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Abstract

In 2011, the authors [8] presented an adaptive oblivious transfer (OT) scheme based on

Decisional 3-Party Diffie-Hellman (3DDH) assumption. The encryption used in the scheme

is a combination of the Boneh-Boyen IBE scheme and a variation of the Hohenberger-Waters

signature. The scheme is somewhat inefficient since it combines the two underlying schemes

in a simple way. In this paper, we present an improvement of the OT scheme and show its

security under 3DDH assumption. The proposed skills are helpful for designing and analyzing

other cryptographic schemes.

Keywords. adaptive oblivious transfer; 3-Party Diffie-Hellman assumption; redundant sys-

tem parameters.

1 Introduction

Oblivious Transfer, introduced by Rabin [16], is of fundamental importance in multi-party com-

putation [9, 18]. In an adaptive oblivious transfer protocol, a sender commits to a database of

messages and then repeatedly interacts with a receiver in such a way that the receiver obtains one

message per interaction of his choice (and nothing more) while the sender learns nothing about any

of the choices. For the related works, we refer to [3,5-8, 11-14,17].

In 2011, the authors [8] presented an adaptive oblivious transfer scheme based on Decisional 3-

Party Diffie-Hellman assumption which says that given (g, ga, gb, gc, Q) where g generates a bilinear

group of prime order p and a, b, c are selected randomly from Zp, it is hard to decide if Q = gabc. In

the scheme, the sender commits to a database of n messages by publishing an encryption of each

message and a signature on each encryption. Then, each transfer phase can be executed in time

independent of n as the receiver blinds one of the encryptions and proves knowledge of the blinding

factors and a signature on this encryption, after which the sender helps the receiver decrypt the

chosen ciphertext.

01 Department of Mathematics, Shanghai University, Shanghai, China.
2 Department of Mathematics, Shanghai Maritime University, China. liulh@shmtu.edu.cn

1



The encryption used in the scheme is a combination of the Boneh-Boyen IBE scheme [1] and

a variation of the Hohenberger-Waters signature [10]. However, it combines the two underlying

schemes in a simple way. Concretely, there are two drawbacks: (1) It sets the secret key as (a, b),

where a is used only for decryption and b is used only for signing, separately. But we know it is

usual that a single secret key a can be used simultaneously for both signing and decryption. (2)

For random r, s, t ∈ Zp, it expresses the ciphertext as

C =
(
gr, (gj1h)

r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)
t, ur, s

)
where p, g, e, g1, g2, g3, g4, u, v, d, h are included in public parameters. The session key s is directly

exposed. That means the corresponding parameter v could be reasonably removed.

In this paper, we present an improvement of the adaptive OT scheme [8] and show its security

under 3DDH assumption. We also correct some typos in the original scheme. The analysis skills

presented in the paper is novel. We think it is helpful for optimizing some cryptographic schemes.

2 Preliminaries

Let BMsetup be an algorithm that, on input 1κ, outputs the parameters for a bilinear mapping as

γ = (p, g,G,GT , e), where g generates G, the groups G and GT have prime order p, and e : G×G→
GT . It is both: (bilinear) for all g ∈ G and a, b ∈ Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if

g generates G, then e(g, g) ̸= 1.

Assumption 2.1. (Decisional 3-Party Diffie-Hellman (3DDH) [2]) Let g generate a group G
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is 1/2 plus an

amount negligible in λ:

Pr [g, z0 ← G; a, b, c← Zp; z1 ← gabc; d← {0, 1}; d′ ← A(g, ga, gb, gc, zd) : d = d′].

We use the notation of Camenisch and Stadler [4] for the proofs of knowledge. For instance,

ZKPoK{(x, h) : y = gx ∧H = e(y, h)∧ (1 ≤ x ≤ n)} denotes a zero-knowledge proof of knowledge

of an integer x and a group element h ∈ G such that y = gx and H = e(y, h) holds and 1 ≤ x ≤ n.

All values not enclosed in ()’s are assumed to be known to the verifier.

