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Abstract—We present DURP, a decentralized protocol for
unobservable, anonymous reporting to an untrusted destination,
with low latency and overhead. DURP provably ensures strong
anonymity properties, as required for some applications (and not
provided by existing systems and practical designs, e.g., Tor),
specifically:
− Provable unobservability against global eavesdropper and
malicious participants.
− Provable source anonymity against a malicious destination.
− Probable-innocence against a malicious destination which is
also a global eavesdropper.

DURP design is a modular combination of two modules: a
queuing module, ensuring fixed rates for certain events, together
with an anonymization module, which can use either Onion-
Routing (DURPOR) or Crowds (DURPCrowds). We present anal-
ysis, backed by simulation results, of the network properties and
performance of DURP, and show it has reasonable overhead. We
also use the analysis results to create an optimized version of
DURP.

I. INTRODUCTION

Anonymous communication is both important and chal-
lenging, motivating an abundance of research and systems.
In fact, different applications and scenarios may require very
different ‘anonymity’ requirements, and indeed many propos-
als and systems are incomparable since they satisfy different
requirements or provide different trade-offs (often, between
performance and anonymity properties). In fact, known so-
lutions range from very weak anonymity properties (and
low overhead), to stronger anonymity properties (but often
unacceptably-high overhead).

In the recent years, most attention was given to weak
anonymity (and high efficiency) decentralized designs, e.g.,
Tor [1], the most well known and widely used anonymous
networking system. Tor is designed specifically to ensure ‘low-
latency’, and its anonymity properties are modest, e.g., an
eavesdropper listening on both sender and destination, can
identify when they communicate. In particular, this holds for
attacker that controls both the entry and the exit nodes.

The focus on low-latency and low-overhead anonymity
networks, is mainly due to two reasons: (1) Prioritizing ef-
ficiency over anonymity, and (2) belief that strong attackers,
in particular global eavesdroppers, are impractical.

The efficiency concerns are understandable; even surfing
using Tor involves noticeable overhead. However, stronger
attackers may often be a realistic concern, e.g., see reports of

governmental eavesdropping, domestically and internationally.
Furthermore, several works show that weaker attackers may
also obtain ‘MitM-like‘ abilities, e.g., off-path [2] and DoS
attacks [3] [4] on Tor and by controlling few relays. It is also
claimed that some Tor relays are controlled by ‘snoops‘ [5].
These attacks demonstrate the tangibility of the threat from
strong attackers (e.g., eavesdroppers, malicious participants
and combinations of them), even from entities without many
resources.

In this work, we show DURP, a decentralized protocol
ensuring strong anonymity properties, specifically, unobserv-
ability against global eavesdroppers and malicious participants,
together with anonymity against the destination. DURP is a
practical and reasonably efficient, with a completely decen-
tralized, peer-to-peer, scalable design.

DURP ensures strong anonymity properties, including un-
observability, preventing eavesdroppers, or even other partici-
pants, from knowing that an entity communicates. This is re-
quired for some sensitive applications. However, in this work,
we focus on a anonymous and unobservable communication
to a single destination.

Specifically, we define and study the unobservable re-
porting problem. In this problem there are many reporters,
all of them might want to send anonymous reports about
confidential events to a known destination. The messages must
be anonymous, such that the destination cannot know who
is the reporter. Furthermore, due to the confidentiality of the
events, and the known relationships between the reporters and
the destination, regular anonymity is not enough: we want
to hide the fact that a report was made, even from a global
adversary which controls many of the reporters. Otherwise,
such attacker might detect the existence of a report, and thereby
learn the existence of a confidential event.

Reporting is an important application, which may require
unobservable, anonymous communication, in particular, when
the mere fact of a sender making a report may leak sensitive
information. For example, consider detection of some critical
scenario, e.g., a new cyber attack (where pattern of reports
may expose vulnerabilities or operations), or reporting of
large financial transactions in order to detect money-laundering
operations (where the pattern of reports may leak business
information such as number of large transactions). In these
and other applications, an anonymous reporting mechanism
may help detect critical issues (e.g., money laundering), by
combining many indicators from different sources.



Specifically, we present Decentralized Unobservable Re-
porting Protocol (DURP), the first decentralized, reasonably-
efficient protocol, which provably achieve both of the follow-
ing crucial anonymity properties:
Unobservability against malicious peers: even an attacker
which can eavesdrop on the communication, and also controls
some of the participants (peers) in the network, cannot detect
the existence or amount of communication.
Sender anonymity: hide the identity of the sender of a message
from a malicious destination. Note that the destination can
trivially detect the existence and amount of communication,
i.e., unobservability against the destination is impossible.

Furthermore, DURP provides also some anonymity against
a ‘hybrid’ attacker, who controls the destination as well as has
the ability to eavesdrop on the communication. Our design
includes the On Load Send More (OLSM) optimization, which
further improves the anonymity against such ‘hybrid’ attacker.

A. Contributions

We present DURP, a completely decentralized anonymous
reporting protocol. DURP is practical, with reasonable per-
formance and overhead proven both analytically and using
simulations; it is a scalable peer-to-peer protocol, i.e., all
entities operate similarly, with fixed load to each peer, with
minor differences between peers (and over time). Yet, DURP
also ensures strong, proven anonymity properties, including
both unobservability and source-anonymity (against malicious
destination).

DURP is decentralized, without any single point of failure;
this is important for reliability, security (e.g., against “legal
attacks”), and for load balancing (required for efficient scala-
bility). Unlike previous decentralized solutions (see below),
DURP ensures unobservability against strong attackers and
anonymity against the destination, while maintaining reason-
able efficiency. DURP is also easy to implement and deploy,
reusing existing anonymity protocols modularly.

B. Fully decentralized design

A basic threat to anonymity is corruption or coercion
of the anonymizing servers, e.g., by using legal means to
force a server to expose identities. Hence, for good, robust
anonymity, decentralized designs are preferred, ensuring that
such efforts to deanonymize require corruption or coercion of
many servers. This is a basic design principle of Tor [1] and
other mix-networks; in particular, Tor features thousands of
relay nodes.

However, in Tor (and similar networks), complete decen-
tralization is hard to achieve, since the network serves many
end users, and each of them consumes part of the bandwidth
of the servers. Therefore, it is highly desirable to use maximal
bandwidth of each server. Indeed, in Tor, larger relays (with
larger bandwidth) are chosen more often [6]; the differences
in bandwidths are so extreme [7], that much of the traffic
flows through a relatively modest number of (maybe few
dozens) large relays. This makes some relays more lucrative
targets, and motivates entities interested in deanonymization
to operate such popular relays; the costs are not very high,
certainly compared to the budget of some entities interested in
deanonymization (e.g., security agencies).

In contrast, in DURP, our goal of unobservability implies
that every node is both a producer of information and a
providing of relaying services, and we do not need large nodes.
Hence, DURP is completely decentralized, with equal load on
each node, which remains fixed even as the network grows;
this also ensures high reliability and good load balancing, and
thereby efficient scalability.

C. DURP Overview

DURP combines two well-known and intuitive techniques
for anonymity: mixing [8] and constant sending rate. Specifi-
cally, DURP maintains constant sending rate from the applica-
tion level to the protocol level, to hide the communication from
eavesdroppers and malicious peers (i.e., ensure unobservabil-
ity). DURP also uses additional dummy traffic in the protocol
level to increase the anonymity against global eavesdropper
destination.

DURP uses mixing to ensure anonymity against the desti-
nation. Specifically, DURP uses, in a modular fashion, low-
latency mixing protocols, such as Crowds [9] or Onion-
Routing (OR) [10]. Indeed, DURP can be viewed as a frame-
work that adds unobservability against malicious peers and
global eavesdropper to anonymity protocols. This is done while
maintaining reasonable overhead and load balancing.

DURP modular design is simple, and it can be deployed
easily, even on a subset of existing Tor nodes (as an overlay
network providing stronger anonymity and unobservability
properties). The DURP framework dispatches the anonymity
protocol in synchronous rounds, and maintain a constant
rate sending from the application level to the protocol level
by adding a message from the application each round with
probability of 1/ρ for some ρ > 1.

D. DURP Properties

DURP has higher latency and communication (cf. to
Crowds and Onion Routing), but this extra overhead is not
excessive, and may be acceptable to many applications which
require strong anonymity. To prevent load and keep the com-
munication cost constant, the outgoing traffic and the average
incoming traffic of every participant are constant (per round).
The incoming traffic to each DURP relay, is bounded by

logn
log logn (1+o(1)) with probability 1−o(1) (see Section IV-E).
In Section IV we present thorough analysis of other network
properties, including the maximal reporting throughput as a
function of the communication cost, the distribution of the
buffers’ sizes, the average latency and more. Using this analy-
sis, it is possible to check whether it is worth to pay the com-
munication cost for getting the strong anonymity properties,
or to configure DURP by the communication restrictions. The
known low overhead for the reporters makes DURP practical
solution.

