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ABSTRACT
We study provably secure anonymity. We begin with rigor-
ous definition of anonymity against wide range of computa-
tionally bounded attackers, including eavesdroppers, mali-
cious peers, malicious destinations, and their combinations.
Following [21], our definition is generic, and captures differ-
ent notions of anonymity (e.g., unobservability and sender
anonymity).

We then study the feasibility of ultimate anonymity: the
strongest-possible anonymity requirements and adversaries.
We show there is a protocol satisfying this requirement, but
with absurd (although polynomial) inefficiency and over-
head. We show that such inefficiency and overhead are
unavoidable for ‘ultimate anonymity’. We then present a
slightly-relaxed requirement and present feasible protocols
for it.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.4.1 [Computers and Society]:
Public Policy Issues—Privacy

Keywords
anonymous communication; anonymity; unobservability; un-
linkability; metrics; theory

1. INTRODUCTION
Anonymous communication is an important goal, and is

also interesting and challenging. Since the publication of the
first, seminal paper by Chaum [10], there has been a large
research effort by cryptography and security researchers to
study anonymity and develop solutions, resulting in numer-
ous publications and several systems.

Research of anonymous communication is challenging; in-
deed, it is not even easy to agree on good definitions. Much
of the research uses entropy-based definitions, e.g., the prob-
ability of identifying the sender must be lower than some
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threshold. Syverson discusses in depth the limitations of
this definitional approach [32], and in particular, the fact
that it fails to capture the capabilities and limitations of the
attacker.

Our goal is to study rigorous definitions, capturing the
strongest possible and feasible definitions of anonymous com-
munication. Following the approach of [32], we focus on
well-defined adversary capabilities, and present a rigorous,
indistinguishability-based definition, considering also the
strongest possible adversaries and the strongest anonymity
requirements.

It seems that rigorous study of anonymous communica-
tion, may necessarily involve complex definitions; this prob-
ably explains the fact that with so much research on anony-
mous communication, not many works use rigorous mod-
els. Our work extends the definitions of Hevia and Miccian-
cio [21], which are based on an indistiguishability experi-
ment: the attacker chooses two scenarios and the experi-
ment simulates one of them; the attacker should distinguish
which scenario was simulated.

In [21], the adversary was limited, and in particular was
only ‘eavesdropper’ - it could not control any participant, in
particular, not the destination. These limitations are very
significant; in fact, most of the efforts to develop and re-
search anonymous communication, in particular deployed
anonymity systems, focused on anonymity against a (ma-
licious) destination and/or malicious peers. We extend [21]
to deal with such realistic threats.

Our extended definitions allow adversary to control active,
malicious peers and destination. This requires us to define
precise model and experiments. These are (even) more com-
plex that these of [21]; however, this complexity may be un-
avoidable when trying to rigorously study anonymity. (One
obvious challenge for future research is to present simple
models and definitions.)

Dealing with a malicious destination is esp. challeng-
ing. Indeed, many of the anonymity properties considered in
the common terminology of Pfitzmann and Hansen [24–26],
e.g., unobservability, are trivially inapplicable against a ma-
licious destination (which can observe received traffic). We
conclude, that ‘ultimate’ anonymity requires the strongest
properties achievable against malicious destination, and in
addition, the strongest properties achievable assuming a be-
nign destination.

Another challenge we had to deal with, is that a strong
adversary should be allowed to be adaptive. As with many
cryptographic primitives, there is a significant difference be-
tween adaptive and non-adaptive adversaries (for example



CCA1 and CCA2 encryption schemes [3]), and between pas-
sive and active attackers (for example security against semi
honest or malicious adversaries in multi party computation
protocols [17]). To deal with adaptive and active attackers,
we defined a simulation model for the tested protocols. This
challenge was not relevant or addressed in previous works,
e.g., [21].

Using our definitions and model, it is possible to formally
prove different anonymity notions with respect to different
attacker capabilities. The attacker capabilities include the
corrupted participants, and the participants to whom it can
eavesdrop. Protocols can have different anonymity notions
against different attackers with different capabilities. An
example to formal proof of anonymity notions against these
attackers using our definitions, appears in [15].

1.1 Contributions
Our main contribution is in presenting rigorous, indistin-

guishability based definitions for anonymous communication
protocols, whose anonymity is assured even against strong,
malicious, adaptive attackers, which may control nodes, pos-
sibly including the destination. Previous rigorous defini-
tions [21] were limited to eavesdropping attackers, not even
ensuring anonymity against the destination; therefore, this
is significant, critical extension.

We explore two variants of this definition. The stronger
requirements essentially formalizes the strongest anonymity
considered in the literature, e.g., in the common terminol-
ogy [24–26]. We show it is possible to achieve this variant,
albeit, with an inefficient protocol (more a ‘proof of feasi-
bility’ than a real protocol). We further show, that this
inefficiency is unavoidable, i.e., we prove that any protocol
meeting this variant of the definition, would be very inef-
ficient. This motivates slightly relaxing the anonymity re-
quirements, as we do in our second definition. Indeed, we
show that this slightly-relaxed definition can be satisfied,
with reasonable efficient protocols. For example, the clas-
sical DC-net protocol [11] that fails to satisfy the stronger
requirement, does satisfy this slightly weaker requirement.
In Appendix E, we also present improved protocol, which
ensures this anonymity property even against multiple ma-
licious nodes.

Organization
In Section 2, we formally define the adversary model, and
present our indistinguishability based definition. In Section
3, we extend the definition to consider also malicious desti-
nation. In Section 5, we discuss the feasibility of the defini-
tion from Section 3 against strong attackers. In Section 6 we
present slightly relaxed definition for some of the anonymity
notions against malicious destination, and in Section 7 we
conclude and discuss future directions.

1.2 Related Work
There is a huge body of research in theory and practice

of anonymous communication, beginning with Chaum’s pa-
per [10]; see, e.g., a survey of known protocols in [28]. We
focus on recent definitional works.

Hevia and Micciancio [21] presented rigorous, indistin-
guishability based definitions to most anonymity notions,
limited eavesdropper adversaries. Our work extends [21] to
deal with strong, active, malicious attackers, including des-

tination. Their work contains also detailed discussion of
related work until 2008.

Several works use logic based approach, which simplifies
the cryptographic properties [19,20,22,33,35].

Few recent works extend [21] in different ways, e.g., ap-
plying the UC framework [8] for anonymous communication
[34], and further studying relations among the notions [6,23].
However, these works do not address our goals of study-
ing the strongest anonymity notions, in particular, against
strong active adversaries.

Pfitzmann and Hansen offered terminology to anonymity
properties [25], that contains comparison between the ter-
minology to the anonymity notions in [21].

Other works offer formal analysis of specific protocols.
In [7], [1] and [14] the Onion-Routing (OR) [27] protocol is
discussed; the authors present definitions for OR in the UC
framework [8]. In [14], the model of Feigenbaum et al. [13]
is used. In [7] and [1] the authors further discuss the secu-
rity properties required for OR cryptographic primitives, to
achieve provable anonymity.

2. DEFINITIONS
Following Hevia and Micciancio [21], our definition is based

on an experiment that simulates protocol runs. We let the
adversary choose two scenarios {(0), (1)}. The adversary
controls the scenarios, by controlling the application level of
all the protocol participants: who sends what to whom in
both scenarios. This is done by periodically choosing two
matrices of messages, M (0) and M (1), one for each scenario
{(0), (1)}.

The “relation” between the scenarios is restricted by the
anonymity notion N that is tested in the experiment and by
the capabilities of the adversary.

We define two experiments; the first simulates the proto-
cols by the M (0) matrices, and the second by M (1) matrices.
The information that the adversary receives during the sim-
ulation, is restricted by its capability (for example: global
eavesdropper receives all the traffic). The goal of the adver-
sary is to distinguish between the two experiments.

2.1 Network Model, Adversary and Peers

Network model.
Since our goal is to study anonymity against adaptive and

active attackers, we need a rigorous communication and ex-
ecution model.

In this work, we adopt the simplest model: fully syn-
chronous (‘rounds/iterations’) communication with instan-
taneous computation, allowing direct communication between
every two participants (clique).

Peers.
We let the adversary control the ‘application layer’ of all

peers, i.e., deliver requests to the protocol layer, to send
messages to particular destination(s).

In the protocol layer, the honest peers follow the protocol
and are simulated by the experiment, while the attacker
controls the ‘malicious peers’.

Different peers can have different roles in the protocol; for
example, protocols that use mixes [10, 29] or routers [12] to
assist anonymous communication by other peers, often have



two types of peers: client and mix (or router). The roles of
the participants are determined by the protocol.

Adversary.
The experiment simulates one of two scenarios that the ad-

versary chooses and manages adaptively. The adversary con-
trols the application layer of all the peers in each of the sce-
narios, by choosing at every round, two matrices M (0),M (1)

of messages (from each peer, and to each peer). The ca-
pabilities of the adversary (e.g., the number of corrupted
machines) and the tested anonymity notion, restrict the re-
lation between the scenarios the adversary can choose.

Regardless of these restrictions, peers controlled by the
attacker, can deviate arbitrarily from the protocol during
the experiment (i.e., act in malicious/byzantine manner).

