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Abstract

Given a network of n = 2k gossipers, we want to schedule a cyclic calendar
of meetings between all of them, such that: (1) each gossiper communicates
(gossips) only once a day, with one other gossiper, (2) in every (n−1) consecutive
days, each gossiper meets all other gossipers, and (3) every gossip, initiated by
any gossiper, will reach all gossipers within k = log(n) days.

In this paper we study the above stated meet-all gossipers problem, by defin-
ing and constructing the Gossip Latin Square (GLS), a combinatorial structure
which solves the problem.
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1. Introduction

The gossip problem [3, 4] is one of the most studied problems in distributed
computing. The original problem discusses how can n gossipers, each knowing
some rumor, spread all rumors between them, where in each round (step), every
gossiper can exchange rumors with only one other gossiper.

The problem has a lot of versions, which differ by topologies or by restrictions
on the communication (e.g., instead of pairwise communication as in phone
calls, group communication as in conference calls [6]), and many solutions, both
randomized and deterministic.

The two main efficiency measures for solutions to the gossiping problem are:
(1) How many phone calls are needed for spreading all the gossips? (2) How
many rounds are needed?

In the abstract above, we defined the meet-all gossipers problem which is
corresponding to the second question, as the minimal time to broadcast one
gossip between n = 2k gossipers is k [2]. The difference between the gossipers
problem and the meet-all gossipers problem, is in the second requirement: every
gossiper must meet all the other n−1 gossipers in every n−1 consecutive days.
In the rest of this paper we present a deterministic solution for the problem.
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Beyond the theoretical interest, the problem is relevant to communication
QoS: relying on other gossipers, we ensure the minimal delay, but even without
them (on load, or when some of the gossipers are not entirely reliable) the max-
imal delay is n−1, as every gossiper meets all the others every consecutive n−1
days. This might be relevant also for communication mechanisms where there
are messages that can be sent through other parties and secret messages that
cannot. The deterministic routing that involves different paths and intermedi-
ate relays, can be used as a constant rate communication protocol with minimal
delay for anonymous communication goals [8].

In the second section we formalize the meet-all gossipers problem and define
gossip Latin square (GLS), a combinatorial structure that solves the problem.
In the third section we present a construction for GLS, and prove its correctness.
In the last section we conclude and briefly discuss generalizations of the problem.

2. Definitions

2.1. The meet-all gossipers problem

To formally define the meet-all gossipers problem, we first define a meeting
schedule function, which defines which pair of gossipers meet at any given day.

Definition 1. Consider a finite set H (of gossipers). A meeting schedule is a
function Meet : N×H → H. We say that h meets Meetd(h) in day d.

We next formalize requirements (1) and (2) in the abstract. A meeting
schedule Meet that satisfies these requirements, is said to be perfectly fair.

Definition 2. Meeting function Meet : N×H → H is perfectly fair if it satis-
fies the following two requirements:

Pairwise daily meetings For every d ∈ N and h ∈ H holds (1) Meetd(h) 6= h
and (2) h = Meetd(Meetd(h)).

Meet all For every d ∈ N and h ∈ H, {Meetd+i(h)}0≤i<n−1 = H\{h}.

To define the third requirement, we have to define the set of recipients,
denoted RMeet

d,m (h), of a rumor initiated by h ∈ H on day d and propagated m
days. We first define the recipient relation between a pair of gossipers, h and
h′. Informally, gossiper h′ is a (d,m)-recipient from h, if there is a sequence of
meetings between gossipers, beginning from day d, such that a rumor initiated
on day d by h, will reach h′ within m days, via the meetings sequence.

Definition 3. Consider set of n gossipers H, and two gossipers h, h′ ∈ H.
We say that h′ is a (d,m)-recipient from h according to the meeting schedule
Meet : N×H → H, if and only if there is a sequence of y < m pairs {(pt, qt)|pt ∈
H, 0 ≤ qt < qt+1 < m}yt=0 such that

1. p0 = Meetd+q0(h).

2. For every 0 < t ≤ y, pt = Meetd+qt(pt−1).
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3. h′ = py.

Let RMeet
d,m (h) denote the set of all gossipers h′, s.t. h′ is a (d,m)-recipient from

h according to Meet. We call RMeet
d,m (h) the (d,m)-recipients set of h according

to Meet.

We can now formally define a meet-all gossipers problem schedule, i.e., a
schedule that satisfies all three requirements in the abstract; such a meeting
schedule is said to be perfectly fair and round-optimal.

Definition 4. Meeting schedule function Meet : N × H → H (|H| = 2k) is
perfectly fair and round-optimal, if it is perfectly fair (Def. 2) and also sat-
isfies the following (Connectivity) requirement: For every d ∈ N and h ∈ H,
RMeet

d,k (h) = H\{h}.