3 Definition of adaptive k-out-of-N oblivious transfer (OTN
k×1)

The definition can be found in Ref.[8]. For completeness, we now relate it as follows. An adaptive

oblivious transfer scheme is a tuple of algorithms (SI,RI,ST,RT). During the initialization phase,
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the Sender and the Receiver conduct an interactive protocol, where the Sender runs SI(M1, · · · ,MN )

to obtain state value S0, and the Receiver runs RI() to obtain state value R0. Next, for 1 ≤ i ≤ k,

the ith transfer proceeds as follows: the Sender runs ST(Si−1) to obtain state value Si, and the

Receiver runs RT(Ri−1, σi) where 1 ≤ σi ≤ N is the index of the message to be received. The

receiver obtains state information Ri and the message M ′
σi or ⊥ indicating failure. To define the

Sender and Receiver security, we need the following experiments.

Real experiment. In experiment RealˆS, ˆR
(N, k,M1, · · · ,MN ,Σ), the possibly cheating sender

Ŝ is given messages (M1, · · · ,MN ) as input and interacts with the possibly cheating receiver R̂(Σ),

where Σ is a selection algorithm that on input the full collection of messages thus far received,

outputs the index σi of the next message to be queried. At the beginning of the experiment, both

Ŝ and R̂ output initial states (S0, R0). In the transfer phase, for 1 ≤ i ≤ k the sender computes

Si ← Ŝ(Si−1), and the receiver computes (Ri,M
′
i)← R̂(Ri−1), where M ′

i may or may not be equal

to Mi. At the end of the k-th transfer the output of the experiment is (Sk, Rk).

Ideal experiment. In experiment IdealˆS
′
,
ˆR
′(N, k,M1, · · · ,MN ,Σ) the possibly cheating sender

algorithm Ŝ
′
generates messages (M∗

1 , · · · ,M∗
N ) and transmits them to a trusted party T. In the

i-th round Ŝ
′
sends a bit bi to T; the possibly cheating receiver R̂

′
(Σ) transmits σ∗

i to T. If bi = 1

and σ∗
i ∈ {1, · · · , N} then T hands M∗

σ∗
i
to R̂

′
. If bi = 0 then T hands ⊥ to R̂

′
. After the k-th

transfer the output of the experiment is (Sk, Rk).

Sender Security. An OTNk×1 provides Sender security if for every real-world p.p.t. receiver

R̂ there exists a p.p.t. ideal-world receiver R̂
′
such that ∀N = ℓ(κ), k ∈ [1, N ], (M1, · · · ,MN ), Σ,

and every p.p.t. distinguisher: Real
S, ˆR

(N, k,M1, · · · ,MN ,Σ)
c≈ Ideal

S′
,
ˆR
′(N, k,M1, · · · ,MN ,Σ),

where ℓ(·) is a polynomially-bounded function.

Receiver Security. An OTNk×1 provides Receiver security if for every real-world p.p.t. sender

Ŝ there exists a p.p.t. ideal-world sender Ŝ
′
such that ∀N = ℓ(κ), k ∈ [1, N ], (M1, · · · ,MN ), Σ, and

every p.p.t. distinguisher: RealˆS,R
(N, k,M1, · · · ,MN ,Σ)

c≈ IdealˆS
′
,R′(N, k,M1, · · · ,MN ,Σ).

4 Review and analysis of one adaptive OT scheme

4.1 Review

This protocol follows the assisted (or blind) decryption paradigm [3, 7, 11]. The Sender begins

the OT protocol by encrypting each message in the database and publishing these values to the

Receiver. The Receiver then checks that each ciphertext is well-formed. See the following Table 1

for details.

Table 1: The Green-Hohenberger OT scheme
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SI(M1, · · · ,MN ) RI()

1. Select γ = (p, g,G,GT , e)← BMsetup (1κ)

and a, b← Zp, choose g2, g3, h, u, v, d← G
and set g1 ← ga, g4 ← gb. Let

pk ← (γ, g1, g2, g3, g4, h, u, v, d), sk ← (a, b).

2. For j = 1 to N , select rj , sj , tj ← Zp and set:

Cj ← [grj , (gj1h)
rj ,Mje(g1, g2)

rj ,

gtj , (urjvsjd)b(gj3h)
tj , urj , sj ]

3. Send (pk, C1, · · · , CN ) to Receiver.

4. Conduct ZKPoK{(a) : g1 = ga}.
5. Verify pk and the proof.

Check for j = 1 to N :

VerifyCiphertext (pk,Cj , j)=1.

If any check fails, output ⊥.

