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Abstract. This paper presents differential attacks of round-reduced ver-
sions of Simon with up to 18/32, 19/36, 25/44, 35/54, and 46/72 rounds
for the 32-, 48-, 64-, 96-, and 128-bit versions, respectively. Furthermore,
we consider in brief related-key rectangle, impossible-differential, and
also linear attacks. While all our attacks are completely academic, they
demonstrate the drawback of the intensive optimizations in Simon.
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1 Introduction

Due to the continuously growing impact of RFID tags, smartcards, and FP-
GAs, cryptographic algorithms which are suitable for resource-constrained de-
vices become more and more important. Lightweight ciphers shall ensure the
confidentiality of transmitted messages. During the past five years, more than
two dozens of lightweight ciphers have been developed, including but not limited
to KATAN [17], KLEIN [20], LED [21], L-Block [36], or PRESENT [16]. In June
2012 Beaulieu et al. from the U.S. National Security Agency (NSA) contributed
to this ongoing research progress with the announcement of two novel fami-
lies of ultra-lightweight block ciphers, called Simon and Speck [7]. Simon was
thereby optimized for hardware (like KATAN, LED, or PRESENT), and Speck
for software implementations (such as KLEIN); however, both cipher families
are efficient in either environment.
At first, Beaulieu et al. provided only scant information about their construc-
tions: the announcement of both ciphers from Summer 2012 presented only per-
formance and implementation footprints [6]. Though, in contrast to the common
disclosure policy of the NSA, their specifications have recently been published
and are free for use and analysis, as stipulated by Saarinen and Engels already in
2012 [32]. However, the designers provided little more than the pure specification
and a discussion of the performance of their ciphers. While the NSA certainly
possesses both the resources and expertise, the authors left the task of analyzing
their ciphers’ resistance against common attacks to the research community.



Differential Cryptanalysis. While IBM and the NSA already knew about
differential cryptanalysis (DC) when designing the DES in 1974, the technique
was first published in 1990, when Biham and Shamir attacked the block cipher
FEAL [13]. At that time, DC received much attention after it showed applicable
to mount the first attack against the full DES [11,12,14]. Nowadays, differen-
tial, together with linear, cryptanalysis is one of the best-understood and most
powerful methods to analyze symmetric cryptographic primitives.
The core idea is to encrypt pairs of plaintexts (P, P ′) and study the propagation
of their difference ∆ = P ⊕ P ′ through the encryption process. In this context,
a differential characteristic or differential trail is a sequence that describes how
an input difference ∆in propagates to an output difference ∆out with a certain
probability p, or formally written: ∆in p−−→ ∆out. If the probability of such a trail
in a concrete cipher E is significantly higher than for a random distribution, i.e.,
p � 2−n (where n denotes the state size), then, an adversary can use this
information to distinguish E from a random permutation and/or recover parts
of the secret key. An adversary usually starts an attack with the collection of (at
least 1/p) chosen plaintext pairs that are encrypted by an oracle. Then, it aims
to identify a few ciphertext pairs that satisfy the differential trail. Thereupon,
it usually tries to determine the subkeys of the rounds directly before or after
the differential, before it extends its analysis over further rounds.

Extensions. Over the years, the basic attack principle has seen numerous exten-
sions which could been applied to a huge range of primitives. In 1994, Knudsen
[27] introduced truncated differentials, where some bits of the differences are not
fixed, and higher-order differentials, which consider differences between larger
structures of texts. In 1998, Knudsen [25] as well as Biham, Biryukov, and Shamir
[9] independently proposed the idea of impossible-differential attacks, which al-
low the adversary to filter out keys that produce differential characteristics with
zero probability. In 1999, Wagner [34] presented the boomerang attack, which
allows the use of two concatenated short characteristics for settings, where no
long characteristics with sufficiently high probabilities exist. In 2000, this attack
was transformed into a chosen-plaintext attack by Kelsey et al. [23], which they
called the amplified boomerang. Later their method was renamed by Biham et
al. [10] as rectangle attack. We will apply differentials, impossible differentials
and rectangles attacks on Simon family of block ciphers in the following sections
of this paper, where we will describe the ideas behind them in more detail.

Differential Cryptanalysis of Lightweight Ciphers. Differential attacks is
applicable to a large range of lightweight ciphers. For KLEIN, Aumasson et al.
[4] and Yu et al. [37] presented practical attacks on eight out of 12 rounds in
2011. Karakoç et al. [22] proposed impossible-differential attacks on 22 out of
32 rounds of L-Block. Considering LED, Mendel et al. [31] showed a differential
analysis over up to 24 rounds. For PRESENT, Wang [35] presented attacks on
up to 16 out of 31 rounds in 2008, which were improved by Albrecht and Cid in
2009 [1] by using the combination of algebraic and differential techniques. And
in [24] Knellwolf, Meier, and Naya-Plasencia applied differential attacks against
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up to 120 out of 254 rounds for KATAN, also in 2011. Yet, many more works
besides the mentioned ones consider differential analyses of further lightweight
ciphers.
The most relevant paper to ours is that by Alkhzaimi and Lauridsen, who – par-
allel to our work – also studied Simon and presented differential attacks on up
to 16, 18, 24, 29, and 40 rounds of the versions with 32-, 48-, 64-, 96-, and 128-bit
state size. The authors used a branch-and-bound algorithm to find differential
trails, since the AND operation in the round function of Simon produces vari-
ous paths for characteristics, so that the sum of all individual paths increase the
probability significantly. In addition, they presented impossible-differential at-
tacks (with a rather overcomplex procedure description) on up to 14, 15, 16, 19,
and 22 rounds of the respective versions, and discussed observations regarding
rotational cryptanalysis and weak keys of the ciphers.

Cipher Rounds Time Data Memory Succ. Ref.
Full Att. (Bytes) Rate

Differential

Simon32/64 32 18 246.0 231.2 CP 215.0 0.632 Sec. 4
Simon48/72 36 19 252.0 246.0 CC 220.0 0.981 App. C
Simon48/96 36 19 276.0 246.0 CC 220.0 0.981 App. C
Simon64/96 42 26 263.9 263.0 CP 231.0 0.863 App. D
Simon64/128 44 26 294.0 263.0 CP 231.0 0.863 App. D
Simon96/96 52 35 293.3 293.2 CP 237.8 0.632 App. E
Simon96/144 54 35 2101.0 293.2 CP 237.8 0.632 App. E
Simon128/128 68 46 2125.7 2125.6 CP 240.6 0.632 App. F
Simon128/192 69 46 2142.0 2125.6 CP 240.6 0.632 App. F
Simon128/256 72 46 2206.0 2125.6 CP 240.6 0.632 App. F

Related-Key Rectangle

Simon32/64 32 18 254.55 230.86 CP 232.86 0.632 Sec. 5

Impossible Differential

Simon32/64 32 13 250.1 230.0 CP 220.0 ≈ 1 Sec. 6
Simon48/96 36 15 253.0 238.0 CP 220.6 ≈ 1 Sec. 6
Simon64/128 44 17 271.0 252.0 CP 221.0 ≈ 1 Sec. 6
Simon96/144 54 20 2111.0 284.0 CP 219.6 ≈ 1 Sec. 6
Simon128/256 72 25 2195.0 2119.0 CP 223.0 ≈ 1 Sec. 6

Table 1. Summary of our results on Simon. CP = chosen plaintexts, CC = chosen
ciphertexts, Att. = attacked, Succ. = success, Ref. = reference.

Contribution and Outline. This paper describes our cryptanalysis of round-
reduced Simon against differential, impossible-differential, rectangles and linear
attacks. In Section 2 we first review the necessary details of Simon and point
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out a number of observations regarding its round structure. In Section 3 we
will describe how we build efficient differential characteristics through (parts of)
the cipher, and how to extend these characteristics over a few more rounds. We
then use these characteristics for basic differential key-recovery attacks, which
we explain in Section 4. Thereupon, we present a related-key rectangle attack
on Simon32/64 in Section 5, impossible-differential-based attacks in Section 6,
and consider linear attacks in Section 7. At the end, we conclude our paper in
Section 8. A summary of our results can be found in Table 1. First, we introduce
the notations which are used in the remainder of this work.

n Word size.
2n State size.
k Size of the secret key in bits.
Pi, Ci Plaintext-ciphertext pair.
(Lr, Rr) Left (L) and right (R) halves of the state after encryption of Round r

in a Feistel-cipher.
Li The i-th (least-significant bit) in L, where i = 0 denotes the

least-significant bit.
∆i An n-bit (XOR) difference, where only the i-th bit is active. with

0 ≤ i ≤ n− 1 and ∆0 denotes the least significant bit.
∆i,[j] An n-bit truncated difference, where only the i-th bit is active and the

j-th bit is unknown.
∆r Difference after Round r.
∆r p−→

E
∆s A differential characteristic which yields the output difference ∆s with

probability p when encrypting over a (sub-)cipher E and starting
from an input difference ∆r.

