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Abstract. We examine the security of the 64-bit lightweight block cipher PRESENT-80

against related-key differential attacks. With a computer search we are able to prove that
no related-key differential characteristic exists with probability higher than 2−64 for the
full-round PRESENT-80. To overcome the exponential (in the state and key sizes) computa-
tional complexity we use truncated differences, however as the key schedule is not nibble
oriented, we switch to actual differences and apply early abort techniques to prune the tree-
based search. With a new method called extended split approach we are able to make the
whole search feasible and we implement and run it in real time. Our approach targets the
PRESENT-80 cipher however, with small modifications can be reused for other lightweight
ciphers as well.

1 Introduction

PRESENT [5] is a lightweight block cipher and a current ISO standard. Arguably it is one of
the most popular lightweight ciphers, and the first among 64-bit ciphers to reach the bound
of around 1000 GE in a hardware implementation. The submission document of PRESENT
gives a thorough security analysis of the cipher against various types of attacks. The initial
analysis has been extended with several attacks on round-reduced PRESENT [25, 16, 19, 6,
7, 4, 26]. In this work, we present another complementary security analysis of PRESENT-80
against related-key differential attacks. This analysis model gives the attacker the most
freedom, and in many cases leads to attacks on a larger number of rounds of the cipher
or even to attacks on the full cipher. For example, the standard AES-256 [9] based on the
wide-trail strategy is provably resistant against single-key differential attacks, however a
high probability related-key differential characteristic exists on all 14 rounds [1]. Note that
most of the recently published (lightweight) ciphers LED [11], Piccolo [21], TWINE [23],
and CLEFIA [22] already have upper bounds on probabilities of such characteristics, and
their designers have proved that no high probability related-key characteristic exists for
the full-round ciphers. However, each of these ciphers is word-oriented (more precisely all3

of the operations are nibble-oriented), and finding the upper bound on the probability is
much simpler task due to the availability of automatic search tools for such characteristics
[2]. Moreover some ciphers were specially designed to be resistant against related-key
attacks, for example LED has round key additions only after every four AES-like rounds,
while CLEFIA has highly non-linear key schedule.

In this work, we try to find related-key differential characteristics for the 64-bit cipher
PRESENT-80 that hold with probability higher than 2−64 for all 31 rounds. As the cipher
is not nibble-oriented due to the rotations in the key schedule, neither theory nor the
existing tools can provide such characteristics. To achieve this goal we design an ad-hoc
automated search approach and find an upper bound on all high probability related-
key characteristics. To make the search feasible, we use a novel technique, which we call
extended split approach. We combine it with a special representation for the difference in
the state, which is truncated in most of the parts and can be switched to actual difference
when it is needed. Also we show how to discard most of the invalid characteristics found at
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3 CLEFIA has non-nibble oriented operations in the key schedule, however they come only after the
non-linear operations which are used for proving the upper bound.
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Fig. 1. PRESENT-80 round function.

the early stage of search by using several different filters. Based on the output of the search,
we are able to provide and prove an upper bound on the probability of the best related-key
characteristic for 8 rounds of PRESENT-80 – in the submission paper the designers obtain
the same bound (see Theorem 1 in [5]), but for 5 rounds and single-key characteristic.
Furthermore, we conclude that no related-key differential characteristic exists for full-
round PRESENT-80 with probability higher than 2−64. Thus this cipher does not have
any obvious weakness against related-key attacks and along with the other competitive
lightweight ciphers LED, Piccolo, TWINE enjoys provable security against related-key
differential attacks.

The paper is structured as follows. We start with a description of PRESENT-80 in
Section 2. A brief review of the previous results in automatic search for optimal differential
characteristics is given in Section 3. Our new approach is described in Section 4. In Section
5, we show how this approach can be applied to PRESENT-80. Finally Section 6 concludes
our work.

2 Description of PRESENT-80

PRESENT [5] is a 31-round SP-network with the block size of 64 bits and supports 80-bit
and 128-bit secret keys. We analyze only the 80-bit version denoted further as PRESENT-80.
The round function of PRESENT consists of the round key addition, substitution and per-
mutation layers (see Fig. 1). At each round the input state is XORed with the 64-bit round
key. Then 16 identical S-boxes are applied in parallel to the state. Each S-box substitutes
a 4-bit input with a 4-bit output. Finally a bit permutation is performed to the whole
64-bit state.