DURP ensures the following anonymity properties:

1) Provable unobservability against any probabilistic poly-
nomial time (PPT ) global eavesdropper attacker that fur-
ther controls any combination of malicious peers (formal
theorem and proof in Section VI).

2) Provable strong sender anonymity against any probabilis-
tic polynomial time (PPT ) attacker that controls the
destination (Section V).



3) Probable and Possible Innocence. We rely on the defi-
nitions of Reiter and Rubin [9], and offered also quan-
tification of the Probable and Possible innocence prop-
erties. DURP’s (and in particular its optimized version)
high degrees of Probable and Possible innocence against
global eavesdropper destination are validated experimen-
tally (Sections VII and VIII).

E. Related Works

The amount of research of anonymous communication,
even only of decentralized designs, is too large for us to
properly review here. Hence, we only discuss here briefly the
most relevant and prominent works, and refer the reader to
[11] for a survey covering many other works.

1) Protocols that ensures unobservability: Our design is
reminiscent of PipeNet [12]. However, notice that [12] pro-
vides only very short, abstract description; there are details
missing in the design itself, and there are neither formal proof
for its anonymity properties nor performance evaluation - these
are part of our main contributions. The analysis results helped
us to detect some problems in DURP (Section VII) and to offer
optimized version (Section VIII). Example to the abstraction
of PipeNet is the fact that a user can launch a DoS attack (and
cause a total stop of the system) by just stop sending.

Our security requirements are closest to these of Chaum’s
seminal DC-net design [13], which also ensures unobservabil-
ity and source-anonymity. However, DC-net’s overhead is too
high for most applications; the minimal ratio between real
messages bits and dummy ones is O(n), when n is the number
of the peers. Furthermore, additional bandwidth is needed to
deal with collisions [14]. In DURP, the minimal ratio is a
constant (see Section IV).

Another approach, also initiated by Chaum, is using mixes
[8]. However, mix-based systems that ensure anonymity and
unobservability, like Mixmaster [15] and Miminion [16], have
very high latency; it might take few hours for a mail to reach
its destination.

Mixed-based solutions like [17] [18] [19] separate between
the clients and the mixes, and therefore are less scalable and
more vulnerable to legal attacks. Moreover, the first mix knows
the source of the messages that it receives, and together with
the destination, they can detect whether any specific message
is real by forwarding only this message, and sending dummy
messages instead of the other messages [20]. See further
attacks and analysis in [21], [22].

Another difference between DURP and mixes based solu-
tions [23], is the fact that the load on the participant is not
the same, or is not uniform over time (i.e., mix might send at
once a lot of messages or wait until the pool is get filled).

Other protocols may provide unobservability, but only
against an eavesdropping attacker, and fail when the attacker
also controls some of the nodes. Two examples are Tarzan [24]
and Herbivore [25]. Both the protocols ensures unobservability
against eavesdroppers, but many malicious peers can break the
unobservability. Finally, ‘buses-based’ approach of Beimel and
Dolev [26], achieves unobservability - but not anonymity.

2) Protocols that ensures anonymity: Most of the recent
research in the anonymity field is about low-latency protocols,
mainly for web-surfing. Well-known protocols such as Crowds
[9], Onion Routing [10], Tor [1], hordes [27], MorphMix [28],
protocols for k-anonymity [29] [30] and others [31] [32] [33]
[34] focus on anonymity but do not provide unobservability.
All these protocols, provide some anonymity and are efficient.
The cost is losing unobservability even against local eavesdrop-
per (without requiring malicious peers) or weaker anonymity
properties. Additionally, without adding delays, these low
latency protocols leak information even against the destination
[35]. Dummy traffic is known solution [20] [36] and is also
necessary in order to hide whether one communicates.

Organization. In Section 2, we present the model and how
we evaluate DURP’s anonymity and unobservability. In Sec-
tion 3 we introduce DURP. In Section 4 we prove DURP with
OR or Crowds as a base protocol ensures sender anonymity
against malicious destination. In Section 5, we formally prove
DURP ensures unobservability against any combination of
malicious peers and eavesdroppers. The proof is by reduction
to the security of the public key encryption scheme used by
DURP. In section 6 we empirically shows that DURP ensures
also anonymity against global eavesdropper destination, and
present an optimized version of the protocol. In the last section
we conclude our work and discuss future wsork.

II. MODEL AND REQUIREMENTS

A. Communication and Setup Model

In this work we assume synchronous system, i.e. all peers
operate in synchronous rounds, and all the messages sent in
one round, are received in the next round. We assume private
channels between each pair of participants, e.g., using sym-
metric cryptography. We also assume that all the participants
have the public key of the destination. Another assumption we
make is that all the messages that need to be sent are of the
same length; obviously, message of different length might be
divided or padded.

We consider a network of n participants {p1, ..., pn}.
The first n − 1 participants are called peers, and participant
pn, denoted also as d, is the (only) destination. Every pair
of participants can communicate. The peers want to send
anonymous reports to d, such that only the destination can
observe whether a report was sent or not.

B. Anonymity and Unobservability Definitions

Precise definition of anonymity properties is challenging.
We extend the elegant definitions of [37], which capture
many variants of anonymity, to allow also active attackers.
In the following subsection, we sketch our definition, for
the two most relevant anonymity notions: sender anonymity
and unobservability; additional notions and more details are
available in [38].

Comp-N-Anonymity: To define Comp-N-Anonymity (for
different anonymity notions N [37]) against different attackers,
we define an experiment (see Alg 1). In the experiment, the
attacker chooses and adaptively manages two scenarios, but
only one is simulated. The different anonymity notions and the
attacker’s capability define different restrictions on the chosen
scenarios.



The scenarios are modeled by messages matrices M (0),
M (1). Messages have constant length, and are taken from V =
{0, 1}l. Mi,j ∈ V ∗ is the multiset of messages that pi wants
to send to pj . The restrictions on the matrices, are modeled as
relations on these matrices.

The experiment has four parameters in addition to the
security parameter k: the protocol π, the number of the
participants n, the PPT attacker A and the capability of the
attacker Cap.

The protocol π has two PPT methods: Setup(1k, i, n)
to get the initial state of the i-th participant and usually to
generate and distribute identities and keys, and the Simulate
method that simulates participant by the protocol π according
to its state, the messages it receives, and its application level.

The capability is defined by a tuple Cap=(H,EV,MD) ∈
P([n])2 × {0, 1}, such that Cap[H] is the malicious partici-
pant (controlled by the attacker) set, Cap[EV ] is the eaves-
dropped participants set, and Cap[MD] defines whether the
attacker is modeled also as malicious destination. By default
Cap[MD]=0, such that the capability is defined also as an
element in P([n])2.

When N=UO (unobservability), we do not restrict the com-
munication between honest peers in both the scenarios, and
forbid communication between honest and malicious peers.
The attacker can send messages to the honest peers from the
malicious peers, but in both the scenarios, honest peers do not
want to send messages to malicious peers.

The relevant relation is denoted by RHUO.

We prove that DURP is Comp-UO-anonymous against
any combination of eavesdroppers and malicious peers. We
consider attackers with capability Cap=(S ⊂ [n− 1], [n], 0).

The restriction on the scenarios, when N=SA (sender
anonymity) against one malicious destination (modeled by
capability Cap=({n}, ∅, 1)), is that the traffic from the honest
peers to destination in both the scenarios, is some constant
permutation τ , i.e., if in the first scenario pi wants to send
the messages in M

(0)
i,n to the destination, then in the second

scenario, pτ(i) must send the same messages.

In our case, where all the messages are for one destination,
we can model the restriction on the scenarios matrices by the
demand: Rows(M (0)) = τ(Rows(M (1))) (when the rows that
represent the application level of malicious participants, must
be empty).

The relevant relation is denoted by RH,τSA .

We prove that DURP is Comp-SA-anonymous against
malicious destination (the strongest anonymity notion against
malicious destination).