2 Simon

Simon follows the idea of previous ARX constructions, such as ThreeFish [19] or
BLAKE/BLAKE2 [3,5] of using a very simple round function that is iterated over
many rounds. Thus, the cipher owns a very compact construction that simplifies
the analysis. At its core Simon is a two-branch balanced Feistel network which
consists of only three operations: AND, XOR, and rotations. We denote the
input to the i-th round by (Li−1, Ri−1). In each round, the left word of the state
Li−1 is used as input to a round function F that is defined by

F (Li−1) = (Li−1 ≪ 1) ∧ (Li−1 ≪ 8)⊕ (Li−1 ≪ 2).

The output of F (Li−1) is then XORed to Ri, together with the subkey Ki−1,
before both words of the state are swapped:

Li = Ri−1 ⊕ F (Li−1)⊕Ki−1,

Ri = Li−1.
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Fig. 1. The round function of Simon.

The result of the last round (Lr, Rr) yields the ciphertext. An illustration of the
round function is depicted in Figure 1.
The key schedule of Simon uses an LSFR-like procedure to generate in total r
subkeys K0, . . . ,Kr−1. More precisely, Simon possesses three slightly different
key schedule procedures, depending on whether the secret key consists of two,
three, or four words. At the beginning, these first w ∈ {2, 3, 4} words K0, . . . ,
Kw−1 are initialized with the secret key. The remaining key words Ki, for i ∈
{w, . . . , r − 1}, are then generated as follows:

for w = 2 : Y = Ki+1 ≫ 3

Ki+2 = Ki ⊕ Y ⊕ (Y ≫ 1)⊕ c⊕ (zj)i,

for w = 3 : Y = Ki+1 ⊕ (Ki+2 ≫ 3)

Ki+3 = Ki ⊕ Y ⊕ (Y ≫ 1)⊕ c⊕ (zj)i,

for w = 4 : Y = Ki+1 ⊕ (Ki+3 ≫ 3)

Ki+4 = Ki ⊕ Y ⊕ (Y ≫ 1)⊕ c⊕ (zj)i.

Since the key schedule of Simon maps the secret key uniquely to one value of w
consecutive subkeys and vice versa, the full secret key can be derived with the
help of any sequence of w known consecutive subkeys. To prevent slide attacks
and to make rotational attacks complicated, the generated subkeys are XORed
with a constant c = 0xff. . . fc, and a bit (zj)i, that denotes the i-th (least-
significant) bit from one of five constant sequences z0, z1, z2, z3, or z4. For the
exact sequence values, we refer readers to [7].

2.1 General Observations

In what follows, we discuss a few observations on Simon which are relevant for
differential cryptanalysis. First of all, we recall a general well-known property of
the logical AND:

Property 1 (Absorption of Logical AND). Let X,X ′, Y, Z, Z ′ ∈ {0, 1}n, and
Z = X ∧ Y and Z ′ = X ′ ∧ Y , where ∧ denotes bit-wise logical AND. Say, we
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have an input difference ∆X = X ⊕ X ′ and an output difference ∆Z = Z ⊕ Z ′.
Further, let ∆Xi = 1 denote the i-th active bit in ∆X, and let Yi denote the i-th
active bit in Y . Then, ∆Zi = 1 iff Yi = 1. Hence, if we can assume that the bit
value of Y is random, then we say the AND operation absorbs an active bit with
probability 1/2.

From Property (1) follows for the round function of Simon:

Property 2 (Absorption of Simon). Due to the rotations by one and eight
positions to the left in the round function of Simon, the logical AND will absorb
an active bit ∆Li with probability 2−2 iff L((i+7) mod n),((i−7) mod n) = 0.

Since the round transformation only consists of bit-wise boolean operations,
no carry-bits can occur, which is a major difference compared to addition-based
ARX designs. As a consequence, the difference propagation in Simon is indepen-
dent from the indices of active bits in the input and output difference. Hereafter,
we will simply call this property rotational invariance:

Property 3 (Rotational Invariance of Differential Characteristics). Assume, we
are given a differential characteristic ∆in p←→ ∆out, which holds with probability
p over (parts of) a version of the Simon2n/k family of block ciphers. Then, for
any j ∈ [0, n− 1], it also applies that

(
∆in ≪ j

) p←→ (∆out ≪ j) .

3 Search For Differentials

To find a good differential characteristics, we selected a twofold approach. Firstly,
we employed Matsui’s algorithm [29] which allows to find the provably best
differential path over a given number of rounds. As pointed out by Biryukov
and Nikolic [15] for the DES, Matsui’s approach is well-feasible for ciphers with
64-bit state. So, we used it to find the best paths for the 32-, 48-, and 64-bit
versions of Simon, which are:

– Simon32/64: (∆6, 0)
2−36

←−−−−−→
12 rounds

(∆14, 0)

– Simon48/k: (∆8,16, ∆6,14,18)
2−52

←−−−−−→
15 rounds

(∆6,14,18,22, ∆20)

– Simon64/k: (∆6, 0)
2−70

←−−−−−→
20 rounds

(∆6,10,14, ∆12)

Inspired by the work of Alkhzaimi and Lauridsen [2], we then used the trails
found by Matsui’s algorithm as a reference in a branch-and-bound method which
empirically searches for differential paths.
During our first version of this paper, we realized that differential characteris-
tics can be produced by various paths due to the absorption of the logical AND
in the round function of Simon but we did not focus on full impact of this
property. Later, Alkhzaimi and Lauridsen showed that the number of trails sig-
nificantly increases the Expected Differential Probability (EDP) [18] of trails, so
the probability of the trails found with Matsui’s algorithm (whose probabilities
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are significantly lower than 2−n) becomes greater than 2−n. For the revised ver-
sion of our paper, we then used a similar strategy of branch-and-bound approach
to find differentials. In contrast to Alkhzaimi and Lauridsen’s work, we searched
in both forward and backward direction, which allowed us not only to confirm
their results, but also to improve them regarding the number of covered rounds
for several versions. Though, we have to point out that our search assumes that
all possible round keys are uniformly distributed and equally probable at any
round.

3.1 Extending Characteristics Over More Rounds

A given differential can be extended by a few more rounds in a key-recovery
attack for any version of Simon2n/k, . In the following, assume we are given an
r-round differential

(α, β)
p←−−−−→

r rounds
(γ, δ).

Because Simon injects the subkey at the end of its round function, the adversary
itself can compute the output of F (x). Hence, it can choose (β, α⊕F (β)) as a new
input difference and obtains an (r+1)-round differential with equal probability.
The same strategy can be applied at the output side. Recall that we are given
the output difference (γ, δ) after (r+1) rounds. Then, the difference after (r+2)
rounds is (δ ⊕ F (γ), γ). Since the subkey of the final round does not affect the
difference δ⊕F (γ), the adversary can compute F (γ) itself and obtains an (r+2)-
round differential with equal probability.
For the 48/72-, 64/96-, 96/144-, and 128/192-bit versions, one can append a
further round by simply guessing its full subkey. The total computational effort
for collecting plaintext-ciphertext pairs and testing all subkey candidates for
the appended round remains significantly smaller than exhaustively searching
the full key space. Moreover, for the 32/64-, 48/96-, 64/128-, and 128/256-bit
versions, the adversary can append a further round, again by guessing some bits
of its subkey. Since our differentials have a relatively low Hamming weight, the
in- and output differences are only affected by a few bits, with the result that
for the mentioned versions of Simon2n/k with k > 2n we can easily obtain an
(r + 4)-round attack; in addition, concerning the four out of ten versions with
k = 4n, one can mount (r+5)-round key-recovery attacks from a given r-round
differential.

4 Key-Recovery Attacks on Simon

In this section, we demonstrate a key-recovery attack on round-reduced Si-
mon32/64. We explain in details this version since it allows a simple practi-
cal verification. The attacks on the further variants follow a similar procedure.
Therefore, we specify only their complexities at the end of this section.
We use the 13-round differential characteristic (see Table 5 in Appendix A) over
the rounds 2− 14:

∆1 = (0, ∆6)
2−30.2

←−−−−−→
10 rounds

(∆14, 0) = ∆14.
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We append a further round to the beginning of the cipher, where the adver-
sary can choose the left part of the plaintext pairs P, P ′ s.t. one obtains the
desired difference ∆1 after the first round. Additionally, we append four rounds
to the end of the cipher, where the adversary will guess some key bits. From the
obtained ciphertexts, we still know many bits from the truncated trail:

(∆L15, ∆R15) = (∆0,[6,15], ∆14),

(∆L16, ∆R16) = (∆2,[0,1,7,8,14], ∆0,[6,15]),

(∆L17, ∆R17) = (∆4,[0−3,6,8−10,15], ∆2,[0,1,7,8,14]),

(∆L18, ∆R18) = (∆6,[14,12−7,5−0], ∆4,[0−3,6,8−10,15]).