The 80-bit secret key is stored in a key register K represented by k79k78...k0. The key
schedule of PRESENT-80 generates the round keys as follows: For i = 0...30:

1. The 64 most significant bits of the current register are extracted as the round key:
rki = k79k78...k16.

2. The contents of the key register is rotated to the left by 61 bits: (K <<< 61).
3. The S-box is applied to the 4 most significant bits: [k79k78k77k76] = S[k79k78k77k76].
4. The 5 least significant bits of the round counter i are XORed with 5 bits [k19k18k17k16k15]

of the key register so [k19k18k17k16k15] = [k19k18k17k16k15]⊕ [i4i3i2i1i0].

For more details about PRESENT-80 refer to [5]. Further in our analysis, we call a nibble
the sequence of 4 consecutive bits. Thus the state and all the round keys have 16 nibbles
enumerated from left to the right as 1,2,. . . ,16.

3 Automatic Approaches for Search of Characteristics

The invention of differential analysis was followed by several design methods and theories
that allow us to construct ciphers resistant against this type of attacks [18, 8]. However, this
is in regards to the security of the cipher in the single-key model only. Interestingly, almost
20 years after these approaches have been proposed, no similar theory has been found to



design ciphers that are resistant against related-key attacks. Therefore, to prove bounds
on probability of related-key characteristics, the designers either have to use some ad-hoc
methods such as key schedules with a high number of non-linear operations (S-boxes), or
to build search algorithms that can enumerate all high probability characteristics.

The first automatic approach for finding the best differential characteristic was pro-
posed by Matsui [13]. He showed that the simple algorithm based on trees can be heav-
ily pruned with the knowledge of previously found single-key characteristics on smaller
number of rounds, thus finding the best differential characteristic for the full-round DES
became feasible. Matsui’s idea was later used in the search approaches for finding the best
(or the upper bounds on the best) related-key differential characteristics in byte-oriented
block ciphers [2, 17]. The main idea of the authors is to use a special truncated-like rep-
resentation of the differences in the state and the subkeys with slightly modified way of
extending each additional round.

Another approach for search of related-key characteristics in DES-like ciphers was
proposed in [3]. As this type of ciphers are bit oriented, the authors used fully defined
differences in the state and the subkeys. The way of extending characteristics is in line
with [2]. Two approaches were used: one based on the original Matsui’s approach, and
the second based on so-called split approach. The main idea of the split approach is to
divide r-round characteristic into t parts. Then if each of the r

t characteristics holds with a
probability upper bounded by 2−s, then the upper bound on the probability of the whole
r-round characteristic is 2−s·t. It is mentioned in [2] that, this approach can only be used
for finding high-probability characteristics (up to 2−20), and for any 64-bit cipher with a
linear key schedule. Therefore it cannot be applied to PRESENT-80 when the probability
of the related-key characteristic is significantly below 2−20.

In addition, we note two approaches by Mouha et al. that provide upper bounds on
the best characteristics: the first is based on mixed-integer linear programming [15], while
the second on SAT solvers [14].

Moreover, an approach based on dynammic programming was proposed by Fouque et
al. [10] and was used to find the best related-key differential characteristic in AES-128.

4 The Extended Split Approach

In this section we present our extended split approach (ESA) for search of all related-key
differential characteristics in block ciphers. We note that this approach is used to provide
the upper bound on the probability of all such characteristics.

The basic idea of ESA is related to the split approach. First note that the success of the
split approach depends on the probability of the round-reduced characteristics. Assume
we want to find the upper bound on R = r1 ·t1 rounds of a cipher. With the split approach,
first we find the upper bound 2−p1 on the probability of the characteristics for r1 rounds
and then argue that the probability of r1 · t1 rounds is upper bounded by 2−p1·t1 . To use
this bound for an n-bit cipher, the inequality 2−p1·t1 < 2−n has to hold. When this is
not the case, then we can split the R rounds of the cipher into different equal parts, i.e.
R = r2 · t2, find the upper bound 2−p2 on all characteristics for r2 rounds, and check if
2−p2·t2 < 2−n. When r1, r2 are small, the probabilities 2−p1 , 2−p2 are usually high, and
the upper bounds in both cases are quite large which does not allow to prove that the
cipher is free of related-key differential characteristics. Thus in general one would want to
increase the number of rounds ri of the short characteristics. This however is not always
possible as the complete search of all characteristics on ri should be feasible. For example,
assume we have 30-round PRESENT-80 and we split the cipher into three parts of 10 rounds
each, i.e. R = 30, r = 10, t = 3. Then we should be able to find the upper bound on the
probability of all characteristics for 10 rounds. This might not be possible as the number
of such characteristics is huge.