We bring here shortened versions of the relevant definitions
from [39]:

Definition 1: The Comp-N-advantage of an attacker A
that runs with k as a parameter, is defined as:

AdvComp−Nπ,n,A,Cap(k) = |Pr[ExptComp−N−1
π,n,A,Cap (k) = 1]

−Pr[ExptComp−N−0
π,n,A,Cap (k) = 1]|

Definition 2: Protocol π is Comp-N-anonymous, when
N ∈ {SA,UO}, against attackers with capability Cap ∈
P ([n])2×{0, 1}, if for all PPT algorithms, A, there exists a
negligible function negl such that,

AdvComp−Nπ,n,A,Cap(k) ≤ negl(k)

Algorithm 1 ExptComp−N−b
π,n,A,Cap (k). From [39]

1: for i = 1 to n do S i←π.Setup(1k, i, n) end for
2: EV = Cap[H] ∪ Cap[EV]
3: H = [n]− Cap[H]
4: < SA, 1

rounds >← A.Initialize(1k, {Si}i∈Cap[H])
5: for t = 1 to rounds do
6: < SA,M

(0),M (1) >← A.InsertMessages(1k,SA)
7: if (M (0),M (1)) 6∈ RHN then
8: return 0
9: end if

10: for all i ∈ H do
11: < Si, {Ci,j,t}nj=1 >←

π.Simulate(1k,Si, {Cj,i,t−1}nj=1, {m
(b)
i,j }nj=1)

12: end for
13: < SA, {Ci,j,t}i∈Cap[H]

1≤j≤n
>←

A.Simulate(1k,SA, {Ci,j,t−1}i∨j∈EV )

14: < SA, b
′ >← A.GuessB(1k,SA)

15: if b′ 6= NULL return b′ end if
16: end for
17: return 0

III. DECENTRALIZED UNOBSERVABLE REPORTING
PROTOCOL (DURPΠ)

In this section we present the Decentralized Unobservable
Reporting Protocol (DURPΠ). DURP is modular; the Π param-
eter of DURPΠ refers to a ‘base’ anonymous-communication
protocol, specifically, either Onion Routing (OR) [10] or
Crowds [9]. In the following sections, we prove that, with
both ‘base protocols’, DURP ensures two strong anonymity
properties: (1) Comp-UO-anonymity against any combination
of eavesdroppers and other (active) malicious participants, and
(2) Comp-SA-anonymity against the destination.

A. Operation of DURP

A DURP’s peer (potential sender) is initialized with four
parameters: (1) the security parameter k, (2) the destination’s
public key pkd, (3) the average number of rounds to add a
message from the application ρ and (4) the expected average
hops-counter for a message H .

Every peer running DURP maintains two data-structures:
Set and DSet. Set contains messages to be sent to other
peers, and DSet contains messages to be sent directly to the
destination. The messages in Set are either received from other
peers (messages that the peer has to relay), or inserted to Set
from the application by the protocol (and their originator is
the peer).

Every round, DURPΠ sends exactly one message from Set
(or a special dummy message, when Set is empty) to another
peer; The creation and the process of the messages is done



by the base protocol Π (e.g., in Π=OR, when a message is
created, the plaintext is wrapped as an onion [10]).

It may appear, that since the step above ensures constant
sending rate by each peer, then unobservability is already
satisfied. However, this is incorrect, as we explain in Section
III-C.

Hence, DURP also maintains a fixed sending rate from the
application, at each peer, to the destination. Namely, on every
iteration, each peer adds a message from the application level
to its Set with probability 1

ρ . Notice that the application must
provide a message; obviously, some signaling message can
be sent to signal lack of real content. Such signal message
should not be confused with the dummy message sent by
DURP itself when Set is empty (see above). New messages
from the application and dummy messages, are encrypted by
DURP’s public key encryption scheme, denoted by (K, E ,D),
using the destination’s public key. DURP requires CPA secure
encryption scheme [40].

A received message is added to DSet if its next (and last)
destination is d; otherwise, it is added to Set. Every iteration,
all the messages in DSet are sent to the destination.

The pseudocode of DURPΠ appears in Alg 2.

Algorithm 2 DURPΠ. The Initialize, CreateMessage and
ReceiveMessage methods are done by Π. In line 12 (c, p) is
chosen uniformly.

1: Initialization(k, pkd, ρ, H):
2: Set = DSet = ∅
3: Π.Initialize(k, H)

4: Every round do:
5: With probability 1

ρ do
6: Get message m from the application
7: Set.add(Π.CreateMessage(Epkd(m), d))
8: end do
9: if Set.isEmpty() then

10: (c, p) ← (Π.CreateMessage(Epkd(dummy), d))
11: else
12: (c, p)

r← Set
13: Send c to p
14: Send all the messages in DSet to d

15: OnReceivingMessage(c):
16: (c, p) ← Π.ReceiveMessage(c)
17: if p == d then
18: DSet.add((c, p))
19: else
20: Set.add((c, p))

B. Onion Routing and Crowds as Base Protocols (Π)

We define the routing procedure of the protocols such
that the exit-peer, the peer that forwards the message to the
destination, will be chosen independently of the originator
and other intermediate peers. Both protocols ensure sender
anonymity against the destination, but not unobservability
(even against very weak attacker like local eavesdropper),
because they do not use cover traffic.

1) Onion-Routing (OR): The OR protocol [10] relies on
public key encryption, to enforce routing of a message. The
sender chooses a path of l intermediate peers. Then, the sender
encrypts the message with the public keys of all the peers
along the path, from the last to the first, creating an ‘onion’
around the message. When an intermediate peer receives the
message, it removes the outer encryption layer, and forwards
the plaintext (onion with one layer removed) to the next peer
in the path. See pseudo code in Alg 3.

We now explain how to choose the routing path for
ensuring Comp-SA-anonymity against malicious destination.
The ChoosePath(l) method (Alg 3, line 6) works as follows:
The first different l − 1 peers are chosen uniformly, and then
the exit-peer is chosen uniformly among all the peers (and
might be one of the peers that are already in the path). The
hops-counter of every message when it reaches the destination
is H = l + 1.

Algorithm 3 The methods for the base protocol Π = OR.
l > 1 is the number of the layers (intermediate peers in a
path) in the protocol.

1: OR.Initialize(k,H):
2: (pk, sk)

$← K(k)
3: Publish pk
4: l← H − 1

5: OR.CreateMessage(m, d):
6: (p1, p2, ..., pl)

r← ChoosePath(l)
7: (c, p)← (m, d)
8: for i = l to 1 do
9: (c, p)← (Epki(c, p), pi)

10: end for
11: return (c, p)

12: OR.ReceiveMessage(c):
13: (c, p)← Dsk(c)
14: return (c, p)

2) Crowds: In Crowds [9], the sender selects a random peer
and sends the message to it. The intermediate peer forwards the
message to another randomly chosen intermediate peer with
probability Pf , or, with probability 1−Pf , sends the message
to the destination.

We slightly change Crowds by adding one step before
sending to the destination, i.e., referring to the (randomly
choosen) peer that sends destination as the exit-peer, as follows
(and see Alg 4):

1) The originator of the message sends the message to a
random intermediate peer.

2) Every peer that receives a message as an intermediate
peer, sends it to another intermediate peer with probability
of Pf . With probability of 1 − Pf , the peer chooses a
random exit-peer among all the peers (including itself),
and forwards the message with indication that the receiver
is the exit-peer of the message.

3) The exit-peer sends the message to the destination.

The transmission between the peers is exactly like the
complete transmission in original Crowds, hence the average
number of hops (between peers) is 1 + 1

1−Pf
. The exit-peer



always sends directly to the destination, hence the average
number of hops in our modified-Crowds is simply H =
2 + 1

1−Pf
.

Algorithm 4 The methods for the base protocol Π = Crowds.
Pf is the probability to forward the message. With probability
of 1− Pf the peer chooses an exit peer.

1: Crowds.Initialize(k,H):
2: Pf ← H−2

H−3

3: Crowds.CreateMessage(m, d):
4: p

r← ChooseNextPeer()
5: c← (m, d, False)
6: return (c, p)

7: Crowds.ReceiveMessage(c = (m, d, isExitPeer)):
8: if isExitPeer then
9: (c, p)← (m, d)

10: else
11: x

r← [0, 1]
12: if x ≤ Pf then
13: p

r← ChooseNextPeer()
14: c← (m, d, False)
15: else
16: p

r← ChooseExitPeer()
17: c← (m, d, True)
18: return (c, p)

C. Constant Sending Rate 6=⇒ Unobservability

To conclude this section, we explain why unobservability is
not necessarily guaranteed, merely by ensuring constant send-
ing rate by the peers. For example, consider a synchronized
version of Onion-Routing or Crowds, where, in addition, every
peer sends one message per iteration. If a peer has no message
to send at a round (from application or other peer), then it sends
a dummy message.

Active attacker can learn whether a peer has messages to
send, by making sure that the peer’s queue is always not empty.
In such a case, if the peer does not have messages from the
application, it will always forward the attacker’s messages,
possibly to other collaborating participants. If the peer has
some messages to send, there will be some delay in the delivery
of the attacker’s messages. Attacker can detect this and thereby
know whether the peer is sending application messages to the
destination.

DURP prevents such detection, by ensuring constant send-
ing rate from the application in each peer (fixed probability
of 1

ρ per round), and since the protocol handles all messages
similarly, independently of their contents (dummy or real).

