Accelerating Scalar Conversion for Koblitz Curve
Cryptoprocessors on Hardware Platforms

Sujoy Sinha Roy, Junfeng Fan and Ingrid Verbauwhé&adpw, IEEE

Abstract—Kaoblitz curves are a class of computationally effi-
cient elliptic curves where scalar multiplications can be aceler-
ated using7NAF representations of scalars. However conversion
from an integer scalar to a short TNAF is a costly operation.
In this paper we improve the recently proposed scalar con-
version scheme based on division by2. We apply two levels
of optimizations in the scalar conversion architecture. Fist we
reduce the number of long integer subtractions during the
scalar conversion. This optimization reduces the computain cost
and also simplifies the critical paths present in the conveisn
architecture. Then we implement pipelines in the architeatre.
The pipeline splitting increases the operating frequency whout
increasing the number of cycles. We have provided detailed
experimental results to support our claims made in this pape

Index Terms—Koblitz Curve, Lazy Reduction, Scalar Multi-
plication, Cryptography, FPGA, Architecture, Pipelining.

|. INTRODUCTION

However, the length of bothadic andrNAF representations
of a scalar are almost twice the length of the integer scalar.
Thus, increase in the length (thus increase in the number of
point additions) becomes a negating factor in achieving the
acceleration offered by the Frobenius endomorphism. lkengt
reduction schemes were first introduced by Meier and Staffel
back in [10] and were later improved by Solinas in [9]. The
length reduction algorithms proposed by Solinas are efficie
in software, but are not amiable to hardware implementation
due to the presence of multi-precision integer multiplmasg
and divisions.

On the hardware side, very few research papers exist in the
literature on designing efficient scalar conversion alons.
In [11], [12], the conversions are performed in a software
processor, while the ECSMs are performed on a dedicated
hardware. Such an approach is well suited when the scalar

Elliptic curve cryptography (ECC) is the modern Standaljawltiplier architecture is slow. However, the present spee

for public key cryptography thanks to its higher bit segurit
P y cryprograpty J i & bottleneck [13], [6]. The first hardware implementation

and implementation friendliness on embedded platforms.

records for ECSMs in hardware have made such an approach

liptic curve scalar multiplication (ECSM) is the soul of anypf scalar conversion was reported in [14]. Later [15], [16]

ECC processor. In ECSM, a poiit on an elliptic curve is

multiplied by a large scalak to getkP. The standard way

to perform ECSM is to use thdouble and addalgorithm

[1], [2], [3] where point doublings are performed for every
key bit and point additions are performed for every nonzerd)

keep the conversion units in hardware along with the scalar
multipliers. Still the hardware versions of the convertars
slow and have a large area.

The first hardware implementation friendly scalar conver-
on scheme was reported by Brumley and Jarvinen in [17].

key bit. As the number of point additions is determinearheir conversion algorithm repeatedly divides the scalar b

by the Hamming weight of the scalar, computation time df

an ECSM depends on the scalar Numerous works are _) :) . : :
rn%Igonthm is very simple as it requires only integer addi-

present in the literature on improving the computation ti

by applying various optimizations such as efficient repmese

tation of scalars, efficient group operations, use of ptojec

coordinate systems, and use of computation friendly cléss

elliptic curves etc. Architectural optimizations deperglion
the platforms add further acceleration [4], [5], [6], [7].

Koblitz curves [8] are a special class of elliptic curves,
where the Frobenius endomorphism can be utilized to re

resent an integer scalar in 7eadic form. With this special
representation of a scalar, costly point doublings areacsul

by cheaper Frobenius operations. Solinas extended the w

and proposed-adic non-adjacent-form known asNAF [9].

to generate a length reduced scalar. Due to its sequential
nature, the authors call the algorithtazy reduction The

tion/subtraction and shifting. In [18] Adikari, Dimitrosgnd
Jarvinen proposed an improvement over [17]. Since dinisio
tB/T? is cheap in hardware, thaiouble lazy reductioscheme
reduces the computation time to nearly half by using divisio
by 72 instead ofr.

In this paper we propose acceleration techniques for the
ouble lazy reduction algorithm [18]. We observe that salver
dditions and subtractions can be eliminated during thiauisca
reduction and the NAF generation. Subtraction or addition of
g} nonzero remainders are replaced by alteration of the low
order bits in the operands, use of one’s complement of the
operands and by considering borrow/carry inputs in sutdrac

The authors are with the ESAT/SCD-COSIC and iMinds, KU Leuand adder circuits. We eliminate unnecessary subtradiions

ven, Kasteelpark Arenberg 10, B-3001 Leuven-HeverleegiBel. Email :
firstname.lastname@esat.kuleuven.be. This work was sigghbn part by
the Research Council KU Leuven: TENSE (GOA/11/007), by iléinby
the Flemish Government, FWO G.0213.11N, by the Herculesnéation
AKUL/11/19, by the European Commission through the ICT paogme
under contract FP7-ICT-2011-284833 PUFFIN and FP7-1CI3200-SEP-
210076296 PRACTICE. Sujoy Sinha Roy is funded by an Erasmusdus
fellowship.

zero using iterative property of the conversion steps. Syeh
timizations reduce the number of integer adder and suletract
circuits from the critical paths of the conversion architee
without affecting the cycle requirement. With the proposed
acceleration techniques, we achieve a improvement in the
operating frequency by atleast 12.5% and 17.9% compared

to [18] for the fieldsFy23: and Fyess respectively A. Length ofrNAF and Reduction Schemes

