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Abstract. In this article, we propose a new improvement of the rebound techniques, used for cryptanalyzing
AES-like permutations during the past years. Our improvement, that allows to reduce the complexity of
the attacks, increases the probability of the outbound part by considering a new type of differential paths.
Moreover, we propose a new type of distinguisher, the multiple limited-birthday problem, based on the
limited-birthday one, but where differences on the input and on the output might have randomized positions.
We also discuss the generic complexity for solving this problem and provide a lower bound of it as well as
we propose an efficient and generic algorithm for solving it. Our advances lead to improved distinguishing or
collision results for many AES-based functions such as AES, ECHO, Grøstl, LED, PHOTON and Whirlpool.
Key words: AES-like permutation, distinguishers, limited-birthday, rebound attack.

1 Introduction

On October the 2nd of 2012, the NIST chose Keccak [4] as the winner of the SHA-3 hash function
competition. This competition started on 2008, and received 64 submissions. Amongst them, 56 passed
to the first round, 14 to the second and 5 to the final on December 2010. Through all these years, a large
amount of cryptanalysis has been published on the different candidates and new techniques have been
proposed. One of the new techniques that can be fairly considered as among the most largely applied
to the different candidates is the rebound attack. Presented in [25], at first for analyzing AES-like
compression functions, it has found many more applications afterwards.

Rebound attacks is a freedom degrees utilization method, and, as such, it aims at finding solutions
for a differential characteristic faster than the probabilistic approach. The characteristic is divided in
two parts: a middle one, called inbound, and both remaining sides, called outbound. In the inbound
phase, the expensive part of the characteristic, like one fully active AES state around the non-linear
transformation, is considered. The rebound technique allows to find many solutions for this part with
an average cost of one. These solutions are then exhausted probabilistically forwards and backwards
through the outbound part to find one out of them that conforms to the whole characteristic.

Several improvements have appeared through the new analyses, like start-from-the-middle attack [24]
or Super-SBoxes [14, 21], which allow to control three rounds in the middle, multi-inbounds [23] which
extend the number of rounds analyzed by a better use of the freedom degrees (better ways of merging
the inbounds were proposed in [26]), or non-fully-active states [30] that permits to reduce the complexity
of the outbound part. In [19], a method for controlling four rounds in the middle with high complexity
was proposed, and it allows to reach a total of 9 rounds with regards to distinguishers in the case of a
large permutation size.

This class of attacks is interesting mostly for hash functions, because they require the attacker to
be able to know and to control the internal state of the primitive, which is not possible if a secret is
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involved, for example in a block cipher. Yet, another application is the study of block ciphers in the
so-called known-key or chosen-key models, where the attacker knows or even has full control of the
secret key. These models were recently made popular because many SHA-3 or new hash functions are
based on block ciphers or fixed-key permutations, and also one may want to be sure that a cipher has
no flaw whatsoever, even in weaker security models.

Various types of attacks are possible for hash functions, such as collision and (second) preimage
search, or even distinguishers. Indeed, hash functions being often utilized to mimic the behavior of
random oracles [8] in security protocols, e.g. RSA-OAEP [2], it is important to ensure that no special
property can be observed that allows an attacker to distinguish the primitive from a random oracle.
Distinguishers on hash functions, compression functions or permutations can be very diverse, from
classical differential distinguishers (limited-birthday [14] or subspace [22]) to rotational [20] or zero-sum
distinguishers [7]. In any case, for the distinguisher to be valid, the cryptanalyst has to compare the
cost of finding the specific property for the function analyzed and for an ideal primitive. The bounds
compared in this article refer to the computational bounds, and not information-theoretic bounds like
for example in [5].

Rebound-like techniques are well adapted for various types of distinguishers and it remains an
open problem to know how far (and with what complexity) they can be pushed further to attack
AES-like permutations and hash/compression functions. So far, the best results could reach 8 or 9
rounds, depending on the size of the permutation attacked.

Our contributions. In this paper, we propose a new improvement of the previous rebound techniques,
reducing the complexity of known differential distinguishers and by a lower extend, reducing some
collision attack complexities. We observed that the gap between the distinguisher complexity and the
generic case is often big and some conditions might be relaxed in order to minimize as much as possible
the overall complexity. The main idea is to generalize the various rebound techniques and to relax some
of the input and output conditions of the differential distinguishers. That is, instead of considering
pre-specified active cells in the input and output (generally full columns or diagonals), we consider
several possible position combinations of these cells. In some way, this idea is related to the outbound
difference randomization that was proposed in [12] for a rebound attack on Keccak, a non-AES-like
function. Yet, in [12], the randomization was not used to reduce the attack complexity, but to provide
enough freedom degrees to perform the attack.

As this improvement affects directly the properties of the inputs and outputs, we now have to deal
with a new differential property observed and we named this new problem the multiple limited-birthday
problem (LBP), which is more general than the limited-birthday one. A very important question arising
next is: what is the complexity of the best generic algorithm for obtaining such set of inputs/outputs?
For previous distinguishers, where the active input and output columns were fixed, the limited-birthday
algorithm [14] is yet the best one for solving the problem in the generic case. Now, the multiple
limited-birthday is more complex, and in Section 3.3 we discuss how to bound the complexity of the
best generic distinguisher. Moreover, we also propose an efficient, generic and non-trivial algorithm in
order to solve the multiple limited-birthday problem, providing the best known complexity for solving
this problem.

