
On the security of a password-only authenticated

three-party key exchange protocol

Junghyun Nama,∗, Kim-Kwang Raymond Choob, Juryon Paikc,
Dongho Wonc

aDepartment of Computer Science, Konkuk University, Republic of Korea
bInformation Assurance Research Group, Advanced Computing Research Centre,

University of South Australia, Australia
cDepartment of Computer Engineering, Sungkyunkwan University, Republic of Korea

Abstract

This note reports major previously unpublished security vulnerabilities in the
password-only authenticated three-party key exchange protocol due to Lee
and Hwang (Information Sciences, 180, 1702–1714, 2010): (1) the Lee-Hwang
protocol is susceptible to a man-in-the-middle attack and thus fails to achieve
implicit key authentication; (2) the protocol cannot protect clients’ passwords
against an offline dictionary attack; and (3) the indistinguishability-based
security of the protocol can be easily broken even in the presence of a passive
adversary.

Keywords: Password-only authenticated key exchange (PAKE),
Three-party key exchange, Man-in-the-middle (MITM) attack, Offline
dictionary attack, Semantic security

1. Introduction

Password-only authenticated key exchange (PAKE) protocols enable two
or more parties communicating over a public network to generate a high-
entropy key (known as a session key) from their low-entropy passwords which
are easy for humans to remember. PAKE protocols are often designed to work
in the three-party setting, in which each party (commonly called a client)
needs to remember only a single password shared with a trusted server. The

∗Email: jhnam@kku.ac.kr

August 28, 2013

design of secure yet efficient three-party PAKE protocols is notoriously hard
and continues to be a subject of active research. A key challenge in designing
such protocols is to prevent potential attacks by a malicious client, who is
registered with the server and thus is able to set up normal protocol sessions
with other clients.

The brief contribution of this note is to present previously unpublished
flaws in the S-EA-3PAKE protocol, a three-party PAKE protocol proposed
by Lee and Hwang [4]. The design of the S-EA-3PAKE protocol is relatively
simple and efficient, and carries a claimed proof of security in the ROR model
due to Abdalla, Fouque and Pointcheval [1]. However, despite the claim of
provable security, this protocol exhibits major security weaknesses. First,
the protocol fails to achieve implicit key authentication, which is the funda-
mental security property that any given key exchange protocol is expected
to provide. We demonstrate this by mounting a man-in-the-middle attack
against the protocol. The attacker could be any malicious client. Second, the
protocol is vulnerable to an offline dictionary attack by a malicious client and
thus other clients cannot be guaranteed of the security of their passwords.
Third, the protocol does not achieve semantic security of session keys; that
is, session keys established by S-EA-3PAKE are distinguishable from random
keys. We show this by mounting a passive attack in the ROR model, thereby
invalidating the existing proof of security for S-EA-3PAKE.

2. The S-EA-3PAKE protocol

The S-EA-3PAKE protocol [4] is built upon Abdalla and Pointcheval’s 2-
party PAKE protocol called SPAKE [2]. Let A and B be two clients who wish
to establish a session key, and pwA and pwB denote the passwords of A and B,
respectively, shared with a trusted server S. The public parameters required
by S-EA-3PAKE include: (1) a large prime p and a generator g of Z∗

p, (2) two
random elements M and N of Z∗

p, (3) a cryptographic hash function H used
as a key derivation function, and (4) a pair of message authentication code
(MAC) generation/verification algorithms (Mac,Ver), where Ver outputs a
bit, with 1 meaning accept and 0 meaning reject. S-EA-3PAKE proceeds
as follows:

Step 1. A sends S and B a protocol initiation messageMinit = ⟨A,B⟩ which
states “A wants to establish a session key with B”.

2

Table 1: Establishing the secret keys kAS and kBS

pwA → kAS pwB → kBS

A chooses a random x ∈ Z∗
p, computes

X = gx andX∗ = X ·MpwA , and sends

X∗ to S. At the same time, S chooses

a random u ∈ Z∗
p, computes U = gu

and U∗ = U · NpwA , and sends U∗ to

A. Then, A and S set kAS = gxu.

B chooses a random y ∈ Z∗
p, computes

Y = gy and Y ∗ = Y ·MpwB , and sends

Y ∗ to S. At the same time, S chooses

a random v ∈ Z∗
p, computes V = gv

and V ∗ = V · NpwB , and sends V ∗ to

B. Then, B and S set kBS = gyv.

Step 2. A and S establish a shared secret key kAS by running the 2-party
protocol SPAKE. Likewise, B and S establish a shared secret key kBS.
More precisely, kAS and kBS are established as shown in Table 1.

Step 3. A (resp. B) computes the authenticator σAS = MackAS
(A∥S) (resp.

σBS = MackBS
(B∥S)) and sends it to S.