_Nextwg perform efficientpipeli_ninginthe proposed conver- The length {) of a 7NAF for an integer scalark is
sion architecture. Using the iterative property of the @gion approximately2log-k, which is almost double the length of
steps, we pipeline the conversion architecture in such a W@\ scalar. Length reduction schemes were initially prefos

that the pipelined stages are always utilized. Due t0 it Solinas in [9]. An integer scalak is first reduced to
bubble free nature, almost no cycles are wasted to sati (mod 3), whered = Z"=1 and then arNAF is generated

the data dependencies between the pipeline stages. Our tgm the reduced scalar. The maximum length of the generated
stage pipelined conversion architecture achieyes aed®ler NAF is m +a in Fom. The scalar reduction scheme involves
by 35.5% and 40% compared to [18] for the fieligss and yti-precision integer division. Solinas proposed aeotte-
Fyess respectively. _ _ _duction scheme [9] where the scalar is partially reduced to
The organization of the paper is : Section Il has a brigfyoid integer division at the cost of integer multiplicatio
mathematical background on the Koblitz curves and scalgjnce multi-precision division and multiplication opéeats
conversion techniques. In Section Ill, computational @@a- are complicated, hardware implementations are inefficient
tions for the double lazy reduction algorithm are discussed |, [17], Brumley and Jarvinen presented fagy reduction

Section IV shows optimizations in theNAF generation steps. algorithm, where the scaldr is repeatedly divided by for
A hardware architecture for the scalar conversion is design,,, number of times to get the following relation.

in Section V and an efficient pipeline strategy is presented i

Section VI. Experimental results are presented in Sectibn V. & = (do + di7)7™ + (bo + b17)
The final section draws the conclusions. = (do+diT)(7™ = 1)+ (bo + do) + (b1 + d1)T
= A" -1+

1. PRELIMINARIES
The authors use/ as the reduced scalar and show that the

The Koblitz curves ovef,~ have the following form. length of therNAF generated fromy is at mostm + 4 in

E, :y’+2y = 2°+a-22+1, a€{0,1} Fym. Since division byr is a simple operation (Theorem 1),
. the algorithm is suitable for hardware.
We denote the Koblitz curve group by, (Fom). In Eq (Fom) In [18], Adikari, Dimitrov and Jarvinen proposed an im-

the Frobenius mapping can be applied to reduce the cofynyement of the lazy reduction which they call thauble lazy
plexity of ECSM. The Frobenius mapping: E.(F2») — reduction In the double lazy reduction, the scalar is divided
Eq(Fym) is defined below. by 72 for (m —1)/2 number of times. Finally one division by
7(0) = 0, TP(z,y) = Q(z2,y?) 7 is performed to ob'gain the reduced scalar. The cycle count
for the scalar reduction reduces to nearly half compared to
Application of 7 on any pointP squares the coordinates andhe lazy reduction. The computational steps in the doulzg la
gives another poin@ on the curve. Since squaring k- is reduction are shown in Algorithm 1. We advise the readers of
cheap [1], [19], computing the Frobenius map of a point ie alshis paper to study the double lazy reduction algorithm from
easy. The map operator satisfies the relatiom® + 2 = 7, [18], as this will be helpful to understand the acceleration

wherepy = (—1)179, techniques proposed in our paper.
The ring of polynomials inr with integer coefficients is
denoted byZ(r]. For any polynomiaky 17/~ + ... +uy7 + [1l. | MPROVED REDUCTION ALGORITHM

ug € Z[r] with u; € {0,1}, and any base poirft on a Koblitz

curve, we see the following relation, In this section we propose optimization steps to reduce the

number of long integer additions and subtractions in Aldponi
[17 4 ug)P =[]t P4 4 [u]P (1) 1. Throughout this discussion we consiger= —1. Similar

optimizations foru = 1 are shown in the appendix.
In the above equation, the base poidtis multiplied by a pmizat K i Ppendix

scalar which is an element @fr]. During ECSM, only point o))
addition and Frobenius operations are performed. A. Elimination of Long Subtractions for Nonzero Remainders
Solinas in [9] proposed algorithms to convert integer gsala In line 6 of Algorithm 1, remainders, andu; € {0,1} are
into polynomials inT with coefficientsu; € {0,1} (radic subtracted from, andd;. We observe that the subtractions are
form). He also showed that number of point additions can feasyin some cases. For example, whén= 1 (mod 4) and
reduced using non-adjacent form which is known asN&F 2d; =0 (mod 4) (i.e. up = 1 andu; = 0), the subtraction of
of a scalar. Calculation of theNAF from a scalar requires ug from dy is equivalent to changing the least significant bit of
iterative divisions byr. Here are two theorems from [9] relatedd, from 1 to 0. Hence, in this case the long subtraction can be
to the division of any element = (dy + d17) € Z[7r] by 7. replaced by a bit alteration. However, when carry propagati
Theorem 1 : « is divisible by whend, is even. The result are involved with long subtractions, alteration of few sfiec
of the division when stored itvy, d1) is (do, d1) < (udo/2+ bits do not work as a replacement. For example, witgr:
di,—do/2). 3 (mod 4) and2d; = 0 (mod 4) (i.e. whenup = 1 and
Theorem 2 : « is divisible by 72 whendy = 2d; (mod 4). wu; = 1), a long subtraction appears. Use of signed remainders
The result of the division when stored(dy, d;) is (do,d1) < wuo andu; € {0,£1} helps to some extent in eliminating the
((—do + 2pdy) /4, —(udo + 2dy1)/4). long subtractions of nonzero remainders for such casese Tab

