
Rounding LLL:
Finding Faster Small Roots of Univariate Polynomial Congruences

Jingguo Bi∗ and Phong Q. Nguyen†

May 30, 2013

Abstract

In a seminal work at EUROCRYPT ’96, Coppersmith showed how to find all small roots of a univariate polynomial
congruence in polynomial time: this has found many applications in public-key cryptanalysis and in a few security
proofs. However, the running time of the algorithm is a high-degree polynomial, which limits experiments: the bot-
tleneck is an LLL reduction of a high-dimensional matrix with extra-large coefficients. We present in this paper a
polynomial speedup over Coppersmith’s algorithm. Our improvement is based on a special property of the matrices
used by Coppersmith’s algorithm, which allows us to speed up the LLL reduction by rounding. The exact speedup
depends on the LLL algorithm used: for instance, the speedup is quadratic in the bit-size of the small-root bound if one
uses the Nguyen-Stehlé L2 algorithm.

Keywords: Coppersmith’s Algorithm, Small Roots of Polynomial Equations, LLL, Complexity, Speedup, RSA.

1 Introduction

At EUROCRYPT ’96, Coppersmith [6, 5, 7] showed how to find efficiently all small roots of polynomial equations
(modulo an integer, or over the integers). The simplest (and perhaps most popular) result is the following: Given an
integer N of unknown factorization and a monic polynomial f(x) ∈ Z[x] of degree δ, Coppersmith’s lattice-based
algorithm finds all integers x0 ∈ Z such that f(x0) ≡ 0 (mod N) and |x0| ≤ N1/δ in time polynomial in logN and
δ. This has many applications in public-key cryptanalysis (e.g. attacking special cases of RSA and factoring with a
hint), but also in a few security proofs (such as in RSA-OAEP [21]). Accordingly, Coppersmith’s seminal work has been
followed up by dozens of articles (see May’s survey [13] for references), which introduced new variants, generalizations,
simplifications and applications.

All these small-root algorithms are based on the same idea of finding new polynomial equations using lattice basis
reduction: it reduces the problem of finding small roots to finding LLL-short vectors in a lattice. This can theoretically be
done in polynomial time using the LLL algorithm [12], but is by no means trivial in practice: the asymptotical running time
is a high-degree polynomial, because the lattice is huge. More precisely, May’s recent survey [13] gives for Coppersmith’s
lattice-based algorithm the complexity upper bound O(δ5 log9N) using the Nguyen-Stehlé L2 algorithm [16] as the
reduction algorithm. A careful look gives a somewhat better upper bound: asymptotically, one may take a matrix of
dimension O(logN), and bit-size O((log2N)/δ), resulting in a complexity upper bound O((log9N)/δ2) using L2. In
typical applications, δ is small ≤ 9 but logN is the bit-size of an RSA modulus, i.e. at least 1024 bits, which makes the
theoretical running time daunting: log9N is already at least 290. For more powerful variants of Coppersmith’s algorithm,
the running time is even worse, because the lattice dimension and/or the bit-size increase: for instance, Coron [8] gives
the upper bound O(log11W) for finding small roots over bivariate equations over the integers (W plays a role similar to
N in the univariate congruence case), using L2.

The bottleneck of all Coppersmith-type small-root algorithms is the LLL reduction. Despite considerable attention,
no significant improvement on the running time has been found, except that LLL algorithms have improved since [7],
∗Tsinghua University, Institute for Advanced Study, China. jingguobi@mail.tsinghua.edu.cn
†INRIA, France & Tsinghua University, Institute for Advanced Study, China. http://www.di.ens.fr/˜pnguyen/.

1

with the appearance of L2 [16] and L̃1 [18]. And this issue is reflected in experiments (see [9]): in practice, one settles for
sub-optimal parameters, which means that one can only find small roots up to a bound lower than the asymptotical bound.
To illustrate this point, the celebrated Boneh-Durfee attack [1] on RSA with short secret exponent has the theoretical
bound d ≤ N1−1/

√
2 ≈ N0.292, but the largest d in the Boneh-Durfee experiments is only d ≈ N0.280 with a 1000-bit N ,

and much less for larger N , e.g. d ≈ N0.265 for 4000-bit N .

OUR RESULTS. We present a polynomial speedup over Coppersmith’s algorithm for finding small roots of univariate
polynomial congruences. The exact speedup depends on the LLL algorithm used: if one uses L2 [16], the total bit-
complexity is upper bounded by O(log7N), which gives a speedup Θ((log2N)/δ2) quadratic in the bit-size of the
small-root bound N1/δ; and if one uses L̃1 [18], the total complexity is upper bounded by O(log6+εN) for any ε > 0
using fast integer arithmetic, which gives a speedup O((logN)/δ) linear in the bit-size of the small-root bound N1/δ.

Our improvement comes from combining LLL reduction with rounding: instead of LLL-reducing directly a matrix
with huge entries, we suitably round the coefficients before LLL reduction to make them much smaller, and show that the
LLL output allows to derive sufficiently short vectors in the original lattice. In practice, this means that for any instantia-
tion of Coppersmith’s algorithm achieving a small-root bound X , we can drastically reduce the size of the coefficients of
the matrix to be LLL-reduced and achieve essentially the same small-root bound: asymptotically, the bit-size is reduced
by a factor (logN)/δ, which implies that the speedup is quadratic when using the popular L2 algorithm, or quasi-linear
using the more theoretical L̃1 algorithm.

This rounding strategy is very natural, but it is folklore that it fails in the worst case: when an arbitrary non-singular
matrix is rounded, it may even become singular, and the situation is worse for LLL reduction. However, we show that
a well-chosen rounding strategy surprisingly works for the special matrices used by Coppersmith’s algorithm: this is
because the matrices to be reduced are triangular matrices whose diagonal entries are reasonably balanced, which can be
exploited.

To the best of our knowledge, this is the first example of polynomial speedup for LLL reduction of special matrices.
Previously, it was known that the complexity upper bound of the LLL algorithm could be improved by some polynomial
factor for certain matrices, e.g. the so-called knapsack lattices (see [15]), but it should be stressed that only the analysis
was improved, not the algorithm. Here, in Coppersmith’s algorithm, it is not known how to improve the worst-case
analysis of LLL, and the algorithm needs to be modified to improve the complexity upper bound.

