described behaviour
is not surprising since for increased memory the number of rectangles
gets larger, so that the rejection area is very small. This leads to nearly
no evaluations in the right sub-rectangles Rri and therefore to no compu-
tation of the straight line s (or even ρσ).

Additionally, we compared ZigguratO to ZigguratOP, which operates
with at least 2176 bytes of memory. ZigguratOP is slower until about
2.5KB of memory, but then it beats ZigguratO with a speedup of up to
40%, until for memory larger than 262KB there seems to be no speedup
at all. This behaviour is reasonable since the lookup-table requires more
storage, but simultaneously affects the speed due to replacing ρσ by table-
lookups.

At last, we give insights on the time-split for our implementations
Ziggurat and ZigguratO. We used the tool suite Valgrind with the tool
Callgrind to obtain the measurements and analyzed them using the
Callee Graph in the Callgrind-GUI KCachegrind. Figure 5 shows the
percentages for both algorithms. We chose the most interesting sub-
routines, i.e. the exponential function (called inside ρ̄σ in Rri ), the genera-
tion of random bits, the computation of the straight line s (in ZigguratO),
and ‘other’ sub-routines. One can see that for a small amount of memory
the computation of the exponential function takes most part of the run-
ning time, e.g. for 104 bytes (two rectangles) its computation consumes
80-90% of the total running time. As the memory increases, the rejection
area gets smaller, i.e. the percentage of the right sub-rectangles Rri com-
pared to their super-rectangles Ri. Thus, the number of integers sampled
inside the Rri ’s decreases. Additionally, the exponential function has to
be called less often. Nevertheless, the graphs show that the use of the
straight line s decreases the use of the exponential function (or call to ρ̄σ)
in ZigguratO in comparison to Ziggurat considerably, while at the same
time the computational complexity of s is not high (at most 6.77%).

2 For additional Figures see Appendix A.2.
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Fig. 5. Time-split of discrete Ziggurat with and without optimization
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A Appendix

In this Appendix we present the pseudocode for the discrete Ziggurat
algorithm, give additional Figures in regard to our experimental results,
and give the proof for Theorem 1 from Section 3.

A.1 Pseudocode for Discrete Ziggurat

In Figure 6 we present the pseudocode for our implementation of the
discrete Ziggurat algorithm of Section 2. In particular, we give the pseu-
docode for ZigguratO. From this, one obtains pseudocode for Ziggurat by
removing lines 11–17, 19 and 20.

A.2 Additional Figures regarding Results

In Figure 7 we present the rate of improvement of Ziggurat with opti-
mization (ZigguratO) over Ziggurat without the straight line approach.
For a small amount of memory, the improvement using the straight line
approach is quite good (around 20-30% for memory usage between 128
and 576 bytes), while for larger memory, i.e. higher number of rectangles,
the improvement vanishes due to nearly no rejection area.

Figure 8 shows the speed of ZigguratO and its corresponding vari-
ant ZigguratOP with precomputed lookup-table. ZigguratOP can per-
form only with memory larger or equal to 2176 bytes due to the size of
the lookup-table. Thus, given a small amount of memory, it is not pos-
sible to apply ZigguratOP. But for available memory larger than 2.5KB
ZigguratOP outperforms ZigguratO up to 40%.



Algorithm 1: ZigguratO

Input: m, σ, bx1c , . . . , bxmc, y0, y1, . . . , ym, ω
Output: number distributed according to a discrete Gaussian distribution

1 while true do

2 i
$← {1, . . . ,m}, s $← {−1, 1}, x $← {0, . . . , bxic};

// choose rectangle, sign and value

3 if 0 < x ≤ bxi−1c then return sx;
4 else
5 if x = 0 then

6 b
$← {0, 1};

7 if b = 0 then return sx;
8 else continue;

9 else
// in rejection area Rri now

10 y′
$← {0, . . . , 2ω − 1}, y = y′ · (yi−1 − yi);

11 if bxic+ 1 ≤ σ then
// in concave-down case

12 if
y ≤ 2ω · sLine(bxi−1c , bxic , yi−1, yi;x) ∨ y ≤ 2ω · (ρσ(x)− yi)
then return sx;

13 else continue;

14 else if σ ≤ bxi−1c then
// in concave-up case

15 if
y ≥ 2ω ·sLine(bxi−1c , bxic , yi−1, yi;x−1)∨y > 2ω ·(ρσ(x)−yi)
then continue;

16 else return sx;

17 else
18 if y ≤ 2ω · (ρσ(x)− yi) then return sx;
19 else continue;