Algorithm 1: Double Lazy Reduction B. Elimination of Subtractions from Zero

Input: integerk In line 7 of Algorithm 1, a subtraction from zero is required
Output: reduced scalat for dy after computing2d; + dy (Eq. 2).
1 begin _
> (agya1) < (1,0), (bo,b1) (0,0), (do,dr) < (k,0) (donty) (TR TR
3 fori=1to(m—1)/2do o . : :
. w + (do — 2d;) mod 4 We eliminate the subtraction from zero using the following
5 o 4 u mod 2, ur — |u/2] scheme. Instead of Eq. 2, we compute Eq. 3.
6 do(—do—’do, d1<—d1—u1 2d1+d0 2d1—d0
7 (do, d1) < ((—do + 2udy)/4, —(udo + 2d1)/4) (do,)+ 4 7 4) &
8 if u >0 then The results from Eq. 2 and 3 have opposite signs, but same
9 bo <= (bo + uoao — 2uia1) magnitudes. So, when Eq. 2 and 3 are applied iterativelyrfor a
10 by < b1 +woar + ui(ao + pas) even number of times, the results of the equations are same.
1 end However for an odd number of iterations, the results have
12 (a0, a1) < (—2(ao + par), pag — a) opposite signs.
13 end We replace the computation in line 7 by Eq. 3. Tlidg, d1)
14 if dg = 1(mod 2) then has wrong sign after any odd number of iterations and correct
15 w1, do+dp—1 sign after any even number of iterations of the for-loop. The
16 (bo, b1) <= (bo + ao, by + a1) loop iterates for(m — 1)/2 number of times. So, whefmn —
17 end 1)/2 is odd, only one subtraction from zero is required at the
18 (do,d1) < (pndo/2 + d1, —do/2) end to makedy, d;) of correct sign. We can also compensate
19 < (bo +do, b1 +dv) this subtraction in line 18 or 19 by performing subtractioms
20 end place of additions or vice-versa.
The same trick is applied to eliminate the subtractions from
TABLE | zero during the computation 6d, a1) in line 12 of Algorithm
SIGNED REMAINDERS DURING REDUCTION OF SCALAR 1 |nstead Of Computing Eq 4
Calses dOg04 2dlo%4 160 161 (ao, al) < (— 2(@0 — CLl), —(ao + al)) (4)
2 1 0 L]0 we compute Eq. 5.
3 2 0 0 | —1
g g (2] _01 (1) (ao, al) — (2((10 — al), (ao + al)) (5)
? ; 3 ‘01 8 After the completion of the for-loop, one subtraction from
8 3 9 1 0 zero is required to correct the signs @fy, a;) when (m —

1)/2 is odd. This subtraction can be eliminated if we compute
(bo, b1) + (bo — ap, b1 — ay) in line 16 of Algorithm 1.

. . . Since the remainders are generated by observing the low
I shovv_s how the S|gneq remainders are generated during fger bits of do and d; (Table 1), use of(dy,d;) which
reduction steps depending on the low bitsipiand2d,. Inthe 55 \wrong sign should be justified for the correctness of the
table, the% operator represents modulus reduction operatiogqyction algorithm. Let after any odd number of iterations
Except Case 4, subtractions of thg andu, from dy andd; f the for-loop in Algorithm 1, we have the paifs; o, a;.1),
involve no carry propagation and thus can be performed I?yi,(),bi,l) and (d;.0,d;1). Since wrong sign is aésigﬁed to

altering the low order bits of, andd;. (di0,d;1) after any odd number of iterations, we have the

For Case 4, if we perform the subtraction@f = —1in fo|iowing relation.
line 7 of Algorithm 1 instead of line 6 (i.e. we pdt + 1 in 0
place ofdy), then we have the following observation. k=—(dio+7di,1)T™" + (bi,o + 7bi1) (6)

2dy + (do +1) 2dy — (do + 1) In the next iteration, remaindetg andw; are generated from
- 4 » 4) d; o andd; ; (instead of the correct valued;y and <, ;). If
di+1,0,di+1,1) are the quotients, then the relation between
d@o, di,l) and (di+1,0, di+171) is shown below.

(do, dl) $— (

This is equivalent to taking carry/borrow inputs in the%
adder/subtracter circuits as shown below.

d 2dy + do + (Carry input = 1) (dio +7di1) = (uo + Tur) = =(dig1,0 + 7diy11)7> (7)
0 4 After plugging in Eq. 7 in EqQ. 6, we get the following equation
2dy — dy — (Borrow input = 1)) _
d - 4 k= (di—i—l,O + Tdi_‘_l,l)TQZJrQ — (UQ + T’U,l)TQl + (b@o + Tbi71)

From the above observations we conclude that the long inted¢re the above equation the actual remainders(areg, —u1).
subtractions of the nonzero remainders in Algorithm 1 can leterestingly, after any odd number of iterations, wrongnsi
eliminated using cheaper alternatives. is also assigned t(ug, a1). Since, both(ug, u1) and(ag, a1)