Output S0 = (pk, sk). Output R0 = (pk,C1, · · · , CN ).

ST(Si−1) RT(Ri−1, σi)

1. Parse Cσi as (c1, · · · , c7), select x, y ← Zp
and compute v1 = gxc1.

2. Send v1 to Sender, and conduct:

WIPoK{(σi, x, c2, c4, c5, c6, c7) :
e(v1/g

x, (gσi1 h)) = e(c2, g)∧
e(c6, g) = e(v1/g

x, u)∧
e(c5, g) = e(c6v

c7d, g4)e(c4, g
σi
3 h)}

3. Set R = e(v1, g
a
2).

4. Send R to Receiver and conduct:

ZKPoK{(a) : R = e(v1, g
a
2) ∧ g1 = ga}.

5. If the proof does not verify, output ⊥.
Else output M ′

σi =
c3·e(g1,g2)x

R .

Output Si = Si−1. Output Ri = (Ri−1,M
′
σi)

Ciphertext Structure. The Sender’s public parameters pk include γ = (p, g,G,GT , e) and gen-

erators (g1, g2, h, g3, g4, u, v, d) ∈ G8. For message M ∈ GT , identity j ∈ Zp, and random values

r, s, t ∈ Zp, the ciphertext is expressed as: C =
(
gr, (gj1h)

r,M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s
)
.

Given only pk, j, the VerifyCiphertext function validates that the ciphertext has this structure.

VerifyCiphertext(pk, C, j). Parse C as (c1, · · · , c7) and pk to obtain g, g1, h, g3, g4, u, v, d. This

routine outputs 1 if and only if the following equalities hold:

e(gj1h, c1) = e(g, c2) ∧ e(g, c6) = e(c1, u) ∧

e(g, c5) = e(g4, c6v
c7d)e(c4, g

j
3h)
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4.2 Drawbacks

The encryption used in the scheme is a combination of the Boneh-Boyen IBE scheme [1] and a

variation of the Hohenberger-Waters signature [10]. It combines the two base schemes in a simple

way. Concretely, there are three drawbacks:

(I) It sets the secret key as (a, b), where a is used only for decryption and b is used only for

signing, separately. But is is usual that a single secret key a can be simultaneously used for

both signing and decryption. We will set b = a and show that the setting does not endanger

its security. That means the generator g4 could be removed.

(II) For random r, s, t ∈ Zp, it expresses the ciphertext as

C =
(
gr, (gj1h)

r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)
t, ur, s

)
(1)

Notice that the session key s is directly exposed. That means the generator v could be

removed, too. The redundant setting is due to that the authors follow the Hohenberger-

Waters signature based on RSA assumption (see Section 3 in Ref.[10]), which does require

a chameleon hash function. We would like to stress that the structure uMvs in a bilinear

group G has no the special property of a chameleon hash function because one can not find

s′ satisfying uMvs = uM
′
vs

′
, given M,M ′ and s, where u, v are two random elements of G.

The authors misapplied the structure.

(III) The generator g2 is used only for the blind decryption and the generator g3 is used only for

the VerifyCiphertext. For simplicity, we could explicitly set that g3 = g2. That is to say, the

generator g3 might be redundant. By the way, the generator d is required necessarily for the

Hohenberger-Waters signature based on CDH assumption [10]. The generator h facilitates

the security proof of the Hohenberger-Waters signature. If d is removed, then we have the

following attack. Given a valid ciphertext

C = (c1, · · · , c7) =
(
gr, (gj1h)

r,M · e(g1, g2)r, gt, (urvs)b(gj3h)
t, ur, s

)
(2)

an adversary can take a random θ ∈ Zp and compute

Ĉ = (ĉ1, · · · , ĉ7) =
(
grθ, (gj1h)

rθ,M θ · e(g1, g2)rθ, gtθ,
(
(urvs)b(gj3h)

t
)θ

, urθ, sθ

)
(3)

The ciphertext Ĉ is valid because

e(gj1h, ĉ1) = e(g, ĉ2) ∧ e(g, ĉ6) = e(ĉ1, u) ∧

e(g, ĉ5) = e(g4, ĉ6v
ĉ7)e(ĉ4, g

j
3h)

Remark 4.1. The random y ∈ Zp chosen by the receiver is not used at all. This is a typo.
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5 An improvement and its security proof

5.1 The improvement

The improvement is obtained by removing the redundant generators g3, g4, v. See the table 2 for

details.