The ability to select the entire sequence of messages to
be sent (the matrices) follows the ‘conservative’ approach
applied in experiments of cryptographic primitives such as
encryption [4] [3]. As mentioned in [21], in reality, the at-
tacker might have some influence on the application level
of its victims. Because we cannot predict the attacker’s in-
fluence about the application in different real scenarios, we
conservatively give the attacker the whole control.

2.2 Notations and Anonymity Notions
For every type of adversary, and every anonymity no-

tion N (e.g., anonymity, unlinkability, unobservability) there
is a relation that restricts the scenarios that the adversary
can choose in the experiment.

Informally, if every efficient adversary of some type (e.g.,
eavesdropper, or malicious destination), cannot distinguish
between every two scenarios, that are restricted by a relation
of some anonymity notion N, than the protocol ensures the
anonymity notion N corresponds to the relation, against this
kind of adversaries.

In this paper there are four different types of relations:

1. Basic relations RN, introduced in [21], for an adversary
that does not control participants (eavesdropper). See
Section 2.2.1 and Appendix A.

2. The RHN relations extend RN to deal also with an ad-
versary that controls corrupted participants. See Sec-
tion 2.2.2.

3. The R̂HN relations extend RHN, to deal also with mali-
cious destination. See Section 3.

4. The RH,τN relations are a relaxation of R̂HN. See Sec-
tion 6.

Notations.
We use the following common cryptographic and mathe-

matical notations:
For n ∈ N, we use [n] to denote the set {1, 2, ..., n}. We

use P(S) to denote the power set of a set S. Consider a set

S, and a multiset Ŝ, then Ŝ ∈ S* if and only if for every

s ∈ Ŝ, s ∈ S.
We use V = {0, 1}l to denote the messages space. A

collection of messages between n parties is represented by a
n × n matrix, M = (mi,j)i,j∈[n]. Each element mi,j ⊂ V *

is the multiset of messages from the i-th party to the j-th
party 1.

In this paper, a PPT algorithm is polynomial time with
regarding to its first parameter.

2.2.1 Eavesdropper adversaries anonymity notions:
The RN relation

To break anonymity notion N (see Table 1), the attacker
should distinguish between two scenarios it chooses (as se-
quences of matrices). To prevent eavesdropper attackers
from distinguishing between the scenarios according to in-
formation that the anonymity notion does not aim to hide
(unprotected data), [21] define for the different anonymity
notions, relations on the scenario matrices. Every relation
enforces both the matrices to contain the same unprotected
data.

The relations RN on pairs of scenario matrices for the
different anonymity notions, are defined and detailed in Ap-
pendix A and in Table 1.

Note that in most of this paper, we focus on the strongest
relations could be achieved against the different attackers:
unobservability (UO) and sender anonymity (SA). The unob-
servability relation RUO simply holds for all matrices pairs,
i.e., does not restrict the matrices at all. The relation for the
sender anonymity notion, RSA, requires that for every (re-
cipient) i, in both the matrices the i-th column contains the
same messages. Namely, every participant receives the same
messages (the attacker cannot learn information by what the
recipients receive). That way, the attacker can distinguish
between the scenarios only by the senders.

2.2.2 Anonymity with corrupted nodes: The RHN re-
lation

The RN relations (Section 2.2.1 and Appendix A) are ap-
plicable only for eavesdropper adversaries. If the attacker
controls a peer in the protocol, then it can inspect the mes-
sages in the peer’s application queue and check whether they
are from M (0) or from M (1). It can do the same also with the
messages that the controlled peer receives. Consequently,
the RN relations cannot be used for active adversaries.

We address this by defining new relations family, named
RHN, such that H ⊆ [n] is the subset of honest participants.
The RHN relation requires that in addition to the RN relation
on the matrices pair, no messages will be sent (in the appli-
cation level) from and to malicious participants ([n]−H).
RHN extends the requirement of identical unprotected data

in both the matrices, to active attackers. Figure 1 depicts
the RHN relation.

Definition 1. For a given n ∈ N, consider a pair of ma-
trices, (M (0),M (1)) ∈Mn×n(V *)2, H ⊆ [n], and a relation

RN ⊆ Mn×n(V *)2. We say that (M (0),M (1)) ∈ RHN if and
only if

1. (M (0),M (1)) ∈ RN.

2. For every i ∈ [n] − H and j ∈ [n], M
(0)
i,j = M

(1)
i,j =

M
(0)
j,i = M

(1)
j,i = ∅.

Notice that messages are sent from honest peers to cor-
rupted, only in the case of malicious destination; see Sec-
tion 3.

1We replaced [21]’s notation P(V ) with V *, because a pow-
erset does not contain multisets.



Figure 1: Example of RHN, for H = [h] ⊂ [n]. (M (0),M (1)) ∈
RHN if and only if (M (0),M (1)) ∈ RN and B0 and B1 contain
only empty messages multisets. Notice that for all RN in
Table 1, (A0, A1) ∈ RN (for |H| × |H| matrices).

2.2.3 The attacker capabilities
The attacker capabilities, denoted Cap, are a pair Cap =

(Cap[H],Cap[EV ]) ∈ P([n])2. Cap[H] specifies the ma-
chines controlled by adversary A, and Cap[EV ] identifies
machines to which the attacker can eavesdrop (e.g., all ma-
chines, for a global eavesdropper). An attacker with capa-
bility Cap, controls the machines with indexes in Cap[H]
and eavesdrops the traffic of the machines with indexes in
Cap[EV ].

In Section 3, we extend the attacker capabilities to deal
also with malicious destination, by adding to Cap another
element, a bit Cap[MD]; the definition of this section is the
same as that definition, using Cap[MD] = 0.

2.3 The Experiment ExptComp−N−b
π,n,A,Cap (k)

2.3.1 The experiment parameters: N, b, k, π, n,A and
Cap.

The N parameter defines the anonymity notion (see Ta-

ble 1 in Appendix A). ExptComp−N−b
π,n,A,Cap (k) defines a run for

b ∈ {0, 1}. We test whether a PPT adversary is able to
distinguish between a run where b = 0 and a run where
b = 1.

The parameter k is called security parameter. π is a PPT
algorithm that represents the tested protocol, and n is the
number of participants in the protocol simulation, n < l(k)
when l(·) is some polynomial. To initialize the parties, e.g.,
establish shared (or public/private) keys, we use π.setup
method, which receives the number of participants n and
the identity i of a specific participant as parameters, and
outputs the initial state of i (denoted by Si); this follows the
‘common reference string’ model [9]. In practice, this sim-
ply means that we assume the parties have appropriate keys
(shared or public/private). The π.simulate method receives
the current state of a participant, together with its incom-
ing traffic and new messages from the application layer, and
returns its next state and its outgoing traffic.

The last two experiment’s parameters, A and Cap, define
the attacker. A is the attacker PPT algorithm, and Cap is
its capabilities.

2.3.2 Overview

The experiment (see Algorithm 1) simulates the protocol,
π, over one of two scenarios that the attacker, A, chooses
and manages adaptively. The simulated scenario is chosen
by the b bit. At the beginning of the experiment, π’s setup
produces a sequence of initial states for all the simulation
participants (line 1), and H is defined to be the honest par-
ticipants set (line 2). A is then initialized with the states of
the participants it controls, and decides the maximal number
of iterations that the experiment will run (rounds ∈ poly(k),
as A is a PPT algorithm, and it writes 1rounds. See line
3). The set of the participants’ indexes that A receives
their incoming and outgoing traffic during the simulations
is Cap[H] ∪ Cap[EV] (line 12).

Every experiment’s iteration begins with A choosing two
messages matrices, M (0) and M (1) (line 5). The experi-
ment verifies that the matrices have identical unprotected
data by the tested anonymity notion, N (i.e., verifies that

(M (0),M (1)) ∈ RHN. See line 6). If the matrices are valid,

the experiment passes only the messages in the M (b) ma-
trix to the application queues of the participants and simu-
lates the honest participants by π (line 10). A simulates the
participants it controls (unnecessarily by the protocol. See
line 12).

At the end of every iteration, the adversary A can choose
b′ 6= NULL to end the experiment and guess b′ for the
simulated scenario b, or b′ = NULL to continue (lines 13
and 14). The experiment might end, returning 0, if the
attacker chooses invalid pair of matrices (6∈ RHN), or after
rounds iterations.

2.3.3 Experiment additional notations
Si is the state of the i-th participant. The experiment

saves and manages the states of the honest participants.
SA is the state of the attacker A. The experiment gets

and saves the attacker state after every action of A, and
sends it as a parameter for every action A should do. The
initial information for A is the initial states of the peers it
controls.

We use Ci,j,t to denote the set of the elements (possibly
ciphertexts), that were sent from the i-th participant to the
j-th participant (the participants that are represented by Si
and Sj) during the t-th iteration.

2.3.4 Experiment runtime is O(poly(k))

The runtime of the experiment (Alg. 1) is polynomial; this
is critical for the proof of the anonymity notions. Using our
definition, it is possible to formally prove anonymity notions
by a polynomial time reduction to cryptographic primitives.
The reduction contains simulation of the above experiment,
and therefore its runtime must be polynomial in the security
parameter k.

The main loop in the experiment (lines 4-15) does at most
rounds iterations, where rounds is the length of a parame-
ter that A outputs in poly(k) time (during the Initialize
method with 1k as the first argument), such that the num-
ber of iterations in the main loop is poly(k). The other loops
do at most n iterations.