20 end

21 end

22 end

23 end

Algorithm 2: sLine(bxi−1c , bxic , yi−1, yi;x)

1 if bxic = bxi−1c then return −1;

2 Set ŷi = yi and ŷi−1 =

{
yi−1 i > 1

1 i = 1

3 return
ŷi − ŷi−1

bxic − bxi−1c
· (x− bxic)

Fig. 6. The discrete Ziggurat algorithm with optimization (ZigguratO)
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A.3 Quality of our Sampler: Proof of Theorem 1

In this section we present the proof of Theorem 1 from Section 3. The
proof is divided into several parts: First we show that the distribution
generated by the discrete Ziggurat algorithm is the target distribution Dσ

given below. Then, by introducing a number of intermediate distributions,
we upper bound the statistical distance of the Gaussian distribution Dσ

and the target distribution Dσ in a consecutive way. This allows us to
make statements about the quality of our sampler for given.

Let yi, hi, bxic, B, B+ and B+
0 be defined for the parameters t, n, m,

ω as in Sections 2 and 3. For x ∈ B+ we define the function

P (x) := yj + 2−ωhj

⌊
ρσ(x)− yj

2−ωhj
+ 1

⌋
,

where j is the index of the first rectangle containing points with x-
coordinate x. Furthermore, we define the following distributions.

– Let Dσ be the discrete Gaussian distribution over the integers with
mean 0 and parameter σ, i.e. Pr[Dσ = x] ∼ ρσ(x) for every x ∈ Z.

– LetD+
σ be the distribution defined by Pr[D+

σ = x] ∼
{
ρσ(x) for x ∈ Z+

1
2 for x = 0.

– Let D̂+
σ be the distribution defined by Pr[D̂+

σ = x] ∼
{
ρσ(x) for x ∈ B+

1
2 for x = 0.

– LetD
+
σ be the distribution defined by Pr[D

+
σ = x] ∼

{
P (x) for x ∈ B+

1
2P (x) for x = 0.

– Let Dσ be the distribution defined by Pr[Dσ = x] ∼ P (x) for x ∈ B.

Before we start with the calculation of the statistical distances, we
show how these distributions correlate with our algorithm.

Theorem 2. D
+
σ is the distribution returned by our algorithm without

sampling a sign s ∈ {−1, 1} and Dσ is the distribution returned by our
algorithm.

Proof. In order to prove the first claim, we determine the probability
Px that a given x ∈ B+

0 is chosen in the first iteration of the while-
loop and not rejected. Since the probability of returning this x at all is
proportional to Px, this shows the result. Let j ∈ {1, . . . ,m} be such that
xj−1 < x ≤ xj . If a rectangle Ri with i < j is sampled, x cannot be
returned. If i > j and x is sampled in the rectangle, x will be returned



without sampling a y-coordinate. Finally, if i = j and x is sampled, x will
be returned if the transformed y is at most ρσ(x). This leads to

Px =
1

m

 m∑
i=j+1

1

bxic+ 1
+

1

bxjc+ 1
Pr[2−ωhjy + yj ≤ ρσ(x)]


with y

$← {0, . . . , 2ω− 1}. Since (bxic+ 1)hi = S for every i ∈ {1, . . . ,m},
this leads to

Px =
1

m

 m∑
i=j+1

hi
S

+
hj
S

Pr[2−ωhjy + yj ≤ ρσ(x)]


=

1

mS

(
yj + hj Pr[2−ωhjy + yj ≤ ρσ(x)]

)
.

Since the acceptance probability is given by

Pr[2−ωhjy + yj ≤ ρσ(x)] =

∣∣{i ∈ N0 | 2−ωhji+ yj ≤ ρσ(x)}
∣∣

2ω

= 2−ω
∣∣{i ∈ N0 | i ≤ 2ω(ρσ(x)− yj)/hj}

∣∣
= 2−ω

⌊
ρσ(x)− yj

2−ωhj
+ 1

⌋
,

we obtain

Px =
1

mS

(
yj + 2−ωhj

⌊
ρσ(x)− yj

2−ωhj
+ 1

⌋)
∼ P (x).

The next step is the proof of the second statement. Note that the first
statement reveals that one can sample from the distribution defined by
our algorithm by sampling a sign and multiplying it to the output of D

+
σ .

This leads to

Pr[Dσ = x] =

{
1
2 Pr[D

+
σ = |x|] for x ∈ B \ {0}

Pr[D
+
σ = 0] for x = 0

∼ 1

2
P (x)

for x ∈ B. �

The statistical distance between an arbitrary distribution and the
same distribution with finite support is exactly the probability of sam-
pling an element in the cut-off part of the support. We state the special
case for the distribution D+

σ of this general statement.