Table 2: The improvement

SI(M1, · · · ,MN ) RI()

1. Select γ = (p, g,G,GT , e)← BMsetup (1κ)

and a← Zp, choose g2, h, u, d← G
and set g1 ← ga. Let

pk ← (γ, g1, g2, h, u, d), sk ← a.

2. For j = 1 to N , select rj , tj ← Zp and set:

Cj ← [grj , (gj1h)
rj ,Mj e(g1, g2)

rj ,

gtj , (urjd)a(gj2h)
tj , urj ]

3. Send (pk,C1, · · · , CN ) to Receiver.

4. Conduct ZKPoK{(a) : g1 = ga}.
5. Verify pk and the proof.

Check for j = 1 to N :

VerifyCiphertext (pk, Cj , j)=1.

If any check fails, output ⊥.

Output S0 = (pk, sk). Output R0 = (pk, C1, · · · , CN ).

ST(Si−1) RT(Ri−1, σi)

1. Parse Cσi as (c1, · · · , c6), select x← Zp
and compute v1 = gxc1.

2. Send v1 to Sender, and conduct:

WIPoK{(σi, x, c2, c4, c5, c6) :
e(v1/g

x, (gσi1 h)) = e(c2, g)∧
e(c6, g) = e(v1/g

x, u)∧
e(c5, g) = e(c6d, g1)e(c4, g

σi
2 h)}

3. Set R = e(v1, g
a
2).

4. Send R to Receiver and conduct:

ZKPoK{(a) : R = e(v1, g
a
2) ∧ g1 = ga}.

5. If the proof does not verify, output ⊥.
Else output M ′

σi =
c3·e(g1,g2)x

R .

Output Si = Si−1. Output Ri = (Ri−1,M
′
σi)

Ciphertext Structure. The Sender’s public parameters pk include γ = (p, g,G,GT , e) and gener-

ators (g1, g2, h, u, d) ∈ G5. For message M ∈ GT , identity j ∈ Zp, and random values r, t ∈ Zp, the
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ciphertext is expressed as: C =
(
gr, (gj1h)

r,M · e(g1, g2)r, gt, (urd)a(gj2h)t, ur
)
. Given only pk, j,

the VerifyCiphertext function validates that the ciphertext has this structure.

VerifyCiphertext(pk, C, j). Parse C as (c1, · · · , c6) and pk to obtain g, g1, g2, h, u, d. This routine

outputs 1 if and only if the following equalities hold:

e(gj1h, c1) = e(g, c2) ∧ e(g, c6) = e(c1, u) ∧

e(g, c5) = e(g1, c6d)e(c4, g
j
2h)

Correctness.

e(gj1h, c1) = e(gj1h, g
rj ) = e((gj1h)

rj , g) = e(g, c2)

e(g, c6) = e(g, urj ) = e(grj , u) = e(c1, u)

e(g, c5) = e
(
g, (urjd)a(gj2h)

tj
)
= e (g, (urjd)a) e

(
g, (gj2h)

tj
)
= e(g1, c6d)e(c4, g

j
2h)

c3 · e(g1, g2)x

R
=

Mj e(g1, g2)
rj · e(g1, g2)x

e(gxc1, ga2)
=

Mj e(g1, g2)
rj · e(g1, g2)x

e(gx, ga2)e(g
rj , ga2)

= Mj

5.2 Security proof

The improvement is sender-secure and receiver-secure in the full simulation model under 3DDH

assumption. The security proof is very like that of the original scheme [8]. For completeness, we

now describe it as follows.

Sender security. Given a (possibly cheating) real-world receiver R̂, we show how to construct

an ideal-world receiver R̂
′
such that all p.p.t. distinguishers have at most negligible advantage in

distinguishing the distribution of an honest real-world sender S interacting with R̂ (Real
S, ˆR

) from

that of R̂
′
interacting with the honest ideal-world sender S′ (Ideal

S′
,
ˆR
′ ).

1. To begin, R̂
′
selects a random collection of messages M̄1, · · · , M̄N ← GT and follows the SI

algorithm with these as input up to the point where it obtains (pk, C1, · · · , CN ).