Finally, our work helps to clarify the asymptotical complexity of Coppersmith’s algorithm for univariate polynomial
congruences. Despite the importance of the algorithm, it seems that the dependence on the polynomial degree δ was
not well-understood: as previously mentioned, May’s survey [13] gave an upper bound including a factor δ5, and Cop-
persmith’s journal article [7] gave an upper bound growing exponentially in δ. Our final complexity upper bound is
independent of δ: it only depends on the bit-size of the modulus N .

ROADMAP. In Sect. 2, we recall background on lattices and Coppersmith’s small-root algorithm. In Sect. 3, we present our
speedup of Coppersmith’s algorithm by rounding, together with a theoretical analysis and experimental results. Finally,
we discuss the case of other small-root algorithms in Sect. 4.

2 Background and Notation

We use row representation for matrices: vectors are row vectors denoted by bold lowercase letters, matrices are denoted
by uppercase letters, and their coefficients are denoted by lowercase letters. All logarithms are in base 2. Let ‖‖ and 〈, 〉
be the Euclidean norm and inner product of Rn. The Euclidean norm is naturally extended to polynomials as follows: if
f(x) =

∑n
i=0 fix

i ∈ R[x], then ‖f‖ = (
∑

0≤i≤n f
2
i)1/2. We use the following matrix norms: if M = (mi,j) is an n×m

matrix, then ‖M‖2 = max‖x‖6=0
‖xM‖
‖x‖ , and ‖M‖∞ = max1≤i≤n

∑m
j=1 |mi,j |. Then: ‖M‖2 ≤

√
n‖M‖∞. If x ∈ R, we

denote by dxc a closest integer to x.

2

2.1 Lattices

LATTICES. A lattice L is a discrete subgroup of Rm: there exist n(≤ m) linearly independent vectors b1, . . . ,bn ∈ Rm
s.t. that L is the set L(b1, . . . ,bn) of all integral linear combinations of the bi’s, i.e.

L(b1, . . . ,bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
.

Then the matrix B = (b1, . . . ,bn) is called a basis of L and n is the rank (or dimension) of L. Here, we mostly consider
full-rank lattices, i.e. n = m. The (co-)volume of L is vol(L) =

√
det(BBt) for any basis B of L, where Bt denotes

B’s transpose. If B is square, then vol(L) = |detB|, and if B is further triangular, then vol(L) is simply the product of
the diagonal entries of B in absolute value.

GRAM-SCHMIDT ORTHOGONALIZATION. Let b1, · · · ,bn ∈ Rm be linearly independent vectors. The Gram-Schmidt
orthogonalization (GSO) is the family (b?1, . . . ,b

?
n) defined recursively as: b?1 = b1 and for i ≥ 2, b?i is the component

of the vector bi which is orthogonal to the linear span of b1, · · · ,bi−1. Then b?i = bi −
∑i−1

j=1 µi,jb
?
j , where µi,j =

〈bi,b?j 〉/‖b?j‖2 for 1 ≤ j < i ≤ n.

SIZE-REDUCTION. A basis B = (b1, · · · ,bn) is size-reduced if its GSO satisfies |µi,j | ≤ 1/2, for all 1 ≤ j < i ≤
n. There is a classical (elementary) algorithm which size-reduces a basis (b1, . . . ,bn) of an integer lattice L ⊆ Zm,
in polynomial time, without ever modifying the Gram-Schmidt vectors b?i : this algorithm is included in the original
LLL algorithm [12]. In the special case that the input basis is (square) lower-triangular, the running-time of this size-
reduction algorithm is O(n3b2) without fast integer arithmetic, and n3Õ(b) using fast-integer arithmetic, where b =
max1≤i≤n log ‖bi‖.

LLL AND SHORT LATTICE VECTORS. Coppersmith’s small-root method requires the ability to efficiently find reason-
ably short vectors in a lattice, namely a non-zero vector v ∈ L s.t. ‖v‖ ≤ cnvol(L)1/n where c is some constant and n
is the lattice rank. This can be achieved by the celebrated LLL algorithm [12]: given a basis (b1, . . . ,bn) of an integer
lattice L ⊆ Zm, LLL outputs a non-zero v ∈ L s.t. ‖v‖ ≤ 2

n−1
4 vol(L)1/n in time O(n5mb3) (resp. n3mbÕ(n)Õ(b))

without (resp. with) fast integer arithmetic, where b = max1≤i≤n log ‖bi‖: strictly speaking, this vector is actually the
first vector of the basis output by the algorithm. Nguyen and Stehlé [16] introduced the L2 algorithm, a faster variant of
LLL which can output similarly short vectors in time O(n4m(n+ b)b) (resp. n2m(n+ b)b ˜O(n)) without (resp. with) fast
integer arithmetic. The recent L̃1 algorithm by Novocin et al. [18] can output similarly short vectors for a full-rank lattice
in time O(n5+εb+nω+1+εb1+ε) for any ε > 0 using fast integer arithmetic, where ω ≤ 2.376 is the matrix multiplication
complexity constant. However, this algorithm is considered to be mostly of theoretical interest for now: L̃1 is currently
not implemented anywhere, as opposed to L2. When assessing the complexity of LLL reduction, it is therefore meaning-
ful to mention two complexities: one (closer to the real world) using L2 without fast integer arithmetic, and another using
L̃1 using fast integer arithmetic and fast linear algebra.

The complexity upper bound of LLL reduction can sometimes be decreased by some polynomial factor, but not for
Coppersmith’s small-root method. For instance, it is folklore that the complexity of LLL and its variants include a multi-
plicative factor n2b, which can actually be replaced by the more precise term log

∏n
i=1 ‖b?i ‖n+1−i. This term is always

less than O(n2b), but for special input matrices, it can be much lower, therefore decreasing the LLL complexity upper
bound: for instance, in the well-known case that the input matrix is lower-triangular with a single diagonal coefficient not
equal to 1, then the term is O(nb), which gains a linear factor Θ(n) (see [15] for more details). However, if the input
matrix is lower-triangular with balanced diagonal coefficients, there is no improvement over the worst-case complexity
upper bound: we will see that it is the case for Coppersmith’s small-root method.