All the actions during the simulation take also polynomial
time: The algorithms π and A are polytime (in the length
of the first parameter 1k), and all the other actions in the
experiment take constant time. The attacker’s total runtime
is also polynomial in k, as the attacker’s total runtime is
bounded by the experiment’s total runtime.



Algorithm 1 ExptComp−N−b
π,n,A,Cap (k)

1: for i = 1 to n do Si←π.Setup(1k, i, n) end for
2: H = [n]− Cap[H]
3: < SA, 1

rounds >← A.Initialize(1k, {Si}i∈Cap[H])
4: for t = 1 to rounds do
5: < SA,M

(0),M (1) >← A.InsertMessages(1k,SA)

6: if (M (0),M (1)) 6∈ RHN then
7: return 0
8: end if
9: for all i ∈ H do

10: < Si, {Ci,j,t}nj=1 >←
π.Simulate(1k,Si, {Cj,i,t−1}nj=1, {m

(b)
i,j }

n
j=1)

11: end for
12: < SA, {Ci,j,t}i∈Cap[H]

1≤j≤n
>←

A.Simulate(1k,SA, {Ci,j,t−1}i∨j∈Cap[H]∪Cap[EV ])

13: < SA, b
′ >← A.Guess(1k,SA)

14: if b′ 6= NULL return b′ end if
15: end for
16: return 0

2.4 Comp-N-Anonymity Definition

Definition 2. The Comp-N-advantage of an attacker
A that runs with k as a parameter, is defined as:
AdvComp−N

π,n,A,Cap(k) =

|Pr[ExptComp−N−1
π,n,A,Cap (k) = 1]− Pr[ExptComp−N−0

π,n,A,Cap (k) = 1]|

Definition 3. Protocol π is Comp-N-anonymous, when
N ∈ {SUL,RUL,UL, SA,RA, SA*, RA*, SRA,UO} (see
Table 1), against attackers with capability Cap ∈ P ([n])2, if
for all PPT algorithms, A, there exists a negligible function
negl such that,

AdvComp−N
π,n,A,Cap(k) ≤ negl(k)

3. ANONYMITY AGAINST MALICIOUS
DESTINATION

The Comp-N-anonymity definition of the previous sec-
tion covers the following attackers: eavesdroppers, malicious
peers, and any combination of them that controls the appli-
cation adaptively. However, due to the restrictions of theRHN
relation, the definition cannot be used for testing anonymity
properties when the attacker controls destinations of mes-
sages from honest peers. Such an attacker model is relevant
for anonymous mail services and anonymous web surfing.
Namely, this is one of the main goals of peer to peer net-
works like Tor [12].

In this section we extend Definition 3 to deal also with
malicious destination. This extension is relevant only for two
Comp-N-anonymity notions: N ∈ {SUL, SA} (see Table 1
in Appendix A). The other anonymity notions are aimed
to hide information that the destination has, and therefore
they are irrelevant in such an attacker model.

To extend the definition also against malicious destina-
tion, we apply the RN relation also on the messages from
honest peers to malicious peers. We enforce this new restric-

tion by defining a new relation, R̂HN. Figure 2 depicts the
new relation.

Figure 2: Example of R̂HN, for H = [h] ⊂ [n]. (M (0),M (1)) ∈
R̂HN if and only if (M (0),M (1)) ∈ RN, and B0 and B1 contain
only empty messages multisets.

Definition 4. (R̂HN) For a given n ∈ N, consider a pair

of matrices, (M (0),M (1)) ∈ Mn×n(V *)2, a relation RN for

N ∈ {SUL, SA}, and H ⊆ [n]. We say that (M (0),M (1)) ∈
R̂HN if and only if

1. (M (0),M (1)) ∈ RN.

2. For every i ∈ [n]−H and j ∈ [n], M
(0)
i,j = M

(1)
i,j = ∅.

3.1 Comp-N-Anonymity Against Malicious
Destination

We extend the definition to deal with malicious destina-
tion, by extending the capability and the Comp-N-b exper-
iment (Alg. 1).

3.1.1 Extending the attacker’s capability
We add a bit MD to the attacker’s capability. This bit

indicates whether the attacker is treated as malicious desti-
nation or not. After the addition, Cap = (Cap[H],Cap[EV ],
Cap[MD]) ∈ P([n])2×{0, 1}. Like the other Cap’s elements,
we denote Cap’s MD by Cap[MD].

The default value of Cap[MD] is 0, so when testing pro-
tocol’s anonymity notion not against malicious destination,
the capability could be written as before the extension.

3.1.2 Extending the Comp-N-b experiment (Alg. 1)
The messages matrices verification should be done either

by RHN or by R̂HN, according to the attacker capability. The
change is in line 6:

if (Cap[MD] = 0 and (M (0),M (1)) 6∈ RHN) or (M (0),M (1))

6∈ R̂HN then.

4. COMP-N-ANONYMITY DISCUSSION
In this section we discuss the definition of the previous

section. We begin with comparison of our definition and
the definition of Hevia and Micciancio [21], and then we dis-
cuss the Comp-N-anonymity of anonymity protocols that
rely on high traffic from many users. In the end of this sec-
tion, we discuss the relations between the different Comp-N-
anonymity notions, and the anonymity of Comp-N-anonymous
protocols against attackers with capability Cap, against at-
tackers with other capabilities.



4.1 Our Definition vs. [21]’s Definition
The most striking difference between the definitions, is the

kinds of the attackers. While [21] deals only with a passive
global eavesdropper, our definition take into consideration
wider range of attacker.

Another difference is that in contrast to [21], our defini-
tion gives the attacker to control the application level adap-
tively. In [21]’s experiment, only once, at the beginning of
the experiment, the adversary chooses both the matrices.
Then the protocol is simulated by one of the matrices, and
the adversary should guess which one was simulated. An
example that illustrates the difference appears in Appendix
C.

4.1.1 [21]’s definition in our model
We now present a short and simple change to our ex-

periment for making [21]’s definition a special case of our
definition. The change is additional bit to the attacker’s
capability, that indicates whether the attacker controls the
application adaptively or not. After the addition, Cap ∈
P([n])2 × {0, 1}2. If the bit in the capability is 0 (the at-
tacker is non-adaptive), than the experiment gives the at-

tacker to choose the matrices M (0) and M (1) only in the first
iteration, and in the rest of the iterations, the experiment
fixes the matrices to be empty messages matrices.

In their experiment, Hevia and Micciancio do not spec-
ify how to simulate the protocol, but under our protocol’s
simulation model (see Alg 1) with the new addition, we can
test their definition. In their model the attacker is a passive
global eavesdropper that does not control the application
adaptively; so, we just specify the attacker’s capability to
be (∅, [n], 0, 0). π’s setup method of the simulated proto-
col, returns initial states of n machines.

4.2 Traffic Based Anonymity
The definition of Comp-N-Anonymity, gives the attacker

the power to control the application level of all the proto-
col’s participants. Therefore, anonymity protocols that their
anonymity mainly depends on high traffic from many users,
are usually not Comp-N-anonymous, even for the weaker
N-anonymity notions, and against weak attackers.

In Appendix D, we bring a detailed example of a sim-
plified version of the Tor protocol [12]. Tor is the most
popular anonymity network ever, and it provides anonymity
for millions of users. We show that Tor is not Comp-N-
Anonymous, for any N (see Table 1), even against the weak-
est attacker: a local eavesdropper to one arbitrary Tor router.

4.3 Relations Between the Comp-N-Anonymity
Properties

4.3.1 Relations between Comp-N-anonymity notions
Similarly to [21], some Comp-N-anonymity notions imply

other, against attackers with the same capability: UO →
SRA → SA* → SA → SUL, SRA → RA* → RA → RUL,
SA* → UL → RUL and RA* → UL → SUL. This stems
directly from the definition of the RHN relation; for every
attacker’s capability Cap, for every relation above of the
form X → Y , RHY ⊂ RHX . Hence, an attacker A that has
non-negligible advantage AdvComp−Y

π,n,A,Cap(k) > negl(k), also
have non-negligible advantage for the Comp-X-anonymity
notion.

4.3.2 Relations between the different attacker’s ca-
pabilities

We first show that as expected, enlarging Cap[EV ], the
attacker’s eavesdropped participants set, can only increase
the attacker’s power.

Lemma 5. If π is a Comp-N-anonymous protocol (for
some anonymity notion N [21]) against attackers with ca-
pability Cap = (H, EV , MD), then π is also Comp-N-
anonymous against attackers with capability Cap’ = (H,
EV ′ ⊂ EV , MD).

Proof. (Sketch) We briefly show how to build an at-
tackerA with capability Cap that breaks π’s Comp-N-anonymity,
given an attacker A′ with capability Cap′ that can do that.
A runs in one of the Comp-N-b experiments (b ∈ {0, 1}).

It then simulates A′ over the experiment, and does exactly
what A′ does. A that gets information according to Cap,
pass information to A′, only according to Cap′. The cor-
rectness of the reduction is trivial.

In contrast, enlarging Cap[H], the attacker’s controlled
participants set, might detract its power. The intuition for
the counter-example we bring here, is that controlling par-

ticipants has some price; the RHN and R̂HN relations, restrict
the controlled participants (Cap[H]).

Lemma 6. If π is a Comp-N-anonymous protocol (for
some anonymity notion N [21]) against attackers with ca-
pability Cap = (H, EV , MD), then π not necessarily
Comp-N-anonymous against attackers with capability Cap’

= (H
′ ⊂ H, EV , MD).

Proof. (Sketch) Every protocol is Comp-N-Anonymous
against attacker that controls all the participants (H = [n]),
because in such a case, there is no protected data at all
(from the attacker), and both the messages matrices must
be identical. But, there are protocols that are not Comp-N-
anonymous even against one controlled participant. The ex-
ample in Appendix D, when the attacker controls one router,
instead of eavesdropping to it, demonstrates this (for every
N).

The last lemma shows that for N ∈ {SUL, SA}, extending
the capability of an attacker to be also malicious destination,
does not detract the attacker’s power.

Lemma 7. For N ∈ {SUL, SA}, if π is a Comp-N-anonymous
protocol against attackers with capability Cap = (H, EV , 1),
then π is also Comp-N-anonymous against attackers with
capability Cap’ = (H, EV , 0).

Proof. Directly from the definitions of the RHN and R̂HN
relations: for every N ∈ {SUL, SA} and H ⊆ [n], RHN ⊆
R̂HN.

5. ULTIMATE ANONYMITY

Definition 8. A protocol ensures ultimate anonymity if
it ensures both the strongest anonymity notions feasible:

1. Comp-SA-anonymity (sender anonymity) against ma-
licious destination that is a global eavesdropper and
controls (a minority of the) additional participants (in
short: strong malicious destination).



2. Comp-UO-anonymity (unobservability) against global
eavesdropper and (a minority of the) participants (strong
attacking peers).

In order to exclude the trivial solution of a protocol that
does not send any message, we limit the discussion to proto-
cols that ensure the liveness property; informally, protocols
that while the attacker does not deviate from the protocol,
ensure messages delivery.

A stronger property we would like to achieve is t-liveness.
Informally, a protocol satisfies t-liveness if it ensures mes-
sages delivery in the presence of up to t malicious partici-
pants.

While ensuring unobservability against strong attacking
peers is almost trivial, it is complicated to ensure sender
anonymity against strong malicious destination and both
the requirements together (ultimate anonymity).

5.1 Ensuring Comp-UO-Anonymity Against
Strong Attacking peers

It is possible to ensure any anonymity notion N, against
any combination of malicious participants and eavesdrop-
pers (without malicious destination).

In fact, the following trivial protocol ensures Comp-UO-
anonymity against strong attacking peers (and therefore en-
sures all the other anonymity notions; see Section 4.3.1). In
this protocol, every round, every participant sends a message
(real or dummy) to every other participant; the communi-
cation is semantically secure encrypted [4].

Because in this trivial protocol, honest peers communi-
cate with each other directly, no information can be learned
about the scenarios without learning information from the
encrypted content. Formal proof would reduce the Comp-
UO-anonymity to the security of the trivial protocol’s en-
cryption scheme.

Protocols that ensure Comp-UO-anonymity and yet pro-
vide some anonymity (although not Comp-SA-anonymity;
see below) are DC-net [11] and mixnet [10] based proto-
cols [29] that use fixed sending rate.

5.2 Known Protocols are Not Comp-SA-
Anonymous Against Strong Malicious Des-
tination

None of the known protocols [28] is Comp-SA-anonymous
against strong malicious destination.

For example, consider the DC-net protocol [11]. We show
that DC-net is not Comp-SA-anonymous even against pas-
sive destination (in Appendix B.2). Briefly, DC-net fails to
hide whether two messages are sent by the same peer or by
different peers.

A similar attack works also against a scheme of many
peers that send via mix or mixes cascade [10]. When the
destination controls also some mixes, other active attacks
are possible [30].

In Theorem 10 we show that a Comp-SA-anonymous pro-
tocol exists; on the other hand, Theorems 13 and 15 show
that any Comp-SA-anonymous protocol against malicious
destination that is also global eavesdropper, must have high
overhead.

5.3 Ensuring Ultimate Anonymity Against
Strong Attackers

Secure multi-party computation [17] allows n parties to
compute a polynomially-computable n-ary functionality f
(functionality with n inputs and n outputs), without any of
them learning anything but the result of the computation,
even if some minority of them are malicious. There has been
many results in this area, where the most basic ones are of
BGW [5, Theorem 3] with malicious minority of less than
n
3

, and of GMW [18] with any malicious minority. Based
on these results, in Theorem 10 we prove that there exists a
polynomial time protocol that satisfies ultimate anonymity.
The proof relies on the GMW’s theorem [18] (informally in
Theorem 9) although for the purpose of feasibility proof,
other protocols would be useful as well.

Theorem 9. (GMW theorem [18] - informal): Consider
a synchronous network with pairwise semantically secure en-
crypted channels. Then:

For every polynomially-computable n-ary functionality f ,
there exists a polynomial time protocol Πf for computing f
with computational security in the presence of a malicious
adversary corrupting up to n

2
of the parties.

Namely, during a run of Πf , a party might learn more
than the case where a trusted third party (TTP) securely
receives f ’s inputs, computes f , and sends f ’s outputs to
the participants securely, only with negligible probability.

Theorem 10. There exists polynomial time protocol that
satisfies liveness and ensures ultimate anonymity (Defini-
tion 8).

Proof. (sketch) We present a polynomially-computable
n-ary functionality f that given a trusted third party (TTP),
satisfies ultimate anonymity and liveness. From Theorem 9,
this trusted third party can be replaced with a secure multi-
party computation protocol Πf , if the malicious participants
set S ⊂ [n], is a minority of the n participants (|S| < n

2
).

The functionality f sends up to some c ∈ poly(k) messages.
For simplicity, in this proof sketch, we consider a simple

scheme of n participants, such that all the participants send
anonymous messages only to one of them (the destination).

The n-functionality f is described in Algorithm 2. As
an input to the secure computation, every peer chooses the
lexicographically-first message in its application queue (or a
dummy message if the application queue is empty), and as
output the destination receives the lexicographically-lowest
message, and the other peers receive empty output.

The functionality f has a state that saves all the real
messages lexicographically-sorted; we refer this state as a
priority queue by lexicographic order, PQ. Because the
state must be of constant size (otherwise, the attacker can
learn about the number of real messages that were sent), we
choose |PQ| = c, and to prevent learning from overflows, we
limit the number of messages delivered by the protocol to c.
The functionality f is polynomially-computable in the secu-
rity parameter k (the inputs length and |PQ| are ∈ poly(k),
and f is a polynomial time algorithm).

From Theorem 9, it is enough to prove that a protocol
If , with a TTP that receives n inputs, satisfies both the
requirements of the theorem, when some minority of the
inputs is completely controlled by the attacker, and the other
(the ones that represent the honest peers) are restricted by
the relevant relations.

We next present such protocol If . During a run of If ,
the TTP iteratively securely receives f ’s inputs from the n



Algorithm 2 The n-ary functionality f .
State: A priority queue by lexicographic order PQ, and
Counter for the incoming real messages. The initial state of
PQ is an empty priority queue, and Counter starts from 0.
Input: n messages (m1,m2, ...,mn).
Output: We denote the destination as the i-th party; the
output is (o1, o2, ..., oi, ..., on), such that oi is the first mes-
sage in the priority queue PQ (or⊥message if PQ is empty),
and for every j 6= i, oj =⊥.

1: for all message m in Sort(m1,m2, ...,mn) do
2: if m is a real message and Counter < |PQ| then
3: PQ.insert(m)
4: Counter = Counter+1
5: end if
6: end for
7: if PQ is empty then
8: m = dummy
9: else

10: m = PQ.removeHead()
11: end if
12: Output = (⊥)n

13: Output[i] = m
14: return Output

parties, computes f , and securely sends f ’s outputs to the
parties.

Lemmas 11 (If is Comp-SA-anonymous) and 12 (If is
Comp-UO-anonymous) together show that If ensures ulti-
mate anonymity. The lemmas are stated and proven later
in this section.

From Theorem 9, the trusted third party in If can be re-
placed by a polynomial time secure multiparty computation
of the n participants, such that the malicious participants
set is S ⊂ [n], and |S| < n

2
. This protocol is denoted by

Πf , and we assume that during its setup process, every two
participants share unique key to construct private channels.
Theorem 9 also says that it is impossible for a PPT A to
learn about the inputs and the outputs of the honest peers
from a run of Πf more than it learns from a run of If (except
with negligible probability).

Assume on the contrary that AdvComp−SA

Πf ,n,A,(S,[n],1)
(k) is not

negligible in k.
If A uses the same inputs for the honest parties during

the experiment in both the scenarios, A cannot achieve any
advantage. Hence, A succeeds to distinguish between two
different scenarios with different inputs to the functionality.
But from Lemma 11, there is no PPT A that can learn
such information from a run of If , except with negligible
probability. Contradiction to Theorem 9, hence Πf ensures
Comp-SA-anonymity against strong malicious destination.

Similarly, from Lemma 12, we get that Πf is also Comp-
UO-anonymous against strong attacking peers.

To complete the proof, the liveness property of Πf is de-
rived directly from the correctness of Theorem 9.

We now prove Lemmas 11 and 12 about the ideal protocol,
If , described in the proof of Theorem 10.

Lemma 11. The If protocol ensures Comp-SA-anonymity
against strong malicious destination.

Proof. We prove that given any S ⊂ [n], |S| < n
2

, and
a trusted third party that calculates the n-ary functional-

ity f (see Alg. 2), and that the communication between
the trusted party and the peers is secure, it holds that
AdvComp−SA

If ,n,A,(S,[n],1)
(k) ≤ negl(k) (notice that we do not count

the TTP as a participant).
Namely, given n peers, some minority of them is malicious

and a TTP, no PPT attacker A that is a global eavesdrop-
per malicious destination that controls the malicious peers,
can distinguish between any two scenarios with identical un-
protected data with non-negligible probability.

In the proof we assume that the destination of the mes-
sages is one of the malicious peers; otherwise, this is the case
of strong attacking peers (Lemma 12).

Because If uses trusted third party, the only information
that the attacker receives is the outputs to the (only) mali-
cious destination from the trusted party. We prove that for
every two scenarios with the same unprotected data, i.e.,
two scenarios that are represented by two sequences of mes-

sages matrices {M (0)
i }

s
i=1 and {M (1)

i }
s
i=1, such that for every

1 ≤ i ≤ s, (M
(0)
i ,M

(1)
i ) ∈ R̂HSA, the information that the at-

tacker receives is identical in both the scenarios.
Every round of the protocol, the malicious destination re-

ceives one message (the other malicious peers always receive
⊥). We claim that in both scenarios, it receives exactly the
same messages in the same order. Every honest peer sends
the lexicographically-first message from its application level
that has not sent yet, to the TTP. Malicious peers might
sends whatever they want. Among all these messages, the
TTP sends to the destination the lexicographically-first mes-
sage. Therefore, every round the message with the lowest
lexicographic value (from all the application messages that
have not reached the destination until this round, and the
messages of the malicious participants) is sent to the desti-
nation.

In both the scenarios, due to R̂HSA, every round the same
messages are inserted into the application queue of the hon-
est peers for the destination (the only possible difference
is the distribution of the messages among the honest po-
tential senders). The peer with the lexicographically-first
message in each scenario will send it to the TTP, so the
TTP always holds the application message with the lexico-
graphically lowest value, that has not been sent yet to the
destination. The TTP will send the destination either this
message or a message from malicious peer (or a dummy).

Because the adversary receives identical information in
both the scenarios, it cannot distinguish between them.

Lemma 12. The If protocol ensures Comp-UO-anonymity
against strong attacking peers.

Proof. Similarly to the Comp-SA-anonymity proof, and
under the same notations, we need to prove that the advan-
tage AdvComp−UO

If ,n,A,(S,[n],0)
(k) is negligible in k for any A.

All the information the malicious peers receive is just ⊥
from the TTP (by f ’s definition, Alg. 2), regardless of the
chosen scenarios, and without any option to learn something
about the inputs of the honest peers. Consequently, the
attacker does not learn any information about the simulated
scenario and has no advantage at all.

5.3.1 Remark about the protocols Πf and If

The lexicographic order of the messages in the application
queues and in PQ is necessary. Let I ′ be identical protocol,
but such that the messages are chosen uniformly out of the



application queues, and the trusted third party’s priority
queue (by lexicographic order) is replaced with a multiset of
messages, such that the message to send is chosen uniformly
among the messages in the multiset.

We consider the following two (valid by the R̂HSA relation)
scenarios: In the first scenario, only p1 sends four messages
{m1,m1,m1,m2} to the destination, and in the second sce-
nario p1 sends to the destination {m1,m1,m1}, and p2 sends
the additional message m2. A malicious destination can dis-
tinguish between the scenarios by the distribution of the
first message that arrives. In the first scenario, the proba-
bility of m2 to reach the destination first is 1

4
, while in the

second scenario, the probability of the same event is 1
2
. Con-

sequently, I ′ is not Comp-SA-anonymous against malicious
destination.

5.4 Malicious Destination and Inefficiency
The protocol we presented in the proof of Theorem 10 sat-

isfies ultimate anonymity, but has very high communication
overhead. We now prove that the cost of ensuring Comp-
SA-anonymity against strong malicious destination must be
low efficiency (high communication overhead).

Theorems 13 and 15 discuss the inefficiency of determin-
istic and probabilistic protocols (respectively) that ensure
Comp-SA-anonymity against strong malicious destination.

We define the number of ‘send’ events by a peer pi in the
first R rounds of a run of a deterministic protocol π, accord-
ing to scenario σ, by Lπi (σ,R) (this is while the adversary
does not deviate from the protocol).

Theorem 13. For every deterministic protocol, π, if π
is Comp-SA-anonymous against global eavesdropper desti-
nation, then for every run of protocol π by scenario σ, and
every R ∈ N, during the first R rounds of the run:

1. The number of messages that reach the destination is
Outπσ,R ≤ min{Lπi (σ,R)|pi is a honest potential sender}.

2. The total number of ‘send’ events is

Comπ
σ,R ≥ Outπσ,R · |{pi is a honest potential sender}|.

Proof. (sketch) Let π be some deterministic protocol
that ensures Comp-SA-anonymity against malicious desti-
nation that is also global eavesdropper. If some participant
pi of π, sends traffic according to the number of messages
in its application queue, a global eavesdropper attacker can
detect that, by choosing two different scenarios where pi has
different amount of messages in its application queue.

Therefore, for every two scenarios restricted by R̂HSA, π’s
participants send regardless the messages in their applica-
tion queue. Namely, for every pi, for every two scenar-

ios σ0, σ1 (restricted by R̂HSA) and every R, Lπi (σ0, R) =
Lπi (σ1, R).

Assume on the contrary that there are some σ0 and R′

such that Outπσ0,R′> min{Lπi (σ0, R
′)|pi is a honest poten-

tial sender}. Let Lπi (σ0, R
′) get minimal value when i = j;

namely, pj is the participant with the lowest Lπi (σ0, R
′)

value.
Let σ0 be described by {M (0)

i }
R′
i=1.

We define a scenario σ1 by a sequence of matrices {M (0)
i }

R′
i=1

as follows: for every i ∈ [R′], l ∈ [n], Mi
(1)
j,l = ·∪nk=1Mi

(0)
k,l , i.e.,

pj sends all the messages that were sent by M
(0)
i to the same

destinations. Obviously, for every i ∈ [R′], (M
(0)
i ,M

(1)
i ) ∈

R̂HSA. Therefore, for every pi, and in particular for i = j:
Lπi (σ0, R

′) = Lπi (σ1, R
′).

We now consider the following run of the Comp-SA-b
experiment (Alg. 1): The attacker simulates the exper-
iment for R′ rounds such that every round i, it chooses

(M
(0)
i ,M

(1)
i ). During the simulation, the attacker acts as

a honest participant, but counts the messages that reach
the malicious destination in some counter C. In the end of
the R′ rounds, if C > Lπj (σ0, R

′), then the attacker returns
0, and otherwise returns 1.

Because π is deterministic, if b = 0 then from the choice
of σ0 and R′, C = Outπσ0,R′ > Lπj (σ0, R

′), and if b = 1 then

C ≤ Lπj (σ1, R
′) = Lπj (σ0, R

′), as pj sends all the messages in
the scenario σ1. Therefore the attacker has the maximal ad-
vantage (Definition 2), 1, and π is not Comp-SA-anonymous
against malicious destination that is also global eavesdrop-
per. In contradiction to the initial assumption.

This proves the first claim of the theorem. The second
claim follows directly from the definition of Lπi (σ,R) and
from the first claim.

To state similar theorem for probabilistic protocols (The-
orem 15), we define the average number of messages that
a peer pi sends in the first R rounds of in a random run
according to scenario σ of some protocol by L

π
i (σ,R).

To make the proof clearer, we also extend the different
relations (see Sections 2.2.1, 2.2.2, 3 and 6) from pair of
matrices, to scenarios, i.e., pair of matrices sequences.

Definition 14. For every n ∈ N, for every relation R ⊆
Mn×n(V *)2, and for every two scenarios, represented by

two matrices sequences, σ0 = {M (0)
i }

r0
i=1 and σ1 = {M (1)

i }
r1
i=1,

we say that (σ0, σ1) ∈ R, if and only if

1. r0 = r1.

2. For every i ∈ [r0], (M
(0)
i ,M

(1)
i ) ∈ R.

Theorem 15. For every probabilistic protocol, π, if π is
Comp-SA-anonymous against global eavesdropper destina-
tion, then for a random run of π according to scenario σ
and every r ∈ poly(k), during the first r rounds of the run:

1. The average number of messages that reach the desti-
nation is Out

π
σ,R ≤ min{Lπi (σ, r)|pi is a honest poten-

tial sender}+NEGL(k).

2. The total number of ‘send’ events is

Com
π
σ,r ≥ Out

π
σ,r · |{pi is a honest potential sender}|−

NEGL(k).

Proof. (sketch) Let π be some probabilistic protocol that
ensures Comp-SA-anonymity against malicious destination
that is also global eavesdropper.

Lemma 16. For every two scenarios of π, (σ0, σ1) ∈ R̂HSA,
every i ∈ [n], and every r ∈ poly(k),
|Lπi (σ0, r)− L

π
i (σ1, r)| ∈ NEGL(k)

Proof. Consider two different scenarios of π, (σ0, σ1) ∈
R̂HSA. If the distributions of the number of ’send’ events by
some participant pi during the first R iterations (for some
R ∈ O(poly(k))) in both the scenarios, are computation-
ally distinguishable, an attacker can also distinguish between
these two scenarios in the Comp-SA experiment. Therefore,



for every participant of π, the distributions of ’send’ events

for any two scenarios restricted by the R̂HSA relation, are
indistinguishable.

Consequently, for every participant pi, for every two sce-

narios (σ0, σ1) ∈ R̂HSA, for every r ∈ poly(k), it holds that
|Lπi (σ0, r)−L

π
i (σ1, r)| ∈ NEGL(k); otherwise, it is possible

to distinguish between the distributions of the ’send’ events
by inspecting the number of ’send’ events of pi.

Assume on the contrary that there is some σ0 and r′ ∈
poly(k) such that Out

π
σ0,r′ > min{Lπi (σ0, r

′)|pi is a honest
potential sender}+NEGL(k).

Let L
π
i (σ0, r

′) get minimal value when i = j; namely, pj
is the participant with the lowest L

π
i (σ0, r

′) value.

Let σ0 be described by {M (0)
i }

s
i=1. s ≥ r′.

For every M
(0)
i matrix we define a matrix for a new sce-

nario σ1 by M
(1)
i as follows: for every i ∈ [s], l ∈ [n],

Mi
(1)
j,l = ·∪nk=1Mi

(0)
k,l , i.e., pj sends all the messages that

were sent by M
(0)
i to the same destinations. Obviously,

(σ0, σ1) ∈ R̂HSA (Definition 14).
We now consider the following run of the Comp-SA-b ex-

periment (Alg 1): The attacker simulates the experiment to

r′ rounds such that every round i it chooses (M
(0)
i ,M

(1)
i ).

During the simulation, it acts as a honest participant, but
count the messages that reach the malicious destination in
some counter C.

We argue, that the attacker can distinguish between the
experiments (i.e., guess b), by the distribution of the mes-
sages that reaches the destination.

Because in scenario σ1, only pj sends messages, Out
π
σ1,r′ ≤

L
π
j (σ1, r

′).

Because (σ0, σ1) ∈ R̂HSA, according to Lemma 16, |Lπj (σ1, r
′)−

L
π
j (σ0, r

′)| ∈ NEGL(k).

Because L
π
j (σ0, r

′) = min{Lπi (σ0, r
′)|pi is a honest poten-

tial sender}, from the contradiction assumption we get
Out

π
σ′,r′ > L

π
j (σ0, r

′) +NEGL(k).

Therefore Out
π
σ0,r′ > Out

π
σ1,r′ +NEGL(k), which means

that the distributions of the messages that reaches the des-
tination during r′ iterations in the scenarios σ0 and σ1, are
computationally distinguishable (the difference between the
averages is not negligible). The attacker can distinguish be-

tween the scenarios σ0, σ1 ∈ R̂HSA in the Comp-SA-b experi-
ment with non-negligible probability by these distributions.
Contradiction to the fact that π is Comp-SA-anonymous.

This proves the first claim of the theorem. The second
claim, derived directly from the definition of L

π
i (σ, r) and

from the first claim.

An important observation that follows from the above the-
orems, is that when peers send independently of each other
(must happen in the case of malicious peers), because the
maximal output is bounded, the number of the messages
in the protocol level increases (and therefore also the used
storage).

The above theorem is for protocols that partially sat-
isfy the first requirement of ultimate anonymity. Addition-
ally, the adversary in the proof is only passive global eaves-
dropper destination. For protocols that satisfy ultimate
anonymity, the values of efficiency metrics like maximal thro-
ughput (Out), communication overhead (Com) and latency,
are worse.

6. INDISTINGUISHABILITY BETWEEN
PERMUTED SCENARIOS

The Comp-SA-anonymity definition against malicious des-
tination (see Section 3) is very hard and expensive to achieve,
and therefore also ultimate anonymity. The power of mali-
cious destination attacker might seem extremely strong: the
attacker chooses the messages to send, affects their timing,
and in addition is able to receive these messages and learn
information from their arrival times.

This motivates us to create relaxed definition to anonymity
notions against malicious destination. Like the extension to
the definition in Section 3, this extension is relevant only for
two anonymity notions: N ∈ {SUL, SA}.

6.1 Permuted Scenarios
We now present a relaxed relation between the matrices of

the messages sent in the two scenarios. We add a restriction
on the two chosen scenarios: the only difference between
them should be the identities of the senders.

We enforce this new restriction, by verifying that for every
pair of messages matrices (chosen by the attacker), the rows
of the first matrix are some constant permutation of the
other.

The same permutation must be used during the whole
experiment (we give the attacker to choose it), otherwise
some of the problems of the extension in Section 3 arise
again. We enforce this new restriction by defining a new
relation RH,τN (Definition 17).

Matrix row notation. For a matrix M ∈ Mn×m(V *),
we denote the ith row of M by Rowi(M).

Definition 17. For a given n ∈ N, consider a pair of
matrices, (M (0),M (1)) ∈ Mn×n(V *)2, a relation RN for
N ∈ {SUL, SA}, H ⊆ [n] and a permutation τ over H’s

elements. We say that (M (0),M (1)) ∈ RH,τN if and only if

1. (M (0),M (1)) ∈ R̂HN.

2. Rowi(M
(0)) = Rowτ(i)(M

(1)).

6.2 Comp-N̂-Anonymity Against Malicious
Destination

We denoted the relaxed anonymity notions by N̂. Re-
laxed ultimate anonymity is ultimate anonymity (see Sec-

tion 5), but with Comp-ŜA-anonymity instead of Comp-
SA-anonymity.

We extend the definition to deal with malicious destina-
tion, almost as described in Section 3.1, i.e., the capability
is extended, and in the experiment (Alg. 1), if Cap[MD]=1,

the matrix verification in line 6 is done by RH,τN instead of

R̂HN. Additionally, as A should choose τ , we add τ to the
output arguments of the Initialize method (line 3).

6.3 Feasibility of the Permuted Comp-ŜA-
anonymity

Under the new extension, the DC-net protocol [11] in a

ring topology, ensures also Comp-ŜA-anonymity even against
global eavesdropper destination that also controls another
malicious peer (see Appendix B.3). In more complex topolo-
gies, DC-net ensures anonymity even against higher number
of malicious peers [36] [16]. In spite of that, DC-net does
not ensure t-liveness.



In Appendix E, we present a protocol with communica-
tion overheadO(t3) that ensures relaxed ultimate anonymity
when the attacker controls t <

√
n participants, and also

satisfies t-liveness.

7. CONCLUSIONS AND DIRECTIONS
We presented modular definitions covering multiple

anonymity notions, against a variety of attackers: eaves-
droppers, malicious peers, malicious destination and combi-
nations of them.

Known protocols [28] do not satisfy ultimate anonymity,
i.e., sender anonymity against strong malicious destination
and unobservability against strong attacking peers; this mo-
tivates our study of the feasibility of ultimate anonymity.
We proved that there exist a protocol that satisfies ultimate
anonymity and also ensures messages delivery, when the at-
tacker controls a minority of the participants.

Because ultimate anonymity implies inefficiency, we of-
fered relaxed definition to anonymity notions against the
destination, that some known protocols like DC-net [11] sat-
isfy.

The first challenge that comes following our work, is to
explore the space between protocols that fail to satisfy the
ultimate anonymity, and the extremely inefficient protocol
(although polynomial) that satisfies it. Namely, to find more
efficient protocols that satisfy ultimate anonymity, and bet-
ter bounds for the efficiency metrics of them. The second
challenge is to find the most efficient protocols that ensure
relaxed ultimate anonymity, esp., together with robustness
requirements.

Another interesting direction is to find bounds for the
communication overhead of protocols that satisfy anonymity
notions with regarding to the t-liveness property they satisfy.
Finally, it would be interesting to explore the implications
of relaxing the model, e.g., removing the synchronization
assumptions.
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APPENDIX
A. HEVIA AND MICCIANCIO’S

ANONYMITY NOTIONS
Hevia and Micciancio’s anonymity notions are defined by

the RN relations [21]. The RN relations enforce the unpro-
tected data (the attacker assumed knowledge) in a pair of
scenario matrices to be identical, with regarding to anonymity
notion N. The different relations are defined by the functions
f∪, fΣ and f# that map matrices fromMn×n(V *) into V *,
Nn and N respectively:

f∪(M)
def
= (]j∈[n]mi,j)i∈[n]

fΣ(M)
def
= (

∑
j∈[n]

|mi,j |)i∈[n]

f#(M)
def
=

∑
i,j∈[n]

|mi,j |

Additionally, they define fT∪ (M)
def
= f∪(MT ) and simi-

larly fTΣ (M)
def
= fΣ(MT ).

For a given function f ∈ {f∪, fT∪ , fΣ, f
T
Σ , f#}, the relation

Rf on Mn×n(V *)2 is defined by (M (0),M (1)) ∈ Rf if and

only if f(M (0)) = f(M (1)).
Table 1 defines the different RN relations by the Rf rela-

tions.

B. DC-NET’S COMP-SA-ANONYMITY
AGAINST MALICIOUS DESTINATION

B.1 DC-Net
The dining-cryptographers network protocol [11], is a multi

party computation protocol. The protocol is based on David
Chaum’s solution to the dining cryptographers problem:

Three cryptographers gather around a table for dinner.
The waiter informs them that the meal has been paid by
someone, who could be one of the cryptographers or the Na-
tional Security Agency (NSA). The cryptographers respect
each other’s right to make an anonymous payment, but want
to find out whether the NSA paid.

In the solution, every cryptographer flips a coin (or a bit)
and shows his result (1 or 0) only to the cryptographer on
his left. Now every cryptographer publishes the XOR of his
own bit with the bit of the cryptographer on his right side.
The cryptographer who paid for the meal (if any) should
XOR his result with 1. Simply, if the XOR between all the
published bits is 0 then NSA paid for the meal, otherwise,
it is one of the cryptographers.

To send messages of length l, a random bits vector of
length l should be used. The protocol can be extended to n
peers in different topologies, the most common is the ring.

B.2 DC-Net is Not Comp-SA-Anonymous
Against Malicious Destination

There is something that the DC-net protocol cannot hide:
whether in a round two participants sent or only one. In the
DC-net, it takes one round to send a message, and only one
participant can send a message in a round (otherwise, there
is a collision).



N Notion Definition of RN

SUL Sender Unlinkability RSUL
def
= RfΣ ∩RfT∪

RUL Receiver Unlinkability RRUL
def
= Rf∪ ∩RfTΣ

UL Unlinkability RUL
def
= RfΣ ∩RfTΣ

SA Sender Anonymity RSA
def
= RfT∪

RA Receiver Anonymity RRA
def
= Rf∪

SA* Strong Sender Anonymity RSA∗
def
= RfTΣ

RA* Strong Receiver Anonymity RRA∗
def
= RfΣ

SRA Sender-Receiver Anonymity RSRA
def
= Rf#

UO Unobservability RUO
def
= Mn×n(V *)2

Table 1: Hevia and Micciancio’s [21] table for anonymity variants defines each variant N and its associated relation RN

We now consider the following scheme: the three cryp-
tographers p1, p2, p3 want to send anonymous messages to
a fourth cryptographer p4 (n = 4). For that purpose, they
run the DC-net protocol in rounds between them, and every
one of them sends his output to the destination. The desti-
nation XORs the three cryptographers output and gets the
message.

We present a malicious destination attacker that has non-
negligible advantage. The attacker works as follows:

1. In the first round, choose two matrices: in the first sce-
nario p1 and p2 send m1 and m2 (such that m1⊕m2 6∈
{m1,m2}) respectively, and in the second scenario p1

sends both the messages (these matrices are legal by

R̂HSA).

2. After the three cryptographers send their first outputs
c1, c2, c3, calculate m′ = c1⊕ c2⊕ c3. If m′ ∈ {m1,m2}
return 1. Otherwise return 0.

A is a polynomial time. Additionally:
AdvComp−SA

DC−net,4,A,({4},∅,1)(k) =

|Pr[ExptComp−SA−1
DC−net,4,A,({4},∅,1)(k) = 1]−

Pr[ExptComp−SA−0
DC−net,4,A,({4},∅,1)(k) = 1]| = 1

Therefore, according to the definition of Section 3, DC-
net is not Comp-SA-anonymous. We note that while the
destination does not eavesdrop and does not control some of
the peers, collision detection mechanism might be useful.

However, such mechanisms might hurt the unobservability
of the protocol against malicious peers.

B.3 DC-Net is Comp-ŜA-Anonymous Against
Malicious Destination

We now discuss a scheme of n > 4 participants (n − 1
potential senders and destination pn). We give a proof
sketch that in a ring topology, while the channels are pair-
wise encrypted with secure encryption scheme [4], DC-net is

Comp-ŜA-anonymous by the malicious destination exten-
sion of Section 6, even against malicious destination and
global eavesdropper attacker that controls additional peer.
Namely, an attacker with capability Cap=({i, n}, [n], 1) for
some i ∈ [n− 1].

We omit here the proof for the following claim: given the
messages that were sent in a round, and given the final out-
put of all the participants, it is impossible to learn something
about the senders identity (unconditional anonymity). This

claim holds even if one participant is malicious: i.e., tell the
malicious destination what he sent and received [16, Ap-
pendix A]. In a ring topology (of more than three peers),
for breaking the anonymity of some peer, there is a need in
both the peers on its sides [36].

Following the above claim, and if the attacker cannot
break the encryption scheme, it is enough to prove that for
every two scenarios with the same unprotected data, in every
round the same messages are sent in both the scenarios.

Scenarios with the same unprotected data are defined by

two matrices sequences {M (0)
i }

s
i=1 and {M (1)

i }
s
i=1, such that

for every 1 ≤ i ≤ s, (M
(0)
i ,M

(1)
i ) ∈ RH,τSA for some permu-

tation τ over H’s elements. By the RH,τSA relation, in every
round, when pj sends m in the first scenario, then pτ(j) sends
m in the second scenario, and therefore the messages that
are sent are identical for every round in both the scenarios.

Hence, the attacker cannot break the anonymity without
breaking the encryption scheme for learning additional in-
formation. Formal proof can be done by reducing the Comp-

ŜA-anonymity to the security of the encryption scheme.

C. CONTROLLING THE APPLICATION
ADAPTIVELY MATTER

We now present a toy example of a protocol that ensures
unobservability by [21] due to the inability of the adver-
sary in their experiment to manipulate the application level
adaptively, but not according to our definition:

The toy protocol for sending one message, is only for two
participants, Alice and Bob. The protocol’s run takes four
iterations:

1. Alice sends a constant length message, m, encrypted
by a CPA-Secure encryption scheme [4]. The message
comes from the application, or is a dummy if the ap-
plication has nothing to send.

2. Bob sends Alice a plain text with a random identifier
∈ {0, 1}k

3. Alice can send another message to Bob.

4. If Bob got the random identifier from Alice in the third
iteration, he sends her m as a plain-text.

A passive global eavesdropper attacker that have non-
negligible advantage according to definition (3), just inserts
different messages into Alice’s application queue in each sce-
nario. After inspecting the random identifier that Bob sent



in the second iteration, he adds the message identifier to
Alice’s application queue in both the scenarios, and guesses
(with success probability 1) the simulated scenario by com-
paring Bob’s response to the first message that Alice sent in
each scenario.

But, according to [21]’s definition, the above toy protocol
achieves unobservability. We shortly bring a proof sketch:
For knowing the which scenario was simulated, the attacker
has two options: Either to break the IND-CPA security of
the encryption scheme, or to guess the random identifier
(it has only one guess) with negligible success probability.
Therefore, a simple reduction from the CPA-security of the
protocol’s encryption scheme to the UO-anonymity of the
toy protocol will do the work.

D. EXAMPLE: TOR IS NOT COMP-N-
ANONYMOUS AGAINST LOCAL EAVES-
DROPPER FOR ANY ANONYMITY NO-
TION N

In this appendix, we bring an example to anonymity pro-
tocol that its anonymity notions relies mainly on a lot of
traffic, and show that it is not Comp-N-anonymous for any
anonymity notion N (for some anonymity notion N [21]).
We examine a simplified version of the Tor protocol [12],
denoted by Simp-Tor.

In Simp-Tor there are three types of participants: clients,
routers, and external sites. Every N iterations, every client
chooses uniformly three different routers. A client who wants
to send messages to sites (that are not necessary Tor clients),
use the chosen three routers as a path, such that the last
router sends the encrypted (even with perfect encryption
scheme) messages to their destinations. The protocol is de-
scribed in Algorithms 3 and 4.

Algorithm 3 IterationAction(iteration t). Client’s iteration
action in Simp-Tor.

if t mod N = 0 then
c1, c2, c3 ← Choose 3 random routers

end if
{desti,mi}li=1 ← All the application messages.
Send to c1: EPKc1

(c2, EPKc2
(c3, EPKc3

({desti, EPKdesti
(mi)}li=1)))

Algorithm 4 Router c iteration action in Simp-Tor

for all EPKc(NextDest,m) do
Send m to NextDest.

end for

For testing the protocol against local eavesdropper to one
of the routers, we choose the next parameters for the ex-
periment: π is the protocol. π’s setup procedure returns a
sequence of n states such that the first two states are of two
Tor clients, the last two states are of two external sites (only
receive messages and do not participate in the protocol), and
the rest of the states are of Tor routers. π’s setup initialize
the states such that all the protocol participants know the
relevant other identities and cryptographic keys. We only
limit the n parameter such that n ≥ 7 (there are at least
3 Tor routers). A is the PPT attacker, and its capability
is Cap = (∅, {3}). I.e., the attacker eavesdrops only to one

participant - the one with STATE3, which is one of the Tor
routers.

We now present an attacker, A, that for any N-anonymity
notion [21] have non-negligible advantage according to defi-
nition (3); i.e., for every negligible function negl:

AdvComp−N
Simp−Tor,n,A,Cap(k) > negl(k)

A works as follows:

1. Choose a random message m′ ∈ V . Choose M (0) to be

empty, except m
(0)
1,n−1 = m

(0)
2,n = {m′,m′}, and M (1)

to be also empty, except m
(1)
1,n−1 = m

(1)
1,n = m

(1)
2,n−1 =

m
(1)
2,n = {m′}.

2. In all the other iterations, choose M (0) and M (1) to be
empty.

3. After the end of the fourth iteration, when the messages
already reached their destinations, if the eavesdropped
router sent 2 messages and to the same site, return 0.
if it sent only 2 messages, but to different sites, return
1. Otherwise return random bit.

We now prove that the above A breaks the definition for
every N-anonymity. First of all, all the pairs of matrices
that were chosen by the attacker are in the RH = RHf∪ ∩R

H
fT∪

relation, that contains RHN for each N.
We denote the number of Tor routers in the setup by c.

c = n − 4 is polynomial in the security parameter k. A
wins for sure, only if exactly one Tor client chose the eaves-
dropped router to be the last in his path. As the routers
in the paths are chosen uniformly, the probability for such
an event is 2 · ( 1

c
· c−1

c
) for c ≥ 3. In all the other cases A

guesses, so its probability to win is 1
2
. therefore:

Pr[ExptComp−N−0
Simp−Tor,n,A,Cap(k) = 1] =

1

2
· (1− 2 · c− 1

c2
)

Pr[ExptComp−N−1
Simp−Tor,n,A,Cap(k) = 1] =

1

2
·(1−2·c− 1

c2
)+2·c− 1

c2
)

Therefore, for every negligible function, negl, the advan-
tage of A is:

AdvComp−N
Simp−Tor,n,A,Cap(k) = 2 · c− 1

c2
) ≥ negl(k)

The last inequality is because c−1
c2
∈ poly(k)−1 which is

not negligible in k. The same attack could be done when
the attacker controls one of the routers. In similar algo-
rithm that chooses routers path per destination, a similar
attack will work; in this attack, the attacker wins if the
eavesdropped or compromised router is chosen to be the
first in one of the paths.

E. EFFICIENT RELAXED ULTIMATE
ANONYMITY AND T -LIVENESS

We present the DPP (DPP), that ensures relaxed anonymity
against strong malicious destination that controls t <

√
n of

the participants. DPP also satisfies t-liveness for t <
√
n.

For simplicity, we discuss a scheme where n participants
need to send anonymous messages to one (malicious) desti-
nation, d.

The main problem of mixnet based protocol is malicious
peers who drops messages of specific honest peers; then the



Figure 3: DPP’s routing.

destination can distinguish between the scenarios by the
messages it receives. Duplication of messages or using se-
cret sharing [31] might not help, as the destination or the
peers it controls, can still distinguish between the scenar-
ios by the number of duplicated messages or the number of
message’s shares that reach the destination.

DPP overcome dropping or changing of messages by mali-
cious participants by using t+1 disjoint paths to every relay.
To overcome t malicious peers, DPP’s routing uses (t+ 1)2

peers as relays. The relays are sorted into t+1 levels of t+1
relays each. We denote the levels by li, and the j-th relay
in li by ri,j .

We now describe DPP’s routing in high level: every round,
all the potential senders send one message (real or dummy)
to every relay in the first level (l1). To deal with messages
dropping or changing, in every li, 1 ≤ i ≤ t + 1 every relay
collects all the messages it received (one copy for each mes-
sage), and sends them randomly permuted, to every relay in
li+1. The relays in lt+1 send the messages to the destination.
Figure 3 depicts the routing procedure.

To prevent learning of the messages content (dummy or
real, and any other information) and to enforce the routing,
and prevent a case where malicious peer directly sends the
message to the destination, the messages are encrypted with
semantically secure encryption scheme [4], such that like in
the Onion Routing protocol [27], the path of a message must
be followed in order to get the content.

Unlike onion-routing, DPP has different (t + 1)t+1 paths
for each message. Consequently, creating onions with each
relay’s public key is impossible. Therefore one common pub-
lic key (and appropriate private key) is shared among the
relays in the same level: (pki, ski) are the keys of the relays
in li, and the onion of each message is done by encrypting
the message with the destination’s public key, and then with
all pkis from i = t+ 1 to 1.

The protocol can work also with symmetric encryption
scheme (more efficient), assuming the senders knows all the
keys, and every relay knows only its level key.

Every layer contains also the round where the message
should be sent. That is to prevent reply attack: malicious
relays in l1 can send twice (in two different iterations) the
same onion it got from some peer, and when the destination
gets two identical messages, the originator will be exposed.

E.1 DPP Satisfies Relaxed Ultimate Anonymity
and t-Liveness

We examine the relays as a t+ 1× t+ 1 matrix M , such
that Mi,j = ri,j . We denote an encrypted onion by O0.

Algorithm 5 DPP’s senders pseudocode. In the tuple
(C,R,D), C is the message (possible ciphertext) to forward,
R is the round to forward the C, and D is the next destina-
tion (the level of the next relays or the final destination).

// round is the current round
1: (m, d)← Application.GetMessage()
2: if m = null then
3: m← dummy
4: end if
5: (C,R,D)← (Epkd(m), round+ t+ 1, d)
6: for i = t+ 1 to 1 do
7: (C,R,D)← (Epki(C,R,D), r + i− 1, i)
8: end for
9: for j = 1 to t+ 1 do

10: send C to r1,j

11: end for

Algorithm 6 DPP’s pseudocode for the relay ri,j .
Input: t + 1 vectors of l shuffled encrypted messages. The
relays in the first level (l1) receives only l messages (referred
as one vector).
Output: Vector of all the input messages without the outer
encryption layer, to the next hop of the messages. The relays
in lt+1 send the messages to their destinations.

// round is the current round
1: Set.init() // Initialize empty set of messages
2: for all messages-vector v in the input do
3: for k = 1 to |v| do
4: (C,R,D)← Dski(v[k])
5: if round = R and (D = i+ 1 or i = t+ 1) then
6: Set.add(C,D)
7: end if
8: end for
9: end for

10: if i < t+ 1 then
11: Vector.init(Set) // Create messages-vector from Set
12: Vector.shuffle() // Shuffle the messages in V ector
13: for k = 1 to t+ 1 do
14: send Vector to ri+1,k

15: end for
16: else
17: for all message (C,D) in Set do
18: Send C to D
19: end for
20: end if



We denote the partially peeled onion, after the relays in li
decrypted their layer by Oi.

E.1.1 t-liveness
Every honest relay receives all the real messages (as onions).

That is, because every M ’s row contains t+ 1 relays, and at
most t of them are malicious, so there is a honest relay in
every row. The honest relays in l1 send all the real messages
to all the relays in l2, and from that point, every honest re-
lay in li sends all the messages he received (including all the
real messages, and maybe with additional messages added
by malicious relays) to the relays in li+1. Therefore, in lt+1

there is at least one honest relay that receives all the mes-
sages and forward them to their destinations.

E.1.2 Comp-ŜA-Anonymity
Due to the RH,τSA relation, in every round the same mes-

sages are sent, such that the only difference is in the senders.
Therefore for breaking the anonymity, an attacker must con-
nect or disprove connection between a message and its sender.

We relies on the following claim: Given an CPA secure
encrypted message, it is computationally hard to learn about
the message content [4].

Consequently, given two randomly shuffled sets of onions:
Si = {O1

i , O
2
i , ..., O

p
i } and Si+1{O1

i+1, O
2
i+1, ..., O

p
i+1}, such

that the encryptions of the layers were done with the same
keys for all the onions (onions of honest senders), the proba-
bility of an attacker to connect between some Oji to Oj+1

i+1 is
negligible. Otherwise, by a simple reduction, the encryption
scheme is not CPA secure.

Because the number of malicious relays is less then t+ 1,
in M there is at least one level without malicious relays.
We denote the lowest index of such a level with h. From
the routing procedure (see also the t-liveness proof), when
the relays in lh receives the messages, every one of them has
all the real messages. From the security of the encryption
scheme, from that point the attacker cannot link the onions.
Every relay in lh sends all the real messages shuffled (in one
copy) to lh+1 such that from that point, the originators of
the messages cannot be linked to the messages. Similarly to
cascade mixnet [10].

E.1.3 Comp-UO-Anonymity
As described above, DPP satisfies unobservability only if

there is only one destination. Otherwise, an attacker can dis-
tinguish between two scenarios by destinations of the mes-
sages. To deal with many destinations, there is a need to
remove the final destination from the message, and that the
relays in lt+1 will send all the messages to all the possible
destinations. In such a case, the encryption scheme should
be also IK-CPA [2]. Namely, the attacker cannot distin-
guish between two messages that were encrypted by differ-
ent keys. The unobservability relies only on the constant
sending rate and the IND-CPA and the IK-CPA security of
the encryption scheme. We omit here the reduction from the
Comp-UO-anonymity to the CPA-security of the encryption
scheme.

E.2 Communication Complexity
Every message is encrypted to an onion. We analyze the

communication complexity in the number of times an onion
is sent. Every onion is sent once to each of the t+1 relays in
l1, and t+1 times to each relay in the other levels. The total

number of ’send’ events is therefore t+1+t·t·(t+1) ∈ O(t3).
For every t <

√
n, the communication overhead is therefore

O(n1.5).