TABLE Il

Algorithm 2: New Reduction Algorithm NAF GENERATION FORu = —1
Input: integerk
OUtpUt: reduced SC&'&W Calses do(;%4 2d10%4 do%8 | 2d1%8 7"6) 7‘01
1 begin 2 1 0 1] o
2 (aop,a1) < (1,0), (bo,b1) < (0,0), (do,d1) < (k,0) 3A 2 0 2 0 0 [1
3 /* lterative divisions byr? start here */ 3.B 2 0 6 0 0 | —1
. 3.C 2 0 2 4 0 | -1
4 fori=1to (m—1)/2do 3D 2 0 6 4 0o | 1
5 u 4 (do — 2d1) mod 4 4 3 0 1] 0
6 (ug,uy) < Table 1 S.A 0 2 0 2 0 | 1
7 (do,dy) < Alter LowBits(dy, dy) g(B: 8 ; é 2 8 :i
8 if Case 4 is True then 5D 0 2 4 6 0 1
9 (B,C) « (1,1) /* Borrow and Carry Inputs */ 6 1 2 -110
7 2 2 0] o0
10 end 8 3 2 1| o
11 else
12 (B,C) + (0,0)
13 end o N
14 (do,dr) + ((2dy 4+ do + C) /4, (2d1 — dy — B)/4) large delay, removal of such circuits from critical pathdphe
15 if w> 0 then improves frequency. In the next section, we further look int
16 bo + (b + upag — 2uyar) 7NAF generation algorithm and discuss how long subtractions
17 by (b + upay + ui(ag — ar)) of nonzero remainders can be eliminated during thNAF
18 end generation steps.
19 (ao,al) — (2((10—@1), a0+a1) ;
20 end IV. IMPROVED DOUBLE DIGIT TNAF GENERATION
21 [* lterative divisions byr? finish here */ In [18] two consecutiverNAF digits are generated in a
22 if dy =1(mod 2) then single step from the reduced scatéy + 7d; by performing
23 do + Alter LeastBit(do) divisions by 2. The authors call the NAF agouble rNAF.
24 (bo, b1) <= (bo + ao, b1 + a1) Table Il describes the generation of the consecutiNAF
25 end digits 7o and r; from dy andd;. Similar to Section IIl, we
26 .(dO’ d1) < ((2d1 — do)/2,do/2) I* Division by 7 */ eliminate subtractions of nonzero remainders frégrand d,
27 if 27 = 0(mod 2) then during therNAF generation.
28 7 (bo + do, b1 — d) From Table II, we see that for the cases 2, 3.B, 3.C, 3.D,
29 end 5.A, 5.B, 5.D, 6 and 8, the subtractions of nonzero remamder
0 else from d, or d; affect only the low order bits of, andd;. For
st 7 = (bo — do, b1 + d1) the above cases, the long subtractions are replaced byaheap
32 endend bit alterations indy andd;. Subtraction of-, = —1 in Case 4
33

in Table Il can be handled in the same way we did for Case
4 in Table | (Section IlI-A).
In Case 3.A, the subtraction off = 1 from d; involves

are of same sign in any iteration, computatior(iaf, b,) is in- borrow propagation and thus may affect all the bitsdoef
sensitive to the wrong sign of operands. Thils, 1 o, b;+1.1) |f We incorporate this subtraction in the next step where we

is computed as shown below. perform the division by-2, then by putting; — 1 in place of
dy in Eg. 2, we have the following observation.

2dy + (do — 2) 2dy — (do + 2)
This justifies the correctness of the reduction during assig (do,dr) (= 4 T 4) ®)
ment of wrong sign to the variablegy, d1) and (ao, a1). We see that the subtraction of from d; is equivalent to the

Throughout this section we have discussed how the numbgfgition/subtraction of 2 withly. Sinced, = 2 (mod 8), the
of long integer additions/subtractions can be reducedndurizqdition/subtraction changes only the three least bitg,of
the scalar reduction steps. Our proposed improvements ovef, Case 5.C, the subtraction of = —1 from d; involves

the double lazy reduction are described in Algorithm 2. Wegrry propagation. When we pdt + 1 in place ofd; in Eq.
see that only one addition or subtraction is performed durin e have the following observation.

the computations odly, di, ag, a1 andbg in every iterations. _ _

For b;, at most two additions/subtractions are performed per (do,d1) (2d1 _ d07 2d; + dO) 9)
iteration. Thus, if implemented in hardware, critical path 4 4

contains only one adder/subtracter circuit of widtht- 1 bit. Using one’s complement af; in Case 5.C we eliminate the
In the previous reduction architectures [17], [18], catipaths long subtraction of; from d;.

are through two cascaded adder and subtracter circuitstaf da Algorithm 3 describes the newNAF generation technique.
width m + 1. Since integer adder and subtracter circuits ha¥@nly one addition or subtraction is performed én and d;

(bit1,0,bit1,1) = (wo + Tu1)(as0 + 7ai1) + (bio + 7bi1)

Bit Alteration}<— mode

NAF Generatiofic
remain¢der 2 rer#]ainder 1
ay EN a
A6
Add/Sub
+ Carry in
Mux Selec
mode
m5
-
fmls\ M1 M3 [<]
m+1 bits % m+1 bits (B2 bits | [T}+2 bits B2 bits
reg di D regbs | Dregay, | [rega; |
bo v b, Ay a;
Fig. 1. Koblitz Curve Scalar Conversion Architecture foe= —1
during division byr?2 in any iteration. Thus, during theNAF V. HARDWARE ARCHITECTURE
generation, presence of only one adder/subtracter circtie The hardware architecture for performing scalar conversio
critical paths ofdy andd, is sufficient. (for x = —1) using the proposed acceleration techniques

is shown in Fig. 1. Similar to [17], [18], our conversion
architecture is capable of performing both scalar redaciad
double digitrNAF generation.

In any iteration of Algorithm 2 and 3, the variables,

Algorithm 3: New 7NAF Generation Algorithm a1, bo, b1, dy andd; have data dependencies on their values
Input: Reduced Scalay = dy + 7d; in the previous iteration. So, storage registers are used fo
Output: 7NAF(v) each of the data variables. The data paths of the variabées ar

1 begin kept in parallel to each other as there are no immediate data

2 S+ <> /* Used to storerNAF */ dependencies between them in any particular iteration.

3 Sign <0 I* Used to keep sign ofdg,dy) */ The componenBit Alteration and NAF Generatiors a

4 while dy # 0 or d; # 0 do combinational circuit which scans the low order three bits

5 (ro,r1) < Table 2 of dy and two bits ofd;. Remainder digits are generated

6 (do,dy) < Alter LowBits(do,dy) in Section IV~ as per Table | and Il during the reduction and theAF

7 (B,C) + (0,0) /* Borrow and Carry Inputs generation phases of the scalar conversion. This component