2.2 Coppersmith’s method for finding small roots

At EUROCRYPT ’96, Coppersmith [6, 5, 7] showed how to find efficiently all small roots of polynomial equations
(modulo an integer, or multivariate over the integers), which is surveyed in [13, 14]. We now review the simplest result,
following the classical Howgrave-Graham approach [10]: In Sect. 4, we will discuss the main variants of this result.

3

Theorem 2.1 (Coppersmith [6, 7]). There is an algorithm (Alg. 1) which, given as input an integer N of unknown
factorization and a monic polynomial f(x) ∈ Z[x] of degree δ and coefficients in {0, . . . , N − 1}, outputs all integers
x0 ∈ Z such that f(x0) ≡ 0 (modN) and |x0| ≤ N1/δ in time polynomial in logN and δ.

In fact, Coppersmith’s algorithm (Alg. 1) does not directly achieve the bound N1/δ: instead, it uses a subroutine
(Alg. 2), which finds efficiently all roots up to some boundX (< N1/δ) depending on an integer parameter h ≥ 1, chosen
asymptotically to be O((logN)/δ). When h is sufficiently large, X becomes sufficiently close to N1/δ that one can find
all roots up to N1/δ by applying Alg. 2 a few times. We now explain the main algorithm: Alg. 2. The subroutine reduces

Algorithm 1 Coppersmith’s algorithm [6, 7] for finding small roots of univariate polynomial congruences
Input: An integer N ≥ 1 and a univariate degree-δ monic polynomial f(x) ∈ Z[x] with coefficients in {0, . . . , N − 1}.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f(x0) ≡ 0 mod N .

1: if δ = 1 then
2: Return all x0 ∈ Z s.t. x0 + f(0) ≡ 0 (modN) and |x0| ≤ N .
3: else
4: if δ + 1 ≥ (logN)/2 then
5: Compute all x0 ∈ Z s.t. |x0| ≤ N1/δ and f(x0) ≡ 0 mod N by exhaustive search.
6: else
7: Let h = d(logN)/δe, n = hδ, X = b2−1/2N

h−1
n−1 (n+ 1)−

1
n−1 c, and t = b−N1/δc+X .

8: while t ≤ N1/δ do
9: Run Alg. 2 on g(x) = f(x− t) ∈ Z[x], h and N .

10: Output x0 + t for each root x0 of g(x) obtained.
11: t← t+ 2X .
12: end while
13: end if
14: end if

Algorithm 2 Finding smaller roots of univariate polynomial congruences [6, 7]
Input: Two integers N,h ≥ 1, and a monic polynomial f(x) ∈ Z[x] of degree δ ≥ 2 and coefficients in {0, . . . , N − 1}.
Output: All x0 ∈ Z s.t. |x0| ≤ X and f(x0) = 0 mod N , where X = b2−1/2N

h−1
n−1 (n+ 1)−

1
n−1 c and n = hδ.

1: if δ > logN then
2: Return 0 if f(0) ≡ 0 (modN).
3: else
4: Build the n × n lower-triangular matrix B whose rows are the gi,j(xX)’s defined by (1) for 0 ≤ i < h and

0 ≤ j < δ.
5: Run the L2 algorithm [16] on the matrix B.
6: The first vector of the reduced basis corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x].
7: Compute all the roots x0 of the polynomial v(x) ∈ Z[x] over Z.
8: Output all the roots x0 which satisfy f(x0) ≡ 0 (modN) and |x0| ≤ X .
9: end if

the problem to solving univariate polynomial equations over the integers, by transforming modular roots into integral
roots. More precisely, it constructs a polynomial g(x) ∈ Z[x] such that: if x0 ∈ Z is such that f(x0) ≡ 0 (mod N) and
|x0| ≤ X , then g(x0) = 0. To do so, it uses the following elementary criterion:

Lemma 2.2 (Howgrave-Graham [10]). Let g(x) ∈ Z[x] be a polynomial with at most n non-zero coefficients. Let M be
an integer ≥ 1. Assume that ‖g(xX)‖ < M√

n
for some X ∈ R. If x0 ∈ Z is such that g(x0) ≡ 0 (modM) and |x0| ≤ X ,

then g(x0) = 0.

4

Lemma 2.2 will be used with M = Nh−1 and g(x) found by lattice reduction. Let h ≥ 1 be an integer and define the
following family of n = hδ polynomials:

gi,j(x) = xjNh−1−if i(x) 0 ≤ i < h, 0 ≤ j < δ (1)

These n polynomials satisfy: if f(x0) ≡ 0 (mod N) for some x0 ∈ Z, then gi,j(x0) ≡ 0 (mod Nh−1). In order to apply
Lemma 2.2 for a bound X ≥ 1 to be determined later, Coppersmith’s algorithm constructs the n-dimensional lattice L
spanned by the rows of the n × n matrix B formed by the n coefficient vectors of gi,j(xX), where the polynomials are
ordered by increasing degree (e.g. in the order (i, j) = (0, 0), (0, 1), · · · , (0, δ − 1), (1, 0), · · · (h − 1, δ − 1)) and the
coefficients are ordered by increasing monomial degree: the first coefficient is thus the constant term of the polynomial.
The matrix B is lower triangular, and its n diagonal entries are:(

Nh−1, Nh−1X, . . . , Nh−1Xδ−1, . . . , N0Xδh−δ, . . . , N0Xδh−2, N0Xδh−1
)
, (2)

because f(x) is monic. In other words, the exponent ofX increases by one at each row, while the exponent ofN decreases
by one every δ rows. It follows that:

vol(L) = det(B) = N
1
2
n(h−1)X

1
2
n(n−1).

Alg. 2 applies the LLL algorithm to the matrix B, which provides a non-zero polynomial v(x) ∈ Z[x] such that:

‖v(xX)‖ ≤ 2
n−1
4 vol(L)

1
n = 2

n−1
4 N

h−1
2 X

n−1
2 .

It follows that the polynomial v(x) satisfies Lemma 2.2 with M = Nh−1 and g(x) = v(x) if:

X ≤ 1√
2
N

h−1
n−1 (n+ 1)−

1
n−1 . (3)

The dimension of B is n = hδ, and the entries of the matrix B have bit-size O(h logN), therefore the running time of
L2 in Step 5 is O(δ6h7 logN + δ5h7 log2N), which is O(δ5h7 log2N) because δ ≤ logN .