IV. DURP’S NETWORK PROPERTIES AND PERFORMANCE

A. Notations

We next present few notations used in the analysis.

Iterations-counter of a message is the counter of iterations
from the first iteration of the message in the network. This
counter increases by one every iteration and stops when the
message reaches its destination.

IC is the average iterations-counter of messages that
reached their destinations.

The hops-counter of a message m, is the number of ’send’
(Alg 2, lines 13 and 14) events m passes.

We denote by |CreateMessagernd|, the average number
of ’CreateMessage’ events during the round rnd. Similarly, we
denote |Sendrnd| the average number of ’Send’ events. The
average hops-counter is denoted H , and defined as follows:

H ≡ lim
t→∞

∑t
rnd=1 |Sendrnd|∑t

rnd=1 |CreateMessagernd|

ρ is the sending rate, i.e., every iteration, every peer has to
add a message from the application with probability 1

ρ .

N is the number of the peers in the network; Ni is the
average number of peers whose Sets are of size i, when
‘average‘ is over the entire execution. N =

∑
Ni.

si is the average fraction of the Sets of size i, i.e., si = Ni

N ,
hence {si}∞i=0 is the distribution of the Sets’ sizes.

S is the average number of messages in the net-
work’s Sets. We denote by |Deliveredrnd| the number of
messages that were added to DSet in round rnd: S =
limt→∞

∑t
rnd=1 |CreateMessagernd| − |Deliveredrnd|.

B. Network Properties

We now provide proof sketches for some network proper-
ties of DURP; the properties are affected by general attributes
like H , and therefore the proofs are relevant for different base
protocols.

A network running DURPΠ is stable, if S is bounded and
converging; the following lemma shows that the network is
stable, provided that ρ > H − 1; we assume this holds in the
entire analysis. The proof of this lemma appears only in the
technical report [39], for lack of space.

Lemma 3: A network under DURPΠ is stable when ρ >
H − 1.

Lemma 4: The mean number of outgoing messages (mes-
sages that arrive to the destination) per iteration equals to the
mean number of new messages per iteration, and both are N

H−1 .

Proof: (sketch) The mean number of outgoing messages
is the same as the mean of outgoing messages that move from
Set to DSet.

If the mean of the new messages is greater, then S won’t
converge. On the other hand, the mean of the new messages
cannot be less than the outgoing messages, because every
outgoing message was created sometime.

The average number of outgoing messages is N
H−1 , because

the network is stable (Lemma 3), and it takes on average H−1
’send’ events (from Set) to reach some DSet, and each round
exactly N ’send’ events occur.

Lemma 5: The proportion between application messages
and dummy messages is H−1

ρ−H+1 .

Proof: Over t iterations, N peers send messages from Sets
tN times. Each message is sent, on average, H−1 times until



it reaches some DSet. The average number of new application
messages during t iterations is: tN

ρ . Because the network
is stable, the total number of ’send’ events of application
messages from Sets is (H−1)tN

ρ . Hence, the dummy messages
take tN − (H−1)tN

ρ ’send’ events (again, sending from Sets).
Because the mean of dummy message’s hops-counter is the
same as application message, the average number of dummy
messages is (tN− (H−1)tN

ρ ) 1
H−1 . Division between the values

gives the above result.

Lemma 6: s0 = ρ−H+1
(H−1)(ρ−1) .

Proof: According to the previous lemma, the average
number of the dummy messages added every iteration to Sets
is N

ρ ·
ρ−H+1
H−1 . By the protocol, dummy messages are created

only in empty Sets. Before the creation of dummy message,
there is a chance of 1

ρ that a message will be inserted to Set
from the application instead. So, on average, only 1− 1

ρ of the
peers with an empty Set, create a dummy message. This gives
us the next equation: N(ρ−H+1)

ρ(H−1) = s0N(1 − 1
ρ ). And so, we

get that s0 = ρ−H+1
(H−1)(ρ−1) .

Lemma 7: S =
∑∞
i=1Ni · i = N ·

∑∞
i=1 si · i.

Proof: Directly from the definitions of Ni and si.

Lemma 8: IC = S(H−1)
N + 2.

Proof: By Little law, the number of messages in the
network’s Sets, S, equals to the incoming messages rate, N

H−1 ,
times the average number of iterations a message spends in the
network’s Sets. Because we also count the last two iteration
(when the message reaches some DSet and the following
iteration when it reaches its destination), we get the next
equation: S = N

H−1 (IC − 2).

C. Calculating the distribution of Sets’ sizes in the network

There are two methods to find {si}∞i=0: simulations or
analysis (queuing theory). Due to space limitations, we present
here less efficient algorithm, but an algorithm that can be used
also for the optimized version of DURP (Section VIII). The
more efficient algorithm appears in [39].

The algorithm we present has excellent fit to the simula-
tions (see Section IV-D). The idea of the algorithm is to look
only on one Set and analyze the probabilities of changes in its
size, and it is based on two simplifying assumptions.

1) While analyzing the number of messages that might arrive
to Set we take the mean of the messages that were sent
in some iteration and are will reach some Set in that
iteration (messages that will not reach their exit-peer in
that iteration). Of course we consider only messages that
are sent from the other (N − 1) peers.
We notate the mean of messages that might arrive to a
peer’s Set in an iteration by D, and from Lemma 4, we
get that D = (N − 1)(1− 1

H ).
2) We calculate si only for i < n, for a parameter n.

The algorithm builds a matrix M in the following way:
Mi,j is the probability that Set of size j will be of size i
in the next iteration. Ideally, M is an infinite matrix, for our

algorithm we choose its size, n. The accuracy increases as n
increases.

The function ProbToGetK(int k) (Alg 5) returns the prob-
ability for a peer to get k messages in an iteration.

Algorithm 5 The ProbToGetK(int k) function.

return
(
D
k

) (
1

N−1

)k (
1− 1

N−1

)D−k
Because D is a rational number, we should calculate the

factorials in the binomial coefficient with Gamma function.

The function ProbToBeChangedInK(int k) (Alg 6) returns
the probability for non zero Set size to be changed in k between
two consecutive iterations. The minimal value for k that might
return nonzero value is −1 (when both no message was sent
to the peer and no message was inserted from the application);
the corresponding maximal value, should be N − 1, but due
to our lenient assumption, we return 0 for every value that is
greater than D.

Algorithm 6 The ProbToBeChangedInK(int k) function.
if k < −1 OR k > D then

return 0.
else if k = −1 then

return (1− 1
ρ )ProbToGetK(0).

else
return 1

ρProbToGetK(k)+(1− 1
ρ )ProbToGetK(k+ 1).

end if

Due to the range of the possible changes in Set’s size, M
is almost lower triangular matrix; above the diagonal, only
the values on the upper secondary diagonal are not zeros.
Therefore, for calculating M , we should run on the non-zero
cells of each column (starting from the first) and fill them as
in the BuildProbsMatrix function (Alg 7).

Algorithm 7 The BuildProbsMatrix(int n) function. n is the
accuracy parameter.

Initialize zeros matrix Mn×n

for i = 0 to n− 1 do
Mi,0 =ProbToGetK(i)
Mi,1 =ProbToBeChangedInK(i− 1)

end for
for j = 2 to n− 1 do

for i = j − 1 to n− 1 do
Mi,j = Mi−1,j−1

end for
end for
return M

For Mi,j , i ≥ 1, j ≥ 2, BuildProbsMatrix avoids unnec-
essary calculations: while j > 2, Mi,j = Mi−1,j−1 because
i− j = (i− 1)− (j − 1).

Given such a matrix, we define the procedure SetsSizesBy-
Matrix that receives a square matrix and outputs the Sets’ sizes
distribution applied by that matrix. Given that procedure, the
Sets’ sizes distribution of DURP is calculated with accuracy
parameter n by SetsSizesByMatrix(BuildProbsMatrix(n)).



The input matrix M for SetsSizesByMatrix, defines the
connections between all the si values. We need to solve the
linear equations system: M−→s = −→s . We want to find the
eigenvector for the eigenvalue λ = 1. If we look at the infinite
transitions probabilities matrix, it is easy to see that it has
eigenvalue λ = 1, because the sum of every column is 1. We
use finite square matrix of size n, and if n is high enough,
this matrix also has self value 1 or self value λ such that
|1−λ| is very small. So, for getting the sizes distribution, the
SetsSizesByMatrix (Alg 8) algorithm finds the eigenvector
that corresponds to λ, and normalizes it such that the sum of
its elements will be 1. The normalized vector is the wanted
distribution.