2. It sends (pk, C1, · · · , CN ) to R̂ and then simulates the interactive proof ZKPoK{(a) : g1 =

ga}. (Even though R̂
′
knows sk = a, it ignores this value and simulate this proof step.)

3. For each of k transfers initiated by R̂,

(a) R̂
′
verifies the received WIPoK and uses the knowledge extractor E2 to obtain the values

σi, x, c1, c2, c3, c4 from it. R̂
′
aborts and outputs error when E2 fails.

(b) When σi ∈ [1, N ], R̂
′
queries the trusted party T to obtainMσi , parses Cσi as (c1, · · · , c6) and

responds with R = c3 e(g1,g2)x

Mσi
(if T returns ⊥, R̂′

aborts the transfer). When σi /∈ [1, N ], R̂
′
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follows the normal protocol. In both cases, R̂
′
simulates ZKPoK{(a) : R = e(v1, g

a
2) ∧ g1 =

ga}.

4. R̂
′
uses R̂’s output as its own.

Theorem 5.1 Let ϵZK be the maximum advantage with which any p.p.t. algorithm distinguishes

a simulated ZKPoK, and ϵExt be the maximum probability that the extractor E2 fails (with ϵZK and

ϵExt both negligible in κ). If all p.p.t. algorithms have negligible advantage ≤ ϵ at solving the 3DDH

problem, then:

Pr
[
D(Real

S, ˆR
(N, k,M1, · · · ,MN ,Σ)) = 1

]
−

Pr

[
D(Ideal

S′
,
ˆR
′(N, k,M1, · · · ,MN ,Σ)) = 1

]
≤

(k + 1)ϵZK + kϵExt +Nϵ

(
1 +

p

p− 1

)
.

Proof. We first define the following games:

Game 0. The real-world experiment conducted between S and R̂ (Real
S, ˆR

).

Game 1. This game modifies Game 0 as follows: (1) each of S’s ZKPoK executions is

replaced with a simulated proof of the same statement, and (2) the knowledge extractor E2

is used to obtain the values1(σi, x, c̄4, c̄5, c̄6) from each of R̂’s transfer queries. Whenever the

extractor fails, S terminates the experiment and outputs the distinguished symbol error.

Game 2. This game modifies Game 1 such that, whenever the extracted value σi ∈ [1, N ],

S’s response R is computed using the following approach: parse Cσi = (c1, · · · , c6) and set

R = c3 e(g1,g2)x

Mσi
. When σi /∈ [1, N ], the response is computed using the normal protocol.

Game 3. This game modifies Game 2 by replacing the input to SI with a dummy vector of

random messages M̄1, · · · , M̄N ∈ GT . However when S computes a response value using the

technique of Game 2, the response is based on the original message vector M1, · · · ,MN . We

claim that the distribution of this game is equivalent to that of Ideal
S′
,
ˆR
′ .

For notational convenience, define:

Adv[Game i] = Pr[D(Game i) = 1]− Pr[D(Game 0) = 1].

1There is a typo in the original argument. It says that “the knowledge extractor E2 is used to obtain the values

(σi, x, y, z, c̄4, c̄5, c̄6, c̄7) from each of R̂’s transfer queries”. We should stress that both the values y, z are not used at

all.
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By the following Lemmas, we then obtain Adv[Game 3] ≤ (k + 1)ϵZK + kϵExt +Nϵ(1 + p
p−1). �

Lemma 5.2 If all p.p.t. algorithms D distinguish a simulated ZKPoK with advantage at most

ϵZK and the extractor E2 fails with probability at most ϵExt, then Adv[Game 1] ≤ (k+1)ϵZK+kϵExt.

Proof. See the proof of Lemma A.1 in Ref.[8]. �

Lemma 5.3 If no p.p.t. algorithm has advantage > ϵ in solving the 3DDH problem, then

Adv[Game 2]−Adv[Game 1] ≤ Np

p− 1
· ϵ

Proof. For every query where σi /∈ [1, N ], S calculates the response R as in the normal protocol,

and thus the distribution of R is identical to Game 1. Thus we need only consider queries where

σi ∈ [1, N ].