Attack Procedure. The full attacking procedure can be split into a collection,
a pair-filtering, a key-guessing, and a brute-force phase. The steps can be written
as follows:

Collection phase:
1. Initialize an empty set P = ∅.
2. Choose 230.2 plaintext pairs (Pi, P ′i ) s.t. their difference after the first round

yields ∆1.
3. Collect the corresponding ciphertext pairs (Ci, C ′i) from an encryption oracle,

where Ci = EK(Pi) and C ′i = EK(P ′i ).

Pair-filtering phase:
4. For all ciphertext pairs, invert the final round to derive ∆17 and store all

pairs (Ci, C
′
i) with the correct difference at the known bits ∆L17

4,5,7,11−14,
∆R17

2−6,9−13,15 in P. Note that A knows seven bits of ∆L17 and 11 bits of
∆R17. Assuming that the differences ∆17 are uniformly distributed, we can
expect that A stores only 230.2−18 = 212.2 pairs in average.

Key-guessing phase:
5. Create a list of counters for all 218 possible values of the round-key bits
K17

0,1,5,7−11,14,15, K16
6−9,13,15, and K15

9,7 and perform the following steps for
each candidate:
– For all pairs (Ci, C ′i) ∈ P:
− Partially decrypt (Ci, C ′i) to the state after the encryption of Round

14. If the resulting difference matches ∆14, increment the counter for
the current key candidate.

6. Output the key candidate(s) which is/are associated to the highest counter
values.

Brute-force phase:
7. For all bits of K17, K16, K15, and K14, which have not been guessed in the

previous steps, perform further encryptions to identify their correct values.

Figure 2 visualizes the trail over the rounds 15-18. Note thatA guesses only those
key bits which influence the output of the non-linear operations in rounds 15-
18. To determine these key bits, one can take the positions of all active and
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unknown bits in ∆Li, and add +7 and −7 (mod n) to them (cf. Property (2)).
For instance, the output of F (∆L14) depends on the value of L14

5,7. Hence, the
adversary has to guess the key bits K14

5,7 to derive ∆14.
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Fig. 2. Truncated differential trail over the rounds 15-18 of our attack on Simon32/64.
The adversary obtains the ciphertext differences ∆18 from the oracle, guesses the light
gray subkey bits and decrypts until Round 14, and derives the differences ∆14 in order
to identify correct pairs.

Attack Complexity. Considering the data complexity, the adversary requires
231.2 chosen ciphertexts. Regarding the memory complexity, A can store either
a list of 218 counters for each key candidate or a list of all ciphertext pairs that
survive the first filter after the decryption of the final round. Since the latter has
smaller complexity, we allocate memory for 2 · 212 texts of 32 bits each for the
attack, which is equivalent to 215 bytes.
The computational effort for the collection phase, Ccollect, is equivalent to 230.2

full encryptions performed by the oracle. The filtering effort, Cfilter, is given by
the costs for 230.2 one-round decryptions to check 18 bits of ∆17. Further, we
denote by Ckey-guessing the effort of the key-guessing phase, wherein the adversary
encrypts the remaining pairs for each of the 218 key candidates over the final
three rounds.
A trivial brute-force search can find the rest of these subkeys and K14 with
about 246 partial encryptions. Summing up, the total computational complexity
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can be approximated by

2 · 230.2︸ ︷︷ ︸
Ccollect

+2 · 230.2 · 1
18︸ ︷︷ ︸

Cfilter

+2 · 218 · 218 · 3
18︸ ︷︷ ︸

Ckey-guessing

+ 246︸︷︷︸
Cbruteforce

≈ 246 encryptions.

Success Rate. We have to point out that the described attack may not work
for the complete trials. The probability of a pair to follow our differential is
about 2−30.2. Hence, the probability that at least one correct pair occurs for the
correct key can be approximated by

1− PrPoisson[n = 230.2, p = 2−30.2, x ≤ 0] ≈ 0.632,

which is 1− 1/e.
Similarly, we need to clarify the probability of a false-pair decision. The probabil-
ity of a pair to produce the correct difference ∆14 by random can be assumed to
be 2−32. Since we partially decrypt 212.2 pairs in average for 218 key candidates,
the probability that a false-positive hit occurs is about

1− PrPoisson[n = 230.2, p = 2−32, x ≤ 0] ≈ 0.028.

After some simple calculations, we achieve success rate (i.e., one can find at
least one correct pair) of 63.2% percent for the trials. Yet, in case of success,
one or at most a few false-positive pairs may occur which can be filtered by
negligible additional effort. To increase the success rate, one can employ shorter
differentials of higher probability. For instance, there is the 10-round differential

(∆14, ∆0,8,12)
2−18.6

←−−−−−→
10 rounds

(∆2,10, ∆0,8,12),

which can be used to mount a similar attack on 14-round Simon32/64 with a
data complexity of 3 ·228 chosen plaintexts, a memory complexity of 217 bytes, a
computational effort equivalent to about 235 14-round encryptions, and a success
rate very close to 1.

Similar Attacks On Further Versions. We can apply the same procedure
to the further versions of Simon. Table 2 summarizes the probabilities, required
number of pairs (Cdata), known state bits to filter (1st filter), guessed key bits
(key bits), and success rates (where false random shows the probability that no
correct pair occurs during a run of the respective attack, and false real denotes
the probability of a false-positive pair to occur) for each attack. As a remark,
we used chosen ciphertexts in the attack on Simon48/k in order to cover one
more round. The detailed complexities can be found in Table 1. The detailed
descriptions of the attack are summarized in the Appendices C-F.

5 Related-Key Attack on Simon

Related-Key Attacks. Related-key attacks were introduced by Knudsen [26]
and Biham [8] in 1992 and 1993, respectively. In this method, for a given cipher,
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Cipher Rds. Diff. Pr[diff.] Cdata 1st Key False False
Rds. filter bits random real

Simon32/64 18 13 2−30.20 231.20 CP 18 18 0.368 0.028

Simon48/k 19 15 2−43.01 246.00 CC 28 20 0.019 4.88 · 10−4

Simon64/k 26 21 2−61.01 263.00 CP 35 36 0.137 1.75 · 10−3

Simon96/k 35 30 2−92.20 293.20 CP 59 43 0.368 5.48 · 10−7

Simon128/k 46 41 2−124.60 2125.60 CP 89 50 0.368 1.72 · 10−13

Table 2. Parameters for our distinguisher attacks on the versions of Simon2n/k. Rds.
= rounds, Diff. = differential, Prs. = pairs, CP = chosen plaintexts, CC = chosen
ciphertexts.

the adversary has access to two oracles, where one oracle uses a secret key K,
and another one a key K̂. It is also aware of the relation between two keys
instead of knowing their values. Furthermore, compare to the common single-
key setting, adversary can choose the key relation such that provides it with
an additional degree of freedom to identify weaknesses in a cipher. This can be
beneficial for the future attacks. However, this assumption that an adversary is
aware of the relations between multiple keys is rather impractical. Nevertheless,
some recent cryptanalysis methods (e.g., bicliques) can re-use existing related-
key differentials to mount attacks in the single-key model. Hence, related-key
differential-based attacks are worth being considered.

Boomerangs and Rectangles. Boomerangs and rectangles are differential-
based attacks that allow an adversary to concatenate two short differential char-
acteristics with high probability instead of a single long differential which po-
tentially helps to cover more rounds. Boomerangs have been first introduced
by Wagner [34], and were later transformed into a chosen-plaintext amplified
boomerangs by Kelsey et al. [23]. The latter principle was then renamed and
improved by Biham et al. [10] to the rectangle attack.
In each of these methods, an adversary A first decomposes a given cipher E into
two sub-ciphers E = E2◦E1, where it uses two differentials α p−−→

E1
β and γ q−−→

E2
δ

and collects quartets of plaintexts (P, P ′, Q,Q′) with P ⊕ P ′ = Q ⊕ Q′ = α.
In the following, we denote by (R,R′, S, S′) their encryptions after E1 and by
(C,C ′, D,D′) their encryptions after E2.
Each quartet has a probability of p2 that (R,R′, S, S′) fulfils R⊕R′ = S⊕S′ = β.
We are also interested in the case that R⊕S = γ and automatically R′⊕S′ = γ .
With probability q2, a ciphertext quartet (C,C ′, D,D′) fulfils C⊕D = C ′⊕D′ =
δ. If this is the case, we call it a right quartet. If the adversary collects m pairs
with difference α, then, the expected number of right quartets is, according to
[10]:

m2 · 2−n · (pq)2.