2.2. Schedule matrix

We next present a schedule matrix, a square matrix whose bottom row is the
set of gossipers H, and whose content defines the meetings schedule.

Definition 5. Let M be an n× n matrix. We say that M is a schedule matrix
if

1. The last row (index n−1), called also the headline row, contains n distinct
elements denoted H = {hi}n−1i=0 (gossipers).

2. For 0 ≤ i < n, 0 ≤ j < m, Mi,j appears in the headline row.

We now define a mapping from a given schedule matrix M , to a meeting
schedule function.

Definition 6. Let M be an n × n schedule matrix, and let H be its headline
row. The meeting schedule of M is denoted MeetM : N×H → H, and defined
as: MeetMd (hj) = Md mod (n−1),j.

We denote the (d,m)-recipients set of MeetM by RM
d,m.

2.3. Gossip Latin Square (GLS)

A Latin square (LS) [7] is a n × n matrix whose rows and columns are
permutations over n distinct elements. We now show that every Latin square
is also a schedule matrix.

Lemma 7. Every n× n Latin square matrix, is also a schedule matrix.

Proof The headline row contains n distinct elements, and every other row is a
permutation over the elements of the headline row.

We now define GLS, a Latin square that maps to meeting schedule function
that solves the meet-all gossipers problem.

Definition 8. Given n = 2k, a matrix Mn×n is Gossip Latin Square (GLS) of
order k, if and only if
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Figure 1: Example to GLS of order 4. The boxed numbers above the headline row, represent
all the destinations that 7 (boxed in the headline row) can reach from any day d, such that
d = 6 mod 15 within 4 days. We can see that all the other 15 numbers are boxed.

Figure 2: The routing tree of 7 from day d = 6 mod 15 according to the GLS in Figure 1.
The X symbol signifies holding of the message. The bold lines are example to the routing
procedure if 7 wants to send a message to 11: 7 holds the message one day and then forwards
it to 13. 13 holds the message one more day, and forwards the message to 11 on day d + 3.

1. M is a Latin square.

2. For 0 ≤ i ≤ n− 2, 0 ≤ j 6= l ≤ n− 1, Mi,j = hl if and only if Mi,l = hj.

3. For every d ∈ N, 0 ≤ j ≤ n− 1, RM
d,k(hj) = {h0, h1, ..., hn−1}\{hj}.

Figure 1 contains example for GLS. The boxed values in Figure 1 and Figure
2 demonstrate, how the third requirement of Definition 8, is satisfied.

The following theorem shows that the meeting schedule function of a GLS
solves the meet-all gossipers problem.

Theorem 9. Given n = 2k, a matrix Mn×n is a GLS if and only if MeetM is
perfectly fair and round optimal (Definition 4).

Proof (→) : If M is a GLS, then MeetM satisfies the requirements of the meet-
all gossipers problem. From Lemma 7, because M is LS, M is a schedule matrix.
The pairwise requirement is satisfied by the second requirement of Definition 8.
The meet-all requirement is satisfied because M is a Latin square, and therefore
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for each column j, the first n − 1 rows contains all the other elements of the
headline row. Hence, MeetM is perfectly fair. The connectivity requirement, is
satisfied directly by the third requirement of Definition 8.

(←) : If MeetM satisfies the requirements of the meet-all gossipers problem
(i.e., is perfectly fair and round-optimal), then M is a GLS. The headline row
of M contains n different elements. Because MeetM satisfies the pairwise re-
quirement, every other row contains all the elements of the headline row: let
0 ≤ i ≤ n − 2 be some row, and hj be an element of the headline row, then
if MeetMi (hj) = hl, then hj must appear in Mi,l. Therefore, every M ’s row
contains all the elements of the headline row.

The meet-all requirement of MeetM implies directly that every M ’s column
is permutation over the headline row’s elements. Hence M is a Latin square
(requirement 1 of Definition 8).

The second and the third requirements of GLS are satisfied directly by Defi-
nition 6 and the fact thatMeetM satisfies the pairwise and meet-all requirements
(Definition 2).

3. Construction of GLS

In this section we present an efficient construction of GLS, that is based on
maximal Fibonacci LFSR.

3.1. Maximal Fibonacci Linear Feedback Shift Register (LFSR)

Fibonacci LFSR [5] is a register that contains k bits, indexed from 1 to k,
named the state of the LFSR 1, such that shift operation removes the rightmost
bit, pushes to the right the rest of the bits and creates a new leftmost bit by
XORing some of the current LFSR’s state bits in predefined indices.

A Maximal LFSR is a LFSR that given initial non-zero state, its shift oper-
ations produce a cyclic sequence of all the possible 2k − 1 non-zero states.