Step 4. S aborts if either VerkAS
(A∥S, σAS) = 1 or VerkBS

(B∥S, σBS) = 1 is
untrue. Otherwise, S selects a random s ∈ Z∗

p, computes

X = Xs, Y = Y s,

X
∗
= Y · kAS, Y

∗
= X · kBS,

σSA = MackAS
(S∥A), σSB = MackBS

(S∥B),

and sends ⟨X∗
, σSA⟩ and ⟨Y ∗

, σSB⟩ to A and B, respectively.

Step 5. A checks if VerkAS
(S∥A, σSA) = 1, and aborts if the check fails.

Otherwise, A computes the key derivation secret, KA = (X
∗
/kAS)

x,
and the session key, skA = H(A∥B∥KA). Meanwhile, B checks if
VerkBS

(S∥B, σSB) = 1, and aborts if the check fails. Otherwise, B
computes KB = (Y

∗
/kBS)

y and skB = H(A∥B∥KB).

Step 6. A and B perform key confirmation by exchanging σAB = MacskA(A∥
B) and σBA = MacskB(B∥A) and verifying them in a straightforward
way.

The correctness of S-EA-3PAKE can be easily verified fromKA = KB = gxys.

3

3. Previously unpublished flaws

3.1. No implicit key authentication

Implicit key authentication of S-EA-3PAKE can be violated via a man-
in-the-middle attack by a malicious (registered) client C. A possible attack
scenario is as follows:

1. The attacker C blocks the protocol initiation message Minit = ⟨A,B⟩
from reaching S and instead, sends (to S) two forged initiation messages
M ′

init = ⟨A,C⟩ and M ′′
init = ⟨C,B⟩ which state, respectively, “A wants

to establish a session key with C” and “C wants to establish a session
key with B”. As a result, S will think that there are two protocol
sessions running concurrently; let ΠA,C denote the session between A
and C and ΠC,B denote the session between C and B.

2. In both the sessions ΠA,C and ΠC,B, C performs Steps 2 through 5
as per the protocol specification with its true identity. This can go
undetected since none of the authenticators, σAS σBS, σSA and σSB,
can confirm who the actual protocol participants are. As a result, C
will share a session key, skA,C , with A and another session key, skC,B,
with B.

3. With skA,C and skC,B in hand, C can perform Step 6 (of both sessions)
in the straightforward way without being detected; C simply replaces
σAB = MacskA,C

(A∥B) and σBA = MacskC,B
(B∥A), respectively, with

σ′
AB = MacskC,B

(A∥B) and σ′
BA = MacskA,C

(B∥A).

At the end of the attack scenario, A and B believe that they have established
a secure session with each other sharing a key, while in fact they have shared
their keys with the attacker C. Consequently, S-EA-3PAKE fails to achieve
implicit key authentication.

3.2. No password security

We now show that S-EA-3PAKE cannot protect clients’ passwords against
an offline dictionary attack. Assume a malicious client C who wants to find
out the passwords of A and B. Let pwC be the password of C. Then, an
offline dictionary attack by C against both A and B can be mounted as
follows:

Phase 1 (Gathering Password Verifiers Online). C conducts a type of
man-in-the-middle attack to obtain information required to verify pass-
word guesses.

4

1. C blocks the initiation message Minit = ⟨A,B⟩ from reaching S
and instead, sends two forged initiation messages M ′

init = ⟨A,C⟩
and M ′′

init = ⟨C,B⟩, thereby deceiving S into thinking that there
are two protocol sessions, ΠA,C and ΠC,B, running concurrently.

2. C then performs Steps 2 through 5 of both sessions as specified
by the protocol except for the following:

• When A and B send X∗ = X ·MpwA and Y ∗ = Y ·MpwB in
Step 2, C makes a copy of these messages for later use.

• C sends the same Step 2 message Z∗ = gz ·MpwC of its own
for both sessions, where z ∈R Z∗

p.

• When S sends ⟨X∗
, σSA⟩ and ⟨Y ∗

, σSB⟩, respectively, to A
and B in Step 4 of the sessions, C replaces X

∗
and Y

∗
with

X̂∗ = X
∗ · gz and Ŷ ∗ = Y

∗ · gz, respectively.
Let ⟨Z∗

, σSC⟩ and ⟨Z ′∗, σ′
SC⟩ denote the two messages sent by S

to C in Step 4 of ΠA,C and ΠC,B, respectively.

3. Now when A and B exchange the key confirmation messages
σAB = MacskA(A∥B) and σBA = MacskB(B∥A), C intercepts these
messages and instead, sends the clients ‘a failure message’ to trick
them into believing that due to an unexpected error, their partner
has failed to compute the session key and thus has aborted the
protocol.