So, if pq < 2−n/2, A can count more correct quartets for E and distinguish E
from a random permutation.
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To increase the probability of p and q, Biham et al. further proposed instead
of using fixed differences β and γ in the middle of the rectangle, right quartets
can have any possible difference β′ and γ′, as long as both pairs in a quartet
share the same difference β′ and γ′ after E1. Thus, the probabilities of p and q
increase to

p̂ =

√∑
β′

Pr[α→ β′] and q̂ =

√∑
γ′

Pr[γ′ → δ].

For related-key rectangles, one uses related-key differentials, where the key-
relation used for E1 and that for E2 can be chosen independently:

p = Pr[E1
K(X)⊕ E1

K∗(X ⊕ α) = β] = Pr[E1
K′

(X)⊕ E1
K′∗

(X ⊕ α) = β],

q = Pr[E2
K(X)⊕ E2

K′
(X ⊕ γ) = δ] = Pr[E2

K∗(X)⊕ E2
K′∗

(X ⊕ γ) = δ],

where

K∗ = K ⊕∆K,

K
′
= K ⊕∇K,

K
′∗ = K ⊕∆K ⊕∇K, and thus,

∆K = K ⊕K∗ = K
′
⊕K

′∗,

∇K = K ⊕K
′
= K∗ ⊕K

′∗

for known key differences ∆K and ∇K.

Related-Key Rectangle Attack on Simon32/64. Recall that the key sched-
ule of Simon maps uniquely any sequence of w consecutive subkeys to one value
of the secret key. With this property in mind, we explain a related-key rectangle
attack on 18 rounds of Simon32/64 in the following. For the difference ∆K over
E1 we start with ∆K3 = ∆K4 = ∆K5 = 0, and ∆K6 = ∆6. From a simple
equational calculation, we obtain

∆K0 = ∆4,6, ∆K7 = ∆2,3,
∆K1 = ∆5,6, ∆K8 = ∆0,14,
∆K2 = ∆6.

For the key relation ∇K over E2 we start from ∇K12 = ∇K13 = ∇K14 = 0
and ∇K15 = ∆6 and obtain

∇K9 = ∆4,6, ∇K11 = ∆6,
∇K10 = ∆5,6, ∇K16 = ∆2,3.

The resulting trail is depicted in Figure 3. We choose the plaintext difference α
in a way that the difference after Round 3 in the state becomes zero. This allows
us to pass rounds 3-7 with probability one. Because the adversary has freedom
to choose the plaintext difference, it will pass the first round with probability

12
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Fig. 3. Related-key trails for the attack on Simon32/64. The left side shows the trail
over E1, the right side that over E2.

one. Now, we need to determine the probability of the E1-trail over rounds 8
and 9. Due to the non-linear operation in Round 8, one obtains 22 possible dif-
ferences for ∆8: ∆2,3,8, ∆2,3,7,8, ∆2,3,8,14, or ∆2,3,7,8,14. After Round 9, ∆2,3,8

can produce 26 differences, where each of them occurs with probability 2−6,
∆2,3,7,8 and ∆2,3,8,14 can produce 28 differences with probability 2−8. And sim-
ilarly ∆2,3,7,8,14 can produce 210 differences with probability 2−10. Hence, the
cumulative probability for all differentials over rounds 8 and 9 can be calculated
from√

26 · (2−2−6)2 + 28 · (2−2−8)2 + 28 · (2−2−8)2 + 210 · (2−2−10)2 ≈ 2−4.68.

Multiplying this value with the probability of 2−2 for Round 2, we obtain p̂ =
2−6.68. The same strategy can be applied to rounds 10 and 11 in the E2-trail
and gain q̂ = 2−6.68 with similar argumentation. Hence, this 17-round rectangle
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has a probability of (p̂q̂)2 ≈ 2−26.72. The adversary can append another round
due to the Feistel structure which can be directly inverted in order to check ∆17.
The procedure for the attack is then as follows:

1. Choose 2(n+1)/2

p̂q̂ = 233/2

2−6.682−6.68 = 229.86 pairs, or 228.86 quartets (P, P ′),
(Q,Q′) with P ⊕ P ′ = Q⊕Q′ = α.

2. Ask an oracle for the corresponding encryptions C = EK(P ), C ′ = EK′ (P
′),

D = EK∗(Q), and D′ = EK∗′ (Q′). Set the round keys for the final round to 0,
invert the final round, and assign (C,C ′, D,D′) to their corresponding states
after Round 17.

3. For all possible (229.86)2/2 = 258.72 combinations of pairs (C,C ′), (D,D′):
– Test if C ⊕D = C ′ ⊕D′ = δ. If one such quartet is found, output “real”

and terminate.
4. Output “random”.

Attack Complexity. The attack requires 230.86 chosen plaintexts, which have
to be stored using 230.86 · 32/8 = 232.86 bytes of memory. The computational
effort is given by 230.86 full encryptions by the oracle, 230.86 additional single-
round decryptions by the adversary and 258.72 memory accesses, which can be
overestimated by single-round encryptions, yielding a complexity equivalent to

230.86 + 230.86 · 1
18

+ 258.72 · 1
18
≈ 254.55 encryptions.

Success Rate. The probability that, among all 258.72 possible quartets, at least
one correct quartet occurs can be approximated by

1− PrPoisson[n = 258.72, p = 2−58.72, x ≤ 0] ≈ 0.632.

On the other hand, the probability that a false-positive quartet occurs is about

1− PrPoisson[n = 258.72, p = 2−64, x ≤ 0] ≈ 0.025.

6 Impossible-Differential Attacks on Simon

In this part, we go further and apply impossible-differential attacks on Simon
family of block ciphers. In contrast to conventional differential cryptanalysis,
where the adversary searches for characteristics with a preferably high proba-
bility, impossible-differential attacks use characteristics with zero probability to
reduce the key space. The technique was first shown independently by Biham,
Biryukov, and Shamir in 1998 [9] to attack the NSA cipher Skipjack, as well as
by Knudsen [25] to analyze 6 rounds of his AES-proposal DEAL.
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6.1 Impossible-Differential Cryptanalysis

In impossible-differential attacks, an adversary splits a given cipher E into E4 ◦
E3 ◦ E2 ◦ E1, and searches for a characteristic

∆in pin−−→
E1

∆x 1−−→
E2

∆x′ 6= ∆y′ 1←−−−
E−1

3

∆y pout

←−−−
E−1

4

∆out.

As a next, it chooses a set of plaintext pairs with difference ∆in (or ciphertext
pairs with difference ∆out) and collects the corresponding ciphertext pairs from
an oracle, where it keeps only those that satisfy ∆out (or plaintext pairs that
satisfy ∆in, respectively). In the following, let Kin denote those key bits, which
affect the characteristic ∆in → ∆x, and Kout those key bits which affect the
characteristic ∆y ← ∆out. For all possible values of Kin ∪ Kout, A partially
encrypts all remaining pairs over E1 and decrypts them over E4. If, for a given
key value, there is at least one pair that has ∆x after E1 and ∆y after the inverse
E4, then the differential path over E3 ◦E2 is not possible, and A can discard the
current key value. This way, the key space can be effectively filtered. Note that
for Simon, since the key words Kin already provide us with the secret key, we
do not need to consider Kout.

Remark 1. The number of rounds for the characteristic ∆in → ∆x is limited
(and so is that of ∆y ← ∆out) because each value of the key bits Kin ∪Kout is
used to encrypt a potentially high number of pairs. Obviously, this effort must
not exceed that of exhaustive search, or formally written:

|KE1 ∪KE4 | · |Pavg| � 2n,

where |Pavg| denotes the average number of pairs that need to be en-/decrypted
with one non-correct key value to obtain the impossible differential.

For Simon, the length of E1 is limited to the first four rounds, when the se-
cret key consists of three words, and to the first five rounds, when the secret
key consists of four words. For the smallest variant, Simon32/64, this is not
a problem; concerning the larger versions, this significantly limits the maximal
number of rounds that we can attack. In this section, we only describe our
impossible-differential attack on reduced Simon32/64. The characteristics used
for the further versions of our attack on Simon are listed in Appendix B.