Maximal Fibonacci LFSR of k bits is created by a primitive polynomial
P (x) = 1 +

∑k
i=1 ci · xi of degree k over Z2 (ck = 1). The new leftmost bit

(index 1) is calculated as a XOR of the bits in the indices set {i− 1|ci = 1}.

3.2. The GLS Construction (GLSC)

We now present a simple construction of a GLS of order k that uses Fibonacci
LFSR. GLSC chooses the headline rows such that hj = j for every 0 ≤ j ≤ n−1.

Definition 10. Let n = 2k. The GLS Construction (GLSC) of a GLS of order
k, Mn×n, contains three steps:

1. Take a maximal Fibonacci LFSR of k bits with some non-zero initial state,
and by running n − 2 shift operations, create a vector V of length n − 1,
containing all the consecutive non-zero k-bits binary numbers.

1We deal only with Fibonacci LFSR, hence, we often omit ‘Fibonacci’ and simply write
LFSR.
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2. For 0 ≤ j ≤ n− 1, let Mn−1,j = j.
3. For 0 ≤ i ≤ n− 2, 0 ≤ j ≤ n− 1 Mi,j := V [i]⊕ j.

Lemma 11. The matrix Mn×n outputted by GLSC is a Latin square.

Proof Let H = {0, 1, ..., n − 1}. For every h ∈ H, for 0 ≤ i ≤ n − 2, the ith
row of M , contains the permutation πi(h) = h ⊕ V [i]. For the last row (index
n− 1), πn−1(h) = h.

For 0 ≤ j ≤ n− 1, the jth column is the permutation

τj(h) =

{
j if h = n− 1
j ⊕ V [h] else

τj is a permutation over H because j = j ⊕ 0k, and {V [h]|0 ≤ h ≤ n− 2} ∪
{0k} = {0, 1}k.

Lemma 12. In every matrix Mn×n outputted by GLSC, for 0 ≤ i ≤ n− 2 and
0 ≤ j 6= l ≤ n− 1: (1) Mi,j 6= j. (2) Mi,j = l⇒Mi,l = j.

Proof The first requirement is satisfied because M is LS (Lemma 11), and
Mn−1,j = j.

The second requirement holds because by the GLS construction (Definition
10):

1. l = Mi,j = V [i]⊕ j.
2. Mi,l = V [i]⊕ l.

Substitution of (1) in (2) brings the desired result.

Lemma 13. A sequence of k consecutive non-zero states of k-bits maximal Fi-
bonacci LFSR forms a linear base for {0, 1}k.

Proof Let P (x) = 1+
∑k

i=1 ci ·xi (ck = 1) be the primitive polynomial used by

the LFSR, and let {si}2
k−2

i=0 be a cyclic sequence of the LFSR’s non-zero states.
For simplicity, we omit the mod(2k − 1) from the states subscript until the

end of the proof. The state sj of the LFSR is a linear combination (the XOR
operation is the same as addition in Z2) of the states S = {sj−i|ci = 1}; i.e.,
sj = ⊕

s∈S
s.

Because ck = 1, sj−k ∈ S.

Therefore, given a sequence of states {si}j−1i=j−k that is a linear base for

{0, 1}k, the sequence {si}ji=j−k+1 is also a linear base of {0, 1}k (because the

state sj−k that was omitted from the base, can be reproduced by sj⊕
(

⊕
s∈S−{sj−k}

s
)
).

Hence, it is enough to show that there is some consecutive sequence of k
LFSR states that spans {0, 1}k. We consider the sequence of k states starting
from 1 ◦ 0k−1. Putting the k states in a k × k matrix, gives a lower rectangle
matrix, such that all the values on the diagonal are 1, which implies that these
k states are a linear base for {0, 1}k.
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Definition 14. (Linear combination of linear base) Given a linear base S =
{S0, S1, ..., Sk−1} of {0, 1}k, and an element e ∈ {0, 1}k. We denote the lin-
ear representation of e as linear combination of the elements of S by eS =
(eS0 , e

S
1 , ..., e

S
k−1), such that eSi ∈ Z2, and e =

∑k−1
i=0 e

S
i · Si when the addition is

over Z2, and therefore equals to ⊕k−1
i=0 (eSi · Si).

Lemma 15. Let Mn×n be a matrix outputted by GLSC, let V be the LFSR
states vector that was created in the first step of GLSC, and let some i ∈ N. We
denote S = {V [i mod (n− 1)], V [i+1 mod (n− 1)], ..., V [i+k−1 mod (n− 1)]}
as the set of k consecutive (cyclically) elements of V , starting from index i mod
(n− 1).