Given a transfer request containing v1, let us implicitly define gr
′
= v1/g

x for some r′ ∈ Zp.
Express the σi-th ciphertext in the database as Cσi = (c1, · · · , c6). If gr

′
= c1 then the computed

response R will have the same distribution as in the normal protocol. To show this, let c1 = grσi

for some rσi ∈ Zp and c3/Mσi = e(g1, g2)
rσi . We can now write the normal calculation of R as:

R = e(c1g
x, ga2) = e(grσigx, ga2) = e(g1, g2)

rσie(g1, g2)
x =

c3 e(g1, g2)
x

Mσi

It remains only to consider the case where gr
′ ̸= c1. We will refer to this as a forged query and argue

that R̂ cannot issue such a query except with negligible probability under the 3DDH assumption in

G. Specifically, if R̂ submits a forged query with non-negligible probability, then we can construct

a solver B for 3DDH that succeeds with non-negligible advantage.

We now describe the solver B. B takes as input a 3DDH tuple (g, gτ , gψ, gω, Z), where Z = gτψω

or is random, and each value τ, φ, ω was chosen at random from Zp. It will simulate S’s interaction

with R̂ via the following simulation.

Simulation Setup. B first picks j∗ ← [1, N ] and2 yd, xd, xh, xz ← Zp. It sets u = gψ,

d = g−ψxdgyd , h = g−ψj
∗
gxh , g2 = gψgxz , g1 = gτ . Thus, we implicitly have a = τ . The remaining

components of pk are chosen as in the real protocol.

For j = 1 to N , B generates each correctly-distributed ciphertext Cj = (c1, · · · , c6) as follows:

The simulation for j = j∗. Pick tj ← Zp and set the ciphertext as:

(c1, · · · , c6) =
(
gxd , (gj1h)

xd ,M · e(g1, g2)xd , gtj , (gτ )yd(gj2h)
tj , uxd

)
2There is a typo in the original argument. It says that “B first picks j∗ ← [1, N ] and a, yv, yd, xv, xd, xh, xz,

rj , tj ← Zp”. Clearly, the secret key a for decryption is not known to the solver B. Besides, it is not necessary for B
to pick rj , tj in the Setup because they are not used at all in the phase.
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The ciphertext is well-formed because:

e(gj1h, c1) = e(gj1h, g
xd) = e((gj1h)

xd , g) = e(g, c2)

e(g, c6) = e(g, uxd) = e(gxd , u) = e(c1, u)

e(g, c5) = e
(
g, (gτ )yd(gj2h)

tj
)
= e (g, (uxdd)τ ) e

(
g, (gj2h)

tj
)
= e(g1, c6d)e(c4, g

j
2h)

The simulation for j ̸= j∗. Pick rj , t
′
j ← Zp. Set Y = gt

′
j/(gτ )(rj−xd)/(j−j

∗) and the ciphertext

as:

(c1, · · · , c6) =
(
grj , (gj1h)

rj ,M · e(g1, g2)rj , Y, (gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j∗), urj

)
Let us define Y = gtj and thus implicitly tj = t′j−τ(rj−xd)/(j−j∗), which is randomly distributed

in Zp. Just by inspection, it’s clear that all of the elements except c5 are correctly distributed.

Thus it remains to show that:

(gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j∗) = (urjd)τ (gj2h)

tj

In fact, we have:

c5 = (gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j∗)

= (gτ )yd · (gtj )xzj+xh · (gψ)t
′
j(j−j∗)

= (gτψ)rj−xd(gτ )yd · (gtj )xzj+xh · (gψ)t
′
j(j−j∗)(g−τψ)rj−xd

= (gψ(rj−xd))τ (gyd)τ · (gxzj+xh)tj · (gψ)t
′
j(j−j∗)(g−τψ)rj−xd

= ((gψrj )(g−ψxd+yd))τ · (gxzj+xh)tj · (gψ)t
′
j(j−j∗)(g−τψ)rj−xd

= (urjd)τ · (gxzj+xh)tj · (gψ)t
′
j(j−j∗)(g−τψ)rj−xd

= (urjd)τ · (gxzj+xh)tj · (gψ(j−j∗))t
′
j−τ(rj−xd)/(j−j∗)

= (urjd)τ · (gxzj+xh)tj · (gψ(j−j∗))tj

= (urjd)τ · ((gψ+xz)jg−ψj∗+xh)tj

= (urjd)τ · (gj2h)
tj

Answering Queries. Upon receiving a query from R̂, B verifies the accompanying WIPoK

and extracts (σi, x, c̄4, c̄5, c̄6) and the value v1. Note that R̂ must issue at least one forged query

where v1/g
x is not equal to the first element of Cσi . When this occurs, if σi ̸= j∗ then B aborts

and outputs a random bit.