6.2 Impossible-Differential Attack on Simon32/64

For this attack, we denote by E = E3 ◦E2 ◦E1 a version of Simon32/64 reduced
to the rounds 1-13, where E1 denotes rounds 1-5, E2 the rounds 6-11, and E3

the rounds 12 and 13. We use the following characteristics:

(∆0,4,8, ∆2,10)︸ ︷︷ ︸
∆in

pin =2−10

−−−−−−−→
E1

(0, ∆0)︸ ︷︷ ︸
∆x

1−−→
E2

(∆[0−15], ∆8,[0,2−7,9−14])︸ ︷︷ ︸
∆x′

6= (∆[1−5,9−15], ∆[0−7,9−15])︸ ︷︷ ︸
∆y′

1←−−−
E−1

3

(∆[1−5,9−15], ∆[1−3,9−13])︸ ︷︷ ︸
∆out

.
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Note that ∆in requires the six bits L0
1,7,9,11,13,15 = 0, which would restrict the

plaintext space to 226 values. Again, to collect enough pairs, the adversary can
set the bits L0

1,7,9,11,13,15 = 1 and adapt the difference in the right part of ∆in

s.t. the difference after the first round is still (∆6, ∆0,4,8).

Attack Procedure. We can split the attack into a collection, a pair-filtering,
and a key-filtering phase. The steps can be written as follows:

Collection phase:
1. Initialize an empty set P = ∅.
2. Collect 229 plaintext pairs (Pi, P ′i ) with P ⊕P ′ = ∆in and obtain the corre-

sponding ciphertext pairs (Ci, C ′i) from an encryption oracle.

Pair-filtering phase:
3. Store all tuples (Pi, P ′i ) for which the corresponding ciphertexts Ci, C ′i satisfy
Ci ⊕ C ′i = ∆out in P. Since there are 229 pairs and only 12 bits of ∆out are
specified, A can expect 229 ·2−12 = 217 pairs which satisfy our characteristic.

Key-filtering phase:
4. In the following, let K = K0‖K1‖K2

1,5,6,7,8,9,11,15‖K3
7,9. For all possible val-

ues of K:
– For each tuple (Pi, P

′
i ) ∈ P:

− Encrypt Si = E1(K,Pi), S′i = E1(K,P
′
i ). If Si ⊕ S′i = ∆x, then

discard the current valueK and proceed with the next key candidate.

The probability that a value K survives all tests for one plaintext pair is given
by (1 − 2−10), and for all pairs is equal to (1 − 2−10)2

17 ≈ 2−184. Thus, the
probability of a false-positive key to survive is 264 · 2−184 ≈ 2−120, which leads
to our claim that A will find the correct value K after the key-filtering phase.

Attack complexity. The data complexity is given by 230 chosen plaintexts.
The adversary needs memory to store 217 pairs in average, which is equivalent
to 221 bytes.
Same as our previous attacks, the computational complexity consists of several
sub-steps which need to be considered. The costs for collecting 229 pairs are
given by 230 encryptions. For every pair, A then tests the keys K = K0‖K1

‖K2
1,5,6,7,8,9,11,15‖K3

7,9 by encrypting a number of pairs over five rounds. Note
that these 16+16+8+2 = 42 key bits are derived from the fact that only these
bits affect ∆5 = ∆x′ .
We are also interested in the number of pairs |Pavg| that A has to encrypt in
average for an incorrect key candidate in order to find a pair that satisfies ∆x′ .
Therefore, we require

p = 1− ((1− 2−10)|Pavg|) ≥ 0.5.

Using simple calculus, we obtain

|Pavg| =
⌈

log(0.5)

log(1− 2−10)

⌉
= 710 pairs (711 texts).
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Summing up, the effort for the filtering phase can be estimated by 242 ·711 · 5
13 ≈

250.1 full encryptions. Afterwards, A will find the correct value of the 42 bits inK
with overwhelming probability, and can test all 222 candidates for the remaining
keys via exhaustive search. Thus, the total complexity is given by

230︸︷︷︸
Ccollect

+242 · 711 · 5
13︸ ︷︷ ︸

Cfilter

+ 222︸︷︷︸
Cbruteforce

≈ 250.1 encryptions.

Table 3 summarizes the parameters of our impossible-differential attacks on this
and further versions of Simon. The differential trails which are used to mount
the attack can be found in Appendix B. Note that, for example, one could
easily add three or four more rounds to the impossible differential attack on
Simon128/256 by guessing some more subkey bits, thus, reducing the effort for
exhaustive search. But, since this would not lead us to have an attack with more
rounds compare to the conventional differentials, we left the shorter attack as
an easy-to-grasp example.

State Key Rounds #Pairs Known |P| pin |Kin| Filter |Pavg|
size size E1/E2/E3 bits

32 64 5/6/2 229 12 217 2−10 42 2−184 710

48 96 5/7/3 237 20 217 2−10 44 2−184 710

64 128 5/8/4 251 34 217 2−10 57 2−184 710

96 144 4/10/6 283 68 215 2−8 33 2−185 178

128 256 5/12/8 2118 100 218 2−10 61 2−368 710

Table 3. Impossible-differential attacks on Simon. The filter results from (1− pin)|P|.

7 Linear Cryptanalysis of Simon

7.1 Linear Cryptanalysis

Linear cryptanalysis represents another powerful statistic method for the security
analyzes of symmetric primitives. It was introduced by Matsui and Yamagishi
in 1992 [30], and has been applied to a large range of primitives since then.
Linear cryptanalysis considers a more practical setting than e.g., differential
analysis, since the adversary requires only knowledge about known instead of
chosen plaintext-ciphertext pairs. In a linear attack, the adversary searches for
some linear relation of some plaintext bits Pi1,i2,..., ciphertext bits Cj1,j2,..., and
some key bits Kk1,k2,.... Following relation must hold for the given cipher [28]
with non-random probability

Pr

[⊕
`

Pi` ⊕
⊕
`

Cj` =
⊕
`

Kk`

]
= p =

1

2
+ ε. (1)

In general, the larger the bias |ε| from random, the more effective the linear
approximation.
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When approximating a given cipher, we assume that each of its internal non-
linear operations behave linearly with a certain probability. We denote this event
by pi = 1/2 + εi for the i-th non-linear operation. To combine multiple, say m,
such events, Matsui [28] proposed the piling-up lemma:

Lemma 1 ([28], Lemma 3). Let Xi (1 ≤ i ≤ m) be independent random
variables whose values are 0 with probability pi or 1 with probability 1−pi. Then
the probability that X1 ⊕X2 ⊕ . . .⊕Xm = 0 is

p = 1/2 + 2m−1 ·
m∏
i−1

εi.

In addition, Matsui also specified in his Lemma 2:

Lemma 2 ([28], Lemma 2). Let N be the number of given random plaintexts
and p be the probability of the linear approximation of our cipher. Assuming that
|p− 1/2| is sufficiently small, then the success rate of our attack is∫ ∞

−2
√
N |p−1/2|

1√
2π
e
−x2

2 dx. (2)

Matsui’s results were calculated with focus on the DES. In [33] Selçuk proposed
a more general approach for his calculation of the success probability and data
complexity. There, he used the notion of an a = (m − log r)-bit advantage to
denote that an m-bit key will be found among the 2r most probable key can-
didates identified by an attack. To achieve at least an 8-bit advantage for our
attacks, we use N = 8|p − 1/2|−2 throughout this work, which yields a success
rate of about 99.7% according to Table 2 [33, p.6].

7.2 Linearization of Simon

To apply linear attacks on Simon, we have to linearize the AND operation.
Therefore, we follow Matsui’s example for the DES, where we first illustrate the
approach for a toy version of the cipher with three rounds and then extend it to
r-round-Simon in general.

Linearizing 3-Round Simon. Here, we focus on a single active bit, say L1
8,

and regard the state L1 in the middle of 3-round Simon. Starting from top
and bottom, we can express L1

8 as a relation of plaintext (L0, R0), ciphertext
(L3, R3), and subkey bits in two simple equations:

L1
8 = R0

8 ⊕ L0
6 ⊕X0

8 ⊕K0
8 ,

L1
8 = L3

8 ⊕R3
6 ⊕X2

8 ⊕K2
8 ,

where Xr denotes the output of the AND operation. Since for two random
input bits, AND yields ’0’ as an output in 3/4 of the cases, we can say that
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Pr[X0
8 = 0] = Pr[X2

8 = 0] = 3/4 for random X0
8 and X2

8 . Shifting the key bits
to the right side of the equations yields

Pr[L1
8 ⊕R0

8 ⊕ L0
6 = K0

8 ] = 3/4 = 1/2 + 1/4,

P r[L1
8 ⊕ L3

8 ⊕R3
6 = K2

8 ] = 3/4 = 1/2 + 1/4.

By XORing both equations and applying the piling-up lemma, we obtain

Pr[R0
8 ⊕ L0

6 ⊕ L3
8 ⊕R3

6 = K0
8 ⊕K2

8 ] = 1/2 + 21 · (1/4)2 = 5/8.