Lemma 3. With notation as above,

∆(D+
σ , D̂

+
σ ) = Pr[D+

σ > tσ].

Proof. Since for x ∈ B+
0 , Pr[D̂+

σ = x] > Pr[D+
σ = x] and for x ∈ Z+

0 \B+
0 ,

Pr[D+
σ = x] = 0, it follows that

2∆(D+
σ , D̂

+
σ ) =

∑
x∈Z+

0

∣∣∣Pr[D+
σ = x]− Pr[D̂+

σ = x]
∣∣∣

=
∑
x∈B+

0

∣∣∣Pr[D+
σ = x]− Pr[D̂+

σ = x]
∣∣∣+

∑
x∈Z+

0 \B
+
0

∣∣∣Pr[D+
σ = x]− Pr[D̂+

σ = x]
∣∣∣

=
∑
x∈B+

0

(Pr[D̂+
σ = x]− Pr[D+

σ = x]) +
∑

x∈Z+
0 \B

+
0

Pr[D+
σ = x]

=
∑
x∈B+

0

Pr[D̂+
σ = x]−

∑
x∈B+

0

Pr[D+
σ = x] + Pr[D+

σ ∈ Z+
0 \B+

0 ]

= Pr[D̂+
σ ∈ B+

0 ]− Pr[D+
σ ∈ B+

0 ] + Pr[D+
σ ∈ Z+

0 \B+
0 ]

= 1− (1− Pr[D+
σ ∈ Z+

0 \B+
0 ]) + Pr[Dσ ∈ Z+

0 \B+
0 ]

= 2 Pr[D+
σ ∈ Z+

0 \B+
0 ]

= 2 Pr[D+
σ > tσ].

�

In order to get a concrete bound for the statistical distance, we need to
bound the probability of the tail. We can use the special case of [Ban93],
Lemma 1.5 for the one-dimensional case and L = Z.

Lemma 4. For every t ≥ 1,

1. ρσ(Z \ [−σt, σt]) < te(1−t
2)/2 · ρσ(Z) and

2. Pr[D+
σ > tσ] < te(1−t

2)/2.

Proof. The first result is proved in [Ban93]. The second one follows since

Pr[D+
σ > tσ] =

∑
x>tσ ρσ(x)∑

x∈Z+ ρσ(x) + 1/2
=

2
∑

x>tσ ρσ(x)

2
∑

x∈Z+ ρσ(x) + 1
< te(1−t

2)/2.

�

The following result bounds the statistical distance of two distribu-
tions induced by functions f and g. It is true for any finite support, but
for simplicity we will denote the support by B+

0 .



Lemma 5. Let f : B+
0 → R+

0 and g : B+
0 → R+

0 be non-negative func-
tions and F , G be distributions with support B+

0 satisfying Pr[F = x] ∼
f(x) and Pr[G = x] ∼ g(x) for all x ∈ B+

0 , respectively. Then

∆(F,G) ≤ 1

g(B+
0 )

∑
x∈B+

0

|f(x)− g(x)| .

Proof. Note that Pr[F = x] = f(x)

f(B+
0 )

and Pr[G = x] = g(x)

g(B+
0 )

for every

x ∈ B+
0 . The lemma follows since

2∆(F,G) =
∑
x∈B+

0

∣∣∣∣ f(x)

f(B+
0 )
− g(x)

g(B+
0 )

∣∣∣∣
=

1

g(B+
0 )

∑
x∈B+

0

∣∣∣∣f(x)− g(x) +

(
g(B+

0 )

f(B+
0 )
− 1

)
f(x)

∣∣∣∣
4
≤ 1

g(B+
0 )

∑
x∈B+

0

|f(x)− g(x)|+
∑
x∈B+

0

∣∣∣∣( g(B+
0 )

f(B+
0 )
− 1

)
f(x)

∣∣∣∣


=
1

g(B+
0 )

∑
x∈B+

0

|f(x)− g(x)|+
∣∣g(B+

0 )− f(B+
0 )
∣∣

4
≤ 2

g(B+
0 )

∑
x∈Z
|f(x)− g(x)| .

�

Lemma 5 can be used to bound the error caused by the limited pre-
cision and the discrete sampling of y.

Lemma 6. With the definition of Dσ and D+
σ from above,

∆(D̂+
σ , D

+
σ ) <

∣∣B+
0

∣∣
ρσ(B+) + 1

2

(2−ω+1 + 2−n).