Otherwise let us consider the distribution of R̂’s query. For some t, r′ ∈ Zp the soundness of the
WIPoK ensures that (v1/g

x, c̄6) = (gr
′
, ur

′
) and (c̄4, c̄5) = (gt, (ur

′
d)a(gσi2 h)t). By substitution we

obtain:

c̄5 = (gψr
′
g−ψxd+yd))τ (g(ψ+xz)j

∗
g−ψj

∗
gxh)t
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= gτψ(r
′−xd)gτydgt(xzj

∗+xh)

Let us implicitly define the value h′ = (v1/g
x)g−xd = gr

′−xd . B can obtain h′τψ by computing

c̄5/(g
τyd c̄xzj

∗+xh
4 ). Provided that h′ ̸= 1, B can now compute a solution to the 3DDH problem by

comparing e(h′τψ, gω)
?
= e(Z, h′). If h′ = 1 then B aborts and outputs a random bit.

Probability of abort. There are two conditions in which B aborts: (1) when R̂ does not issue a

forgery for σi = j∗, and (2) when σi = j∗ but (v1/g
x)g−xd = 1. Since j∗, xd are outside of R̂’s view

and our base assumption is that R̂ that makes at least one request on σi ∈ [1, N ], the probability

that B does not abort is ≥ p−1
p ·

1
N . Thus, if no p.p.t. algorithm solves 3DDH with probability > ϵ,

then Adv [Game 2 ]- Adv [Game 1 ] ≤ Npϵ
p−1 . �

Lemma 5.4 If no p.p.t adversary has advantage > ϵ at solving the 3DDH problem, then

Adv [Game 3 ]−Adv [Game 2 ] ≤ Nϵ.

Proof. See the proof of Lemma A.3 in Ref.[8]. �

Receiver Security. For any real-world cheating sender Ŝ we can construct an ideal-world sender

Ŝ
′
such that all p.p.t. distinguishers have negligible advantage at distinguishing the distribution of

the real and ideal experiments. Let us now describe the operation of Ŝ
′
, which runs Ŝ internally,

interacting with it in the role of the Receiver.

1. To begin, Ŝ
′
runs the RI algorithm, with the following modification: when Ŝ proves knowledge

of a, Ŝ
′
uses the knowledge extractor E1 to extract a, outputting error if the extractor fails.

Otherwise, it has obtained the values (pk, C1, · · · , CN ).

2. For i = 1 toN , Ŝ
′
decrypts each of Ŝ’s ciphertexts C1, · · · , CN using the value a as a decryption

key, and sends the resulting M∗
1 , · · · ,M∗

N to the trusted party T.

3. Whenever T indicates to Ŝ
′
that a transfer has been initiated, Ŝ

′
runs the transfer protocol

with Ŝ on the fixed index 1. If the transfer succeeds, Ŝ
′
returns the bit 1 (indicating success)

to T, or 0 otherwise.

4. Ŝ
′
uses Ŝ’s output as its own.

Theorem 5.5 Let ϵWI be the maximum advantage that any p.p.t. algorithm has at distinguish-

ing a WIPoK, and let ϵExt be the maximum probability that the extractor E1 fails. Then ∀ p.p.t.

D:

Pr[D(RealˆS,R
(N, k,M1, · · · ,MN ,Σ)) = 1]−

Pr[D(IdealˆS
′
,R′(N, k,M1, · · · ,MN ,Σ)) = 1] ≤ (k + 1)ϵExt + kϵWI .

Proof. See the proof of Theorem 3.3 in Ref.[8]. �
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6 Conclusion

In this paper, we present an improvement of one adaptive OT scheme which is based on 3DDH

assumption in bilinear groups. We show that in the original scheme there are some redundancies.

Using the modified simulation, we prove that the improvement keeps secure under 3DDH assump-

tion. We believe the skills developed in the paper is helpful for optimizing other cryptographic

schemes.
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