We obtain the following two concrete versions of Th. 2.1:

Theorem 2.3. Given as input two integers N ≥ 1 and h ≥ 1, and a degree-δ monic polynomial f(x) ∈ Z[x] with
coefficients in {0, . . . , N − 1}, Alg. 2 outputs all x0 ∈ Z s.t. |x0| ≤ X and f(x0) = 0 mod N , where X =

b2−1/2N
h−1
n−1 (n+ 1)−

1
n−1 c and n = hδ, in time O(δ5h7 log2N) without fast integer arithmetic, or O(h6+εδ5+ε logN +

hω+2+2εδω+1+ε log1+εN) for any ε > 0 using fast integer arithmetic and L̃1 in Step. 5, where ω ≤ 2.376 is the matrix
multiplication complexity constant.

Proof. If δ ≤ logN , we already proved the correctness and the running time for L2, and one can easily derive the
improved running time using L̃1. Otherwise, we have N1/δ < 1, which means that the only possible root is zero: this
justifies Step 2, which takes time O(logN). ut

Corollary 2.4. Alg. 1 of Th. 2.1 runs in time O((log9N)/δ2) without fast integer arithmetic, or O((log7+εN)/δ) for
any ε > 0 using fast integer arithmetic and L̃1 in Alg. 2.

Proof. If δ + 1 ≥ (logN)/2, we consider two cases: if δ > logN , Step 5 is the same as Step 2 in Alg. 2, which
takes time O(logN); else δ ≤ logN , so Step 5 takes time O(δ log2N × N1/δ). In both cases, this is much less than
O((log9N)/δ2). Otherwise, δ + 1 < (logN)/2. Now consider the bound X = b2−1/2N

h−1
n−1 (n+ 1)−

1
n−1 c achieved by

Alg. 2. By definition, Alg. 1 runs Alg. 2 at most O(N1/δ/X) times. We have:

N1/δ/N
h−1
n−1 = N1/δ− h−1

hδ−1 = N
δ−1

δ(hδ−1) ≤ N1/(hδ−1)

If h = blogN/δc, then hδ − 1 ≥ logN − δ − 1 ≥ (logN)/2, therefore N1/δ/N
h−1
n−1 = O(1). ut

Cor. 2.4 improves by δ7 upon the upper bound O(δ5 log9N) given for Coppersmith’s algorithm in May’s survey [13].
Note that Coppersmith earlier announced in [7] that the running was polynomial in logN and 2δ: we see that the depen-
dence on δ is actually much better.

5

3 Speeding up Coppersmith’s Algorithm by Rounding

Our main result is the following speedup over Coppersmith’s algorithm (Corollary 2.4):

Theorem 3.1. There is an algorithm (namely, Alg. 4) which, given as input an integer N of unknown factorization and
a monic polynomial f(x) ∈ Z[x] of degree δ and coefficients in {0, . . . , N − 1}, outputs all integers x0 ∈ Z such that
f(x0) ≡ 0 (mod N) and |x0| ≤ N1/δ in time O(log7N) without fast integer arithmetic using the L2 algorithm [16], or
O(log6+εN) for any ε > 0 using fast integer arithmetic and the L̃1 algorithm [18] in Alg. 3, where ω ≤ 2.376 is the
matrix multiplication complexity constant.

3.1 Rounding for Coppersmith’s Algorithm

The bottleneck of Coppersmith’s algorithm (Algs. 1 and 2) is the LLL reduction of the matrix B, whose dimension is
n = hδ, and whose entries have bit-size O(h logN). Asymptotically, we have h = O(logN/δ) so the dimension is
O(logN) and the bit-size is O((log2N)/δ). We will modify Coppersmith’s algorithm in such a way that we only need
to LLL-reduce a matrix of the same dimension but which much smaller entries, namely bit-length O(logN).

To explain the intuition behind our method, let us first take a closer look at the matrix B:

Lemma 3.2. Let X ≤ N1/δ. The maximal diagonal coefficient of B defined in Step. 4 of Alg. 2 is Nh−1Xδ−1 < Nh,
the minimal diagonal coefficient is Xhδ−δ ≤ Nh−1, and Nh−1Xδ−1

Xhδ−δ ≥ N1−1/δ if h ≥ 2. Furthermore, if X ≥ Ω(N
h−1
n−1),

h ≥ 2 and hδ = O(logN) then:

Xhδ−δ ≥ Nh−O(1) (4)

Proof. The n = hδ diagonal coefficients of B are naturally split into h blocks of δ coefficients: the i-th block is formed
by the leading coefficients of the polynomials gi,j(xX) for 0 ≤ j < δ. Since the leading coefficient of gi,j(xX) is
XjNh−1−iXδi, it follows that the maximal and minimal coefficients in the i-th block are located respectively at the
end and at the beginning: their values are respectively Xδ(i+1)−1Nh−1−i = Nh−1(Xδ/N)iXδ−1 and Nh−1−iXδi =
Nh−1(Xδ/N)i. If X ≤ N1/δ, we obtain that the maximal diagonal coefficient is Nh−1Xδ−1 reached in the 0-th block,
and the minimal diagonal coefficient is X(h−1)δ reached in the (h − 1)-th block. And the ratio Nh−1Xδ−1

Xhδ−δ is exactly
Nh−1/Xhδ−2δ+1 which is clearly ≥ N1−1/δ if h ≥ 2.

Now, let X0 = N
h−1
n−1 so that X = Ω(X0). We have N1/δ/N

h−1
n−1 ≤ N1/(hδ−1) by the proof of Cor. 2.4, therefore:

X0 ≥ N1/δ−1/(hδ−1) = N (hδ−1−δ)/(δ(hδ−1)).

Hence:
Xδ

0 ≥ N (hδ−1−δ)/(hδ−1) = N1−δ/(hδ−1).

Thus:
Xhδ−δ

0 ≥ N (h−1)−δ(h−1)/(hδ−1) > Nh−2.