Generic Linearization of Simon. From this toy example it is easy to see
that Simon can be linearized in a straight-forward manner: the AND operation
behaves equally in any round and for any bit of the state, so for any approx-
imation i in the cipher εi = 1/4 = 2−2. Thus, we can deduce the probability
and the number of required known plaintext-ciphertext pairs from the number
of approximations:

p = 1/2 + 2m−1 ·
(
2−2
)m

= 1/2 + 2−m−1,

N = 8 · (2−m−1)−2 = 23+2(m+1) = 22m+5.

We can also invert the deduction. Say, we want to collect at most 2n−1 known
plaintext-ciphertext pairs to have a data complexity less than the entire code-
book. To achieve this, our attack with desired success probability of 97.7% can
use at most

22(m+5) ≤ 2n−1 =⇒ m ≤ n− 6

2
KP. (3)

Extension To r-Round Simon. We can extend our 3-round approximation
round by round. For instance, we can generate a five-round approximation by
appending one round at the top and another one at the bottom. After appending
one round, our equation transforms to

Pr[R1
8 ⊕ L1

6 ⊕ L4
8 ⊕R4

6 = K1
8 ⊕K3

8 ] = 5/8.

We can replace the unknown intermediate values (R1
8, L1

6, L4
8, R4

6) with known
ones as below:

R1
8 = L0

8,

L1
6 = K0

6 ⊕R0
6 ⊕ L0

4 ⊕X0
6 ,

L4
8 = R5

8,

R4
6 = K4

6 ⊕R5
4 ⊕ L5

6 ⊕X4
6

In the two added rounds, we again approximate X0
6 = 0 and X4

6 = 0 with the
same probability. Thus, after simplifying the above equations, we obtain a total
bias of ε = 24−1 ·(1/4)4 = 1/32 for four approximations by applying the piling-up
lemma:

Pr[L0
8 ⊕ L0

4 ⊕R0
6 ⊕R5

8 ⊕R5
4 ⊕ L5

6 = K0
6 ⊕K1

8 ⊕K3
8 ⊕K4

6 ] = 1/2 + 1/32.
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We can apply this strategy over more rounds. From a small implementation
with starting from a single bit in the middle of rounds as we suggested above,
we attained the following sequence of required approximations in every round:

. . . , 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . .

For Simon32/64 the sequence is slightly better:

. . . , 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, . . . .

However, from Equation 3, we know that an attack on Simon32/64 should have
at most m ≤ 13 approximations. From the sequences above, we can deduce the
maximal number of approximations for a linear attack on any version of Simon.
For example, for Simon32/64, the sequence 1, 2, 1, 1, 0, 1, 1, 2, 1 represents a lin-
earization of nine consecutive rounds with 10 approximations. For our concrete
example from above, this gives the following equation system:

x = L0
0,4,8 ⊕R0

2 ⊕ L9
2 ⊕R9

0,4,8,

y = K0
2,6 ⊕K1

4,8 ⊕K2
6 ⊕K3

8 ⊕K5
8 ⊕K6

6 ⊕K7
4,8 ⊕K8

2,6,

P r[x = y] = 1/2 + 210−1 · 2−2·10 = 1/2 + 2−11.

Table 4 summarizes the parameters of our linear attacks for the different versions
of Simon. We can extend the number of attacked rounds of all versions by ap-

Cipher Rounds #Approx. Data Succ.
Full Att. Approx. (KP) Rate

Simon32/64 32 11 9 10 223 0.997
Simon48/k 36 14 12 21 247 0.997
Simon64/k 42 16 14 28 261 0.997
Simon96/k 52 20 18 45 295 0.997
Simon128/k 68 23 21 60 2125 0.997

Table 4. Summary of linear attacks for the different versions of Simon. #Approx.
= number of approximations, Approx. = number of rounds for linear approximation,
Succ. = success probability, Att. = number of attacked rounds, KP = known plaintexts.

pending one round at the bottom and another one at the top without additional
workload since the adversary knows the inputs to the AND operation from the
plain- and ciphertexts and thus, does not need to approximate any. Since the
linearization of Simon is independent of rounds or bit-indices, the adversary
obtains not only a single equation, but also n equations, which allow to recover
almost all subkeys in these rounds (except for the middle round). However, note
that the probability of all n equations to be hold at the same time has a sig-
nificantly lower success probability. Most importantly, one can see that linear
attacks on Simon can not cover a quarter as many rounds as our differential
analysis.
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8 Discussion and Conclusion

In this work, we presented differential attacks on reduced-round versions of the
Simon family of block ciphers. Furthermore, we briefly considered related-key
rectangles, impossible-differential and linear attacks.
Since the round function of Simon only employs rotations, XOR, and AND,
it allows to construct differential characteristics of about one third of the total
number of rounds of the cipher. However, for every version of Simon we could
find iterated differentials ∆ p←→ ∆, with only a single active bit difference in
∆ differences, which allowed us to cover up to half of the number of rounds.
Inspired by the idea by Alkhzaimi and Lauridsen [2] of using a branch-and-
bound approach, we could show that there is a significant number of paths
for differential characteristics in Simon which notably increase the expected
differential probability, so that differentials could be constructed to even more
than half the number of rounds, e.g., 31 out of 52 rounds for the 96-bit, and 41 out
of 68 rounds for the 128-bit version. The source of vulnerability of Simon against
differential cryptanalysis is obviously related to the the absorption characteristic
of the AND and also the lack of further non-linear operations, such as additions.
Though, our attacks with smaller differential characteristics did not render com-
parably efficient, which leaves the open task of further exploiting rectangle and
related-key rectangle attacks. Similarly, we briefly considered linear attacks,
which are more practical since an adversary requires only known plaintext-
ciphertext pairs. Our results show that a straight-forward approximation of the
AND operation yields attacks with at least 11-23 rounds for the respective ver-
sions. Hence, differential attacks appear to be the more promising base for future
improvements.
Nonetheless, from our point of view, the prominent and very positive security
aspect of both NSA constructions is the round-wise key addition and the simple,
yet powerful key schedule, which protects very effectively against slide, rota-
tional, and meet-in-the-middle attacks over a reasonable number of rounds.
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A Differential Characteristics for Simon2n/k

Rd. Simon32/64 Simon48/k

∆Li ∆Ri log2(Pr) ∆Li ∆Ri log2(Pr)

0 0 ∆6 ∆8,16 ∆6,14,18

1 ∆6 0
0
∆6,10,14 ∆8,16

−4

2 ∆8 ∆6
−2

∆12 ∆6,10,14
−9.2

3 ∆6,10 ∆8
−4

∆6,10 ∆12
−11.2

4 ∆12 ∆6,10
−7.3

∆8 ∆6,10
−14.5

5 ∆6,10,14 ∆12
−9.3

∆6 ∆8
−16.5

6 ∆0,8 ∆6,10,14
−14.39

0 ∆6
−18.5

7 ∆2,6,14 ∆0,8
−18.11

∆6 0
−18.5

8 ∆4 ∆2,6,14
−22.08

∆8 ∆6
−20.5

9 ∆2,14 ∆4
−24.08

∆6,10 ∆8
−22.5

10 ∆0 ∆2,14
−27.21

∆12 ∆6,10
−25.8

11 ∆14 ∆0
−28.92

∆6,10,14 ∆12
−27.8

12 0 ∆14
−30.2

∆8,15,16 ∆6,10,14
−32.92

13 ∆14 0
−30.2

∆6,14,18 ∆8,15,16
−37.62

14 ∆20 ∆6,14,18
−41.01

15 ∆6,14,18,22 ∆20
−43.01

Table 5. Differential characteristics for Simon32/64 and Simon48/k. ` denotes
log2(Pr).
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Rd. Simon64/k

∆Li ∆Ri log2(Pr)

0 ∆8 ∆6,10

1 ∆6 ∆8
−2

2 0 ∆6
−4

3 ∆6 0
−4

4 ∆7,8,14 ∆6
−6

5 ∆6,10,16 ∆7,8,14
−11

6 ∆12 ∆6,10,16
−13.3

7 ∆6,10,14,16 ∆12
−15.3

8 ∆8,15,16,22 ∆6,10,14,16
−21.49

9 ∆6,14,18 ∆8,15,16,22
−24.13

10 ∆14,15,20 ∆6,14,18
−26.48

11 ∆6,14,17,18 ∆14,15,20
−32.49

12 ∆8,16 ∆6,14,17,18
−40.49

13 ∆6,10,14 ∆8,16
−43.55

14 ∆12 ∆6,10,14
−48.96

15 ∆6,10 ∆12
−50.79

16 ∆8 ∆6,10
−53.96

17 ∆6 ∆8
−55.7

18 0 ∆6
−57.01

19 ∆6 0
−57.01

20 ∆8 ∆6
−59.01

21 ∆6,10 ∆8
−61.01

Table 6. Differential characteristics for Simon64/k. ` denotes log2(Pr).
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Round Simon96/k Simon128/k