*/ also subtracts the nonzero remainders frédgmand d; using
8 if Sign =1 then the bit alteration technique discussed in Section Il and IV
9 (ro,m1) + (=710, —71) An input signalmodeis used to distinguish between the scalar
10 end reduction and theNAF generation phases of the conversion.
11 Prepend (r1,m9) to S /* TNAF digits */ After the subtraction ofuy from d, as bit alteration, two
12 if Case 4 True then different outputsdg# A1 and dy# A2 are generated for the
13 (B,C) + (1,1) two different data paths through Al and A2 adder/subtracter
14 end circuits. This happens because of Case 3.A in Table II, wkere
15 if Case 5.C True then is subtracted and added for the two different data pathsigiro
16 (do, dy) (%T—do’ %TMU) Al and A2 respectively.
17 Sign < Sign During the TNAF generation phase, only the data paths
18 end for dy andd; remain active. An one bit registefign takes
19 else account of the sign afy andd; (Algorithm 3). The remainders
20 (do, dy) (2d1+;io+c’ 2d1721073) generated by theBit Alteration and NAF Generatiorunit
21 Sign + 16 Sign are first assigned the sign and then expressed as the two
29 end consecutiverNAF digits in each cycle.
s end A controller is used to generate the control signals for
-4 end the multiplexers and the adder/subtracter circuits. Therob

block also generates the carry and borrow inputs for the

adder/subtracter circuits A1 and A2. In the figure, T1 and T&/cles to finish] rounds. The advantage of the pipelined
are special categories of multiplexers which produce and architecture is in the reduction of overall delay by hale@tly)
y from the inputse andy as per equatiof(z@®sp)-$1)|(y-s1) compared to the non-pipelined architecture at the cost yf on
when the selection input&s, s¢) are 00, 01 and 10 respec-two flip-flops and one cycle.
tively. For LUT base FPGAs, this special construction for T1
and T2 achieves better LUT utilization [20] and thus saves
area. The counter circuit is used to calculate the number Bf
TNAF digits generated. Completion of th#lAF generationis We apply the same concept in pipelining the conversion
indicated whenn + 4 number ofrNAF digits are generated. hardware. However data dependencies get more complicated
due to the presence of shifter circuits and due to the dif-
VI. PIPELINING THE CONVERSION HARDWARE ferent data widths of the registers present in the conversio
The critical path of the conversion architecture is indicat rchitecture (Fig. 1). Additionally, synchronization ween
by the dotted line in Fig. 1. Since integer adders are sloffie parallel data paths is essential to maintain functional
the proposed computational optimizations are not enoughG@/rectness of the conversion hardware.
achieve high speed for the scalar conversion architectureFig. 4 shows the two stage pipelined conversion architectur
Use of faster adder circuits increase frequency at the cé@kn = —1. Data paths are split in almost symmetric stages to
of area. However for long operand size, such adders aghieve bestoperating frequency for the two stage ardbriec
also slower compared to the binary field primitives spegialin the figure, suffix#1 and+#2 indicate the parts of different
when pipelines are implemented in the binary field primiivecomponents in the first and second stages of the pipelined
[21], [22], [23]. In this section, we propose a solution t@rchitecture respectively. The registeis a., bo, b1, do and

this problem by imp'ementing pipelines in the Conversioﬁl are Sp“t into two equal halves between the two StageS. The
architecture. lower half of a register gets updated by the computationisén t

first stage of the pipeline and the upper half gets updated by
the second stage of the pipeline. In the first stage of the data
path fordy, the adder/subtracter A1#1 has widﬂg‘—1 + 2 bits

The central operations in the scalar conversion hardware gf,e to the presence of division by four and two (right shift)
additions and subtractions. We first consider a simple el@mp;;« its. After a division by four, the most significant hiie.,

where it_erative additions and subtracFio_r?s are perforrhet. o (m2+1 +2)" it of the output from A1#1 is written into
two variablescy and ¢; have some initial values and arethe(m+1)th bit, i.e. the most significant bit position df#1
5 ,l.e. .

updated iteratively as per the following equation. To match the data width requirement for A1#1, the bits from
(co,c1) « (co+er,co—ca) (10) positipan“Jrl and - +2 of dj are needed. However, these
_ two bits belong to the upper half df, register (y#2) present
Let the data width for botiay andc, be at mostn. The adder j, the second stage. As the second stage lags the first stage by
and subtracter circuits are split into two equal stages. (EJg one cycle, we can not use the two least significant bits from
of width m/2 by putting registers in the carry and borrow; 9" The output from the multiplexer M1#2 leads by one
propagation paths. cycle overdy#2 (because in any positive cycle transition, data
Due to the data dependency of stage 2 on stage 1, {Réhe output of M1#2 gets written intdy#2). We perform
computations in the stage 2 lag by one cycle. Timing diagragata forwarding of the two least significant bits from thepaut
of thg two stages is des_cnped in Fig. 3 for the flrst.ﬁve cyclegs ihe multiplexer M1#2 to the input of A1#1. Similar data
Iteration numbers are indicated by the superscripts. As Rgfwarding strategies are applied in the first stage of dath p
the timing diagram, first four iterations of the consecutivg, d; register due to the presence of division by two and four

additions and subtractions complete after the fifth cydlés | g cuits. Merging of wires are indicated by the horizontatia
straightforward to understand that férnumber of iterations \grtical ~ symbols in Fig. 4.