Since X = Ω(X0) and hδ = O(logN), we obtain (4). ut

This implies that the diagonal coefficients of B are somewhat balanced: the matrix B is not far from being reduced.
In fact, the first row of B has norm Nh−1 which is extremely close to the bound Nh−1/

√
n required by Lemma 2.2:

intuitively, this means that it should not be too difficult to find a lattice vector shorter thanNh−1/
√
n. Still, the complexity

upper bound of LLL is surprisingly unable to exploit the structure of B.
To take advantage of the structure of B, we first size-reduce B to make sure that the subdiagonal coefficients are

smaller than the diagonal coefficients. Then we round the entries of B so that the smallest diagonal coefficient becomes
bcc where c > 1 is a parameter. More precisely, we create a new n× n triangular matrix B̃ = (b̃i,j) defined by:

B̃ =
⌊
cB/Xhδ−δ

⌋
(5)

6

By Lemma 3.2:

bi,i ≥ Xhδ−δ and b̃i,i ≥ bcc (6)

We LLL-reduce the rounded matrix B̃ instead of B: let ṽ = xB̃ be the first vector of the reduced basis obtained. If
we applied to B the unimodular transformation that LLL-reduces B̃, we may not even obtain an LLL-reduced basis in
general. However, because of the special structure of B, it turns out that v = xB is still a short non-zero vector of L, as
shown below:

Lemma 3.3. Let B = (bi,j) be an n × n lower-triangular matrix over Z with strictly positive diagonal. Let c > 1. If
B̃ = bcB/minni=1 bi,ic and xB̃ is the first vector of an LLL-reduced basis of B̃, then:

0 < ‖xB‖ <
(
n‖B̃−1‖2 + 1

)
2
n−1
4 det(B)

1
n .

Proof. Let α = minni=1 bi,i/c, so that B̃ = bB/αc. Define the matrix B̄ = αB̃ whose entries are b̄i,j = αb̃i,j . Then
0 ≤ bi,j − b̄i.j < α, therefore ‖B − B̄‖2 < nα. We have:

‖xB‖ ≤ ‖x(B − B̄)‖+ ‖xB̄‖ ≤ ‖x‖ × ‖B − B̄‖2 + α‖xB̃‖ < n‖x‖α+ α‖xB̃‖.

Let ṽ = xB̃. Then ‖x‖ ≤ ‖ṽ‖‖B̃−1‖2, and we obtain:

‖xB‖ <
(
n‖B̃−1‖2 + 1

)
α‖ṽ‖.

The matrix B̃ is lower-triangular with all diagonal coefficients strictly positive because c > 1. Since ṽ = xB̃ is the first
vector of an LLL-reduced basis of B̃, and B̃ is non-singular, xB 6= 0 and we have:

α‖ṽ‖ ≤ α2
n−1
4 det(B̃)

1
n = 2

n−1
4 det(B̄)

1
n ≤ 2

n−1
4 det(B)

1
n ,

where we used the fact that the matrices B̃, B̄ and B are lower-triangular. The result follows by combining both inequal-
ities. ut

If xB is sufficiently short, then it corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x] satisfying
Lemma 2.2, and the rest proceeds as in Alg. 2. The whole rounding algorithm is given in Alg. 3, which is supposed to
be a faster variant of Alg. 2. Alg. 3 naturally gives rise to Alg. 4, a faster algorithm than Alg. 1 to compute all roots up
to N1/δ. We now justify the bound X given in Alg. 3. In order for Lemma 3.3 to be useful, we need to upper bound
‖B̃−1‖2. An upper bound can be derived from the following elementary lemma on inverses of triangular matrices.

Lemma 3.4. Let t > 0 and T = (ti,j) be an n × n lower-triangular matrix over R, with unit diagonal (i.e. ti,i = 1 for
1 ≤ i ≤ n), and such that |ti,j | ≤ t for 1 ≤ j < i ≤ n. Then ‖T−1‖∞ ≤ (1 + t)n−1.

Proof. Let S = T−1. Then for 1 ≤ i, j ≤ n:
∑n

k=j si,ktk,j = δi,j , where δi,j is Kronecker’s symbol. Therefore
si,j = δi,j −

∑n
k=j+1 si,ktk,j , which implies that S is lower-triangular and for 1 ≤ j < i ≤ n:

|si,j | ≤ t

1 +

i−1∑
k=j+1

|si,k|

 . (7)

Let us prove that for all j < i, |si,j | ≤ t(1 + t)i−j−1, by induction over i − j. Since |ti,j | ≤ t for 1 ≤ j < i ≤ n:
|si,i−1| ≤ t|si,i| = t, which starts the induction for i − j = 1. Now, assume by induction that |si,k| ≤ t(1 + t)i−k−1 for
all k s.t. i− k < i− j for some 1 ≤ j < i ≤ n. Then (7) implies:

|si,j | ≤ t

1 +
i−1∑

k=j+1

t(1 + t)i−k−1

 = t

(
1 + t

i−j−2∑
k=0

(1 + t)k

)
= t

(
1 + t

(1 + t)i−j−1 − 1

1 + t− 1

)
= t(1 + t)i−j−1

7

Algorithm 3 Finding faster smaller roots of univariate polynomial congruences, by rounding
Input: Two integers N,h ≥ 2, a parameter c > 1 and a monic polynomial f(x) ∈ Z[x] of degree δ ≥ 2 and coefficients

in {0, . . . , N − 1}.
Output: All x0 ∈ Z s.t. |x0| ≤ X and f(x0) = 0 mod N , where X =⌊

N (h−1)/(n−1)2−1/2n−1/(n−1)
(
n3/2

(
3c−2
2c−2

)n−1
bcc−1 + 1

)−2/(n−1)⌋
and n = hδ.

1: if δ > logN then
2: Return 0 if f(0) ≡ 0 (modN).
3: else
4: Build the n× n matrix B whose rows are the gi,j(xX)’s defined by (1).
5: Size-reduce B without modifying its diagonal coefficients.
6: Compute the matrix B̃ = bcB/Xhδ−δc obtained by rounding B.
7: Run the L2 algorithm [16] on the matrix B̃.
8: Let ṽ = xB̃ be the first vector of the reduced basis obtained.
9: The vector v = xB corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x].

10: Compute all the roots x0 of the polynomial v(x) ∈ Z[x] over Z.
11: Output all the roots x0 which satisfy f(x0) ≡ 0 (modN) and |x0| ≤ X .
12: end if

Algorithm 4 Speeding up Coppersmith’s algorithm [6, 7] for finding small roots of univariate polynomial congruences
Input: An integer N ≥ 1 and a univariate degree-δ monic polynomial f(x) ∈ Z[x] with coefficients in {0, . . . , N − 1}.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f(x0) ≡ 0 mod N .