Finally, we generalize the various rebound-like techniques in Section 4 and we apply our findings in
Section 5 on various AES-like primitives such as AES [10], ECHO [3], Grøstl [13], LED [16], PHOTON [15]
and Whirlpool [1]. Our main results are summarized and compared to previous works in Table 1.

2 AES-like permutations

We define an AES-like permutation as a permutation that applies Nr rounds of a round function to
update an internal state viewed as a square matrix of t rows and t columns, where each of the t2 cells
has a size of c bits. We denote S the set of all theses states: |S| = 2ct

2 . This generic view captures



Table 1: Known and improved results for three rebound-based attacks on AES-based primitives.
Target Subtarget Rounds Type Time MemoryIdeal Reference

AES-128 Cipher

8 KK dist. 248 232 265 [14]
8 KK dist. 244 232 261 Section 5.1
8 CK dist. 224 216 265 [11]
8 CK dist. 213.4 216 231.7 Section 5.1

AES-128 DM-mode
5 CF collision 256 232 265 [24]
6 CF collision 232 216 265 Section 5.1

Whirlpool CF
10 dist. 2176 28 2384 [22]
10 dist. 2115.7 28 2125 Section 5.2

Whirlpool CF
7.5 collision 2184 28 2256 [22]
7.5 collision 2176 28 2256 Section 5.2

Whirlpool Hash func.
5.5 collision 2184 28 2256 [22]
5.5 collision 2176 28 2256 Section 5.2

ECHO Permutation

7 dist. 2118 238 21025 [30]
7 dist. 2102 238 2256 Section 5.3
8 dist. 2151 267 2257 [26]
8 dist. 2147 267 2256 Section 5.3

Grøstl-256 Permutation

8 dist. 216 28 233 [30]
8 dist. 210 28 231.5 Section 5.4
9 dist. 2368 264 2385 [19]
9 dist. 2362 264 2379 Section 5.4

Grøstl-256 Comp. func.
6 collision 2120 264 2257 [32]
6 collision 2119 264 2257 Section 5.4

Grøstl-256 Hash func.
3 collision 264 264 2129 [32]
3 collision 263 264 2129 Section 5.4

LED-64 Cipher

15 CK dist. 216 216 233 [16]
16 CK dist. 233.5 232 241.4 [27]
20 CK dist. 260.2 261.5 266.1 [27]
19 CK dist. 218 216 233 Section 5.5

PHOTON-80/20/16 Permutation
8 dist. 28 24 211 [15]
8 dist. 23.4 24 29.8 Section 5.6

PHOTON-128/16/16 Permutation
8 dist. 28 24 213 [15]
8 dist. 22.8 24 211.7 Section 5.6

PHOTON-160/36/36 Permutation
8 dist. 28 24 215 [15]
8 dist. 22.4 24 213.6 Section 5.6

PHOTON-224/32/32 Permutation

8 dist. 28 24 217 [15]
8 dist. 22 24 215.5 Section 5.6
9 dist. 2184 232 2193 [19]
9 dist. 2178 232 2187 Section 5.6

PHOTON-256/32/32 Permutation
8 dist. 216 28 225 [15]
8 dist. 210.8 28 223.7 Section 5.6

various permutations in cryptographic primitives such as AES, ECHO, Grøstl, LED, PHOTON and
Whirlpool.

The round function (Figure 1) starts by xoring a round-dependent constant to the state in the
AddRoundConstant operation (AC). Then, it applies a substitution layer SubBytes (SB) which
relies on a c × c non-linear bijective S-box S. Finally, the round function performs a linear layer,
composed of the ShiftRows transformation (SR), that moves each cell belonging to the x-th row by
x positions to the left in its own row, and the MixCells operation (MC), that linearly mixes all the
columns of the matrix separately by multiplying each one with a matrix M implementing a Maximum
Distance Separable (MDS) code, which provides diffusion.

Note that this description encompasses permutations that really follow the AES design strategy, but
very similar designs (for example with a slightly modified ShiftRows function or with a MixCells
layer not implemented with an MDS matrix) are likely to be attacked by our techniques as well. In the
case of AES-like block ciphers analyzed in the known/chosen-key model, the subkeys generated by the
key schedule are incorporated into the known constant addition layer AddRoundConstant.



AC SBt
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Figure 1: One round of the AES-like permutation instantiated with t = 4.

3 Multiple limited-birthday distinguisher

In this section, we present a new type of distinguisher: the multiple limited-birthday (Section 3.3). It
is inspired from the limited-birthday one that we recall in Section 3.2, where some of the input and
output conditions are relaxed. We discuss how to bound the complexity of the best generic algorithm
for solving this problem, as well as we provide an efficient algorithm solving the problem with the
best known complexity. Due to the keyless particularity of the primitives, we precise the relevance of
distinguishers in that context.

3.1 Structural Distinguishers

We precise here what we consider to be a distinguishing algorithm for a keyless primitives. Let F be a
primitive analyzed in the open-key model (either known- or chosen-key). In that context, there is no
secret: F could be for instance a hash function or a block cipher where the key is placed into the public
domain.

To formalize the problem, we say that the goal of the adversary is to validate a certain property P
on the primitive F . For example, if F is a hash function, P could be “find two different inputs x, x′

such that F (x) = F (x′)” to capture the collision property. One other example, more related to our
approach, would be P = LPB, the limited-birthday problem. In that sense, limited-birthday, collision
and other similar problems are all particular kinds of distinguishers.

It is easy to see that when no random challenge is input to the adversary (like for collision definition
for example) there always exists (at least) one algorithm that outputs a solution to P in constant time
and without any query to F . We do not know this algorithm, but its existence can be proven. The main
consequence about this argument is the lower bound on the number of queries Q of the distinguishing
algorithm. Indeed, because of that algorithm, we have 0 ≤ Q. Therefore, we cannot reach any security
notion in that context.

Now, we can circumvent this problem by introducing a challenge C to the problem P , that is,
we force the distinguishing algorithm to use some value it does not know beforehand. To ease the
formal description, one can think of an adversarial model where the memory is restricted to a fixed
and constant amount M . That way, we get rid of the trivial (but unknown) algorithms that return a
solution to P in constant time, since they do not know the parameter/challenge C. More precisely, if it
does return a solution in constant time, then it is a wrong one with overwhelming probability, such
that its winning advantage is nearly zero. Consequently, reasonable winning advantages are reached by
getting rid of all those trivial algorithms. Then, the lower bound increases and becomes dependent of
the size of C.

As an example, a challenge C could be an particular instantiation of the S-Box used in the primitive
F . One could say that C selects a particular primitive F in a space of structurally-equivalent primitives,
and asks the adversary to solve P on that particular instance F .

In all the published literature, the distinguishers in the open-key model do not consider any particular
challenges, and they also ignore the trivial algorithms. From a structural point of view, there is no
problem in doing so since we know that those distinguishers would also work if we were to introduce a
challenge. But formally, these are not proper distinguishers because of the constant time algorithms
that make the lower bound 0 ≤ Q. In this article, we do not claim to have strong distinguishers in
the theoretical sense, but we provide structural distinguishing algorithms in the same vein as all the
previously published results (q-multicollision, k-sum, limited-birthday, etc.).



3.2 Limited-birthday

In this section, we briefly recall the limited-birthday problem and the best known algorithm for solving
it. As described in Section 3.1, to obtain a fair comparison of algorithms solving this structural problem,
we ignore the trivial algorithms mentioned. That way, we can stick to structural distinguishers and
compare their time complexities to measure efficiency.

Following the notations of the previous section, the limited-birthday problem consists in obtaining
a pair of inputs (x, x′) (each of size n) to a permutation F with a truncated difference x ⊕ x′ on
log2(IN) predetermined bits, that generates a pair of outputs with a truncated difference F (x)⊕ F (x′)
on log2(OUT ) predetermined bits (therefore IN and OUT represent the set size of the admissible
differences on the input and on the output respectively).

The best known cost for obtaining such a pair for an ideal permutation is denoted by C(IN,OUT )
and, as described in [14], can be computed the following way:

C(IN,OUT ) = max
{
min

{√
2n/IN,

√
2n/OUT

}
,

2n+1

IN ·OUT

}
. (1)

The main differences with the subspace distinguisher [22] is that in the limited-birthday distinguisher
both input and output are constrained (thus limiting the ability of the attacker to perform a birthday
strategy), and only a single pair is to be exhibited.

3.3 Multiple limited-birthday and generic complexity

We now consider the distinguisher represented in Figure 2, where the conditions regarding previous
distinguishers have been relaxed: the number of active diagonals (resp. anti-diagonals) in the input (resp.
output) is fixed, but their positions are not. Therefore, we have

(
t

nB

)
possible different configurations in

the input and
(

t
nF

)
in the output. We state the following problem.

(
t

nB

)
Possible inputs

(
t

nF

)
Possible outputsP

Figure 2: Possible inputs and outputs of the relaxed generic distinguisher. The blackbox P implements a random
permutation uniformly drawn from SS . The figure shows the case t = 4, nB = 1 and nF = 2.

Problem 1 (Multiple limited-birthday). Let nF , nB ∈ {1, . . . , t}, F a permutation from the
symmetric group SS of all permutations on S, and ∆IN be the set of truncated patterns containing all
the

(
t

nB

)
possible ways to choose nB active diagonals among the t ones. Let ∆OUT defined similarly

with nF active anti-diagonals. Given F , ∆IN and ∆OUT , the problem asks to find a pair (m,m′) ∈ S2
of inputs to F such that m⊕m′ ∈ ∆IN and F (m)⊕ F (m′) ∈ ∆OUT .

As for the limited-birthday distinguisher, we do not consider this problem in the theoretical sense,
as there would be a trivial algorithm solving it (see Section 3.1). Therefore, and rather than introducing
a challenge that would confuse the description of our algorithm, we are interested in structural



distinguishing algorithms, that ignore the constant-time trivial algorithms. Following notations of the
previous section, the permutation defined in Problem 1 refer to the general primitive F of Section 3.1
and the particular property P the the adversary is required to fulfill on P has been detailed in the
problem definition.

We conjecture that the best generic algorithm for finding one solution to Problem 1 has a time
complexity that is lower bounded by the limited-birthday algorithm when considering IN =

(
t

nB

)
2t·c·nB

and OUT =
(

t
nF

)
2t·c·nF . This can be reasonably argued as we can transform the multiple limited-

birthday algorithm into a similar (but not equivalent) limited-birthday one, with a size of all the
possible truncated input and output differences of IN and OUT respectively. Solving the similar
limited-birthday problem requires a complexity of C(IN,OUT ), but solving the original multiple
limited-birthday problem would require an equal or higher complexity, as though having the same
possible input and output difference sizes, for the same number of inputs (or outputs), the number of
valid input pairs that can be built might be lower. This is directly reflected on the complexity of solving
the problem, as in the limited-birthday algorithm, it is considered that for 2n inputs queried, we can
build 22n−1 valid input pairs. The optimal algorithm solving Problem 1 would have a time complexity
T such that: C(IN,OUT ) ≤ T .

We have just provided a lower bound for the complexity of solving Problem 1 in the ideal case, but
an efficient generic algorithm was not known. For finding a solution, we could repeat the algorithm
for solving the limited-birthday while considering sets of input or output differences that do not
overlap, with a complexity of min{C(IN,OUT ), C(IN,OUT )}, where IN = 2t·c·nB , OUT = 2t·c·nF ,
IN =

(
t

nB

)
2t·c·nB and OUT =

(
t

nF

)
2t·c·nF .

We propose in the sequel a new generic algorithm to solve Problem 1 whose time complexity verifies
the claimed bound and improves the complexity of the algorithm previously sketched. It allows then
to find solutions faster than previous algorithms, as detailed in Table 2. Without loss of generality,
because the problem is completely symmetrical, we explain the procedure in the forward direction. The
same reasoning applies for the backward direction, when changing the roles between input and output
of the permutation, and the complexity would then be the lowest one.

From Problem 1, we see that a random pair of inputs have a probability Pout =
(

t
nF

)
2−t(t−nF )c to

verify the output condition. We therefore need at least P−1out input pairs so that one verifying the input
and output conditions can be found. The first goal of the procedure consists in constructing a structure
containing enough input pairs.

Structures of input data. We want to generate the amount of valid input pairs previously determined,
and we want do this while minimizing the numbers of queries performed to the encryption oracle, as the
complexity directly depends on them. A natural way to obtain pairs of inputs consists in packing the

D0 D1 D2 D3

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

nB n′
B

(a) Structure.

D0 D1

(b) Example of pair.

Figure 3: Structure of input data: example with nB = 2 and n′B = 4. We construct a pair with nB active diagonals like
(b) from the structure depitected on (a). Hatched cells are active, so that the structure allows to select

(
n′
b

nB

)
different

patterns to form the pairs (one is represented by the bullets •).



data into structured sets. These structures contain all 2ct possible values on n′B different diagonals at
the input, and make the data complexity equivalent to 2n

′
Bct encryptions. If there exists n′B ≤ nB such

that the number N of possible pairs
(
2n
′
Bct

2

)
we can construct within the structure verifies N ≥ P−1out,

then Problem 1 can be solved easily by using the birthday algorithm. If this does not hold, we need to
consider a structure with n′B > nB. In this case, we can construct as many as

(
n′B
nB

)
2(n
′
B−nB)tc

(
2nBtc

2

)
pairs (m,m′) of inputs such that m⊕m′ already belongs to ∆IN . We now propose an algorithm that
handles this case.

We show how to build a fixed number of pairs with the smallest structure that we could find, and
we conjecture that the construction is optimal in the sense this structure is the smallest possible. The
structure of input data considers n′B diagonals D1, . . . , Dn′B

assuming all the 2ct possible values, and
an extra diagonal D0 assuming 2y < 2ct values (see Figure 3). In total, the number of queries equals
2y+n′Btc. Within this structure, we can get1 a number of pairs parameterized by n′B and y:

Npairs(n
′
B, y) :=

(
n′B
nB

)(
2nBct

2

)
2y 2(n

′
B−nB)tc +

(
n′B

nB − 1

)(
2y+(nB−1)ct

2

)
2(n
′
B−(nB−1))ct. (2)

The first term of the sum considers the pairs generated from nB diagonals among the D1, . . . , Dn′B
diagonals, while the second term considers D0 and nB−1 of the other diagonals. The problem of finding
an algorithm with the smallest time complexity is therefore reduced to finding the smallest n′B and
the associated y so that Npairs(n

′
B, y) = P−1out. Depending on the considered scenarios, P−1out would have

different values, but finding (n′B, y) such that Npairs(n
′
B, y) = P−1out can easily be done by an intelligent

search in log(t) + log(ct) simple operations by trying different parameters until the ones that generate
the wanted amount of pairs P−1out are found.

Generic algorithm. Once we have found the good parameters n′B and y, we generate the 2y+n′Bct

inputs as previously described, and query their corresponding outputs to the permutation F . We
store the input/output pairs in a table ordered by the output values. Assuming they are uniformly
distributed, there exists a pair in this table satisfying the input and output properties from Problem 1
with probability close to 1.

To find it, we first check for each output if a matching output exists in the list. When this is the
case, we next check if the found pair also verifies the input conditions. The time complexity of this
algorithms therefore costs about 2y+n′Bct+22y+2n′BtcPout operations. The first term in the sum is the
number of outputs in the table: we check for each one of them if a match exists at cost about one. The
second term is the number of output matches that we expect to find, for which we also test if the input
patterns conform to the wanted ones.

Finally, from the expression of Pout, we approximate the time complexity 2y+n′Bct+22y+2n′BtcPout to
2y+n′Bct operations, as the second term is always smaller than the first one. The memory complexity if
we store the table would be 2y+n′Bct as well, but we can actually perform this research without memory,
as in practice what we are doing is a collision search. In Table 2, we show some examples of different
complexities achieved by the bounds proposed and by our algorithm.

Table 2: Examples of time complexities for several algorithms solving the multiple limited-birthday problem.
Parameters (t, c, nB , nF ) bound: C(IN,OUT ) Our algorithm C(IN,OUT )

(8, 8, 1, 1) 2379 2379.7 2382

(8, 8, 1, 2) 2313.2 2314.2 2316.2

(8, 8, 2, 2) 2248.4 2250.6 2253.2

(8, 8, 1, 3) 2248.19 2249.65 2251.19

(4, 8, 1, 1) 261 262.6 263

(4, 4, 1, 1) 229 230.6 231

1 When y = 0, we compute the number of terms as Npairs(n
′
B , 0) :=

(
n′
B

nB

)(
2nBct

2

)
2(n

′
B−nB)tc.



4 Truncated characteristic with relaxed conditions

In this section, we present a representative 9-round example of our new distinguisher.

4.1 Relaxed 9-round distinguisher for AES-like permutation

We show how to build a 9-round distinguisher when including the idea of relaxing the input and output
conditions. In fact, this new improvement allows to reduce the complexity of the distinguisher, as the
probability of verifying the outbound is higher. We point out here that we have chosen to provide an
example for 9 rounds as it is the distinguisher that reaches the highest number of rounds, solving three
fully-active states in the middle. We also recall that for a smaller number of rounds, the only difference
with the presented distinguisher is the complexity Cinbound for the inbound part, that can be solved
using already well-known methods such as rebound attacks, Super-SBoxes or start-from-the-middle,
depending on the particular situation that we have. For the sake of simplicity, in the end of this section,
we provide the complexity of the distinguisher depending on the inbound complexity Cinbound.

In the end of the section, we compare our distinguisher with the previously explained best known
generic algorithm to find pairs conforming to those cases. We show how the complexities of our
distinguisher are still lower than the lowest bound for such a generic case.

Following the notations from [19], we parameterize the truncated differential characteristic by four
variables (see Figure 4) such that trade-offs are possible by finding the right values for each one of them.
Namely, we denote c the size of the cells, t× t the size of the state matrix, nB the number of active
diagonals in the input (alternatively, the number of active cells in the second round), nF the number
of active independent diagonals in the output (alternatively, the number of active cells in the eighth
round), mB the number of active cells in the third round and mF the number of active cells in the
seventh round.

Hence, the sequence of active cells in the truncated differential characteristic becomes:

t nB
R1−→ nB

R2−→ mB
R3−→ tmB

R4−→ t2
R5−→ tmF

R6−→ mF
R7−→ nF

R8−→ t nF
R9−→ t2, (3)

with the constraints nF +mF ≥ t+ 1 and nB +mB ≥ t+ 1 that come from the MDS property, and
relaxation conditions on the input and output, meaning that the positions of the nB input active
diagonals, and of the nF active anti-diagonals generating the output can take any possible configuration,
and not a fixed one. This allows to increase the probability of the outbound part and the number of
solutions conforming to the characteristic. This is reflected in a reduction of the complexity of the
distinguisher. The amount of solutions that we can now generate for the differential path equals to
(log2):

log2

((
t

nB

)(
t

nF

))
+ ct2 + ctnB

− c(t− 1)nB − c(t−mB)− ct(t−mF )− c(t− 1)mF − c(t− nF )

= c(nB + nF +mB +mF − 2t) + log2

((
t

nB

)(
t

nF

))
.

(4)

If follows from the MDS constraints that there are always at least
(

t
nB

)(
t

nF

)
22c freedom degrees,

independently of t.

To find a conforming pair we use the algorithm proposed in [19] for solving the inbound part and
finding a solution for the middle rounds. The cost of those uncontrolled rounds is given by:

Coutbound :=
2c(t−nB)(

t
nB

) · 2
c(t−nF )(

t
nF

) =
2c(2t−nB−nF )(

t
nB

)(
t

nF

) , (5)
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Figure 4: The 9-round truncated differential characteristic used to distinguish an AES-like permutation from an ideal
permutation. The figure shows some particular values: t = 8, nB = 5, mB = 4, mF = 4 and nF = 5.

since we need to pass one nB ← mB transition in the backward direction with
(

t
nB

)
possibilities and

one mF → nF transition in the forward direction with
(

t
nF

)
possibilities.

4.2 Comparison with ideal case

As we discussed in Section 3.3, in the ideal case, the generic complexity T is bounded by C(IN,OUT ) ≤
T ≤ min

{
C(IN,OUT ), C(IN,OUT )

}
, where we have IN =

(
t

nB

)
2t·c·nB , OUT =

(
t

nF

)
2t·c·nF , IN =

2t·c·nB and OUT = 2t·c·nF .

We proposed the algorithm with the best known complexity for solving the problem in the ideal
case in Section 3.3, for being sure that our distinguishers have smaller complexity than the best generic
algorithm, we compare our complexities with the inferior bound given: C(IN,OUT ), so that we are
sure that our distinguisher is a valid one. We note that the algorithm we propose gives a distinguisher
for 9 rounds of an AES-like permutation as soon as the state verifies t ≥ 8.

We recall here that the complexity of the distinguishers that we build varies depending on the
number of rounds solved in the middle, or the parameters chosen, and we provide some examples of
improvements of previous distinguishers and their comparisons with the general bounds and algorithms
in the next section.

5 Applications

In this section, we apply our new techniques to improve the best known results on various primitives
using AES-like permutations. Due to a lack of space, we do not describe the algorithms in details,
and refer to their respective specification documents for a complete description. When we randomize
the input/output differences positions, the generic complexities that we compare with are the ones
coming from the classical limited-birthday problem C(IN,OUT ) (updated with the right amount of
differences), since they lower bound the corresponding multiple limited-birthday problem.

5.1 AES

AES-128 [10] is an obvious target for our techniques, and it is composed of 10 rounds and has parameters
t = 4 and c = 8.

Distinguisher. The current best distinguishers (except the biclique technique [6] which allows to
do a speed-up search of the key by a factor of 0.27 for the full AES) can reach 8 rounds with 248

computations in the known-key model (see [14]) and with 224 computations in the chosen-key model
(see [11]). By relaxing some input/output conditions, we are able to obtain a 8-round distinguisher with
244 computations in the known-key model and with 213.4 computations in the chosen-key model.



In the case of the known-key distinguisher, we start with the 8-round differential characteristic
depicted in Figure 5. One can see that it is possible to randomize the position of the unique active byte
in both states S1 and S6, resulting in 4 possibles positions for both the input and output differences. We
reuse the Super-SBox technique that can find solutions from state S2 to state S5 with a single operation
on average. Then, one has to pay 224/4 = 222 for both transitions from state S2 to S1 backward and
from state S5 to S6 forward, for a total complexity of 244 computations. In the ideal case, our multiple
limited-birthday problem gives us a generic complexity bounded by 261.
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Figure 5: Differential characteristic for the 8-round known-key distinguisher for AES-128

Concerning the chosen-key distinguisher, we start with the 8-round differential characteristic depicted
in Figure 6. Here, we use the technique introduced in [11] that can find solutions from state S2 to state
S6 with a single operation on average. It is therefore not possible to randomize the position of the
unique active byte in state S6 since it is already specified. However, for the transition from state S2 to
S1, we let two active bytes to be present in S2, with random positions (6 possible choices). This happens
with a probability 6 · 2−16 and the total complexity to find a solution for the entire characteristic is 213.4

computations. In the ideal case, our multiple limited-birthday problem gives us a generic complexity
bounded by 231.7.
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Figure 6: Differential characteristic for the 8-round chosen-key distinguisher for AES-128

Collision. It is also interesting to check what happens if the AES cipher is plugged into a classical
Davies-Meyer mode in order to get a compression function. A collision attack for this scenario was
proposed in [24] for 5 rounds of AES with 256 computations. By considering the characteristic from
state S1 to state S7 state in Figure 5 (the MixCells in the last round is omitted for AES, thus S7
contains only a single active byte), and by using the technique introduced in [11] (only for chosen-key
model, but in the Davies-Meyer mode the key input of the cipher is fully controlled by the attacker
since it represents the message block input), we can find solutions from state S2 to state S6 with a
single operation on average. Then, one has to pay a probability 2−24 for the differential transition from
state S2 to state S1 when computing backward. One can not randomize the single active cells positions
here because the collision forces us to place them at the very same position. Getting the single input
and output active bytes to collide requires 28 tries and the total complexity of the 6-round collision
search is therefore 232 computations.



5.2 Whirlpool

Whirlpool [1] is a 512-bit hash function whose compression function is built upon a block cipher E
in a Miyaguchi-Preneel mode: h(H,M) = EH(M)⊕M ⊕H. This block cipher E uses two 10-round
AES-like permutations with parameters t = 8 and c = 8, one for the internal state transformation
and one for the key schedule. The first permutation is fixed and takes as input the 512-bit incoming
chaining variable, while the second permutation takes as input the 512-bit message block, and whose
round keys are the successive internal states of the first permutation. The current best distinguishing
attack can reach the full 10 rounds of the internal permutation and compression function (with 2176

computations), while the best collision attack can reach 5.5 rounds of the hash function and 7.5 rounds
of the compression function [22] (with 2184 computations). We show how to improve the complexities of
all these attacks.

Distinguisher. We reuse the same differential characteristic from [22] for the distinguishing attack
on the full 10-round Whirlpool compression function (which contains no difference on the key
schedule of E), but we let three more active bytes in both states S1 and S8 of the outbound part and
this is depicted in Figure 7. The effect is that the outbound cost of the differential characteristic is
reduced to 264 computations: 232 for differential transition from state S2 to S1 and 232 from state S7
to S8. Moreover, we can leverage the difference position randomization in states S1 and S8, which
both provide an improvement factor of

(
8
4

)
= 70. The inbound part in [22] (from states S2 to S7)

requires 264 computations to generate a single solution on average, and we obtain a final complexity of
264 · 264 · (70)−2 = 2115.7 Whirlpool evaluations, while the multiple limited-birthday problem has a
generic complexity bounded by 2125 computations.
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Figure 7: 10-round truncated differential characteristic for the full Whirlpool compression function distinguisher.

Collision. We reuse the same differential characteristic from [22] for the 7.5-round collision attack
on the Whirlpool compression function (which contains no difference on the key schedule of E),
but we let one more active byte in both states S0 and S7 of the outbound part (see Figure 8). From
this, we gain an improvement factor of 28 in both forward and backward directions of the outbound
(from state S1 to S0 and from state S6 to S7), but we have two byte positions to collide on with the
feed-forward instead of one. After incorporating this 28 extra cost, we obtain a final improvement factor
of 28 over the original attack (it is to be noted that this improvement will not work for 7-round reduced
Whirlpool since the active byte position randomization would not be possible anymore). The very
same method applies to the 5.5-round collision attack on the Whirlpool hash function.

5.3 ECHO

The hash function ECHO [3] has advanced to the second round of the SHA-3 competition and uses
also the AES strategy at a larger scale. The permutation of ECHO applies 8 steps of an AES-like round
function on an internal state of 16×128 = 2048 bits seen as a 4×4 matrix of AES states. The non-linear
layer consists in two rounds of AES on each one of the 16 states in parallel with different round constants,
and the diffusion layer mixes the 16 states in a linear way. The elementary S-box uses c = 8.
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Figure 8: 7.5-round truncated differential characteristic for the Whirlpool compression function collision.

Distinguisher for 8 rounds. The current best distinguisher for the full ECHO permutation has been
published by Naya-Plasencia in [26]. The algorithm improves a rebound technique with a non-fully-active
characteristic from Sasaki et al. in [30] and runs in 2151 operations and 267 memory.

Using the same strategy as [26], we relax the outbound phase by allowing more truncated patterns
in both the plaintext and the ciphertext. While the inbound phase remains unchanged with the same
average time complexity of 265 computations to get one pair for the middle rounds, we increase the
probability Pout = 2−32 × 2−54 of the outbound phase. Namely, the backward part of probability
p1 = 2−32 which makes a precise AES state to become inactive can be randomize to any of the four
possible AES states, so that we get a probability of success of 4× p1. Similarly, in the forward part of
probability p2 = 2−54 can be increased to 4× 2−54 for the same reasons. In return, we now have four
possibles truncated patterns at both sides, which makes the generic complexity cheaper and bounded
by 2252. Overall, we gain a factor 42 = 24 over the previous algorithms, so that we can distinguish 8
rounds of the ECHO permutation in time 265+86/24 = 2147 and memory 267.

Distinguisher for 7 rounds. In the original paper [30], Sasaki et al. also introduce a distinguisher
on 7 rounds of the ECHO permutation which requires 2118 computations and 238 memory.

Using a similar strategy, we derive a distinguisher requiring 2102 computations and the same amount
of memory. The idea consists in relaxing the outbound phase of probability 2−118 by allowing 3 out of 4
AES states with one column active after the probabilistic filter. Due to the SuperMixColumns linear
transformation [18,31], the probability of the whole outbound phase increases to 4 · 2−96 · 2−8 = 2−102.
Indeed, while a 4→ 4 transition in the SuperMixColumns transformations occurs with probability 2−24,
a 4→ 12 transition occurs with probability 2−8.

5.4 Grøstl

Grøstl [13] is a hash function family selected for the final of the SHA-3 competition and proposes
two versions Grøstl and Grøstl-512. The 256-bit output version Grøstl implements two separate
instances of internal fixed-key AES-like permutations with 10 rounds and with parameters t = 8 and
c = 8 (512 bits), and using the AES Sbox. The attacks and the differential characteristics used are
identical to the AES case in the known-key model (the key being fixed, one can not apply the chosen-key
attacks on Grøstl), but the larger permutation size of Grøstl permutations allows to reach up to 9
rounds.

Distinguisher. The current best known-key distinguishers on Grøstl-256 internal permutations
can reach 8 rounds with 216 computations (see [30]), 9 rounds with 2368 computations (see [19]) and 10
rounds with a zero-sum distinguisher requiring 2509 computations (see [7]).

For the 8-round distinguisher case, we use the same attack as in [30] with only a single inactive
diagonal on the input and a single inactive column on the output, but their positions can be randomized
through the 8 possible choices. Overall, we gain a factor 82 over the previous complexity, thus 210

operations, while the multiple limited-birthday problem gives a generic complexity bounded by 231.5.

The 9-round case is already described in Section 4, and we minimize the distinguisher complexity
by using parameters nB = 1, mB = 8, mF = 8, nF = 1. Again, we can randomize the forward and
backward single active cell position (for an improvement factor of t2) and this gives a total complexity



of 2362 computations, while the multiple limited-birthday problem has a generic complexity bounded
by 2379 computations.

Collision. Grøstl-256 uses two AES-like 512-bit permutations P and Q in a special mode in order
to build its compression function: h(H,M) = Q(M)⊕P (M ⊕H)⊕H. In [32] is given a semi-free-start
collision on 6 rounds of the compression function, with a differential characteristic equivalent to the
one from state S1 to state S7 in Figure 5 (but with t = 8). We can randomize the position of the
single active byte forward in S1 and backward in S6, however not all 8 positions are possible. Indeed,
in order to get a collision, in [32] solutions are found for the 6-round characteristic in Q and for the
6-round characteristic in P , and a birthday between the two sets is performed in order to match the
differences in both the input and the output. The issue is that the ShiftRows constants defined in P
and Q are different and some positions randomization will always fail to provide a collision eventually.
When analyzing the distinct ShiftRows constants from P and Q, one can check that the position of
the active columns in S2 and diagonals in S5 can be chosen such that there are two single active byte
position randomizations possible for both the input and the output. This improves the total collision
complexity by a factor 2 (and not 4 because we are performing a birthday).

Concerning the hash function, we can improve the 3-round collision attack given in [32], but by only
randomizing the single active byte position in the output (the input is fully active in the differential
characteristic). Again, two positions are possible for randomization and since no birthday is applied
between the two permutations, we get an improvement by a factor 2.

Note that for the first submitted version of Grøstl (renamed Grøstl-0), the active cells position
randomization gain factor is much higher (8 positions are possible instead of 2 for both forward and
backward) because the issue with the distinct ShiftRows constants in P and Q is avoided. However,
nothing can be improved concerning the internal differential attacks [28] because they require the single
active bits position to be placed exactly where the constants between P and Q are different.

5.5 LED

LED [16] is a 64-bit lightweight block cipher that has parameters t = 4 and c = 4 for all its versions
(it uses the PRESENT Sbox). The 64-bit version LED-64 is composed of 32 rounds, divided into steps
of 4 rounds each. Between two steps a 64-bit secret key K is added to the internal state, without key
schedule. The best attacks so far reach 15, 16 and 20 rounds with 216, 233.5 and 260.2 computations
respectively (chosen key distinguishers [16,27]).

We describe a chosen-key distinguisher that can reach 19 rounds (over 32) with 218 computations
only. We use the differential characteristic from Figure 9 with a fixed single active nibble difference in
the key input K. We solve independently the 4-round subparts from state S5 to S′8 and from state S9
to S′12. Each subpart can be handled with the Super-SBox technique with 212 computations on average
(for example the Super-SBox technique finds one solution on average from state S6 to S′8, and the
differential transitions from state S6 to S5 cost 212 tries). For each subpart, the single nibble difference
has to be erased by the fixed key difference (in S5 and in S′12) and this happens with probability 2−4.
Therefore, 216 computations are required to generate one solution per subpart. We now have to connect
solutions of these two subparts and we first handle the connection of the single active nibble difference
(from S′8 to S9) by producing 22 solutions for each subpart, and merging these single nibble differences
using the birthday paradox. Once a solution is found for the difference merge, we simply connect the
values of the two subparts by choosing the appropriate value of the key K. The rest of the differential
characteristic is verified with probability 1: generating a solution for the entire characteristic therefore
costs 218 computations (while in the ideal case the limited-birthday problem gives us 233 computations).

5.6 PHOTON

PHOTON [15] is a lightweight hash function that is composed of a AES-like permutation in a sponge
function mode. The security proof of sponge functions being directly based on the security of the internal
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Figure 9: 19-round truncated differential characteristic for LED-64.

permutation, it is important to study distinguishers for this component. Five distinct functions exist
in the PHOTON family, all performing 12 rounds, and having parameters (t = 5, c = 4), (t = 6, c = 4),
(t = 7, c = 4), (t = 8, c = 4) and (t = 6, c = 8) for PHOTON-80/20/16, PHOTON-128/16/16,
PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 respectively. The current best
distinguishers on the internal permutations can reach 8 rounds with very low complexity, 28 for the
four first functions and 216 for PHOTON-256/32/32. For 9 rounds, only PHOTON-224/32/32 was
attacked (with complexity 2184) because it is the only one that uses a permutation large enough.

For all the 8-round attacks, the differential characteristics considered are equivalent to the one
depicted in Figure 5 for AES-128, but with a matrix size adapted to the parameter t. As such, we can
randomize the forward and backward single active cell position, which provides in total a complexity
improvement factor of t2 (t forwards and t backwards) and of course, the ideal complexity decreases
as well according to the multiple limited-birthday problem. It is to be noted that, as in [15], the
complexities for 8 rounds of PHOTON are average complexities per solution, but finding a single solution
might cost more because the inbound solving outputs 2t·c solutions with 2t·c computations.

The very same randomization reasoning applies for the 9 round distinguisher on the variant
PHOTON-224/32/32, but we also give the first 9-round distinguisher on PHOTON-160/36/36 as
our generalization proposed in Section 4 can work up to 9 rounds when t ≥ 7. The parameters that
minimize the complexity are nB = 1, mB = 7, mF = 7, nF = 1 and the total complexity, including
the t2 improvement factor from the input and output single cell position randomization, reaches 2126.4

computations (compared to 2135 in the ideal case).

6 Conclusion

In this article, we propose a new type of distinguisher for AES-like permutations that we call the multiple
limited-birthday distinguisher. It generalizes the simple limited-birthday one in the sense that it allows
more than just one pattern of fixed difference at both the input and the output of the permutation.
We provide an algorithm to efficiently solve the problem for the ideal case, while it remains an open
problem to prove its optimality, which can probably be reduced to proving the optimality of the simple
limited-birthday algorithm in terms of number of queries. As applications of this work, we show how to
improve almost all previously known rebound distinguishers for AES-based primitives.
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