(Eq. 10), the two stage architecture takes- 1 cycles. In
comparison, a non-pipelined architecture takesumber of

Pipelining the conversion architecture

A. Pipelining Iterative Addition and Subtraction Operat®

1 2 iClock Cycle ! 4 5
T Cmyoll ‘ | |
s |m—————-— - - T | Cocmgiol | | | |
ColMa:mp] C[Ma:my]! Glmy 0] GMyi0] 1) ColMe:Mmp] Cy[Msimy]i Gy 0] Gl 0] —— ¢m;:0)2 | Computations in Stage 1 !
. : —— ! 1 |

: :u | Cm;:0]2
I i ———

| ' C[My:0]3
i | : e ———

| 1013 | |
+ + [_ C,[M,;:0] . cymyol4 |

I
I I
I I
1 ! |
1 carr 1 ! ! . ; [R S |
| : Y h :borrow ! LGl M Mal L CIMi0ld © o im g5
' ol il] | o | L e
! Dreg Go[mimd] | preg G[mol] 1 preg &M mi] | preg ¢,Im.of | ‘ ﬁ L C,[M,:0]5
\ i » i | | e Co[My:m,] 37
Stage 2 Stage 1 Stage 2 Stage 1 : g :
L veees L vager h el oo % age s] ' Computatipns in Stage 2 © Cy[M,iM,)3: e[e Mae
' ' ' h 1 0 3+ 2. |
Data path for C Data path for C; T m,mya
i i i i ———————

m=m/2-1 m,=m/2 mg=m - 1

Fig. 2. Two stage pipelined data path for iterative addi@om subtraction Fig. 3. Timing diagram of iterative addition and subtractio

doihe

{0, bl[msh])i 0 {b1[msb-1| 0] 0}

do #Ay

AT#2 : AT#L
CarryAl#Z CarryAl#l
top two bits
scalar#2 f scalar#l% %
l Y W W

M1#2 /L o ML M1#1
mi#2

bits | M bits 7 bi : A bi
reg d, #2 H reg d, #1 ,
' ! Controller

——> Mux Select#1
Bit Alteration [~three low bits of ¢
NAF Generation~qvoow bits of q

Mux Select#2
——> Add/SutCntrl#1

> Add/sutCntri#2

——> Carry in#1

{1 carry in#2

d#Ay dgithg

CarwA4#2 CarryA6#2

msb |
(%fl + 1 bits ' (%fl + 1 bitd]

% [eeste || ezt | 115

[%V'[+ 1 bits

D regh #1 |

1
@1+1bixs. (%1+1bits

M + 1 bits 1% , v |
p_reah 7 o eahA]| | D eea® 1) |b e | | regarz] [resari]
‘ l msb e

D regh#2]

N

Fig. 4. Pipelined Conversion Architecture for= —1

Control signals for the adder/subtracter circuits and thieute analysis with optimization for speed. Comparisorth wi
multiplexers present in the second stage are lagged by arber reported conversion architectures are also presente
cycle to maintain the lag of the second stage in the pipelindtk table. In [17], Brumley et. al. has provided experimenta
data path. Data paths fap, a1, by andb, are also split in two results for only Altera FPGAs. For fair comparison with the
stages to maintain synchronization between all paralléh ddrumley et. al. architecture, we have considered Xilinx PPG
paths present in the conversion hardware. The second stagbased results of the same architecture from [18].
the data path foby has data dependency on the bit position In the table I'r.q andT¢,,. represents the scalar reduction
[] of registera;. This particular bit is the most significant
bit of the registera;#1. Due to the lag of the second stage

. ; . o TABLE IIl
of registerby, we apply data lagging of the required bit using compariSON OF OUR PROPOSED CONVERSION HARDWARE WITH
an edge triggered ﬂip-ﬂop_ PUBLISHED RESULTS ONXILINX VIRTEX 4 FPGA
Work Curve | Slices | Freq | Tred | Tconv
MHz s ns
VII. EXPERIMENTAL RESULTS Brumiey ot al 1] 1380 = = =
We have evaluated the proposed acceleration techniques f)rﬁd'kaf} etl; a|a[13] K-233 %g ;?2 11-545 gé
. on-pipeline . . .
the NIST reco.r_nmen.ded Koblitz curves [24] K-233 and K- 2-Pipelined 1582 | 119 | 10 20
283 on the Xilinx Virtex 4 FPGA xcvIx200-11ff1513. All Brumley et. al.[18] 1671 | 659 | 4.3 8.6
these curves have = —1 and support the present security Qdikaf_i etl; a|d[18] 283 ig?g ggé gg 3-411
on-pipeline - . . .
standards. Table 111 s_hov_vs performan_ce resuIFs of the megpo 2-Pipelined 1814 | 107 | 13 56
pipelined and non-pipelined conversion architecturesuRe 3-Pipelined 1812 | 1226 | 1.16 | 2.32

are obtained from the Xilinx ISEv12.2 tool after place and

time and the scalar conversion time respectively. The scalaln this paper we have implemented upto three stage pipeline
conversion time is the sum of scalar reduction time aNAF architecture. We remark that more number of pipeline stages
generation time. Our non-pipelined conversion architectucan be implemented in the conversion architecture to aehiev
and the architecture in [18] have same cycle countwof 6 faster computation time. However the percentage of redncti
for a scalar conversion inFy». The pipelined conversion in the computation time will lessen with the increase in the
architecture takes only two extra cycles and thus requireember of pipeline stages. The actual number of pipeline
m—+ 8 cycles inFym. In [17], the conversion architecture usestages in the conversion architecture could be fixed to match
division by 7 and take®m + 7 cycles. the speed of the binary field primitives used in the Koblitz

Operating frequencies achieved for the conversion architeurve cryptoprocessor.

tures depend on the type of integer adders and also on the
optimization settings in the synthesis tools. Our impletaen
tion uses generic adders and subtracters. For fare coraparis
of the frequencies, we have implemented a small circuit whicq
is same as the data path fdy register in [18] and uses carry
propagation subtracter circuits With the same optimization [2]
parameters in the Xilinx ISE tool, we achieved frequencie%]
72MHz and 59.5MHz for the field$523s and Fy2ss respec-
tively. When we consider implementation of the conversion
hardware in [18] using generic adder and subtracter ci;’;:uit[4
the frequencies will be limited by the above mentioned walue
due to the increased circuit complexities. Under this farédl
comparison scenario, our non-pipelined architecturegegeh
improvement in frequencies by at least 12.5% and 17.9%
for K-233 and K-283 respectively. Area of the non-pipelinedt]
architectures are slightly lesser than the architecturd48.

The proposed optimizations reduce the number of adder ang
subtracter circuits but increase the number of multiplexer

Use of the pipeline strategy improves the frequency drasti-
cally. Since there are no bubbles in the pipeline data-ghé, g
cycle requirements for scalar reduction and conversioranem
almost same. Our two-stage pipeline architectures achiel@
35.5% and 40% reduction in the overall conversion timgg,
compared to [18] for the curves K-233 and K-283 respectively
Further, to show that the proposed pipeline strategy is not
limited to only two stages, we have implemented a three st
pipeline architecture for K-283. The three-stage architec
improves the frequency by around 14% compared to the two-
stage architecture and thus reduces computation time.

An interesting observation is that the pipeline architezsu
have smaller area compared to the non-pipeline archiestun13]
In one side, the pipeline strategy is very cost effectivetas i
requires very few flip-flops. While on the other side, the ISE
tool performs lesser logic replications due to shortericait [14]
paths [25]. The combined effect reduces the overall area.

VIII. CONCLUSION =
In this paper we have proposed acceleration techniques for
scalar conversions required in the Koblitz curve based-crygg;
toprocessors. The scalar conversion time is improved by re-
ducing the number of costly integer additions and subtasti
and by implementing pipelines in the data-path. The proqbos&n
reduction in the arithmetic cost simplifies the critical hmat
in the conversion architecture. Further, an efficient piyel
. . . 18]
strategy is used to drastically improve the frequency of thE

conversion architecture without increasing the cycle toun
[19]
1The circuit has inputsig, u1, k andd;. The most significant bit ofly
register is the output from the circuit. The critical patmsists of twom + 1
bit subtracter circuits and one 4:1 multiplexer.

REFERENCES

D. Hankerson, A.J. Menezes and S.A. Vanstdaeide to Elliptic Curve
Cryptography Springer-Verlag New York, Inc., 2003.

A.J. Menezes, P.C. van Oorschot and S.A. Vanstddendbook of
Applied Cryptography CRC Press, 1996.

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyand F.
VercauterenHandbook of Elliptic and Hyperelliptic Curve Cryptagr
phy. Chapman & Hal, 2005.

] R. Azarderakhsh and A. Reyhani-Masoleh, “High-Perfante Imple-

mentation of Point Multiplication on Koblitz CurvesCircuits and
Systems II: IEEE Transactions owol. 60, no. 1, pp. 41-45, Jan 2013.
S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoreticalddiing of
Elliptic Curve Scalar Multiplier on LUT-Based FPGAs for Areand
Speed,Very Large Scale Integration (VLSI) Systems, IEEE Transast
on, vol. 21, no. 5, pp. 901-909, May 2013.

K.U. Jarvinen, and J.O. Skytta,, “Fast Point Multgation on Koblitz
Curves: Parallelization Method and ImplementatiorMitroprocessors
and Microsystemsvol. 33, pp. 106-116, 2009.

S. Roy, C. Rebeiro, and D. Mukhopadhyay, “A Parallel Atetture for
Koblitz Curve Scalar Multiplications on FPGA Platformsyi Digital
System Design (DSD), 2012 15th Euromicro ConferenceSept 2012,
pp. 553-559.

N. Koblitz, “CM Curves with Good Cryptographic Properi,” Proc.
Crypto '91, pp. 279-287, 1991.

J.A. Solinas, “Effecient Arithmetic on Koblitz CurvésDesign, Codes
and Cryptographyvol. 19, pp. 195-249, 2000.

W. Meier and O. Staffelbach, “Efficient Multiplicatioron Certain
Nonsupersingular Elliptic CurvesAdvances in Cryptology-CRYPTO
'92, pp. 333-344, 1992.

g S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implematidn of

Elliptic Curve Cryptographic Coprocessor ov@#'(2™) on an FPGA,”
In Proc. Intl Workshop Cryptographic Hardware and Embed&gdtems
(CHES 00) pp. 25-40, 2000.

] J. Lutz and A. Hasan, “High Performance FPGA based tdligurve

Cryptographic Coprocessotfi Proc. Int. Conf. Information Technology:
Coading and Computing, ITCC 2004ol. 2, pp. 486-492, 2004.

K.U. Jarvinen, and J.O. Skytta, “High-Speed EliiptCurve Cryptog-
raphy Accelerator for Koblitz Curves,” ifrield-Programmable Custom
Computing Machines, 2008. FCCM '08. 16th International Bgsium
on, April 2008, pp. 109 -118.

K.U. Jarvinen, J. Forsten, and J.O. Skytta, “Effici€ircuitry for Com-
puting 7-adic Non-Adjacent Form,Proc. IEEE Intl Conf. Electronics,
Circuits and Systems (ICECS Q@)p. 232235, 2006.

V.S. Dimitrov, K.U. Jarvinen, M.J. Jacobson, W.F. @hand Z. Huang,
“FPGA Implementation of Point Multiplication on Koblitz @es using
Kleinian Integers,” inCryptographic Hardware and Embedded Systems
ser. CHES'06. Berlin, Heidelberg: Springer-Verlag, 2008, 445—-459.
V.S. Dimitrov, K.U. Jarvinen, M.J. Jacobson, W.F. @haand Z.
Huang,, “Provably Sublinear Point Multiplication on Kdfli Curves
and Its Hardware Implementation,” i@omputers, |IEEE Transactions
on, vol. 57, no. 11, Nov. 2008, pp. 1469-1481.

B.B. Brumley, and K.U. Jarvinen, “Conversion Algdmits and Imple-
mentations for Koblitz Curve CryptographyComputers, IEEE Trans-
actions on vol. 59, no. 1, pp. 81 -92, jan. 2010.