1: if δ = 1 then
2: Return all x0 ∈ Z s.t. x0 + f(0) ≡ 0 (modN) and |x0| ≤ N .
3: else
4: if δ + 1 ≥ (logN)/2 then
5: Compute all x0 ∈ Z s.t. |x0| ≤ N1/δ and f(x0) ≡ 0 mod N by exhaustive search.
6: else

7: Let h = d(logN)/δe, n = hδ, X =

⌊
N (h−1)/(n−1)2−1/2n−1/(n−1)

(
n3/2

(
3c−2
2c−2

)n−1
bcc−1 + 1

)−2/(n−1)⌋
,

c = (3/2)n and t = b−N1/δc+X .
8: while t ≤ N1/δ do
9: Run Alg. 3 on g(x) = f(x− t) ∈ Z[x], h and N .

10: Output x0 + t for each root x0 of g(x) obtained.
11: t← t+ 2X .
12: end while
13: end if
14: end if

8

which completes the induction. Hence:

‖S‖∞ ≤ 1 +

n−1∑
j=1

t(1 + t)n−j−1 = 1 + t

n−2∑
j=0

(1 + t)j = (1 + t)n−1.

ut

Corollary 3.5. Let B = (bi,j) be an n × n lower-triangular matrix over Z with strictly positive diagonal. Let c > 1. If
B̃ = bcB/minni=1 bi,ic, then:

‖B̃−1‖∞ ≤
(

3c− 2

2c− 2

)n−1
/bcc.

Proof. The matrix B̃ is lower-triangular like B. Because B is size-reduced, the entries of B̃ satisfy, for 1 ≤ j < i ≤ n:

b̃i,j

b̃j,j
<

bi,j/2
k

bj,j/2k − 1
≤ 1

2
× 1

1− 2k/bj,j
≤ 1

2
× 1

1− 1/c

This means that B̃ is almost size-reduced. Let ∆ be the n × n diagonal matrix whose i-th diagonal entry is 1/b̃i,i. Then
T = ∆B̃ satisfies the conditions of Lemma 3.4 with t = 1/(2(1− 1/c)), therefore:

‖T−1‖∞ ≤
(

1

2
× 1

1− 1/c
+ 1

)n−1
=

(
3c− 2

2c− 2

)n−1
.

Hence,

‖B̃−1‖∞ ≤ ‖T−1‖∞‖∆‖∞ ≤
(

3c− 2

2c− 2

)n−1
× 1

min1≤i≤n b̃ii
≤
(

3c− 2

2c− 2

)n−1
/bcc.

ut

By combining Lemma 3.3 and Cor. 3.5, we obtain the following small-root bound X for Alg. 3:

Theorem 3.6. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > 1, and a univariate degree-δ monic
polynomial f(x) ∈ Z[x] with coefficients in {0, . . . , N − 1}, Alg. 3 outputs all x0 ∈ Z s.t. |x0| ≤ X and f(x0) = 0

mod N , where X =

⌊
N (h−1)/(n−1)2−1/2n−1/(n−1)

(
n3/2

(
3c−2
2c−2

)n−1
bcc−1 + 1

)−2/(n−1)⌋
and n = hδ.

Proof. By Lemma 3.3, we have:

0 < ‖xB‖ <
(
n‖B̃−1‖2 + 1

)
2
n−1
4 det(B)1/n,

where det(B)1/n = N
h−1
2 X

n−1
2 and by Cor. 3.5,

‖B̃−1‖2 ≤
√
n‖B̃−1‖∞ ≤

√
n

(
3c− 2

2c− 2

)n−1
/bcc.

Hence:

0 < ‖xB‖ <

(
n3/2

(
3c− 2

2c− 2

)n−1
/bcc+ 1

)
2
n−1
4 N

h−1
2 X

n−1
2 .

It follows that Lemma 2.2 is satisfied with M = Nh−1 and v(xX) corresponding to xB if:(
n3/2

(
3c− 2

2c− 2

)n−1
/bcc+ 1

)
2
n−1
4 N

h−1
2 X

n−1
2 ≤ Nh−1/

√
n,

9

which can be rewritten as

X ≤ N (h−1)/(n−1)2−1/2n−1/(n−1)

(
n3/2

(
3c− 2

2c− 2

)n−1
bcc−1 + 1

)−2/(n−1)
.

ut

The bound X of Th. 3.6 is never larger than that of Th. 2.3. However, if one selects c ≥ (3/2)n, then the two bounds
are asymptotically equivalent. This is why Alg. 4 uses c = (3/2)n.

3.2 Running time

The original matrix B had entries whose bit-size was O(h logN). Let β be the ratio between the maximal diagonal
coefficient and the minimal diagonal coefficient of B̃:

β =
NhXδ−1

Xhδ−δ (8)

If B is size-reduced, the entries of the new matrix B̃ =
⌊
cB/Xhδ−δ⌋ are upper bounded by cβ.

By Lemma 3.2. we know that if h ≥ 2, then β ≥ N1−1/δ, and if further X ≥ Ω(N
h−1
n−1) and hδ = O(logN), then

β = NO(1). Hence, the bit-size of B̃’s entries is ≤ log c+O(logN). And the dimension of B̃ is the same as B, i.e. hδ.
It follows that the running time of L2 in Step 7 is O(δ6h6(log c + logN) + δ5h5(log c + logN)2) without fast integer
arithmetic, which is O(δ5h5(log c+ logN)2 because δ ≤ logN .

Let ` be the maximal bit-size of the coefficients of v(x) ∈ Z[x] in Step 10: we know that ` ≤ h logN , and the
degree of v(x) is ≤ n. Then Step 10 can be performed in time O(n3(` + log n)) = O(h log4N) = O((log5N)/δ)
using Schönhage’s root isolation algorithm [19, Sec. 5.2]. Hence, the cost of Step 10 is less than Step 7. We note that in
previous work on Coppersmith’s method, different algorithms were proposed for Step 10, e.g. polynomial factorization,
whose complexity upper bound might be higher than Step 7.

Hence, we proved the following speedup over Th. 2.3:

Theorem 3.7. Alg. 3 runs in time O(δ5h5(log c + logN)2) without fast integer arithmetic using the L2 algorithm, or
O((hδ)5+ε(log c+ logN) + (hδ)ω+1+ε(log c+ logN)1+ε) for any ε > 0 using fast integer arithmetic and L̃1 in Step. 7,
where ω ≤ 2.376 is the matrix multiplication complexity constant.