Proof. Let j ∈ {1, . . . ,m} be such that xj−1 < x ≤ xj . Since for every
x ∈ B+

0 ,∣∣P (x)− ρσ(x)
∣∣ =

∣∣∣∣yj + 2−ωhj

⌊
ρσ(x)− yj

2−ωhj
+ 1

⌋
− ρσ(x)

∣∣∣∣
4
≤ 2−ωhj

∣∣∣∣⌊ρσ(x)− yj
2−ωhj

⌋
− ρσ(x)− yj

2−ωhj

∣∣∣∣︸ ︷︷ ︸
<1

+2−ωhj ,



we conclude that
∣∣P (x)− ρσ(x)

∣∣ < 2−ωhj + 2−ωhj = 2−ω+1hj ≤ 2−ω+1.
Furthermore, |ρσ(x)− ρσ(x)| ≤ 2−n for every x ∈ B+

0 and by the triangle
inequality it follows that∣∣P (x)− ρσ(x)

∣∣ < 2−ω+1 + 2−n.

Applying Lemma 5 with

f : x 7→
{
ρσ(x) for x > 0

1/2 for x = 0

and

g : x 7→
{
P (x) for x > 0

1/2 · P (0) for x = 0

leads to

∆(D̂+
σ , D

+
σ ) ≤ 1

g(B+
0 )

∑
x∈B+

0

|f(x)− g(x)|

≤
∣∣B+

0

∣∣
ρσ(B+) + 1

2

(2−ω+1 + 2−n).

�

The next result shows that sign-sampling does not change the statis-
tical distance. It is quite natural if one thinks of the statistical distance as
the size of the area between the density functions of the two distributions.
Remember that D+

σ = |Dσ| and D
+
σ =

∣∣Dσ

∣∣. Taking the absolute value
means adding the reflected left half of the density function to the right
half. Since both density functions are symmetric, the right half is doubled
and it is easy to see that the size of the area between the distributions
does not change.

Lemma 7. With the definition of Dσ and Dσ from above,

∆(Dσ, Dσ) = ∆(D+
σ , D

+
σ ).

Proof. Recall that one can sample from Dσ by sampling x ← D+
σ , sam-

pling a sign s
$← {−1, 1} and outputting sx. It is easy to see that

Pr[Dσ = x] =

{
1
2 Pr[D+

σ = |x|] for x ∈ Z \ {0}
Pr[D+

σ = 0] for x = 0.



Likewise,

Pr[Dσ = x] =

{
1
2 Pr[D

+
σ = |x|] for x ∈ B \ {0}

Pr[D
+
σ = 0] for x = 0.

Since Pr[Dσ = x] = 0 for x ∈ Z \B and Pr[D
+
σ = x] = 0 for x ∈ Z+ \B+,

Pr[Dσ = x] =

{
1
2 Pr[D

+
σ = |x|] for x ∈ Z \ {0}

Pr[D
+
σ = 0] for x = 0.

This leads to

2∆(Dσ, Dσ) =
∑
x∈Z

∣∣Pr[Dσ = x]− Pr[Dσ = x]
∣∣

=
∑
x∈Z
x6=0

∣∣∣∣12 Pr[D+
σ = |x|]− 1

2
Pr[D

+
σ = |x|]

∣∣∣∣+
∣∣∣Pr[D+

σ = 0]− Pr[D
+
σ = 0]

∣∣∣
= 2

∑
x∈Z+

∣∣∣∣12 Pr[D+
σ = x]− 1

2
Pr[D

+
σ = x]

∣∣∣∣+
∣∣∣Pr[D+

σ = 0]− Pr[D
+
σ = 0]

∣∣∣
=
∑
x∈Z+

∣∣∣Pr[D+
σ = x]− Pr[D

+
σ = x]

∣∣∣
= 2∆(D+

σ , D
+
σ ).

�

Now we can finally prove the main result. We add it for completeness.

Theorem 1. The statistical distance between the discrete Gaussian dis-
tribution Dσ and the distribution Dσ output by our algorithm is bounded
by

∆(Dσ, Dσ) < te(1−t
2)/2 +

∣∣B+
0

∣∣
ρσ(B+) + 1

2

(2−ω+1 + 2−n).

Proof. Lemmata 3, 4 and 6 show that

∆(D+
σ , D

+
σ ) < te(1−t

2)/2 +

∣∣B+
0

∣∣
ρσ(B+) + 1

2

(2−ω+1 + 2−n).

The rest follows since Lemma 7 states that ∆(Dσ, Dσ) = ∆(D+
σ , D

+
σ ). �


