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Abstract

The hyperelliptic curve Ate pairing provides an efficient way to compute a bi-

linear pairing on the Jacobian variety of a hyperelliptic curve. We prove

that, for supersingular elliptic curves with embedding degree two, square of

the Ate pairing is nothing but the Weil pairing. Using the formula, we de-

velop an X -coordinate only pairing inversion method. However, the algorithm

is still infeasible for cryptographic size problems.

1. Introduction

In [3, Theorem 2], Granger et al. introduced the Ate pairing for hyperelliptic curves.

For a supersingular elliptic curve E/Fq with
#
E(Fq) = q+1, the pairing in the form [3,

Lemma 6] is stated as follows: Let σq be the q-th power Frobenius endomorphism and

let r be the maximal odd divisor of q+1. Put G1 := E(Fq)[r] and G0 := { AÎ E[r] :

σq(A) =,A }. Note that the embedding degree for r is two. Let hq,A be the q-th Miller

function for A. Then the hyperelliptic ate pairing a under this setting is defined as

a(Q, A) := hq,A(Q)

where QÎG1,{O}, AÎG0. Note this is different from the elliptic curve Ate pairing

defined in Hess, Smart and Vercauteren [5, Theorem 1]. The Ate pairing aq defined in

Hess [4, Sect. 2.2] is a2 (it is intended for ordinary elliptic curves but the definition

makes sense for supersingular elliptic curves).

Let eq+1 be the (q+1)-st Weil pairing. The main result of this paper is

eq+1(Q, A) = hq,A(Q)
2
. (1.1)

Therefore

eq+1(Q, A) = a(A, Q)
2 = aq(A, Q). (1.2)

Of course, a bilinear pairing on two cyclic groups is unique up to constant power.

Hess[4] and Vercauteren[12] give systematic constructions of such a simplified formula

for pairings. What (1.2) asserts is that we determined the constant. We further

show

eq+1èç
çæQ,

2
r+1]]]]Aøç

çö = hq,A(Q). (1.3)
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The proof of (1.1) is divided into two steps. The first step is to explicitly de-

scribe the Weil pairing in terms of group extensions, which is valid for any elliptic

curve.
[1]

Let m be an integer prime to q. Let AÎ E[m] and take a (random point)

S Î E. Let f be a symmetric rational factor system on E with values in Gm associ-

ated to the divisor Π := [A+S],[S] in the sense of Serre[10, VII.16, Remark]. We nor-

malize f so that f (O, O) = 1. The factor system f introduces a (rational) binomial oper-

ation +
f

on the product E×Gm by

(P, x)+
f

(Q, y) := (P+Q, xyf (P,Q)). (1.4)

We denote this "rational" group by E∗
f
Gm. (It is birationally equivalent to an alge-

braic group (see Serre[10, VII.4, Prop. 4]) but we work on the rational group in view

of implementation efficiency.) Since mΠ is principal, E ∗
f

m
Gm is a trivial extension.

More explicitly, it holds that

f
m

(P, Q) =
hm,Π(P+Q)

hm,Π(P)hm,Π(Q)]]]]]]]]]]]]]]]

where hm,Π :=hm,A+S/hS. Thus

0 Gm E ×Gm E 0

0 Gm E ∗
f

m
Gm E 0

0 Gm E∗
f
Gm E 0

C1

C2

mE

(1.5)

commutes where

C1(P, x) := (P, x/hm,Π(P)),

C2(P, x) := m
f
(P, 1)+

f
(O, x).

Here, m
f

is the m-times map with respect to +
f
. If QÎ E[m], then C2(C1(Q, 1)) is also

an m torsion element of E∗
f
Gm because C1 and C2 are group homomorphisms. By (1.4),

the fist component of C2(C1(Q, 1)) is O. Note that x→ (O, x) is an injective group ho-

momorphism from Gm to E∗
f
Gm. Thus we obtained a group homomorphism E[m]→µm.

We will show this give rise to the Weil pairing (Remark 3.5).

____________________________________________
[1] Probably, the first step is already known to the experts. However, the au-

thor could not find a proof in open literatures. Eventually, our proof of

the first step is to write the well known isomorphism Pic
0
(E)→Ext(E, Gm)

and an inclusion Hom(E[m], Gm)→Ext(E, Gm) (cf. Milne[8, Prop. 11.3]) so ex-

plicitly that we can construct a pairing computation algorithm.
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In the second step, we simplify the formula obtained in the first step. Note that

a group operation is associative. One can evaluate m
f

with O( log2m) evaluations of +
f
.

This eventually results in a usual Weil pairing computation algorithm. However, we

decompose (q+1)f as q
f
+
f

1f . In computing q times map, we take advantage of

supsersingularity and the embedding degree being 2 (i.e. r|q+1).

Using (1.3), we make a slight improvement to the pairing inversion algorithm due

to Galbraith, Ó hÉigartaigh and Sheedy[2]. They gave an algorithm to compute the

eta pairing on supersingular hyperelliptic curve with the final exponentiation raising to

the power ,2. Using the algorithm, the proposed a multivariate attack on the pairing

inversion problems. Our method is only applicable to supersingular elliptic curves of

embedding degree two. However, we have only to find a zero of a polynomial defined

over a smaller field in the following sense. Let z be a given r-th root of the unity

and consider to find QÎG1 satisfying hq,A(Q) = z. We construct UA,z(X )ÎFq[X ], rather

than Fq2[X ], of degree approximately q/2 from hq,A and TrF
q2/Fq

(z) such that one of

Fq-solutions of UA,z(X ) = 0 gives the X -coordinate of Q. Although the computational

complexity of our method is smaller than that of [2], it is still infeasible. It might

be worth to mention that Kanayama and Okamoto[6], Kim and Cheon[7] and Chang,

Hong, Lee and Lee[1] reduce the difficulty of pairing inversion problems to the diffi-

culty of final exponentiation inversions.

The rest of the paper is organized as follows. In Section 2, we briefly review

mathematical backgrounds on group extensions. In Section 3, we perform the first

step described as above. In Section 4, we perform the second step and prove (1.1)

and (1.3). In Section 5, we discuss some application of (1.3) to pairing inversion.

Acknowledgments. The author would like to thank Frederik Vercauteren, Steven Gal-

braith and Yuuichiro Taguchi for comments and/or discussions.

Notation: Throughout the paper, p denotes a prime and N is a positive integer. We

put q := pN. The q-th power Frobenius map is denoted by σq. Divisors mean the Weil

divisors. (Since we will work only on nonsingular varieties, we identify them with the

Cartier divisors.) Let k be a perfect field. An elliptic curve E/k is defined by the

Weierstrass equation

Y
2 + a1XY + a3Y = X

3 + a2X
2 + a4X + a6 (1.6)

with a1, . . . , a6 Î k. In Sections 4 and 5, we assume that E is defined over Fq and

that
#
E(Fq) = q+1 unless otherwise noted. Note that this implies that E is

supersingular. The X and Y coordinate functions are denoted by ξ and η, respectively.

We use τ :=,ξ/η as a local parameter at the point O at the infinity. We say a ra-

tional function f on E is normalized if the leading coefficient of the Laurent expan-

sion of f with respect to τ is 1. For nÎZ and P Î E, we define the Miller func-

tion hn,P as the normalized function satisfying
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divhn,P = n[P], [nP], (n,1)[O]. (1.7)

For P Î E, we denote the translation by P map by tP:

tP(Q) := Q+P. (1.8)

For P, QÎ E, we denote by LP,Q the normalized function satisfying

div LP,Q = [P]+[Q]+[,P,Q],3[O]

and put VP := LP,,P. Explicitly, VP = ξ,ξ(P) for P ≠O. For nÎN, we define

ε(n) :=

èç
çç
íç
çç
æ 1

pe

p2e

if char(k) = 0,

if char(k) = p ≥ 2 and E is ordinary,

if char(k) = p ≥ 2 and E is supersingular,

(1.9)

u(n) :=
èç
çí
çç
æ

n

n¢

if char(k) = 0,

if char(k) = p ≥ 2
(1.10)

where n = pen¢ with gcd( p, n¢) = 1.

2. Factor Systems

We summarize some properties on group extensions which are used in the later

sections. Further details can be found in Serre [10, Chap. VII]. See also Milne [8,

Sect. 11 and 16]. Let k be a perfect field and let E be an elliptic curve defined

over k. A symmetric rational factor system on E with values in Gm is a rational

function f on E×E satisfying f (P, Q) = f (Q, P) and

f (P+Q, R)f (P, Q)

f (Q, R)f (P, Q+R)]]]]]]]]]]]]]]]]] = 1 (2.1)

as a rational function on (P, Q, R)Î E
3
. The abelian group consisting of such functions

are denoted by Z
2
(E, Gm). For n ≥ 1, let C

n
(E, Gm) be the abelian group of rational

functions on E
n
. We define δÎHom(C

1
(E, Gm), C

2
(E, Gm)) by

(δg)(P, Q) := g(P)g(Q)/g(P+Q) (2.2)

and put B
2
(E, Gm) := δ(C1

(E, Gm)). It is easy to see that B
2
(E, Gm) is a subgroup of

Z
2
(E, Gm).

In case that f is regular at (O, O) and (O, P) for P Î E,

f (O, P) = f (P, O) = f (O, O) (2.3)

by (2.1). We say a factor system f is normalized if f is regular at (O, O) and

f (O, O) = 1. Let f ÎZ
2
(E, Gm) be a normalized factor system. Then, we obtain the fol-

lowing exact sequence:
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0 → Gm

x → (O, x)
E∗

f
Gm

(P, x) → P
E → 0

where E∗
f
Gm is a rational group whose underlying set is E×Gm and whose group opera-

tion +
f

is defined by

(P, x)+
f

(Q, y) := (P +Q, xyf (P, Q)).

Let f , g and h be normalized symmetric rational factor systems. Assume that we

have commutative diagrams

0 Gm E∗
f
Gm E 0

0 Gm E∗
h
Gm E 0

Φ ϕ

and

0 Gm E∗
g
Gm E 0

0 Gm E∗
h
Gm E 0.

Ψ ψ

Then we see

0 Gm E∗
fg

Gm E 0

0 Gm E∗
h
Gm E 0

Γ ϕ+ψ
(2.4)

where Γ (P, x) :=Φ(P, 1)+
h
Ψ (P, 1)+

h
(O, x) commutes. For mÎN, let m

f
be the m-times map

on E∗
f
Gm. Put Λm(P, x) =m

f
(P, 1)+

f
(O, x). Using induction on mÎN to (2.4), we see

that the following diagram commutes:

0 Gm E ∗
f

m
Gm E 0

0 Gm E∗
f
Gm E 0.

Λm

mE

Explicitly,

Λm(P, x) =
èç
çç
çæ

mP, xÕ
n=1

m,1

f (P, nP)
øç
çç
çö
. (2.5)
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Let π
1
, π

2
: E×E → E be the projection to the first and the second component, re-

spectively and let s : E×E → E be the sum on E. By definition (see Milne [8,

Sect. 9]),

Pic
0
(E) = { d ÎPic(E) : (π

1
∗ + π

2
∗ , s∗)(d) = 0 }.

For P Î E, the divisor class [P],[O]ÎPic(E) in fact belongs to Pic
0
(E). Indeed, we

construct a rational function fP on E×E satisfying

div(fP) = (π
1
∗ + π

2
∗ , s∗)([P], [O]). (2.6)

Note that (2.6) determines fP uniquely up to constant multiple and that, if such a fP

exists, fP is a rational symmetric factor system. See Serre [10, VII.§3.16]. However,

fP is not normalized.

Theorem 2.1. Let P Î E,E[2]. Define a rational function fP on E×E by

fP(Q, R) := LP,,Q(R)/VP,Q(R). (2.7)

(i) The function fP satisfies (2.6).

(ii) Let z and w be the local parameter at O for Q and R, respectively. Let E be

the formal group law associated to E. Then, expansion of fP at (O, O) is

fP(Q,R) = wz
E (w, z)]]]]]]](1+O(z2, zw, w2)). (2.8)

(iii) Let T Î E,{O,±P}. Put z,T := z◦tT and wT :=w◦t,T. (See (1.8) for the definition of

t. Note that z,T and wT are local parameters of Q at T and R at ,T.) Then,

around (,T, T ), it holds that

fP(Q, R) = E (z,T , wT)(ξ(P), ξ(T )+O(z,T , wT)). (2.9)

Proof. All claims follow from checking whether the Laurent series expansion of fP has

a correct leading term for the (Cartier divisor corresponding to the Weil) divisor

(π
1
∗+π

2
∗,s∗)([P],[O]) at all (closed) points of E×E. The computation is standard (but

quite lengthy), hence omitted. ÷

Remark 2.2. For Q ≠O, P, we can easily check

div fP(Q, •) = ((π
1
∗ + π

2
∗ , s∗)([P], [O]))|{Q}×E

= [P]+ [O], ([P,Q], [,Q])

= div(LP,,Q/VP,Q).

This does not imply (2.6). For a counter example, let P Î E be of finite order of

m > 1. If (2.6) holds, then a function f
∼
P(Q, R) := fP(Q, R)hm,P(Q) also satisfies

div(f
∼
P(Q, •)) = div(LP,,Q/VP,Q)
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for all Q ≠O, P. Apparently, f
∼
P does not satisfy (2.6).

Remark 2.3. In case of k =Fq, we briefly observe how certain factor systems give rise

to a group homomorphism from E(Fq) to Gm. Put Γ := E(Fq) for simplicity. Let r ÎN.

Take A, BÎ E of order r satisfying σq(A) = qA and σq(B) = qB. Put Φ := (fA/fB)
r

and

ϕ :=hr,A/hr,B. Then Φ is a normalized symmetric rational factor system by (2.8) and

we see Φ= δϕ. For any Q, RÎΓ,{O}, we have fA
q
(Q, R) = σq(fA(Q, R)) = fqA(Q, R) and

fB
q
(Q, R) = fqB(Q, R). Now write r =å

i=0

n

aiq
i with some nÎN and aiÎZ. Put

Ψ :=Õ
i=0

n

(fqiA/fqiB)
ai. Using (2.3) for the case Q =O or R =O, we obtain

Φ|Γ×Γ = Ψ|Γ×Γ. (2.10)

Note D :=å
i=0

n

ai([q
iA],[qiB]) is principal. Construct a normalized rational function ψ sat-

isfying divψ = D. Then Ψ= δψ. Therefore (2.10) implies δ(ϕ/ψ)|Γ×Γ = 1, hence

ϕ/ψÎHom(E(Fq), Gm). Of course determination of Ker(ϕ/ψ) is another story and needs

more fine arguments.

3. The Weil Pairing

In this section, we study connection between the Weil pairing and the diagram (1.5).

As was in the previous section, E denotes an elliptic curve defined over a perfect field

k. Let P Î E,{O} and let fP be a factor system defined by (2.7). Define in:E → E×E

by in(Q) = (Q, nQ).

Definition 3.1. (Silverman[11, Sect. 3.8]) Let m ≥ 1 be an integer. In case of

char(k) ≥ 2, we assume that m is prime to char(k). For P Î E[m], define a normalized

function gm,P by div gm,P =mE
∗ ([P],[O]). For a given QÎ E[m], take any S Î E such that

gm,P is regular and non-zero at both Q+S and S. The m-th Weil pairing em is defined

by

em(Q, P) = gm,P(Q +S)/gm,P(S).

Now we study (2.5) for f = fP more closely.

Lemma 3.2. For m ≥ 1 and P Î E, it holds that lc
èç
çç
æ
Õ
n=1

m,1

(fP◦in)
øç
çç
ö
=u(m). (See (1.10) for

the definition of u.)

Proof. Recall that we use τ :=,ξ/η for a local parameter on E at O. By (2.8),

fP◦in = τ•τ◦nE

τ◦(n+1)E]]]]]]]]](1+O(τ)). Thus, Õ
n=1

m,1

(fP◦in) = τm

τ◦mE]]]]](1+O(τ)). The assertion follow from

τ◦mE =u(m)τε(m)(1+O(τ)). ÷

Lemma 3.3. For mÎN and P Î E, we define

Fm,P = u(m)
,1Õ

n=1

m,1

fP◦in.
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Let gm,P be the normalized rational function on E satisfying

div(gm,P) = , [mP]+ [O]+mE
∗ ([P], [O]).

(Note this is compatible to Definition 3.1.) Then,

Fm,P = hm,P/gm,P , (3.1)

where hm,P is the Miller function (1.7).

Proof. Note that hm,P and gm,P are normalized by definition. So is Fm,P by

Lemma 3.2. Thus we have only to show div Fm,P = divhm,P,div gm,P. By (2.6),

div(fP◦in) = in
∗
(div fP) = in

∗π
1
∗([P], [O])+ in

∗π
2
∗([P], [O]), in

∗
s∗([P], [O])

= id
∗
([P], [O])+nE

∗ ([P], [O]), (n+1)E
∗
([P], [O]).

Hence for m ≥ 2,

div(Fm,P) = å
n=1

m,1

div(fP◦in) = m([P], [O]),mE
∗ ([P], [O])

= m[P], [mP], (m,1)[O]+ [mP], [O],mE
∗ ([P], [O])

= divhm,P , div gm,P.

÷

Theorem 3.4. Let char(k)|/ m. Let P Î E[m]. Take S Î E,E[2] satisfying P+S Î/ E[2].

Put Π := [P+S],[S]ÎDiv(E) and put

Fm,Π := Fm,P+S/Fm,S, hm,Π := hm,P+S/hm,S.

Then,

Fm,Π(Q)/hm,Π(Q) = em(P, Q)

for all QÎ E[m] at which Fm,Π and hm,Π are regular and non-zero.

Proof. We also define

fΠ := fP+S/fS, hm,Π := hm,P+S/hm,S.

Note fΠ is a symmetric rational factor system associated to Π . By (2.8), fΠ is

normalized. It is easy to verify

Fm,Π = Õ
n=1

m,1

(fΠ◦in) (3.2)

and

Fm,Π = hm,Π /gm,Π . (3.3)
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We choose and fix Pm and SmÎ E satisfying mPm = P and mSm =S. Since mP =O and

char(k)|/ m,

div gm,P = å
T Î E[m]

([Pm+T ], [T ]),

div gm,Π = å
T Î E[m]

([Pm+Sm+T ], [Sm+T ]) = div(gm,P◦t,Sm
).

(Recall that t,Sm
is the translation by ,Sm map, cf. (1.8).) Since S ≠O and S ≠,P, the

rational function gm,P is regular and non-zero at ,Sm. On the other hand, gm,Π is

normalized. Therefore

gm,Π = gm,P(,Sm)
1]]]]]]]]]] gm,P◦t,Sm

.

If gm,Π is regular at Q, we have

gm,Π(Q) = gm,P(,Sm)

gm,P(Q,Sm)]]]]]]]]]]]] = em(Q, P) (3.4)

by Definition 3.1. The assertion follows from (3.3) and the alternating property of the

Weil pairing. ÷

Remark 3.5. Letting f = fΠ in (1.5), we see C2◦C1 = (mE , Fm,Π /hm,Π). Theorem 3.4 gives

C2(C1(Q)) = (O, em(P, Q)) for QÎ E[m].

4. The Weil Pairing on Supersingular Curves

This section is devoted to a proof of (1.1) and (1.3). Let E/Fq be an elliptic curve.

Throughout this section except for Lemma 4.4, E is assumed to satisfy
#
E(Fq) = q+1.

This implies that E is supersingular. Let r be the maximal odd divisor of q+1. Put

G0 := { P Î E[r] : σq(P) = qP },

G1 := E(Fq)[r].

Since r is odd, the embedding degree for E and r is 2. We note qP =,P for

P Î E[r]. We also note that E[r] =G0⊕G1. (This is the reason why we required r to

be odd.) For P Î E and a power m of p, there exists the unique Pm satisfying

mPm = P. By the uniqueness of Pm, we write Pm as m,1P. We keep the notation in,

Fm,P, Fm,Π introduced in the previous section. We begin with a technical lemma.

Lemma 4.1. Let mÎN. We fix QÎ E,{O} and consider hm,S(Q) as a rational func-

tion of S Î E. Let ρ be the local parameter for S at O. Then,

hm,S(Q) = c
m,Q

ρε(m),m+O(ρε(m),m+1)

with c
m,Q
2 =u(m)

,2
. (See (1.9) and (1.10) for the definition of ε and u, respectively).

Proof. Let hm,S(Q) = å
n = ν

∞
γm,n(Q)ρn with γm,ν(Q) ≠ 0 be the Laurent expansion with respect

to ρ. Note
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hm,,S(Q) = å
n = ν

∞
γm,n(Q)(ρ◦,1E)

n = (,1)
νγm,ν(Q)ρν+O(ρν+1).

On the other hand, as a rational function on Q,

divhm,Shm,,S = m([S]+[,S], 2[O]), ([mS]+ [,mS], 2[O]) = div(VS
m

/VmS).

The both hand sides are normalized rational function on Q. Nothing that E is

supersingular, we have

hm,S(Q)hm,,S(Q) =
VmS(Q)

VS(Q)
m

]]]]]]] =
Qx,(mS)x

(Qx,Sx)
m

]]]]]]]]]] =
,u(m)

2ρ,2ε(m)+O(ρ,2ε(m)+1)

(,ρ,2+O(ρ,1))
m

]]]]]]]]]]]]]]]]]]]]]]]].

Therefore we obtain 2ν = ,2m+2ε(m) and (,1)
νγm, ν(Q)

2 = (,1)
m+1

u(m)
,2

. In case of p = 2,

we are done. Otherwise, ε(m) is odd and (,1)
ν =,(,1)

m
. Hence c

m,Q
2 = γm, ν(Q)

2 =u(m)
,2

.

÷

The next lemma explains why we can expect a simple formula for the Weil

pairing on supersingular curves.

Lemma 4.2. Let P Î E,E[2]. For a power m of p, it holds that Fm,P =hm, m,1P

,m
.

Proof. Since E is supersingular, mE is purely inseparable of degree m2. Therefore

div(Fm,P) = m([P], [O]),m2([m,1P], [O]) = ,m(m[m,1P], [P], (m, 1)[O])

= div(hm, m,1P

,m
).

Since both Fm,P and hm, m,1P are normalized, the assertion follows. ÷

Theorem 4.3. Let AÎG0 and QÎ E(Fq),{O}. Then eq+1(Q, A) =hq,A(Q)
2
.

Proof. The assertion trivially holds for A =O. In what follows, we assume A ≠O.

Note hq+1,P =hq,PV(q+1)P

LqP,P]]]]]]] for any P Î E. Take S Î E and put Π := [A+S],[S]. Then

hq+1,Π =hq,Π LqS,S

Lq(A+S),(A+S)]]]]]]]]]]] by (q+1)A =O. Put Π∼ := [q,1A+q,1S],[q,1S]. By (3.2),

Fq+1,Π = Fq,Π•(fΠ◦iq) = h
q,Π∼
,q •(fΠ◦iq).

On the other hand, (3.3) gives Fq+1,Π =hq+1,Π /gq+1,Π . Therefore,

gq+1,Π = hq,Π LqS,S

Lq(A+S),A+S]]]]]]]]]]•h
q,Π∼
q ◦(fΠ◦iq)

,1
.

Since G0ÇE(Fq) = {O}, as a rational function of S, we have

gq+1,Π(Q) = hq,Π(Q)h
q,Π∼ (Q)

q

LqS,S(Q)

Lq(A+S),A+S(Q)]]]]]]]]]]]]] fΠ(Q, ,Q)
,1

.

By (2.9) and (3.4)
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eq+1(Q, A) =
hq, S(Q)hq, Sq

(Q)
q

hq, A+S(Q)hq, q,1A+q,1S(Q)
q

]]]]]]]]]]]]]]]]]]]]]]]
LqS,S(Q)

L,A+qS,A+S(Q)]]]]]]]]]]]]]•
VA+S(Q)

VS(Q)]]]]]]]].

Let ρ and ρ∼ be the local parameter at O for S and q,1S, respectively. Since E is

supersingular, ρ = ρ∼q2

+O(ρ∼q2+1
). Now as a rational function of q,1S, the functions

hq,A+S(Q), hq,q,1A+q,1S(Q) and VA+S(Q) are defined at q,1S =O. Let σq be the q-th power

Frobenius map. Since σq(q,1A) = A and σq(Q) =Q, we obtain

hq,q,1A(Q)
q = σq(hq,q,1A(Q)) = hq,A(Q).

The other functions are expanded as follows:

VS(Q) = ξ(Q), ξ(S) = , ρ,2(1+O(ρ))

L,A+qS,A+S(Q) = L,(q+1)S,A+S(Q) =
(ρ,2+O(ρ,1)),ξ(A+S)

(ρ,3+O(ρ,2)),η(A+S)]]]]]]]]]]]]]]]]]]]](ξ(Q), ξ(A +S))+ η(A +S), η(Q)

= (ξ(Q), ξ(A))ρ,1 +O(1)

LqS,S(Q) =
(ρ,2q2+O(ρ,q)),(ρ,2+O(ρ,1)

(,ρ,3q2+O(ρ,2q2
)),(,ρ,3+O(ρ,2))]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]](ξ(Q), ρ,2 +O(ρ,1))+ (, ρ,3 +O(ρ,2)), η(Q)

= , ρ,q2,2 +O(ρ,q,2,1))

By Lemma 4.1,

hq,S(Q) = c
q,Q

ρq2,q +O(ρq2,q+1),

hq,q,1S(Q) = c
q,Q

ρ∼q2,q +O(ρ∼q2,q+1
),

hence hq,q,1S(Q)
q = c

q,Q
q ρq,1+O(ρ∼q3,q2+1

). Therefore, as a rational function of q,1S, the

function

hq, S(Q)hq, Sq
(Q)

q
1]]]]]]]]]]]]]]]

LqS,S(Q)

L,A+qS,A+S(Q)]]]]]]]]]]]]]•
VA+S(Q)

VS(Q)]]]]]]]]

is regular at O whose value at O is c
q,Q
q+1. Since c

q,Q
2 = 1 by Lemma 4.1, we have

c
q,Q
q+1 = 1. Therefore, eq+1(Q, A) =hq,A(Q)

2
. ÷

The next lemma is of a special case of Granger et al.[3, Theorem 2]. Here we

give a direct proof which does not depend on bilinearity of other pairings.

Lemma 4.4. Let E/Fq be an elliptic curve which is not necessarily supersingular. Let

A, BÎ E and assume that the following conditions:

(i) σq(A) = qA and σq(B) = qB.

(ii) None of A, B, A+B, qA, qB and q(A+B) belongs to E(Fq),{O}.

Then hq,A+B(Q) =hq,A(Q)hq,B(Q) for QÎ E(Fq),{O}.

Proof. First, observe that hq,A+B(Q), hq,A(Q) and hq,B(Q) are all defined and non-zero

under the assumption (ii). Noting the divisor of the Miller function and normalization,

we have
hq,Ahq,B

hq,A+B]]]]]]] =
Vq(A+B)/LqA,qB

(VA+B/LA,B)
q

]]]]]]]]]]]]]. Therefore, QÎ E(Fq) and the assumption (i) imply
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hq,A(Q)hq,B(Q)

hq,A+B(Q)]]]]]]]]]]]]] =
Vq(A+B)(Q)/LqA,qB(Q)

Vσq(A+B)(σq(Q))/Lσq(A), σq(B)(σq(Q))
]]]]]]]]]]]]]]]]]]]]]]]]]]]] = 1.

÷

Proposition 4.5. Suppose AÎG0 and QÎ E(Fq),{O}. Then, hq,A(Q) = eq+1èç
çæQ,

2
r+1]]]]Aøç

çö. In

particular, (A, Q)→hq,A(Q) for Q ≠O yields a bilinear pairing G0×G1 →Gm.

Proof. Since r is odd,
2

r+1]]]] ÎZ. Then eq+1èç
çæQ,

2
r+1]]]]Aøç

çö2

= eq+1(Q, A) =hq,A(Q)
2

by

Theorem 4.3. Thus eq+1èç
çæQ,

2
r+1]]]]Aøç

çö = ±hq,A(Q). In case of p = 2, we are done. Assume

p ≥ 3 and suppose eq+1èç
çæQ,

2
r+1]]]]Aøç

çö = ,hq,A(Q). By Lemma 4.4, hq,A(Q) =h
q,

2
r+1]]]]A

(Q)
2
. Using

Theorem 4.3 again, we obtain eq+1èç
çæQ,

2
r+1]]]]Aøç

çö = ,eq+1èç
çæQ,

2
r+1]]]]Aøç

çö, which is a contradiction.

÷

5. Application to Pairing Inversion

We keep notation and assumptions of the previous sections. For simplicity, we put

K :=Fq2. In this section, we show some of coefficients of the rational function hq,A,

which a priori belongs to K , belongs to Fq. Then, we develop an X -coordinate only

pairing inversion algorithm.

Let AÎG0 ⊂ E(K ). Then there exist unique α
q,A

and βq,A Î K (ξ) satisfying

hq,A = αq,A
+βq,Aη. Recall that E is given by the Weierstrass form (1.6). We show that

in fact either α
q,A

or βq,A ÎFq(ξ) under some conditions.

Proposition 5.1. Assume p = 2.

(i) βq,A ÎFq(ξ).

(ii) Let QÎ E(Fq),{O} and put z :=hq,A(Q). Then, TrK /Fq
z = a3βq,A(ξ(Q)).

Proof. On one hand σq(hq,A) = σq(α
q,A

)+σq(βq,A)η while on the other hand

σq(hq,A) = hq, σq(A) = hq, ,A = (,1)
q,1

hq,A◦(,1)E

= α
q,A

+ βq,A(, η, a1ξ , a3).

Therefore, regardless of p, we obtain

σq(α
q,A

) = α
q,A

, a1ξβ , a3β,

σq(βq,A) = , βq,A.
(5.1)

When p = 2, the last equation is σqβq,A = βq,A. This proves (i). Since E is

supersingular, a1 = 0. By Proposition 4.5, zÎµq+1. Therefore,

z = hq,A(Q) = α
q,A

(ξ(Q))+ βq,A(ξ(Q))η(Q),

zq = z,1 = hq,A(,Q) = α
q,A

(ξ(Q))+ βq,A(ξ(Q))(η(Q)+ a3).

Adding these two formula, we obtain (ii). ÷
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Proposition 5.2. Suppose that p is odd and that a1 = a3 = 0.

(i) α
q,A

ÎFq(ξ).

(ii) Let c be an element of K satisfying σqc =,c. Then cβq,A ÎFq(ξ).

(iii) Let QÎ E(Fq),{O} and put z :=hq,A(Q). Then, TrK /Fq
z = 2α

q,A
(ξ(Q)).

Proof. The assertions (i) and (ii) follow from (5.1). A similar argument to the proof

of the preceding proposition shows

TrK /kz = hq,A(Q)+hq,A(,Q) = α
q,A

(ξ(Q))+ βq,A(ξ(Q))η(Q)+ α
q,A

(ξ(Q))+ βq,A(ξ(Q))(, η(Q))

= 2α
q,A

(ξ(Q)).

÷

We apply the above propositions to pairing inversion. Let AÎG0,{O} and let m

be the order of A. (Recall that r is not necessarily a prime.) For a given zÎµm,

our task is to find QÎ E(Fq)[m] (⊂G1) satisfying hq,A(Q) = z. In what follows, we as-

sume that a1 = 0 and that a3 = 0 when p is odd. Note that VA = ξ,ξ(A)ÎFq[ξ]. We

put

UA,z :=
èç
çí
çç
æ VA•(βq,A ,TrK /Fq

(z)/a3)

VA•(αq,A
,TrK /Fq

(z)/2)

( p = 2),

( p ≥ 3).

Then, UA,z is regular outside of {O}, hence UA,zÎFq[ξ]. Since A ≠O, we have

ordOhq,A =,q+1 and ordOVA =,2, hence degUA,z ≤ (q+1)/2. We can construct hq,A with O
∼

(q)

space complexity with the Miller algorithm. (In case of N = [Fq:Fp] > 1, one might uti-

lize

hpN ,A = Õ
i=0

N,1

hp, pN,1,iA

pi

(5.2)

but this does not seem to bring essential improvement.) Since QÎ E(Fq), we can ob-

tain candidates of ξ(Q) by finding Fq solution of UA,z(X ) = 0. Numerical experiments for

small q (≈ 5000) suggest

deggcd(UA,z(X ), X
q , X ) = m

q+1]]]] (5.3)

in case of gcdèç
çæ

m
q+1]]]] , møç

çö = 1. However, validity of the conjecture is completely open. In

order to reduce time complexity, we first compute the gcd with the asymptotically fast

algorithm due to Moenck[9] (see also von zur Gathen and Gerhard[13, Sect. 11.1]) and

then factorize the gcd. For each solution X , we obtain at most two candidates of

η(Q). We can detect a correct solution by numerically checking mQ =O and hq,A(Q) = z.

Compared to the method which eliminates the Y -coordinate from hq,A(Q) = z and

the curve equation, our method has two advantages:
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(i) Once UA,z is constructed, all the computations are performed over Fq instead of K .

(ii) The degUA,z is approximately the half of degree of the equation after Y -coordinate

elimination.

In case of N > 1 (and small p), we can also deploy multivariate attack due to

Galbraith, Ó hÉigeartaigh and Sheedy[2, Sect. 4]. Fix an Fp-base { θ0, . . . , θN,1 } of Fq.

We try to find a Fp solution (x0, . . . , xN,1) of UA,z(x0θ0+ • • • +xN,1θN,1) = 0, which turns in

to a system of N equations of N unknowns over Fp whose degree with respect to each

unknown is less than p. The space complexity is O(NpN) as N →∞ while p is fixed.

Although Galbraith et al.[2] considers a supersingular curves of embedding degree four,

if we apply their method to (5.2), its space complexity would be O(Np2N).

In either way, the algorithms are infeasible for cryptgraphic sizes. Further re-

saerch on it is necessary.
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