Our main result (Th. 3.1), a variant of Coppersmith’s algorithm (Corollary 2.4) with improved complexity upper
bound, is then a simple corollary of Th. 3.7. More precisely, we proved that Alg. 1 called Alg. 2 at most a constant
times: similarly, one can easily prove that Alg. 4 calls Alg. 3 at most a constant times. Indeed, when c = (3/2)n, then(
n3/2

(
3c−2
2c−2

)n−1
bcc−1 + 1

)−2/(n−1)
converges to 1. This means that the bound X achieved by Th. 3.6 is asymptoti-

cally equivalent to the one achieved by Th. 2.3, which completes the proof of Th. 3.1, because log c = O(logN) when
c = (3/2)n.

3.3 Experiments

We implemented Coppersmith’s algorithm and our rounding improvement using Shoup’s NTL library [20]. However, for
the LLL reduction, we used the fplll implementation [3] by Cadé et al., which includes the L2 algorithm [16]: fplll is
much faster than NTL for Coppersmith’s matrices. It should be stressed that fplll is a wrapper which actually implements
several variants of LLL, together with several heuristics: L2 is only used as a last resort when heuristic variants fail. This
means that there might be a discrepancy between the practical running time and the theoretical complexity upper bound
of LLL routines.

Our test machine is a 2.93-GHz Intel Core 2 Duo processor E7500 running on Fedora. Running times are given in
seconds.

10

Table 1: Bounds and running time for cubic congruences
Size Data Parameter h
of N type 10 15 20 25 30

Size of X 318 324 328 331 332
Toriginal 2.54 30.48 216.27 793.38 3720.81

1024 Trounded 0.68 4.49 18.22 48.17 175.86
Speed-up 3.74 6.79 11.87 16.47 21.16
Size of X 634 650 658 663 666
Toriginal 13.47 150.7 865.67 3078.01 10146.71

2048 Trounded 3.14 17.79 63.3 166.36 379.8
Speed-up 4.29 8.40 13.67 18.50 26.72
Size of X 1270 1302 1318 1327 1333
Toriginal 41.45 582.58 3161.99 11967.8 42053.4

4096 Trounded 7.07 43.25 157.54 449.81 1301.51
Speed-up 5.86 13.47 20.07 26.61 32.31

Like in [9], we used the case δ = 3, and N an RSA-type modulus: the exact polynomial congruence is derived
from RSA encryption with public exponent δ. Then n = 3h and Alg. 2 of Th. 2.3 can find all the roots x0 as long as
|x0| ≤ X = b2−1/2N

h−1
n−1n−

1
n−1 c. For a fixed h, the rounding strategy (Alg. 3) gives a worse bound than X , but the

difference can be made arbitrarily small by increasing the parameter c: in our experiments, we therefore chose the smallest

value of c such that
(
n3/2

(
3c−2
2c−2

)n−1
bcc−1 + 1

)−2/(n−1)
≥ 0.90, so that the new bound is never less than the old bound

X by more than 10%, which is essentially the same. However, we note that our choice of c is pessimistic in practice: our
theoretical analysis was a worst-case analysis, and the constants are better in practice. For instance, it has been proved
in [22] that if T is a random n × n lower-triangular matrix with unit diagonal and subdiagonal coefficients normally
distributed, then (‖|T−1‖2)1/n converges to 1.3057 . . . And experimentally, if T is a random n × n lower-triangular
matrix with unit diagonal and subdiagonal coefficients uniformly distributed over [−1/2,+1/2], then (‖|T−1‖∞)1/n is
with high probability less than 1.1. This means that the constants of Lemma 3.4 (and therefore the implicit 3/2 in the
formula for c) are pessimistic in practice.

Table 1 summarizes our limited experiments comparing Algs. 2 and 3 in practice: it provides the bit-length of X and
the corresponding running times of Algs. 2 and 3. The running time only measures the lattice reduction time, because the
cost of solving a univariate equation over Z turns out to be much less in practice. Running times are given as averages
over 5 samples.

11

æ æ æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ

æ
æ
æ
æ

à à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

à
à

à

à

à

ì
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì ì

ì

ì ì
ìspeed-up

h

1024

2048

4096

15 20 25 30

5

10

15

20

25

30

We see that we already get significant speedups (say, larger than 10) even for small values of h and typical sizes of
N . The speedup grows when logN or h grows: for fixed N , the speedup grows roughly a bit less than quadratically in
h, whereas the theoretical analysis gives a speedup quadratic in h. Hence, our improvement is practical and allows to get
much closer to the asymptotical small-root bound.

4 Other Small-Root Algorithms

We now discuss whether our rounding method can similarly speed up other small-root algorithms (see the surveys [13,
14]), which are based on the same main ideas where LLL reduction plays a crucial role. In theory, the rounding method
provides a speedup for any triangular matrix whose diagonal coefficients are all large. However, in order to have a large
speedup, we need the minimal diagonal coefficient to be much larger than the ratio between the maximal diagonal coef-
ficient and the minimal diagonal coefficient. In Coppersmith’s algorithm, the smallest diagonal coefficient was Nh−O(1),
while the gap was NO(1), which translated into a polynomial speedup. It turns out that other small-root algorithms do not
share the same features: we only get a (small) constant speedup. We leave it as an open problem to obtain polynomial
(non-constant) speedups for these other small-root algorithms: this might be useful to make practical attacks on certain
fully-homomorphic encryption schemes (see [4]).

4.1 Gcd Generalization

Coppersmith’s algorithm (Alg. 1) has been generalized by essentially Howgrave-Graham [11] and Boneh et al. [2] (see
the surveys [13, 14]) as follows:

Theorem 4.1. There is an algorithm which, given as input an integer N of unknown factorization, a rational α s.t.
0 < α ≤ 1 and a monic polynomial f(x) ∈ Z[x] of degree δ and coefficients in {0, . . . , N − 1}, outputs all integers
x0 ∈ Z such that gcd(f(x0), N) ≥ Nα and |x0| ≤ Nα2/δ in time polynomial in logN , δ and the bit-size of α.