Algorithm 8 SetsSizesByMatrix(Mn×n). Algorithm for get-
ting the Sets’ sizes distribution by a transitions matrix
λ← M ’s eigenvalue, l, that minimize |l − 1|.−→s ← Eigenvector of λ
sum← Sum of −→s elements.
for i = 0 to n− 1 do
si = si/sum

end for
return −→s

D. Simulation Results

We ran simulations of DURPCrowds and DURPOR, with
different H, ρ and N values. The very high correlation between
the actual results and the above analysis, shows that the
algorithm for getting the distribution of the Sets’ sizes (Section
IV-C) gives excellent results, and that using the algorithm and
the lemmas, it is possible to predict network properties like
IC, given DURP’s configuration parameters (ρ, H).

We present the results of simulations for two different
configurations. For every configuration, we compare the sim-
ulation results of both the base protocols that have identical
expected results while they have the same hops-counter mean,
H , to the expected results. We ran every simulation 8 times
for 10,000,000 iterations, and after 1,000,000 iterations that
started from network of peers with empty Sets.

The expected results are calculated as follows: The propor-
tion between the application messages (reals) to the protocol
dummies is calculated by Lemma 5. N0 = N · s0 is calcu-
lated by Lemma 6. To calculate S by Lemma 7, we used
SetsSizesByMatrix(BuildProbsMatrix(200)) (Figures 8 and
7) to get si for i = 0, ..., 199. In the end, we calculate IC by
Lemma 8.

MaxIC is the maximal value of iterations-counter for
message in the simulation. Comparison of the simulation
results and the expected results, appears in Tables I and II.
The confidence interval is calculated by confidence level of
99.9%.

The Sets’ sizes distribution by the algorithms, and
the distribution in both the simulation for DURPOR and
DURPCrowds is visually identical. We present the distributions
of these simulations in Figure 3 in Section VIII when we
compare DURP to its optimized version.

In the DURPCrowds simulations, the confidence interval
of the average hops-counter was less than 0.001 around the

TABLE I. N = 100, H = 5, ρ = 5

Expected results DURPOR DURPCrowds

Real/Dummy 4 4.00±0.00 4.00±0.00
N0 6.25 6.25±0.00 6.25±0.00
S 929.92 934.05±0.57 933.74±0.67
IC 39.20 39.36±0.02 39.35±0.03
MaxIC - 1129±62.68 1257.25±116.07

TABLE II. N = 100, H = 6, ρ = 7

Expected results DURPOR DURPCrowds

Real/Dummy 2.5 2.50±0.00 2.50±0.00
N0 6.67 6.67±0.00 6.67±0.00
S 832.93 835.71±0.47 835.51±0.41
IC 43.65 43.79±0.02 43.78±0.02
MaxIC - 1063±137.87 1079.88±89.18

expected value. The average maximal hops-counter was 53.25
in the first case, and 72 in the second.

E. DURP’s Performance

We first analyze the communication cost for DURP’s par-
ticipants. Then we analyze DURP’s efficiency: communication
overhead and latency. We also compare these properties with
the DC-net protocol [13] which is fully decentralized protocol
(all participants are equally lucrative targets, e.g., to legal
attacks) that achieves the same anonymity goals.

1) DURP’s communication cost: Every DURP’s reporter,
sends one message per round. Additionally, because every
round there are N − 1 messages that might reach N − 1
other reporters (each. and the N − 1 potential recipients are
different for each message), the probability that a reporter will
receive more than logN

log logN (1 + o(1)) is bounded from above
with probability 1− o(1) [41].

2) DURP’s communication overhead: We compare the
communication overhead with other protocols that use con-
stant sending rate to ensure unobservability. Therefore, we
test the communication by the maximal application messages
that might reach the destination, per sending actions. Every
DURP’s iteration, N sending actions occur. From Lemma 4,
and from the proportion between application messages and
dummy ones, (Lemma 5), we get that by mean, every iteration
N
ρ application messages reach the destination. Therefore, For

sending a message anonymously, instead of one sending action,
we pay in ρ actions. Intuitively, we expected this result, be-
cause we took a message from the application with probability
of 1

ρ .

The ratio of ρ sending actions per real message is the
minimal, and is gotten if the application always has something
to send. If peers do not have something to send, the actual ratio
increases.

In the DC-net protocol [13] the minimal ratio is O(n).

3) DURP’s latency: We measure the latency of DURP
by IC, the average iterations-counter. Although we have a
formula for IC (Lemma 8), we cannot simply use it, as the
calculation of S requires running an algorithm. However, the
gotten IC value is a constant, and in the simulation results,
we showed configurations where IC is less than 10 ·H , when
H is the expected value for IC in the base protocol (in base



protocols like OR and Crowds, a message is sent every iteration
until it reaches its destination).

In the DC-net protocol, if we ignore the overhead of
collisions, the latency is minimal.

4) Overhead vs. latency, and DURP’s parameters: We
showed that the communication overhead is determined by
the ρ parameter. However, we can increase ρ and pay in
more dummy messages (Lemma 5), and decrease the latency
(IC). Another way to decrease the latency, is to decrease H
(for example, using lower Pf in Crowds, or fewer encryption
layers in OR). However, this might hurt the anonymity against
coalition of malicious destination and peers.

In the DC-net protocol, we pay for the low latency in
significant communication overhead. Herbivore [25], a DC-net
based protocol, pays for the scalability and the improvement
in the communication overhead in latency and in the loss of
the unobservability against strong attackers.

V. ANONYMITY PROOF

Theorem 9: DURPOR and DURPCrowds over 2 < n <
l(k) participants (l(·) some polynomial) are Comp-SA-
anonymous against malicious destination.

Proof: We prove that for Π ∈
{DURPOR, DURPCrowds} and n as in the theorem,
for all PPT A there exists a negligible function negl such
that AdvComp−SAΠ,n,A,({n},∅,1)(k) < negl(k).

We model the informationA receives during the Comp-SA-
b experiment as a sequence of tuples (m, t, p) ∈ V ×N×[n−1],
such that each tuple represents that a message m was received
in iteration t from peer p.

We prove that for every two scenarios modeled by se-
quences of messages matrices: {M (0)

i }si=1 and {M (1)
i }si=1

such that for every 1 ≤ i ≤ s, (M
(0)
i ,M

(1)
i ) ∈ RH,τSA (for some

permutation τ ), the probability to get the same information
{mi, ti, pi}ti=1 ∈ {V × N× [n− 1]}∗ is identical in both the
scenarios.

We first prove the following lemma:

Lemma 10: Given a scenario, modeled by a sequence
of matrices {M (b)

i }si=1, for every two information se-
quences {mi, ti, pi}ti=1 and {mi, ti, qi}ti=1, the probability
of the malicious destination to receive either of them, in
ExptComp−SA−bΠ,n,A,({n},∅,1)(k), is identical.

Proof: Consider a run of the protocol for the scenario,
where the destination receives the information {mi, ti, pi}ti=1.
Replacing only the exit-peer of every message mi from pi to
qi produces a run where the destination receives information
{mi, ti, qi}ti=1. The same holds also in the opposite direction.
The probability of every such two runs (identical in all the
random choices and different only in the exit peers) is identical.
That is because the exit-peer of every message is chosen
independently of any protocol or network parameter, and
independently of the scenario (actually, the probability for any
sequence {pi}ti=1 is (n−1)−t). The exit-peer choice does not
affect the parameter ti: from the iteration when the message
is sent to its exit-peer, it takes only additional iteration until
the message reaches the destination.

From the above lemma, it is enough to prove that the prob-
ability to get any information {mi, ti}ti=1 (due to the above
lemma, we omit the pi values) is identical in both the scenarios.
But, because for every 1 ≤ i ≤ s, (M

(0)
i ,M

(1)
i ) ∈ RH,τSA ,

the application level of every peer pi in the first scenario, is
the same as the application level of peer pτ(i) in the second
scenario. The scenarios, are different only in the names of
the peers. Therefore, the probability to get some information
{mi, ti}ti=1, is identical in both the scenarios.

VI. UNOBSERVABILITY PROOF

We prove that DURPOR and DURPCrowds ensure Comp-
UO-anonymity against all the uninvolved parties: eavesdrop-
pers, malicious peers (not the destination) and combinations
of them. Because eavesdropping to more peers can only
increase the attacker power, it is enough to prove Comp-UO-
anonymity against any combination of the global eavesdrop-
per and malicious peers. Namely, attackers with capability
Cap=(S ⊂ [n− 1], [n]).