In ESA we pick smaller r thus making the complete search of all characteristics on r
rounds possible. If 2−p is small such that 2−p·t < 2−n then we obtain the required upper



bound (and we end up with a simple split approach). However, when 2−p is larger then we
take different approach. Assume we have 24-round PRESENT-80 and we split the cipher into
4-round parts, i.e. R = 24, r = 4, t = 6. If each 4-round characteristic has at least 5 active
S-boxes, then the characteristic on 24 rounds would have 5·6 = 30 active S-boxes. Thus we
can prove that the probability of 24 rounds of PRESENT-80 is at most 2−30·2 = 2−60 (the
differential probability of each S-box is at most 2−2). Now assume that among all possible
4-round characteristics there is only a small part that has less than 5 active S-boxes (say
only 4 active). Due to these characteristics, when using the split approach we can prove
an upper bound of only 2−4·6·2 = 2−48. Let S1 be the set of all 4-round characteristics that
have at least 5-active S-boxes, and S2 be the set of the ones that have less than 5. The
idea of the ESA is to treat the characteristics from S1 and S2 differently. Each 4-round
characteristic from S2 is extended to all possible 8-round characteristics, and an upper
bound of all such 8-round characteristics is found. If this upper bound is 10 active S-boxes
then we get the following:

– All 8-round characteristics composed of two 4-round characteristics from S1 have at
least 10 active S-boxes since each of them has at least 5 active S-boxes.

– All 8-round characteristics that have at least one 4-round characteristic from S2 have
at least 10 active S-boxes.

Therefore the probability of any 8-round characteristic is at most 2−10·2 = 2−20 and for
24 rounds is 2−20·3 = 2−60, i.e. we end up with the same bound as in the case when all
4-round characteristic have at least 5 active S-boxes.

The ESA can be seen as an efficient way of launching the split approach with param-
eters (R, 2r, t) from the split approach (R, r, 2t), e.g. in the example above we could use
the split approach (24, 8, 3) from the split (24, 4, 6).

5 Application to PRESENT-80

To find the upper bound on the probability of the best related-key characteristic in
PRESENT-80, we start our analysis with the 24-round cipher. In the split approach, the
number of short characteristics would be for 4 rounds, and thus the parameters for the
ESA are (24, 8, 3) (as above). Further we show how to find the probability of all charac-
teristics for 4 rounds, and thus how to obtain the sets S1, S2. All 4-round characteristics
that have at least 5 active S-boxes belong to S1, and all with less than 5 active S-boxes
belong to S2. As any 8-round characteristic composed from two 4-round characteristics
from S1 already has at least 10 active S-boxes (each has at least 5 active), our task is to
find only the characteristics that belong to S2, i.e. to find the 4-round characteristics that
have at most 4 active S-boxes.

5.1 General Approach for Producing S2

A trivial way to produce S2 is to start with a difference value for the input state at the
beginning of the first round, and see how this difference propagates through 4 rounds.
We have to try all such differences in the initial state, and all possible differences in the
master key. This is infeasible, as there are 264 possible differences in the state, and 280

differences in the master key, thus in total 2144 possible starting points. A common strategy
for reducing the complexity of the automatic search algorithms is instead of trying actual
differences, to try and fix only position of active and inactive nibbles – this is a truncated
representation of a difference in the state and round key. A nibble is called active if any
of its 4 bits has difference, otherwise non-active or inactive. For example, the state in
PRESENT-80 has 64 bits which is 16 nibbles and thus instead of trying 264 values for the
difference in state, now we can try only 264/4 = 216 values. However, even this strategy is
not sufficient to make the search feasible as the amount of starting points now becomes
216 for the plaintext and 280/4 = 220 for the master key, or in total 236. This number seems
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Fig. 2. Propagation of the truncated difference through the Sbox layer. The green nibble is active; the
white nibbles are inactive.

reasonable, however there is branching in the operations. To explain this assume we start
with some initial state and master key differences and propagate them through 4 rounds.
Going through the round transformations (the bit permutation layer) produces different
possible output differences for the same input difference, and thus instead of 236, we will
end up with a much higher and infeasible complexity.