∆Li ∆Ri log2(Pr) ∆Li ∆Ri log2(Pr)

0 ∆20 ∆6,14,18,22 ∆12 ∆6,10,14

1 ∆6,14,18 ∆20
−2

∆6,10 ∆12
−2

2 ∆8,16 ∆6,14,18
−6.44

∆8 ∆6,10
−6

3 ∆6,10,14 ∆8,16
−10.11

∆6 ∆8
−7.3

4 ∆12 ∆6,10,14
−15.23

0 ∆6
−9.3

5 ∆6,10 ∆12
−17.23

∆6 0
−9.3

6 ∆8 ∆6,10
−20.53

∆8 ∆6
−11.3

7 ∆6 ∆8
−22.53

∆6,10 ∆8
−13.3

8 0 ∆6
−24.53

∆12 ∆6,10
−16.6

9 ∆6 0
−24.53

∆6,10,14 ∆12
−18.6

10 ∆8 ∆6
−26.53

∆8,15,16 ∆6,10,14
−23.73

11 ∆6,10 ∆8
−28.53

∆6,14,18 ∆8,15,16
−28.42

12 ∆12 ∆6,10
−31.83

∆14,15,20 ∆6,14,18
−31.8

13 ∆6,10,14 ∆12
−33.83

∆6,14,17,18 ∆14,15,20
−37.8

14 ∆8,15,16 ∆6,10,14
−38.94

∆8,16 ∆6,14,17,18
−45.8

15 ∆6,14,18 ∆8,15,16
−43.65

∆6,10,14 ∆8,16
−48.89

16 ∆14,15,20 ∆6,14,18
−47.04

∆12 ∆6,10,14
−54.31

17 ∆6,14,17,18 ∆14,15,20
−53.04

∆6,10 ∆12
−56.04

18 ∆8,16 ∆6,14,17,18
−61.04

∆8 ∆6,10
−59.21

19 ∆6,10,14 ∆8,16
−64.18

∆6 ∆8
−60.96

20 ∆12 ∆6,10,14
−69.83

0 ∆6
−62.28

21 ∆6,10 ∆12
−71.52

∆6 0
−62.28

22 ∆8 ∆6,10
−74.71

∆8 ∆6
−64.28

23 ∆6 ∆8
−76.47

∆6,10 ∆8
−66.28

24 0 ∆6
−77.77

∆12 ∆6,10
−69.58

25 ∆6 0
−77.77

∆6,10,14 ∆12
−71.58

26 ∆8 ∆6
−79.77

∆8,15,16 ∆6,10,14
−76.72

27 ∆6,10 ∆8
−81.77

∆6,14,18 ∆8,15,16
−81.44

28 ∆12 ∆6,10
−85.07

∆14,15,20 ∆6,14,18
−84.84

29 ∆6,10,14 ∆12
−87.07

∆6,14,17,18 ∆14,15,20
−90.84

30 ∆8,16 ∆6,10,14
−92.2

∆8,16 ∆6,14,17,18
−98.84

31 ∆6,10,14 ∆8,16
−101.92

32 ∆12 ∆6,10,14
−107.33

33 ∆6,10 ∆12
−109.07

34 ∆8 ∆6,10
−112.24

35 ∆6 ∆8
−113.98

36 0 ∆6
−115.3

37 ∆6 0
−115.3

38 ∆8 ∆6
−117.3

39 ∆6,10 ∆8
−119.3

40 ∆12 ∆6,10
−122.6

41 ∆6,10,14 ∆12
−124.6

Table 7. Differential characteristics for the 96- and 128-bit versions of Simon2n/k. `
denotes log2(Pr).
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B Impossible Differentials for Simon2n/k

Simon48/k:

(∆0,4,8, ∆2,10)
2−10

−−−→
5R

(0, ∆0)
1−−→
7R

(∆[0−23], ∆[0−22])

6=
(∆[0−14,16−20,23], ∆23,[0−22])

1←−−
3R

(∆23,[0−6,8−12,15−18,22], ∆[0−4,7−10,14,16]).

Simon64/k:

(∆0,4,8, ∆2,10)
2−10

−−−→
5R

(0, ∆0)
1−−→
8R

(∆[0−31], ∆[0,2−30])

6=
(∆[0−22,24−28,31], ∆31,[0−30])

1←−−
4R

(∆[0−6,8−12,15−18,22,24,31], ∆31,[0−4,7−10,14,16,30]).

Simon96/k:

(∆6, ∆0,4,8)
2−8

−−→
4R

(0, ∆0)
1−−→

10R
(∆[0−47], ∆[0,2−46])

6=
(∆[0−38,40−44,47], ∆47,[0−46])

1←−−
6R

(∆[1−6,8−12,16−18,22,24], ∆47,[0−4,7−10,14,16]).

Simon128/k:

(∆0,4,8, ∆2,10)
2−10

−−−→
5R

(0, ∆0)
1−−→

12R
(∆[0−63], ∆[0,2−62])

6=
(∆[0−54,56−60,63], ∆63,[0−62])

1←−−
8R

(∆[1−6,8−12,15−18,22,24], ∆63,[0−4,7−10,14,16]).

C Key-Recovery Attack on Simon48/k

For our attack on Simon48/k, we use the 15-round differential characteristic
from Table 5 (see Appendix A) over rounds 4− 18:

∆3 = (∆8,16, ∆6,8,14)
2−43.01

←−−−−−→
15 rounds

(∆6,14,18,22, ∆20) = ∆18.

Attack Procedure. This time, we let the adversary choose 245 ciphertext pairs
(C,C ′) s.t. their differences yield ∆18 after the inverse final round. Afterwards,
it collects their corresponding plaintext pairs (P, P ′) from a decryption oracle.
From our differential, we obtain the following truncated path:

(∆L0, ∆R0) = (∆14,18,[0,3,4,6,8−10,15−17,20−23], ∆[0−2,4−12,14−19,21−23]),

(∆L1, ∆R1) = (∆20,[2,7,14,15,19,22], ∆14,18,[0,3,4,6,8−10,15−17,20−23]),

(∆L2, ∆R2) = (∆6,14,18, ∆20,[2,7,14,15,19,22]).

The adversary has to guess 20 subkey bits in total, more precisely
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– six bits of K1: K1
1,7,11,13,21,23, and

– 14 bits of K0: K0
0,2,3,5,7−9,12−15,19,21,22.

In the following, the adversary takes the obtained plaintexts and inverts the first
round to filter out wrong pairs with the help of the 18 known bits of ∆L1 and the
ten known bits of ∆R1. Afterwards, it encrypts the 245−18−10 = 217 remaining
pairs for all 220 subkey candidates over the first three rounds to check ∆3.

Attack Complexity. The attack requires 246 chosen ciphertexts. The adversary
has to store 217 pairs, which is equivalent to 2 · 217 · 48/8 ≈ 220.6 bytes, or alter-
natively, 220 counters, where one byte per counter suffices. The computational
complexity is given by:

2 · 245︸ ︷︷ ︸
Ccollect

+2 · 245 · 1
19︸ ︷︷ ︸

Cfilter

+2 · 217 · 220 · 2
19︸ ︷︷ ︸

Ckey-guessing

+ 272−20︸ ︷︷ ︸
Cbruteforce

≈ 252.03 encryptions.

For Simon48/96, Cbruteforce is given by 296−20 = 276, which dominates the total
effort.

Success Rate. The probability that at least one correct pair occurs for the
correct key can be approximated by

1− PrPoisson[n = 245, p = 2−43.01, x ≤ 0] ≈ 0.981.

The probability of a pair to produce the correct difference ∆4 by random can be
assumed to be 2−48. Since we partially encrypt 217 pairs in average for 220 key
candidates, the probability that a false-positive pair occurs is about

1− PrPoisson[n = 237, p = 2−48, x ≤ 0] ≈ 4.88 · 10−4.

D Key-Recovery Attack on Simon64/k

For our attack on Simon64/k, we use the 21-round differential characteristic
from Table 6 (see Appendix A) over rounds 2− 22:

∆1 = (∆8, ∆6,10)
2−61.01

←−−−−−→
21 rounds

(∆6,10, ∆8) = ∆22.