Our proof is based on reducing DURP’s Comp-UO-
anonymity to the CPA-security of the public-key encryption
scheme used by DURP. We recall the definition for indistin-
guishability under chosen-ciphertext attack (IND-CPA) based
on right left oracle; we use the following definition, which is
equivalent to the one in [40]:

Definition 11: Let ψ = (K, E ,D) be an asymmetric en-
cryption scheme, let A be an algorithm that has access to an
oracle and returns a bit. We consider the following experiment:

Exptind−cpa−bA,ψ (k) Oracle Epk(LR(m0,m1, b))
(pk, sk) ← K(k) if |m0| 6= |m1| then
b′ ← AEpk(LR(·,·,b))(pk) return ⊥

return b′ c← Epk(mb)
return c

ψ is CPA secure if for all PPT algorithms, A, there exists
a negligible function, negl such that,

|Pr[Exptind−cpa−1
A,ψ (k) = 1]−Pr[Exptind−cpa−0

A,ψ (k) = 1]| ≤ negl(k)

Before proving Theorem 12, we expand the Comp-N-b
experiment (see Section II-B, Alg 1) to allow also b = 2,
i.e., b ∈ {0, 1, 2}, and define ΠH

E,pk for Π ∈ {DURPOR,
DURPCrowds}.

The Comp-N-2 experiment. The Comp-N-2 is almost
identical to the Comp-N-b experiment (b ∈ {0, 1}, (Alg 1),
but ignores the messages between the honest peers and d in
both the matrices, and replace them with a constant message
µ for d, the (only) valid destination in the protocol. In the
Comp-N-2 experiment, the honest peers always want to send
copies of some constant message, µ.

Formally, the Comp-N-2 experiment is identical to the
experiment in Alg 1, but with one addition: after verifying
that the matrices pair, (M (0),M (1)), is legal, the Comp-
N-2 experiment creates a new matrix, M (2) by running a
transformation fµ, on M (0). This is done by adding between
lines 9 and 10 of the experiment: M (2) = fµ(M (0)). Notice
that because (M (0),M (1)) ∈ RHN, and because honest peers
send only messages to d, we could use M (1) as well.



The transformation fµ : Mn×n(V *) → Mn×n(V *) is
defined as follows:

Given a constant message µ ∈ V , and the honest partici-
pants set, H = [n]−H , f is defined such that:

fµ(M)i,j =

{
{µ} if i ∈ H, j = n
Mi,j otherwise

ΠH
E,pk. For Π ∈ {DURPOR, DURPCrowds}, we define

ΠH
E,pk as follows: ΠH

E,pk is identical to Π, such that d’s public
key is pk, and with one change; when a message m is taken
from the application of a peer with index in H ⊆ [n] (a
message that the peer sends to the destination, or a dummy
in case that the application queue is empty), or when Set is
empty (see lines 3 and 6 in Alg 2), instead of encrypting it
using DURP’s public key encryption scheme, the encryption
of m is done by E(m) (E(m) does not necessarily depend on
pk).

Theorem 12: Let ψ be the public-key encryption scheme
used by DURP, and l(·) be some polynomial. If ψ is CPA-
secure, then Π ∈ {DURPOR, DURPCrowds} over 2 <
n < l(k) participants is Comp-UO-anonymous against any
combination of global eavesdropper and malicious peers.

Proof: We want to prove that for Π and n as in the
theorem and S ⊂ [n − 1], for all PPT A there exists a
negligible function negl such that:

AdvComp−UO
Π,n,A,(S,[n])(k) < negl(k)

We prove that given a PPT A, that has non-negligible
advantage for some 2 < n < l(k) and S ⊂ [n − 1], we can
build A′ that breaks the CPA-security (Definition 11) of ψ,
the public-key encryption scheme used in DURP to encrypt
the messages for the destination.

We prove that for a ∈ {0, 1} the attacker cannot efficiently
distinguish whether it runs in the Comp-UO-a or in the Comp-
UO-2 experiments while ψ is CPA-secure. Namely, for all
PPT algorithms, A, there exists a negligible function negl
such that,

|Pr[ExptComp−UO−2
Π,n,A,(S,[n]) (k) = 2]−

Pr[ExptComp−UO−a
Π,n,A,(S,[n]) (k) = 2]| < negl(k)

By the hybrid argument technique (or simply, the triangle
inequality), this is enough to prove that an attacker cannot
efficiently distinguish whether it runs in the Comp-UO-0 or in
the Comp-UO-1 experiments, while ψ is CPA-secure.

We now present a reduction from the indistinguishability
between the Comp-UO-a and the Comp-UO-2 experiments to
the CPA-security of ψ.

Given a PPT adversary, A, and some n > 2 and S ⊂
[n− 1], such that for every negligible function, negl:

|Pr[ExptComp−UO−2
Π,n,A,(S,[n]) (k) = 2]−

Pr[ExptComp−UO−a
Π,n,A,(S,[n]) (k) = 2]| > negl(k)

(1)

We build a PPT , A′, that breaks the CPA-security of ψ,
the public-key encryption scheme used by DURP, according
to Definition 11.

A′ runs in one of the IND-CPA-b experiments without
knowing whether b is 0 or 1, with an access to the encryption
oracle Oracle Epk(LR(·, ·, b)), and it acts as follows:

1) Gets pk from the IND-CPA-b experiment.
2) b′ ← ExptComp−UO−a

ΠH
Ea,pk,n,A,(S,[n])

(k), such that for a = 0, Ea
is defined as Oracle Epk(LR(m,µ, b)) and for a = 1
is defined as Oracle Epk(LR(µ,m, b)), and H is the
honest participants set as defined in the third line of the
experiment (see Alg 1).

3) If b′ = 2 return 1. Otherwise return 0.

A′ is polynomial in k as the Comp-N-b experiment takes
poly(k) time (see [38]).

We now prove the correctness of the reduction:

Because in both Π and ΠEa messages are taken into Set
independently of the application level of the participant (every
round a message is moved from the application level to the
protocol level with probability of 1

ρ ), the traffic pattern from the
application level to the protocol level, has the same distribution
for Π and ΠEa .

Additionally, we notice that if in the IND-CPA-b experi-
ment b = 1 − a, in the experiment ExptComp−UO−a

ΠH
Ea,pk,n,A,(S,[n])

(k),
only encryptions of µ will be inserted into Sets of honest par-
ticipants, exactly as though ExptComp−UO−2

Π,n,A,(S,[n]) (k) was run. If
b = a, then ΠH

Ea,pk is identical to Π. So ExptComp−UO−a
Π,n,A,(S,[n]) (k)

was run in the second step of A′.

If A′ runs in the IND-CPA-1 experiment, then its proba-
bility to return 1 is exactly the probability of A to return 2 in
the Comp-UO-(2− a) experiment:

Pr[Exptind−cpa−1
A′,ψ (k) = 1] = Pr[Expt

Comp−UO−(2−a)
Π,n,A,(S,[n]) (k) = 2]

(2)

In the IND-CPA-0 experiment, its probability to return 1 is
exactly the probability of A to return 2 in the Comp-UO-2a
experiment:

Pr[Exptind−cpa−0
A′,ψ (k) = 1] = Pr[ExptComp−UO−2a

Π,n,A,(S,[n]) (k) = 2]
(3)

Substitution of Equations (2) and (3) in Equation (1), for
a ∈ {0, 1}, shows that ψ is not CPA-secure according to
Definition 11.

Therefore, if ψ is CPA-secure, both ExptComp−UO−a
Π,n,A,(S,[n]) (k)

and ExptComp−UO−2
Π,n,A,(S,[n]) (k) are indistinguishable for a ∈ {0, 1}.

By the hybrid argument technique, we get that if ψ is CPA-
secure, ExptComp−UO−0

Π,n,A,(S,[n]) (k) and ExptComp−UO−1
Π,n,A,(S,[n]) (k) are

also indistinguishable. By Definition 2, that means that Π over
n participants is Comp-UO-anonymous against attackers with
capability (S, [n]).



VII. THE EFFECT OF DURPΠ’S NETWORKING
PROPERTIES ON DURPΠ’S ANONYMITY AND SECURITY

In this section we discuss possible problems and attacks
against DURPΠ that are effected by its networking properties.

A. Degradation of Service Attack

In DURPΠ, the destination server has an expected value for
the number of incoming messages every iteration. Flooding the
network does not necessarily affect the rate of the incoming
messages to the destination because all the peers send one
message per iteration, regardless their Set’s size. Additionally,
due to the distribution of the Sets’ sizes and the high variance
(see Figure 3), it is hard for flooded peers to detect anomalies.
We would like to have indications for such attacks from both
the destination and the peers perspectives.

B. The Sets’ Sizes

We separate this problem to two subproblems:

1) Too many empty Sets: The probability to have an empty
Set is not low enough. There could be some implications for
this fact. First, if an attacker blocks the incoming traffic to
peer for low number of iterations, the peer cannot detect that
(because it’s normal to have an empty Set). Second, it is easy
for a local eavesdropper to know when a peer is the source of
messages it sends (even if the attacker does not know whether
it is a real message or dummy).