J. Adikari, V.S. Dimitrov, and K.U Jarvinen, “A Fast hware Archi-
tecture for Integer taNAF Conversion for Koblitz CurvesComputers,
IEEE Transactions gnvol. 61, no. 5, pp. 732 —737, may 2012.

K.U Jarvinen, “On Repeated Squarings in Binary Figlils Selected
Areas in Cryptographyser. Lecture Notes in Computer Science, M. Ja-
cobson, V. Rijmen, and R. Safavi-Naini, Eds., vol. 5867. i®yer
Berlin / Heidelberg, 2009, pp. 331-349.

[20] C. Rebeiro and D. Mukhopadhyay, “High Speed Compadptidl Curve
Cryptoprocessor for FPGA Platforms,” INDOCRYPT 2008, pp. 376—
388.

W.N Chelton, and M. Benaissa, “Fast Elliptic Curve Ciggraphy on
FPGA,” Very Large Scale Integration (VLSI) Systems, |IEEE Transast
on, vol. 16, no. 2, pp. 198 —205, feb. 2008.

K.U. Jarvinen, “Optimized FPGA-based Elliptic Cung@ryptography
Processor for High Speed Applicationgtitegration, the VLSI Journal
vol. 44, no. 4, pp. 270 — 279, 2011, hardware ArchitecturesAfgebra,
Cryptology and Number Theory.

C. Rebeiro, S.S. Roy, and D. Mukhopadhyay, “Pushing Ltheits of
High-SpeedG F'(2™) Elliptic Curve Scalar Multiplication on FPGAs,”
in Cryptographic Hardware and Embedded Systeses. Lecture Notes
in Computer Science, vol. 7428. Springer Berlin Heidelb&@l2, pp.
494-511.

National Institute of Standard and Technology, “FIFEB-2, Digital Sig-
nature Standard,” Federal Information Processing Stasdaublication,
2000.

[25] Xilinx Inc, “Performance strategies,” 2009.

[21]

[22]

(23]

[24]

Sujoy Sinha Royis a PhD student in the Department of Electrical Engineerin

(ESAT), KU Leuven. He has a BS degree in Electronics and dehecunica-
tion Engineering from BESU, Shibpur (2007) and a MS degre€amputer
Science from Indian Institute of Technology, Kharagpurl@0 His research
area has been broadly in the field of hardware for public kgptography.

TABLE IV
DouBLE DIGIT TNAF GENERATION FORu = 1

Cases| do%4 | 2d1%4 | do%4 | 2d1 %8 0 1
1 0 0 0 0
2 1 0 1 0
3A 2 0 2 0 0 | —1
3.B 2 0 6 0 0 1
3.C 2 0 2 4 0 1
3.D 2 0 6 4 0 | —1
4 3 0 —1| 0
5A 0 2 0 2 0 T
5.B 0 2 4 2 0 | -1
5.C 0 2 0 6 0 | —1
5.D 0 2 4 6 0 1
6 T 2 —1| 0
7 2 2 0 0
8 3 2 1 0
APPENDIXA

Here we present computational optimizations for the curve
parameten, = 1. We compute(dy, d,) as per Equation (11)
to avoid long subtractions from zero (Section I1I-B).
2dy +dy 2dy — do

4 7 4)
During the iterative divisions by2, wrong sign is assigned
to eitherd, or d; in any iteration. Assignment of the wrong
sign alternates in every consecutive iteration. We find Eqna
11 is same as Equation 3, only with the difference in the
relative positions ofly andd; in the left-hand-side. During the
reduction of the scalar, the nonzero remainders are geterat
as per Table | for bothy = 1 and —1. Thus, the
computational optimizations we followed in Section Il for
= —1, are also applicable fagu = 1.

Double digitrNAF is generated as per Table VIII far= 1.
Comparing with Table II, we see only the cases 3.A-3.D are
different in Table VIII. For the cases which are same in both
the tables, we apply the same computational optimizati@sis d

(do, dl) <— ((11)

Junfeng Fan received his Bachelor and Master degrees in electrical-engtussed in Section IV fop, = —1. Subtractions of remainders

neering from Zhejiang University, China, in 2003 and 20G&pectively. In
2012, he received his PhD degree at the Department of ElalcEngineering
(ESAT) of K.U.Leuven. His research interests include edfici arithmetic
for public key cryptography, low-power design for ubiquitosecurity and
physical attack resistant implementations.

from d; are performed by altering low order bits @f for the
cases 3.A, 3.C and 3.D. However the subtraction of remainder
in case 3.B involves carry propagation. We eliminate this
long subtraction by incorporating it in the next step where
we perform division byr2. This is shown in Equation 12.
Subtraction of 2 or addition of 1 with, is easy as it requires
only alteration of low order bits ofl,. We also consider a
borrow input to the adder/subtracter circuit in the critigath

of d; (Equation 12).

2d1+(d0—2) le—(do-i-l)—l)
4 ’ 4

(do,dy) + ((12)

Ingrid Verbauwhede received the electrical engineering degree and PhD

degree from the KU Leuven, Belgium, in 1991. From 1992 to 194
was a postdoctoral researcher and visiting lecturer at thevetsity of
California, Berkeley. From 1994 to 1998, she worked for T@sdl ATMEL
in Berkeley, California. In 1998, she joined the faculty ohitkrsity of
California, Los Angeles (UCLA). She is currently a professd the KU
Leuven and an adjunct professor at UCLA. At KU Leuven, sheds-director
of the Computer Security and Industrial Cryptography (GC)Slaboratory.

Her research interests include circuits, processor acfbites and design

methodologies for real-time embedded systems for secamitlycryptography.
This includes the influence of new technologies and new itisnlutions on
the design of next-generation systems on chip. She is aweliche IEEE.