The reason we choose the improved search is that this method reduces the number
of candidates significantly, and meanwhile we make sure that the search has checked all
the possible combinations. This is achievable, since we have limited ourselves to only 4
active Sboxes in 4 rounds, hence we do not check the other combinations. Note, a similar
strategy has been applied in the automatic approaches in [2, 3, 13]. Instead of fixing the
truncated representation of the difference in the master key, we fix the differences in the
initial states of four consecutive rounds and determine the master key difference from
them. Note that we want to find all related-key (RK) characteristics which have no more
than 4 active Sboxes, therefore the initial states of the four consecutive rounds can have at
most 4 active Sboxes (as the S-box layer is at the beginning of each round). Thus, instead
of trying all possible truncated differentials for these 4 states (i.e. 24·16 = 264 differentials),
we only have to check C1

64 +C2
64 +C3

64 +C4
64 ≈ 220 differentials (i.e. respectively four states

with only one active nibble out of 64 possible, four states with two active nibbles out of
64, and similarly for three and four active nibbles).

The next step is filtering the incorrect quartets. The 4 initial state differences of a quar-
tet are not independent – each is produced from the previous in one round of PRESENT-80.
As we have fixed the active nibbles of these 4 states randomly, some of them (actually
most of them) cannot be produced in 4 steps. To filter the incorrect quartets we use the
related round keys which are produced from the master key.

Thus our strategy is as follows: once we fix all possible truncated state differences at
the beginning of the four consecutive rounds, we determine the differences in the round
keys used in these 4 rounds and see if the round keys actually can be produced one from
another with the key schedule. If none of the combinations of round key differences suggest
the same master key, then the quartet of state differences is incorrect, otherwise we have
found a 4-round related-key differential characteristic with at most 4 active nibbles.

Branching in a round. The truncated difference significantly reduces the complexity of
the search, however it introduces branching. A branching occurs in some transformations
if from the input difference (given as a truncated value) the output difference cannot
uniquely be determined, and can have several different values.

The first transformation (i.e. the S-box layer) does not change the truncated repre-
sentation of the state (see Fig. 2). More specifically, S-box layer keeps the position of
differences in the state nibbles. Thus we can completely ignore this layer.

The second layer on the other hand introduces branching as the bit permutation is
applied in this layer (see Fig. 3). Therefore, knowing the position of the active nibbles
is not enough to determine the output active nibbles after the permutation. So to check
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Fig. 3. Propagation of the truncated difference through the bit permutation layer. (The branching shown
in the figure is not the actual branching of the permutation layer used in PRESENT-80).

Fig. 4. Branching for XOR addition of two active nibbles at the same position (the top) and different
positions (the bottom).

all the possible trails, we need to try every possible output for a given truncated input.
Note that in the permutation layer each four output nibbles depend on only four distinct
input nibbles, for example output nibbles 1, 5, 9, 13 depend on the input nibbles 1, 2, 3, 4.
Thus the permutation layer is split into four independent parts and each part is processed
separately. Therefore, existence of at least one active nibble in the input set (of four
nibbles), results in all possible combinations of active nibbles in the output set. Due to
the heavy branching in this layer, the complexity of the search increases significantly. For
example, if there are four active nibbles at the input state of the permutation layer –each
in a different set of four nibbles– then the output takes (24 − 1)4 ≈ 216 different values.

The XOR addition also introduces branching. As we work with the truncated differ-
ences, an XOR of two active nibbles can produce both active or inactive nibble. Thus we
will have to branch on 2 for each XOR addition of two active nibbles at the same position,
while no branching occurs when the active nibbles are at different positions (see Fig. 4).

Determining the round key. We should be able to determine the round key difference
rki used in the round i from the differences si, si+1 in two consecutive states. However,
due to the truncated representation of the differences, the round key difference is not
determined uniquely. So for a fixed si, si+1, there may be different values for rki. To
determine the set of all round key differences {rki}, we start with si and go through the
S-box layer. It is mentioned above that the S-box layer does not affect the active nibbles.
So the output state difference is still si. Then, we obtain all possible state differences {sji}
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Fig. 5. Determine the differences in the round key from the differences of two consecutive initial states.

that are produced from si after the permutation layer branching. The number of such
state differences may be larger than one. Finally, we XOR each of these state differences
with si+1 to produce the round key difference rki. Again, due to the branching of the XOR
addition, for a single sji , there may be more than one round key difference. This strategy
is depicted in Fig. 5.