2) The Sets’ sizes are too low: As could be seen from the
Sets’ sizes distribution graphs (Figure 3), most of the Sets are
of low size.

C. The Maximal Iterations-Counter Value is Too High

As could be seen in the Tables I and II, the maximal
iterations-counter is high. We can fix this by changing the
choosing algorithm. From simulations we ran, FIFO, or uni-
form choosing from the first X messages in Set (X ∈ {3, 4, 5})
improved dramatically the maximal iterations-counter value.
Yet, we do not discuss these results in this paper, because it
is obvious that we prefer to choose uniformly from Set, for
maximizing the mix affect.

D. Anonymity against Eavesdropping Destination

We now show how the network properties and the problems
they arise, affect the anonymity against even stronger attacker.
Another example is brought in [39].

DURP does not ensures Comp-SA-anonymity against ma-
licious destination that is also a global eavesdropper. Briefly,
that is because with non-negligible (although low) probability,
there could be some scenarios where the attacker can win in
the Comp-SA-anonymity experiment [39].

In their paper about Crowds [9], Reiter and Rubin defined
different degrees of anonymity. Among the degrees between
absolute privacy to provably exposed, the probable innocence
and the (weaker) possible innocence are described as follows:

Definition 13: (From [9]) A sender (receiver) is probably
innocent if from the attacker’s perspective, the sender (re-
ceiver) appears no more likely to be the originator than to
not be the originator.

A sender (receiver) is possibly innocent if from the at-
tacker’s perspective, there is nontrivial probability that the real
sender is someone else.

Based on Definition 13, we want to measure the innocence
degree of a sender. We created an experiment that works as
follows: After initializing the protocol, one of N possible
senders is chosen, and it sends one signed message to the
eavesdropping destination. The attacker wins in the experiment
if it guesses correctly the sender.

Based on this experiment, we define probable innocence
degree against an attacker as the probability of the attacker to
lose in the experiment. Similarly, we define possible innocence
degree as the probability that from the attacker’s perspective,
the sender is not the only suspected (the probability that the
attacker does not detect the real sender for sure).

E. DURP’s Innocence Degree

To find DURP’s innocence degree against malicious des-
tination that is also a global eavesdropper, we conservatively
modeled the global eavesdropper destination attacker, by giv-
ing it more than the power a real global eavesdropper has.

We let the attacker know the exact sizes of the peers’ Sets
at any time. Moreover, we let the attacker know how many
messages of each state are in the Sets. For DURPOR we model
the state of each message by the hops it already done. In
DURPCrowds each message might have one of three states:
a message with zeroed hops-counter, a message with non-zero
hops-counter in Set and a message with non-zero hops-counter
in DSet.

The attacker knows the state of every message that is sent,
but it cannot distinguish between messages in the same Set
when the messages have the same state.

For this strengthened attacker, we can easily calculate the
probability of each participant to be the sender in the attacker’s
perspective, by building a simple probability tree based on the
information that the attacker has.

As the eavesdropping destination is a passive attacker, the
most it can do is to wait for the test message to arrive, and then
to calculate a probability vector, that contains the probability
of every participant to be the originator of the message. Given
such a vector, the attacker should only choose the participant
with the highest probability to be the originator. In a case
where many participants, including the real sender, are most
suspect, we assume the attacker detects the real sender (as
though the real sender was the most suspect).

We simulated the experiment for both DURPOR and
DURPCrowds, against the strengthened global eavesdropper
destination attacker described above. We counted both the
failures of the attacker (the times when the real sender was
not the most suspect), and the times when the real sender
was not totally exposed (the attacker did not know for sure
who is the sender). As a fraction of the total experiments
number, we respectively denote these measurements by the
probable innocence degree (shortly Prob degree) and the
possible innocence degree (Poss degree).

The results presented in this section, represent stronger
attacker than the real global eavesdropper destination attacker.
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Fig. 1. The Prob and Poss degrees of DURPOR and DURPCrowds against
the strengthened eavesdropping destination attacker, as a function of N , the
number of potential senders in the experiment, when ρ = H = 5.

Hence, we refer the results as lower bounds for the Prob and
Poss degrees. The results are calculated by averaging millions
simulations of the described experiment.

We present the results of the experiments for ρ = 5 and H
= 5 (4 encryption layers in OR, and Pf = 2

3 in Crowds), and
as a function of the number of senders in Figure 1.

For comparison, we ran the same analysis for the Onion-
Routing and Crowds 1 protocols in synchronized model (the
peers acts in rounds and every sent message reaches its
destination until the next round).

To give Crowds and OR a real chance to achieve good
results, we defined a traffic pattern functions: f1, f2 : [N ] →
N, from the participant’s index, to the number of messages the
participant produces and sends. The traffic pattern function is
called by every participant every experiment round.

In the first time, we assumed traffic pattern of one message
per iteration for every sender: f1 : i 7→ 1. In the second case
we assumed traffic pattern of one message per iteration with
probability of 1

2 : f2 : i
r7→ {0, 1}. Although the traffic volume

in the first case is four times higher then in DURP simulations,
and two times in the second, the results are worse than DURP.
See Figure 2.

Although achieving better Prob and Poss degrees, the re-
sults of DURP are disappointing, due to Sets’ sizes distribution
applied by DURP, and mainly due to the extremely high
variance. Example for the Sets’ sizes for two configurations
appears in Figure 3 in the next section.

VIII. THE OLSM OPTIMIZATION

We now introduce the On Load Send More (OLSM) opti-
mization. OLSM fixes the problems mentioned in the previous
section, and particularly ensures much higher Prob and Poss
degrees. The optimization has three parameters:

1) MinSize. Minimal Set size for a peer to run the opti-
mization.

2) T . The number of tries to send another message.

1We used the version of Crowds we presented in Section III-B2, as it gives
better results than the original Crowds protocol with Pf = 3

4
that gives

H = 5

Fig. 2. The Prob and Poss degrees against the strengthened attacker,
for OR and Crowds configured to have average hops-counter H = 5. (a)
represents traffic pattern of one message per round for every participant, and
(b) represents traffic pattern of message with probability 0.5 per round.

3) P . The probability that single try succeeds.

The optimization works as follows: if after running the
round procedure (see Alg 2), a peer still has Set with size ≥
MinSize, then he gets T chances to send additional messages.
Every chance, a random number, 0 ≤ r ≤ 1, is chosen, and if
r ≤ P , then another message is sent from Set (see Alg 9). We
denote DURPΠ with the OLSM optimization by DURPΠ

OLSM
.

Algorithm 9 The OLSM optimization is called right after the
round procedure (Alg 2).

if Set.size ≥ MinSize then
for i = 1 to T do
r

r← [0, 1]
if r ≤ P then

(c, p)
r← Set

Send c to p
end if

end for
end if

For using DURPΠ
OLSM

and getting its properties, some
configurations of DURPΠ should be changed. In DURPΠ we
demanded that ρ > H−1 (Lemma 3); DURPΠ

OLSM
demands the

opposite: ρ < H − 1; otherwise, if MinSize is high enough,
DURPΠ

OLSM
acts almost the same as DURPΠ.

A. DURPΠ
OLSM

Network Properties

We now present some lemmas without their proofs; some of
the proofs are similar to those of DURPΠ’s similar properties,
and some proofs are trivial. Anyway, we present them such
that no lemma depends on its follows:

Lemma 14: The mean of the sending actions during one
OLSM call is T · P .

Lemma 15: A network under DURPΠ
OLSM

is stable when
1+T ·P
H−1 −

1
ρ > 0.

All the below lemmas, assume Lemma 15’s condition.

Lemma 16: The average number of the outgoing messages
(messages that arrive to the destination) and the average
number of new messages every iteration are N

ρ .



Lemma 17: The average iterations-counter IC = ρ·S
N + 2.

Lemma 18: The number of ’send’ events in the round
procedure every iteration is N (exactly as in DURPΠ).

Lemma 19: The average number of ’send’ events due to
the OLSM optimization every iteration is (H − 1)Nρ −N . We
denote this value as OLSMhops.

Lemma 20: The average number of OLSM calls every
iteration, denoted by OLSMcalls, is 1

T ·POLSMhops.

Lemma 21: 1
ρsMinSize +

∑∞
i=MinSize+1 si = OLSMcalls

N .

The last lemma stems from the fact that the OLSM
optimization is called only if the Set’s size is greater than
MinSize or if Set’s size equals MinSize and a message was
added to Set from the application (probability of 1

ρ ).

B. Algorithm for getting the distribution of the sizes of the
Sets

In Section IV-C we showed how to calculate the Sets’ sizes
distribution by a matrix that defines the probabilities for Set
of size j to be changed to size i. We now show how to build
such a matrix for DURPΠ

OLSM
.