Phase 2 (Verifying Password Guesses Offline). C can now verify pass-
word guesses both on pwA and pwB using the obtained information
(X∗, Z

∗
, σAB) and (Y ∗, Z ′∗, σBA), respectively. (For simplicity, we here

describe this verification phase only for pwA; the case for pwB proceeds
correspondingly.)

Step 1. C computes

KC =
(Z

∗

kCS

)z

= X
z

= gxzs,

where kCS is the secret key shared between C and S in Step 2 of
session ΠA,C .

5

Step 2. Note that since X
∗
was replaced with X̂∗ = X

∗ · gz, A must
have computed KA as

KA =
(X̂∗

kAS

)x

=
(X∗ · gz

kAS

)x

= (gzs · gz)x

= gxzs · gxz.

With this in mind, C makes a guess pw′
A on the password pwA

and computes

X ′ = X∗/Mpw′
A ,

K ′
A = KC ·X ′z,

sk′
A = H(A∥B∥K ′

A),

σ′
AB = Macsk′A(A∥B).

Step 3. A verifies the correctness of pw′
A by checking that σAB is equal

to σ′
AB. If they are equal, then pw′

A is the correct password with
an overwhelming probability.

Step 4. C repeats Steps 2 & 3 (of this verification phase) until a cor-
rect password is found.

This offline dictionary attack can be trivially simplified to an insider-attacker
version whereby one of the two clients, A and B, tries to discover the other
client’s password. After all, the S-EA-3PAKE protocol cannot prevent any
(malicious) client from mounting an offline dictionary attack against any
other client.

3.3. No semantic security

Finally, we point out that the S-EA-3PAKE protocol does not achieve
the semantic security of session keys. In S-EA-3PAKE, the session key
skA (resp. skB) is used as the MAC key in generating the authenticator
σAB = MacskA(A∥B) (resp. σBA = MacskB(B∥A)). This oversight leaks
some information about the session key and allows an adversary to distin-
guish the real session key from a random key chosen from the session-key

6

space. Indeed, S-EA-3PAKE can be easily broken even in the presence of a
passive adversary who asks only a single Execute and Test query. A simple
attack by such an adversary A can be described as follows:

1. First, A makes an Execute(Π∗
A,Π

∗
B,Π

∗
S) query, where Π∗

A, Π
∗
B and Π∗

S

denote any instance of A, B and S, respectively. This query prompts
an honest execution of the protocol between the three instances and
will return the transcript of the protocol execution.

2. Next, A makes a Test(Π∗
A) query and receives a key sk in response to

the query.

3. Then, A computes σ′
AB = Macsk(A∥B) and checks if σ′

AB is equal to
σAB. The key sk is real if they are equal and otherwise, it is random.

This attack invalidates the existing proof of security for S-EA-3PAKE [4].
We refer the reader to the work of Bellare, Pointcheval and Rogaway [3] for
a possible countermeasure.

4. Concluding remarks

The model where S-EA-3PAKE was claimed to be provably secure does
not allow the adversary to ask Corrupt queries and thus cannot capture any
kind of attacks that can be mounted by malicious clients. Accordingly, nei-
ther the man-in-the-middle attack nor the offline dictionary attack described
above can be captured in the proof model. This situation is clearly unac-
ceptable, from both theoretic and practical perspectives, and highlights the
importance of considering Corrupt queries when proving security of three-
party PAKE protocols. Although both the man-in-the-middle attack and the
dictionary attack can be easily prevented by modifying the computations of
σSA and σSB to σSA = MackAS

(S∥X∗∥A∥B) and σSB = MackBS
(S∥Y ∗∥B∥A),

the existence of a security proof for the S-EA-3PAKE protocol in a stronger
model remains an open question. We finally note that all the three attacks
presented in this note against S-EA-3PAKE also apply to the S-IA-3PAKE
protocol [4], a simplified variant of S-EA-3PAKE. This becomes clear as soon
as we notice that S-IA-3PAKE is different from S-EA-3PAKE only in that
it does not require the transmission of the authenticators σAS σBS, σSA and
σSB.

7

References

[1] M. Abdalla, P. Fouque, D. Pointcheval, Password-based authenticated
key exchange in the three-party setting, In Proceedings of PKC 2005,
LNCS 3386: 65–84, 2005.

[2] M. Abdalla, D. Pointcheval, Simple password-based encrypted key ex-
change protocols, In Proceedings of CT-RSA 2005, LNCS 3376: 191–
208, 2005.

[3] M. Bellare, D. Pointcheval, P. Rogaway, Authenticated key exchange
secure against dictionary attacks, In Proceedings of EUROCRYPT 2000,
LNCS 1807: 139–155, 2000.

[4] T. Lee, T. Hwang, Simple password-based three-party authenticated
key exchange without server public keys, Information Sciences 180(9):
1702–1714, 2010.

8