Then S is a linear base of {0, 1}k, and for every 0 ≤ j, l ≤ n− 1, 0 ≤ m ≤
k − 1, MeetMi+m(j) = l if and only if jS and lS differ only in index m.

Proof By Lemma 13, S = {V [i], V [i + 1 mod (n− 1)], ..., V [i + k − 1 mod
(n− 1)]} is a linear base of {0, 1}k.

By Definition 6, MeetMi+m(j) = l if and only if Mi+m mod (n−1),j = l. Ac-
cording to GLSC:

l = MeetMi+m(j) = Mi+m mod (n−1),j = j ⊕ V [i+m mod (n− 1)] = j ⊕ Sm (1)

Therefore jS and lS differ only in index m (the difference between them is only
by XORing one of the elements in S, Sm).

If jS and lS differ only in index m, then j ⊕ l = Sm, and hence l = j ⊕ Sm.
From Equation (1) this implies that l = MeetMi+m(j).

Lemma 16. Given some n = 2k, GLSC produces a matrix Mn×n, such that
for every i ∈ N, and for every 0 ≤ j ≤ n− 1, RM

i,k(j) = {0, 1, 2, ..., n− 1}\{j}.

Proof We show that for every i ∈ N, and every two different j 6= l ∈ H =
{0, 1, ..., n − 1}, l is a (i, k) − recipient from j. This is enough for concluding
also that j 6∈ RM

i,k(j), because in k days, a gossip can be broadcast to maximum

2k − 1 gossipers [2].
We consider the representation of j and l as a linear combination of the base

S = {V [i mod (n− 1)], V [i + 1 mod (n− 1)], ..., V [i + k − 1 mod (n− 1)]}: jS
and lS .

We define Q = (q0, q1, ..., qy), to be the sorted sequence of the elements in
the set {t|0 ≤ t ≤ k − 1, jSt 6= lSt }. Namely, Q is the sequence of indices where
jS differs from lS . Obviously y < k, Q is sorted and qy < k, because Q is a
subsequence of the indices (0, 1, ..., k − 1)

For every qt we define a corresponding pt value, such that pSt is identical to
lS until index qt (including), and identical to jS from index qt (excluding).

We define P = (p0, p1, ..., py) to be the corresponding sequence to Q’s ele-
ments. P ⊂ H.

We now shows that the sequence (pt, qt)
y
t=1 satisfies the three requirements

of Definition 3 for l is a (i, k)− recipient from j:
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1. p0 = MeetMi+q0
(j). By Lemma 15, it is enough to show that jS and pS0

differ only in index q0. But q0 is the first index where jS differs from lS ,
so by the choice of p0, the first q0 values in pS0 are identical to lS and
therefore also to jS . In indices higher than q0, the values of jS and pS0
are identical by the choice of p0. The only different index is therefore q0,
where pS0 equals to lS .

2. For every 0 < t ≤ y, pt = MeetMi+qt
(pt−1). Similarly to the previous

requirement we show that pSt differs from pSt−1 only in index qt. For
indices that are greater than qt, both pSt and pSt−1 are the same as jS .
For indices ≤ qt−1, both of them are the same as lS . For indices between
qt−1 and qt (excluding), pSt and pSt−1 are identical because jS and lS are
identical in theses indices. Therefore the only difference between pSt and
pSt−1 is in index qt is by the choice of qt.

3. l = py. This is true, because for indices ≤ py, by definition pSy is the same

as lS , and for the other indices (> qy), jS is the same as lS .

Theorem 17. GLSC produces a GLS.

Proof Directly from Lemmas 11, 12 and 16.

3.3. Example

Figure 1 is a GLS that was outputted by GLSC, using a maximal Fibonacci
LFSR that is based on the primitive polynomial P (x) = x4 + x + 1, and with
initial state 1000 (in decimal base 8). The vector V that was created in the first
step of GLSC appears above the headline-row in the first column (XORed by
0).

4. Conclusions and Future Work

In this paper we presented the meet-all gossipers problem, defined Gossip
Latin Square (GLS), and proved that GLS of order k represents a solution to
the problem with 2k gossipers. We then present a construction for GLS and
prove its correctness.

We presented the binary version of the meet-all gossipers problem. The
problem can be generalized by generalizing the pairwise requirement. We can
take n = mk and require that every day there will be n

m meetings, each one of
m gossipers. To solve this problem, we can use Zm and corresponding primitive
polynomial to create ( n−1

m−1 + 1)× n matrix, such that except the headline row,
every matrix cell contains m− 1 values.

The requirement can be further generalized by changing the number of gos-
sipers in a meeting as a function of the day. As GLSC is similar to the hypercube
graph construction [9], to solve this version of the problem, we offer to use the
generalized hypercube [1].
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