Eliminating the incorrect round keys. Given two truncated differences (si, si+1) of
two consecutive round states, we can determine the set of all round key differences {rki}.
Hence, when we fix the four truncated differences (s0, s1, s2, s3) (with no more than 4
active S-boxes), we can determine the sets {rk0}, {rk1}, {rk2}. The next step is to filter
out the incorrect round key differences. Recall that the round keys are not independent as
they are produced from the same master key. Thus not all the found combinations of the
round key differences are valid. In fact, due to the simple key schedule of PRESENT-80, the
truncated representation is sufficient to filter out a vast amount of these combinations.
We take all the (rk0, rk1, rk2) combinations such that rki ∈ {rki}, i = 0, 1, 2 and check if
rk1 can be obtained from rk0, and rk2 can be obtained from rk1 in one step of the key
schedule. If we find one such triplet, then we have found a 4-round related-key differential
characteristic that has no more than 4 active S-boxes, and thus this characteristic belongs
to S2. Therefore, by checking all possible combinations (s0, s1, s2, s3), and subsequently
filtering out the combinations of the round keys, we can make sure that we have checked
all 4-round characteristics.

5.2 Efficient Round Key Filters

Since the differences are truncated and the key schedule is bit-oriented, it is hard to
check if the two round key differences are produced one from another in one step of the
key schedule. Hence efficient filtering is required to eliminate the incorrect round key
differences.
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Fig. 6. The basic filter.

Basic Filter. First we start with a filter that checks only if the positions of the active
nibbles of the differences rki, rki+1 are consistent. Assume rki has a single active byte at
position j (see Fig. 6). Note that we know only 16 nibble differences out of the possible
20 differences for the master key. This means that the last four nibbles are unknown (in
the figure they are gray).

We apply the first operation of the key schedule, which is rotation by 61 bits to the
left or equivalently by 19 bits to the right. Let us split the operation into two sequential
rotations by 16 and by 3 bits to the right. Rotation by 16 bits to the right is equivalent
to rotation by 4 nibbles, thus the active nibble at the position j would become active at
the position j + 4. The rest of the nibbles would stay inactive. The rotation by 3 is not
nibble-oriented, thus there will be branching. If the active nibble at the position j + 4 has
a difference at the most significant bit (msb), then after rotation by 3, the difference would
stay in the same nibble. If the difference is at some of the three least significant bits (lsb),
then the nibble at the position j + 5 would become active. Finally, if the difference is in
both msb and in some of the lsb, then both nibbles j + 4 and j + 5 will be active.

The second operation, i.e. the S-box, changes the truncated difference only in the first
nibble after the rotation is active. This is equivalent to the last nibble being active (before
the rotation) – in this case the result of the S-box makes the first nibble active or inactive.
In the basic filter, we ignore this nibble, thus we do not explain further details. Similarly,
the third operation, the XOR with the round counter, has no influence on the difference.

Taking into account all three operations we conclude that for an active nibble at the
position j in rki, there should be one active nibble either at the position j + 4, or at j + 5
or at both j+4, j+5 in ri+1. As rki and rki+1 depend on different parts of the master key
(due to the rotation), the value of j can go from 1 to 12 (1 is the most significant nibble
in the difference). Converse filter applies as well, i.e. if j + 4, j + 5 are inactive in rki+1

then j should be inactive in rki.

Filter based on Actual Values. In some cases in addition to the truncated differences
of the round key, the precise values of some bits of the key difference can be determined
as well. Recall that the permutation layer is split into four independent parts of 4 nibbles
each and every output nibble of a part depends on all 4 input nibbles. Assume the input-
output truncated difference for the first part has the form (1001) → (1000) (see Fig. 7),
(i.e. at the input nibbles 1 and 4 are active, and at the output of the permutation layer
only nibble 1 is active). Furthermore, let nibble 1 at the next state be inactive (it means
the active nibble at position 1 has been canceled with the active nibble of the round key).
Then the value of the active nibble of the round key is 9h. This comes from the fact that
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Fig. 7. Determine the actual values of the round key. The green nibbles are active, the white are inactive,
and the gray can have any value.

the difference in the active nibble after the permutation layer has to be 9h as the active
nibbles at the positions 1,4 at the input have difference and this difference goes only to
one nibble, thus both of most and least significant bits have to have difference.

The above observation can be generalized as follows. If at the output of any of the
four sets of the permutation layer, there is a single active nibble, and the next state does
not have difference at this nibble, then the value of the difference in the round key in
the active nibble is equal to the truncated difference at the input set. Similar observation
holds when the input has only one active nibble. Then each of the output active nibbles
has an actual difference that equals to the truncated difference of the active input nibble.

Once we obtain the actual values of some active nibbles in the round keys, the filter
becomes much stronger. Instead of comparing truncated differences, we can compare actual
differences. Similar to the previous filter, when applying it for two consecutive round key
differences rki, rki+1, we have to take into account the rotation by 19 bits to the left, and
the application of the S-box to the first nibble. In practice, this filter allows elimination
of many candidate round key differences. Although it seems the condition of having just
one active nibble at the input or at the output of the part (there are 15 possible output
differences) is rarely satisfied, most of the round keys have only a few active nibbles because
of the low number of active S-boxes in the 4-round characteristics.

Filter based on Impossible 1-to-1 Transitions for S-box. The PRESENT-80 S-box
was specially chosen to prevent 1-to-1 transitions. That is if the input difference to the
S-box is in a single bit, then the output difference cannot be in only one bit. We can use
this property to eliminate some of the wrong candidates.

The S-box layer follows the XOR with the round key, and is followed by the permutation
layer. Thus to find the 1-to-1 impossible differences for the active nibbles in the S-box layer,
we have to find the active nibbles that have a single bit difference after the XOR addition
with the round key, while the active nibbles have single bit differences at the input of the
permutation layer. The later can be easily found using the same method as the filter based
on actual values. This is where there is only one active nibble at the input set (of the four
sets of the permutation layer) and one at the output, then the active nibble at the input
has a single-bit difference. Then the task is finding single-bit active nibbles at the input of
the S-box layer. There are two situations that we get these single-bit active nibbles. First,
when the output nibble of the previous permutation layer is inactive and the round key
XORed with this nibble has a single-bit difference. Second, when the round key nibble is
inactive and the output of the permutation layer has a single-bit active nibble. Both cases
are depicted in Fig. 8 and lead to the filtering of the states and the round keys that have
such differences.

Filter on Three Consecutive Round Key Differences. The first two filters work
exclusively based on values of differences (truncated or actual) of two consecutive round
keys. They do not eliminate the incorrect characteristics that have some invalid conditions
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Fig. 8. Two instances of impossible values for state and round key differences that are eliminated by the
filter.

when several round keys are considered. For example, let rki−1 = (0000000000001111),
rki = (0000000000000000), rki+1 = (0000000000000000). The basic filter analyzes the
pairs (rki−1, rki), (rki, rki+1) and concludes that the pairs are correct. The first pair is
valid because it cannot check the last 4 nibbles due to the rotation by 19 and the fact that
the round key is smaller than the master key. Similarly, the second pair is valid as well.
Clearly, rki+1 cannot be produced from rki−1 in two steps of the key schedule as rki+1

should have at least one active nibble. Thus we need an additional filter that checks pairs
of round key differences (rki−1, rki+1). This filter works as the basic one as well as the
filter on actual values, and additionally performs the elimination using the same method
as the first two filters. It works only on a small part of the round keys – the last 6 nibbles
of rki−1 and the first 6 nibbles of rki+1. We skip the precise description of the filter as the
analysis is similar to the previous filters.

5.3 Generation of S2

Once we have collected the outputs of all the filters, we can proceed with the generation
of the set S2 of all 4-round related-key differential characteristics with at most 4 active
S-boxes. This procedure is given in a pseudo-code Algorithm 1. The branching tables p[s]
are sets of all the values of state differences which are obtained after the permutation
layer applied to the state difference s. Similarly, ⊕[a][b] denotes the set of all the dif-
ferences obtained after the XOR addition of two truncated differences a, b. Finally, the
Filters(x1, . . . , xt) are functions based on the previously described filters that return false
when the round key (or state) differences x1, . . . , xt have contradictions and true otherwise.

Algorithm 1 Generation of the set S2

Require: Branching tables p[s],⊕[a][b] for the permutation layer and XOR; the filters
F (x1, . . . , xt)
S2 ← ∅
for all s1, s2, s3, s4|hw(s1) + hw(s2) + hw(s3) + hw(s4) ≤ 4 do
{s1} ← p[s1]
for all si1 ∈ {s1}, s2 do
{rk1} = ⊕[si1][s2]
{s2} ← p[s2]
for all sj2 ∈ {s2}, s3 do

{rk2} = ⊕[sj2][s3]
for all rk1 ∈ {r1}, rk2 ∈ {rk2}|Filters(rk1, rk2) do
{s3} ← p[s3]



for all sk3 ∈ {s3}, s4 do
{rk3} = ⊕[sk3][s4]
for all rk3 ∈ {rk3}|Filters(rk1, rk2, rk3) do

S2 ← S2 ∪ (s1, s2, s3, s4, rk1, rk2, rk3)
end for

end for
end for

end for
end for

end for

end

We have implemented and run the algorithm on PRESENT-80. The search took only a
few minutes on a single PC and output 712 related-key differential characteristics, i.e.
|S2| = 712. Among them, 3 are with 2 active S-boxes, 73 with 3 active, and 636 with 4
active S-boxes.

5.4 The Complete Search and Results

Once we have the set S2 we can extend each characteristic from this set to 8 rounds. We
extend in both ways, i.e. first we extend for four additional rounds in the forward direction
and obtain 8 rounds. Then we extend four rounds backward and again obtain 8 rounds.
Note, the 8-round characteristics composed of two 4-round characteristics from the set S1

have at least 10 active S-boxes. Thus, when extending the characteristics from S2 to 8
rounds, we want to find if there exist 8-round characteristic that has less than 10 active
S-boxes. If not, then all 8-round characteristics must have at least 10 active S-boxes.

The algorithm for extension uses exactly the same approach as the algorithm for pro-
ducing S2. Thus we can find all 8-round characteristics that are extended from 4-round
characteristics that belong to S2. Once we find such characteristic, we confirm it is correct
and the round key differences comply. Note, this check is necessary because even after us-
ing all the filters, we still accept some incorrect round key differences. We have produced
all 8-round characteristics by implementing this procedure. The search took around a day
on 32 PC’s. Although it produced 869 characteristics, by a careful examination we have
found that none of them actually are valid as there were inconsistencies in the round key
differences. We note that the inconsistencies followed around 30 different patterns – once
we found all the patterns, we were able to quickly test all of the characteristics. In the
Appendix we point out one such characteristic and we show how the inconsistency was
found. The remaining characteristics were tested similarly.

The PRESENT-80 designers have proven a lower bound for the number of active S-boxes
in the single-key case:

Theorem 1 ([5]). Any 5-round (single-key) differential characteristic of PRESENT has a
minimum of 10 active S-boxes.

We have analyzed the case for related-key characteristics:

Theorem 2. Any 8-round related-key differential characteristic of PRESENT-80 has a min-
imum of 10 active S-boxes.

Proof. Any 8-round characteristic can be seen as a composition of two 4-round character-
istics. When both of the 4-round characteristics have at least 5 active S-boxes (belong to
S1), then the 8-round related-key characteristic has at least 10 active S-boxes. When one
of them has at most 4 active S-boxes (belongs to S2), then extending it for 4 rounds (as
we have seen above) would always result in an 8-round characteristic that has at least 10
active S-boxes. ut



Any 24-round related-key characteristic in PRESENT-80 has at least 30 active S-boxes,
and 29-round4 has at least 33 active. As the differential propagation probability of an active
S-box is at most 2−2, all 29-round related-key differential characteristics on PRESENT-80

have a probability at most 2−66. Therefore PRESENT-80 is secure against related-key dif-
ferential attacks that exploit a single related-key differential characteristic.

It is also worth mentioning that the boomerang attack [24] is not a threat as well. If
one of the characteristics in the boomerang (the top or the bottom one) is on 16 rounds,
then it has at least 20 active S-boxes, thus the probability of this part only (computed as
p2) is 2−20·2·2 = 2−80, hence it is below the required 2−64. Similar probability is obtained
when both of the characteristics have at least 8 rounds.

The security of PRESENT-80 against related-key attacks based on differentials (rather
than differential characteristics) is still an open problem as it is for any other cipher. How-
ever, by applying the standard conjecture (used in the security proofs of ciphers against
differential attacks) that the high probability differentials have only one high probabil-
ity characteristic, we can deduce that PRESENT-80 is secure against related-key attacks.
The experimental results presented in the submission paper of PRESENT-80 confirm the
conjecture in the case of single-key differentials. Performing similar experiments in the
related-key case is difficult as no obvious high-probability related-key characteristics ex-
ist 5.

6 Conclusions

We have derived a bound on the probability of the best related-key differential charac-
teristic in PRESENT-80 which confirms that the cipher is secure against basic related-key
differential attacks.

Interestingly, our approach is a hybrid of the two previous methods published in [2,
3]. The first method uses strictly truncated representation of the difference, while the
second approach works with actual differences. Our approach on the other hand uses
both which makes the search feasible. More precisely, we take advantage of the truncated
representation as it significantly reduces the number of possible state differences. Once
we obtain the truncated round key differences, we switch to actual differences (whenever
possible) and use them to filter out incorrect characteristics. The extended split approach
provides more computationally efficient search compared to the simple split approach.
We only have to compare the number of starting initial state differences to find the real
advantage. If we use the split approach for 8 rounds, we have to start with around C9

8·16 ≈
244 initial differences. On the other hand, the extended split approach performs the same
task with only C4

4·16 + 3 · C7
4·16 + 73 · C6

4·16 + 636 · C5
4·16 ≈ 233 truncated differences in the

initial states.

The advantage of using nibble (or byte) oriented ciphers with non-nibble oriented key
schedule is still unclear and remains an open problem if such ciphers can be secure with
some nibble oriented key schedule. However it is clear that the search for related-key
differential characteristics when all the operations are nibble oriented is much simpler and
(almost) always feasible, whereas the same search in non-nibble ciphers is very complex.
We have shown in this paper that for PRESENT-80 the search can be performed although
the key schedule is non-nibble oriented. Our method can be used to obtain upper bounds on
probabilities of related-key characteristics for some other lightweight ciphers as well. One
only has to recompute the branching tables for the permutation layer and to find filters for
the round key differences. The filters will have the biggest impact on the efficiency of the

4 By taking into account that the best previously found characteristics in S2 have 2 active S-boxes, and
extending each of them for an additional round always gives at least 3 active S-boxes (we have checked
this fact).

5 Our approach only finds an upper bound, but does not provide valid characteristics on extended number
of rounds, i.e. 8. On the other hand, the output of testing the conjecture on low number of rounds (i.e.
4) does not seem to be a valid measure.



search. We have shown in the case of PRESENT-80 that efficient filters can be found when
the key schedule is relatively simple – this property is common for most of the lightweight
ciphers, thus our method could be applied. The upper bound found with our approach not
necessarily would be low, however it would contribute towards achieving the initial trust
in the security of the cipher against related-key differential attacks.
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A An Example of Invalid 8-round Related-Key Characteristic

Here we give an example of one related-key differential characteristic for 8-round PRESENT-80

found by search that has less than 10 active S-boxes, passes all the filters and is invalid
(see Fig. 9). Recall that our search algorithm outputs 869 such characteristics and each of
them is invalid. In the analysis given below, we would like to point out the inconsistency
found in this characteristic. Other characteristics can be analyzed similarly.

We focus on the differences in the round keys. Note that they pass all of our 5 filters.
However our filters are not sufficient to test completely the validity of round key differences,
i.e. they might miss to filter out some invalid characteristics. One might create stronger
filters but then the computational efficiency of such filters might slow down the search. The
differential characteristics in the round keys is (0020) → (0003) → (0000) → (0800) →
(0040) → (0002) → (0000) (see Fig. 9). Further we try to find the exact value of the
difference in the round keys from the truncated ones. We analyze each round key separately,
assuming that the nibbles are enumerated 1-16 plus the four nibbles 17-20 that are not
used in the round key but are part of the master key. Recall that each consecutive round
key is produced from the previous (along with 4 more nibbles) by a rotation by 19 bits to
the right. For the differences in the round keys, we get:

– Round key 1 - difference 0020 - There is only one active nibble at the position 11.
Let the value of the difference be xyzt, where x, y, z, t are single bit differences.

– Round key 2 - difference 0003 - The active nibbles at the positions 15 and 16 have
the values 000x and yzt0. As both are active, it follows that x = 1 and one of y, z, t is
1 (otherwise these two nibbles would not be active).

– Round key 3 - difference 0000 - No active nibbles in this round key. However, the
active nibbles from the previous round key, with the rotation went to one of the nibbles
17-20. In fact, the nibble 20 has the difference 00xy = 001y while the nibble 21, which
is in fact the nibble 1, has the value zt00. As the nibble 1 is not active in this round
key it follows that z = t = 0.

– Round key 4 - difference 0800 - Only one nibble at the position 5 is active. This
has to correspond to the nibble at position 20 from the previous round key. Thus the
value of the difference in this nibble is 01y0.

– Round key 5 - difference 0040 - Similarly, we have only one active nibble at the
position 10, with the difference 1y00.

– Round key 6 - difference 0002 - Only one active nibble at the position 15 is active.
However, if we rotate by 19 the previous round key difference 1y00, we will end up
with the difference 0001 in the nibble 14, and the difference y000 in the nibble 15. As
the nibble 14 is inactive, we get a contradiction.
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Fig. 9. An example of invalid 8-round characteristics found by the search.