Th. 2.1 is then the special case α = 1 of Th. 4.1. The algorithm underlying Th. 4.1 is in fact very similar to Alg. 2:
instead of applying Lemma 2.2 with M = Nh−1, one uses M = ph−1 where p ≥ Nα is some unknown divisor of N .
And one considers the same family of polynomials gi,j(x) = xjNh−1−if i(x) but over different indices. Alg. 2 used
0 ≤ i < h and 0 ≤ j < δ. This time, we use two sets of indices: one with 0 ≤ i < h − 1 and 0 ≤ j < δ, and another
with i = h − 1 and 0 ≤ j < γ, where γ is chosen asymptotically to be bδ(h − 1)(1/α − 1)c. Then the dimension is
n = (h − 1)δ + γ. The maximal diagonal coefficient is still Nh−1Xδ−1, and the minimal diagonal coefficient is still

12

Xhδ−δ, like in Lemma 3.2. However, the balance between these two coefficients has changed, because the bound X is
much smaller than in Coppersmith’s algorithm. Before, X was essentially N (h−1)/(n−1) whose order of magnitude is the
same asN1/δ, but now, it is close toNα2/δ, soXhδ−δ is close toN (h−1)α2

. In other words, the ratio between the maximal
and minimal diagonal coefficient is about N (1−α2)(h−1 which is no longer NO(1). We are thus trading an LLL reduction
of a matrix with bit-size≈ (h−1) logN , with one with bit-size≈ (1−α2)(h−1) logN , which can only provide a small
constant speedup at best, namely 1/(1 − α2)2 for L2 or close to 1/(1 − α2) for L̃1. In the gcd generalization, the input
basis is much less reduced than in Coppersmith’s algorithm.

4.2 Multivariate Equations

Coppersmith [6, 7] showed that his algorithm for finding small roots of univariate polynomial congruences can heuristi-
cally be extended to multivariate polynomial congruences: the most famous example is the Boneh-Durfee attack [1] on
RSA with short secret exponent.

Not all these multivariate variants use triangular matrices, though they sometimes can be tweaked: some rely on
lattices which are not full-rank, including the Boneh-Durfee attack [1]. However, when the matrix is triangular, there
is a similar problem than for the gcd generalization: the diagonal coefficients are much more unbalanced than in the
univariate congruence case, which means that the speedup of the rounding method is at most a small constant. And in the
Boneh-Durfee attack, the coefficients which play the role of the diagonal coefficients are also unbalanced.

For instance, assume that one would like to find all small roots of f(x, y) ≡ 0 (mod N) with |x| ≤ X and |y| ≤ Y ,
where f(x, y) has total degree δ and has at least one monic monomial xαyδ−α of maximal total degree. Then, for
a given parameter h, the lower-triangular matrix has dimension n = (hδ + 1)(hδ + 2)/2 and diagonal coefficients
Nh−vXu1+vδY u2+v(δ−α), where u1 + u2 + δv ≤ hδ and u1, u2, v ≥ 0 with u1 < α or u2 < δ − α. For typical choices
of X and Y such that XY < N1/δ−ε, the ratio between the largest and smallest diagonal coefficient is no longer NO(1).

Acknowledgements

During the preparation of this paper, J. Bi was supported in part by China’s 973 Program, Grant 2013CB834205,
and NSFC Grants 61133013 and 61272035, and P. Q. Nguyen was supported in part by China’s 973 Program, Grant
2013CB834205, and NSFC’s Key Project, Grant 61133013.

References

[1] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. IEEE Transactions on
Information Theory, 46(4):1339, 2000.

[2] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring n = prq for large r. In Advances in Cryptology - Proc.
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 326–337. Springer, 1999.

[3] D. Cadé, X. Pujol, and D. Stehlé. FPLLL library, version 3.0. Available from
http://perso.ens-lyon.fr/damien.stehle, Sep 2008.

[4] H. Cohn and N. Heninger. Approximate common divisors via lattices. IACR Cryptology ePrint Archive, 2011:437,
2011.

[5] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In Advances in
Cryptology - Proc. EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages 178–189. Springer,
1996.

[6] D. Coppersmith. Finding a small root of a univariate modular equation. In Advances in Cryptology - Proc. EURO-
CRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages 155–165. Springer, 1996.

13

[7] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology,
10(4):233–260, 1997. Journal version of [6, 5].

[8] J.-S. Coron. Finding small roots of bivariate integer polynomial equations: A direct approach. In Advances in
Cryptology – Proc. CRYPTO ’07, volume 4622 of Lecture Notes in Computer Science, pages 379–394. Springer,
2007.

[9] C. Coupé, P. Q. Nguyen, and J. Stern. The effectiveness of lattice attacks against low-exponent RSA. In Public
Key Cryptography – Proc. PKC ’99, volume 1560 of Lecture Notes in Computer Science, pages 204–218. Springer,
1999.

[10] N. Howgrave-Graham. Finding small roots of univariate modular equations revisited. In Cryptography and Coding
– Proc. IMA ’97, volume 1355 of Lecture Notes in Computer Science, pages 131–142. Springer, 1997.

[11] N. Howgrave-Graham. Approximate integer common divisors. In Proc. CaLC ’01, volume 2146 of Lecture Notes
in Computer Science, pages 51–66. Springer, 2001.

[12] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische
Ann., 261:513–534, 1982.

[13] A. May. Using LLL-reduction for solving RSA and factorization problems: A survey. 2010. In [17].

[14] P. Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent Trends in Cryptography, volume 477 of
Contemporary Mathematics. AMS–RSME, 2009.

[15] P. Q. Nguyen and D. Stehlé. LLL on the average. In Algorithmic Number Theory – Proc. ANTS, LNCS, pages
238–256. Springer, 2006.

[16] P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J. of Computing, 39(3):874–903,
2009.

[17] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applications. Information Security and
Cryptography. Springer, 2010.

[18] A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-linear time complexity: extended
abstract. In Proc. STOC ’11, pages 403–412. ACM, 2011.

[19] A. Schönhage. The fundamental theorem of algebra in terms of computational complexity - preliminary report.
Universität Tübingen, 1982.

[20] V. Shoup. Number Theory C++ Library (NTL) version 5.4.1. Available at http://www.shoup.net/ntl/.

[21] V. Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002.

[22] D. Viswanath and L. N. Trefethen. Condition numbers of random triangular matrices. SIAM J. Matrix Anal. Appl.,
19(2):564–581 (electronic), 1998.

14