As in DURPΠ, we notate the mean of messages that might
arrive to some peer (not the destination) as D. D is calculated
by substraction of the outgoing messages’ mean from the mean
of the total sending actions in iteration when we count only
messages of other peers (we consider only messages that might
arrive to the peer). D = N−1

ρ (H − 1)− N−1
ρ = (N−1)(H−2)

ρ .

The function OlsmProbToSendK(int k) (Alg 10) returns
the probability that during a call to the OLSM optimization,
k messages were sent from the caller’s Set.

Algorithm 10 The OlsmProbToSendK(int k) function.

return
(
T
k

)
P k(1− P )T−k

Let’s denote the difference between the incoming messages
(calculated by ProbToGetK, Alg 5, but with the new D
value) and the outgoing messages due to OLSM call (cal-
culated by OlsmProbToSendK, Alg 10) by ∆. The function
Olsm∆Prob(int k) (Alg 11) returns the probability that during
a call to the OLSM optimization ∆ = k.

Algorithm 11 The Olsm∆Prob(int k) function.
output = 0
for i = 0 to T do

output += OlsmProbToSendK(i)·ProbToGetK(i+ k)
end for
return output

Similarly to DURPΠ, we build the probabilities transitions
matrix, M , using the OlsmBuildProbsMatrix function (Alg
12). As in DURPΠ, with a bit longer code, we could avoid
recalculation of the same values.

Given such a matrix, we can use the procedure SetsSizes-
ByMatrix (Alg 8) to calculate the Sets’ sizes distribution
applied by that matrix. The calculation of the Sets’ sizes
distribution of DURPΠ

OLSM
with accuracy parameter n is done

by SetsSizesByMatrix(BuildProbsMatrix(n)).

Algorithm 12 The OlsmBuildProbsMatrix(int n) function.
Initialize zeros matrix Mn×n

for j=0 to n-1 do
for i=j-1 to n-1 do

if j = 0 then
Mi,j=ProbToGetK(i)

else if j < MinSize then
Mi,j=ProbToBeChangedInK(i-j)

else if j = MinSize then
Mi,j= 1

ρOlsm∆Prob(i-j)+(1- 1
ρ )ProbToGetK(i-j+1)

else if j > MinSize then
Mi,j= 1

ρOlsm∆Prob(i-j)+(1- 1
ρ )Olsm∆Prob(i-j+1)

end if
end for

end for
return M
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Fig. 3. The distribution of Sets’ sizes for different configurations of DURPΠ

and DURPΠ
OLSM

. The results are for Π ∈ {OR, Crowds}.

C. OLSM Simulation Results

We ran the simulations for DURPΠ
OLSM

as we did for
DURPΠ (Section IV-D). The expected results are calculated as
follows: SetsSizesByMatrix(OLSMBuildProbsMatrix(100))
(Alg 8 and 12) outputs si for i = 0, ..., 99. S is calculated by
Lemma 7, and IC by Lemma 17. MaxIC is the maximal
iterations-counter value for a message in the simulation.
OLSMhops and OLSMcalls are calculated by Lemmas 20
and 21.

Figure 3 contains examples for the Sets’ sizes distribution
for four different configurations of DURPΠ

OLSM
. The Sets’ sizes

distributions by the algorithm and by the simulations for both
DURPOR and DURPCrowds are visually identical.

Tables III and IV contain comparison of the simulation
results to the expected results according to the analysis. The
Sets’ sizes distribution appears in Figure 3. In both the cases,
for Π = Crowds, the average hops-counter was tightly around
5, and the maximal hops-counter was around 51± 2.5.

D. The Advantages of DURPΠ
OLSM

1) Better network properties: The problems of DURPΠ we
mentioned in Section VII, are mitigated by DURPΠ

OLSM
. As

a direct result of the negligible number of empty Sets (see
Figure 3), the number of dummy messages (line 10 in Alg 2)
is negligible.



TABLE III. N = 100, H = 5, ρ = 3,MinSize = 20, T = 4, P = 0.5

Expected results DURPOR

OLSM
DURPCrowds

OLSM
S 1833.34 1832.85±0.06 1832.75±0.05
IC 57.00 56.99±0.00 56.98±0.00
MaxIC - 405.5±35.83 865.75±70.27
OLSMhops 33.33 33.33±0.01 33.33±0.01
OLSMcalls 16.67 16.67±0.00 16.67±0.00

TABLE IV. N = 100, H = 5, ρ = 3,MinSize = 15, T = 4, P = 0.5

Expected results DURPOR

OLSM
DURPCrowds

OLSM
S 1333.45 1333.03±0.06 1332.89±0.07
IC 42.00 40.99±0.00 40.99±0.00
MaxIC - 293.75±12.50 615.62±49.36
OLSMhops 33.33 33.34±0.01 33.34±0.01
OLSMcalls 16.67 16.67±0.00 16.67±0.01

The low variance and the new traffic pattern, enable detec-
tion of anomalies, e.g., flooding attacks, from the perspective
of both the reporters and the destination. Reporters know that
with high probability, the number of the messages in their Set
is in some range around the MinSize parameter. In case of
blocking or flooding a reporter, it is possible to detect this
anomaly. From the destination’s perspective, if the network is
flooded, the number of the messages that reach the destination
per iteration will exceed the value appears in Lemma 16.

From the simulation results, we noticed that the maximal
iterations-counter is also lower than DURPΠ.

2) DURPΠ
OLSM

’s anonymity properties: Theorems 9 and
12 hold also for DURPΠ

OLSM
; the proofs are almost identical.

Additionally, as we believed, DURPΠ
OLSM

gave significantly
higher Prob and Pros degrees against eavesdropping destina-
tion, as could be seen in Figure 4.

Examining the results, the fact that in DURPCrowds
OLSM

the
attacker succeeded with a double probability than DURPOR

OLSM
,

and as opposed to the results in Figure 1 and relatively more
than in Figure 2, was a bit surprising. The messages of Crowds
are mixed better in Sets because the path length is not constant
(there are more possible paths to the destination).

The explanation for this phenomenon, is that originators
of messages that reached the destination through shorter paths,
have higher probability to be suspected or exposed. In Crowds,
the length of the path is chosen by geometric distribution with
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in Figure 2 (a). All the simulations were done over network of 500 senders.

the parameter 1−Pf ; therefore, 1
1−Pf

of the messages has the
shortest possible path. We noticed that in all Crowds (with
some traffic pattern), DURPOR and DURPCrowds

OLSM
, most of

the attacker’s successes are with messages that reached the
destination via short paths. Figure 5 depicts this point.

IX. CONCLUSIONS

Anonymous and unobservable communication is an inter-
esting research challenge, and significant for some sensitive
applications and scenarios. We show DURP, a practical, effi-
cient, and fully decentralized (peer to peer) protocol, ensuring
anonymous and unobservable communication to a single desti-
nation (‘reporting’). DURP is modular, and can be instantiated
with known protocols like Onion-Routing or Crowds.

DURP may be appropriate for sensitive applications, which
require anonymity and unobservability requirements beyond
these provided by existing practical designs, e.g., Tor. In partic-
ular, Tor does not provide either anonymity or unobservability
against a global eavesdropping adversary.

We proved that DURP ensures source anonymity, as well as
unobservability against malicious peers and global eavesdrop-
pers. We also showed that DURP provides anonymity against
global eavesdropper destination. We also analyzed its network
properties and performance, and showed it has reasonable
overhead.

More work is required toward practical decentralized pro-
tocols for strongly-anonymous communication. One obvious
goal is to support multiple destinations, with destination-
anonymity and unlinkability - while maintaining reasonable
overhead. Another challenge is to investigate the feasibility of a
provably-anonymous protocol, for an eavesdropping adversary
which controls the destination; a further challenge is to allow
the adversary also to control some of the nodes (peers).
Another challenge is support of (semi) asynchronous networks.
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[15] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster
Protocol — Version 2,” IETF Internet Draft, 2003.

[16] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a Type III Anonymous Remailer Protocol,” in Proceedings of the 2003
IEEE Symposium on Security and Privacy, May 2003, pp. 2–15.

[17] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “Isdn-mixes: Untraceable
communication with very small bandwidth overhead,” in GI/ITG Con-
ference on Communication in Distributed Systems, vol. 267, 1991, pp.
451–463.

[18] A. Jerichow, J. Muller, A. Pfitzmann, B. Pfitzmann, and M. Waidner,
“Real-time mixes: A bandwidth-efficient anonymity protocol,” Selected
Areas in Communications, IEEE Journal on, vol. 16, no. 4, pp. 495–
509, 1998.

[19] O. Berthold, H. Federrath, and S. Köpsell, “Web mixes: A system for
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