Attack Procedure. The adversary chooses 262 plaintext pairs (P, P ′) s.t. their
differences yield∆1 after the first round. Afterwards, it collects their correspond-
ing ciphertext pairs (C,C ′) from an encryption oracle. From our differential, we
obtain the following truncated:

(∆L23, ∆R23) = (∆12,[7,11,14,18], ∆6,10),

(∆L24, ∆R24) = (∆6,10,14,[8,9,12,13,15,16,19,20,22,26], ∆12,[7,11,14,18]),

(∆L25, ∆R25) = (∆8,[2,7,9,10,11,13−18,20−24,27,28,30],

∆6,10,14,[8,9,12,13,15,16,19,20,22,26]),

(∆L26, ∆R26) = (∆[0,3,4,6,8−26,28−31], ∆8,[2,7,9,10,11,13−18,20−24,27,28,30]).
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The adversary has to guess 36 subkey bits in total, more precisely

– four bits of K23: K23
3,13,17,31,

– ten bits of K24: K24
0,4,5,7,11,14,18,19,21,25, and

– 22 bits of K25: K25
1−3,5−9,12,13,15−17,19−23,26,27,29,31.

In the following, the adversary takes the obtained ciphertexts and inverts the
final round to filter out wrong pairs with the help of the 13 known bits of ∆L25

and the 22 known bits of ∆R25. Afterwards, it partially decrypts all 262−13−22 =
227 remaining pairs for all 236 subkey candidates to check ∆22.

Attack Complexity. The attack requires 263 chosen plaintexts. The adver-
sary has to store 227 pairs, which is equivalent to 2 · 227 · 64/8 ≈ 231 bytes, or
alternatively, 236 counters. The computational complexity is given by:

2 · 262︸ ︷︷ ︸
Ccollect

+2 · 262 · 1
26︸ ︷︷ ︸

Cfilter

+2 · 227 · 236 · 3
26︸ ︷︷ ︸

Ckey-guessing

+4 · 296−36︸ ︷︷ ︸
Cbruteforce

≈ 263.82 encryptions.

Note that we assume that one has to apply the brute-force step up four times
since we allow up to three false positives to occur. For Simon64/128, Cbruteforce
is given by 4 · 2128−36 = 294, which dominates the computational effort.

Success Rate. The probability that at least one correct pair occurs for the
correct key can be approximated by

1− PrPoisson[n = 262, p = 2−61.01, x ≤ 0] ≈ 0.863.

The probability of a pair to produce the correct difference ∆22 by random can
be assumed to be 2−64. Since we partially decrypt 227 pairs in average for 236

key candidates, the probability that at most three false-positive pairs occur is
about

1− PrPoisson[n = 263, p = 2−64, x ≤ 3] ≈ 1.75 · 10−3.

E Key-Recovery Attack on Simon96/k

For our attack on Simon96/k, we use the 30-round differential characteristic
from Table 7 (see Appendix A) over rounds 2− 31:

∆1 = (∆20, ∆6,14,18,22)
2−92.2

←−−−−−→
30 rounds

(∆8,16, ∆6,10,14) = ∆31.

Attack Procedure. The adversary chooses 292.2 plaintext pairs (P, P ′) s.t. their
differences yield∆1 after the first round. Afterwards, it collects their correspond-
ing ciphertext pairs (C,C ′) from an encryption oracle. From our differential, we
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obtain the following truncated path:

(∆L32, ∆R32) = (∆6,14,18,[9,16,17,24], ∆8,16),

(∆L33, ∆R33) = (∆20,[7,10,11,14,15,17−19,22,24−26,32], ∆6,14,18,[9,16,17,24]),

(∆L34, ∆R34) = (∆6,14,[8,9,11−13,15−28,30,32−34,40],

∆20,[7,10,11,14,15,17−19,22,24−26,32]),

(∆L35, ∆R35) = (∆8,[0,7,9−36,38,40−42], ∆8,9,11−13,15−28,30,32−34,40).

The adversary has to guess 43 subkey bits in total, more precisely

– four bits of K32: K32
1,9,15,23,

– 14 bits of K33: K33
2,7,9−11,13,16,17,21,23−25,31,47, and

– 25 bits of K34: K34
0,3,4,7,8,10−15,17−19,21,22,24−27,29,31−33,39.

In the following, the adversary takes the obtained ciphertexts and inverts the
final round to filter out wrong pairs with the help of the 24 known bits of
∆L34 and the 35 known bits of ∆R34. Afterwards, it partially decrypts all
292.2−24−35 = 233.2 remaining pairs for all 243 subkey candidates to check ∆31.

Attack Complexity. The attack requires 293.2 chosen plaintexts. The adver-
sary has to store 233.2 pairs, which is equivalent to 2 · 233.2 · 96/8 ≈ 237.8 bytes,
or alternatively, 243 counters. The computational complexity is given by:

2 · 292.2︸ ︷︷ ︸
Ccollect

+2 · 292.2 · 1
35︸ ︷︷ ︸

Cfilter

+2 · 235 · 243 · 3
35︸ ︷︷ ︸

Ckey-guessing

+ 296−43︸ ︷︷ ︸
Cbruteforce

≈ 293.24 encryptions.

For Simon96/144, Cbruteforce is given by 2144−43 = 2101 encryptions, which dom-
inates the computational effort.

Success Rate. The probability that at least one correct pair occurs for the
correct key can be approximated by

1− PrPoisson[n = 292.2, p = 2−92.2, x ≤ 0] ≈ 0.632.

The probability of a pair to produce the correct difference ∆22 by random can
be assumed to be 2−96. Since we partially decrypt 233.2 pairs in average for 243
key candidates, the probability that a false-positive pair occurs is about

1− PrPoisson[n = 275.2, p = 2−96, x ≤ 0] ≈ 5.48 · 10−7.

F Key-Recovery Attack on Simon128/k

For our attack on Simon128/k, we use the 41-round differential characteristic
from Table 7 (see Appendix A) over rounds 2− 42:

∆1 = (∆12, ∆6,10,14)
2−124.6

←−−−−−→
41 rounds

(∆6,10,14, ∆12) = ∆42.
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Attack Procedure. The adversary chooses 2124.6 plaintext pairs (P, P ′) s.t.
their differences yield ∆1 after the first round. Afterwards, it collects their cor-
responding ciphertext pairs (C,C ′) from an encryption oracle. From our differ-
ential, we obtain the following truncated path:

(∆L43, ∆R43) = (∆8,16,[7,11,14,15,18,22], ∆6,10,14),

(∆L44, ∆R44) = (∆6,14,18,[8,9,12,13,15−17,19,20,22−24,26,30], ∆8,16,[7,11,14,15,18,22]),

(∆L45, ∆R45) = (∆[7,9−11,13−28,30−32,34,38],

∆6,14,18,[8,9,12,13,15−17,19,20,22−24,26,30]),

(∆L46, ∆R46) = (∆6,[8−36,38−40,42,46], ∆[7,9−11,13−28,30−32,34,38]).

The adversary has to guess 50 subkey bits in total, more precisely

– six bits of K43: K43
3,7,13,17,21,63,

– 15 bits of K44: K44
0,1,4,7−9,11,14,15,18,21−23,25,29, and

– 29 bits of K45: K45
1,2,5−13,15−17,19−27,29−31,33,37,63.

In the following, the adversary takes the obtained ciphertexts and inverts the
final round to filter out wrong pairs with the help of the 39 known bits of
∆L45 and the 50 known bits of ∆R45. Afterwards, it partially decrypts all
2124.6−39−50 = 235.6 remaining pairs for all 250 subkey candidates to check ∆42.

Attack Complexity. The attack requires 2125.6 chosen plaintexts. The adver-
sary has to store 235.6 pairs, which is equivalent to 2 · 235.6 · 128/8 ≈ 240.6 bytes,
or alternatively, 250 counters. The computational complexity is given by:

2 · 2124.6︸ ︷︷ ︸
Ccollect

+2 · 2124.6 · 1
46︸ ︷︷ ︸

Cfilter

+2 · 235.6 · 250 · 3
46︸ ︷︷ ︸

Ckey-guessing

+ 2128−50︸ ︷︷ ︸
Cbruteforce

≈ 2125.63 encryptions.

For Simon128/192, Cbruteforce is given by 2192−50 = 2142 encryptions, which
dominates the computational effort. For Simon128/256, the brute-force effort is
2256−50 = 2206 encryptions.

Success Rate. The probability that at least one correct pair occurs for the
correct key can be approximated by

1− PrPoisson[n = 2124.6, p = 2−124.6, x ≤ 0] ≈ 0.632.

The probability of a pair to produce the correct difference ∆42 by random can
be assumed to be 2−128. Since we partially decrypt 235.6 pairs in average for 250
key candidates, the probability that a false-positive pair occurs is about

1− PrPoisson[n = 285.6, p = 2−128, x ≤ 0] ≈ 1.72 · 10−13.
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