
TRS-80 With A Grain Of Salt

Jean-Marie Chauvet

MassiveRand
jmc@massiverand.com

http://www.massiverand.com

62, ave. Pierre Grenier, 92100 Boulogne-Billancourt, France

Abstract. This paper presents early results of a (very) experimental
implementation of the elliptic curve and stream cipher calculations of
the Networking and Cryptography library (NaCl), on the TRS-80 Model
I. Needless to say, the demonstration that such a library, which has been
optimized for many modern platforms including leading edge desktops,
servers and, recently, modern microcontrollers, is even feasible on such
early home microcomputers is, at best, to be considered a recreation
rather than as a practical application of technology. In the process, how-
ever, lessons were learned in implementing trade-o�s for basic crypto-
graphic primitives and, more importantly maybe, in experimenting with
some transformative aspects of retrocomputing.

Keywords: Cryptography, Random Bit Generator, ECC, Stream Ci-
pher, ChaCha, Curve25519, Z80, TRS-80, Retrocomputing, Crazy Ideas,
Remix

1 Introduction

This paper brie�y reviews an experimental implementation of the key generation
and stream cipher functions of the Networking and Cryptography Library (NaCl)
[6] on the TRS-80 Model 1, �rst released in August 1977. On such a limited
resources platform, by today's standards, the aim is obviously not to achieve
high speed, as in current ports of the library to various modern CPUs, but
rather to achieve some decent execution time within the diminutive footprint.

More speci�cally, we report on an implementation of the Chacha stream ci-
pher [4], and the Curve25519 elliptic-curve Di�e-Hellman key-exchange protocol
[3]. It provides the basis for a complete port including the Poly1305 authentica-
tor [2] and the Ed25519 elliptic-curve signature scheme [5]. In confronting this
retrocomputing challenge, we drew solace from the NaCl designers claim that:

�All of the cryptographic primitives in NaCl can �t onto much smaller
CPUs: there are no requirements for large tables or complicated code.�

and inspiration from the recent full ports of NaCl to 8-bit AVR microcontrollers
[9].

2 Jean-Marie Chauvet

2 The Z80-based TRS-80 Model I

It was with minimal expectations that, in August 1977, Tandy Corporation
teamed up with Radio Shack to release the TRS-80, one of the �rst personal
computers available to consumer markets. And as it turned out, the TRS-80
surpassed even the most cautious sales estimates by tenfold within its �rst month
on the market despite a hefty $600 price point; the burgeoning prospects of
a new era in personal electronics and computing could no longer be denied.
While the original machine shipped with BASIC Level I, based on Wang's free
TinyBASIC, and 4KB of memory, a 12" monitor and a Radio Shack tape recorder
as datacassette storage, later shipments in 1978 came with Level II BASIC,
licenced from Microsoft, and 16KB of memory: this is the target platform of
the present implementation. (The ability to expand memory up to 48KB, to
access �oppy drives, a second cassette port, a Centronics parallel printer and
an optional RS232 port required the proprietary Expansion Interface, a bulky
box that �t under the monitor.) The TRS-80 uses a Zilog Z80 CPU clocked at
1.77MHz.

All data in the TRS-80 and most in the Z80 is handled in (8-bit) bytes.
There are 14 general purpose registers in the CPU, designated A, B, C, D, E,
H and L and the so-called primed counterparts, A' to L'. At any given time
one set, primed or non primed, is active. The A register is used as a default
operand in many of the instructions and is often referred to as the accumulator.
Registers are paired, as BC, DE, HL and AF, in the few 16-bit arithmetic and
pointer operations in the instruction set. Special-purpose registers are the 16-bit
program counter, PC, the 16-bit stack pointer, SP, and two 16-bit index regis-
ters, IX and IY. The �ag registers are F, F' respectively, 8 bits signalling sign,
zero, half-carry, parity/over�ow and carry after arithmetic and logic operations
[12]. The Z80 instruction set, a superset of the older 8080 and 8008 instruction
sets, a�ords more than 500 combinations altogether covering data movement,
arithmetic, logical and compare, decision-making and jumps, stack operations,
bit shifting and I/O operations [10]. Note that in contrast to modern microcon-
trollers such as e.g. the ATmega and ATxmega cores family from Atmel, there
is no multiplication instruction�not necessarily an auspicious starting point for
public-key cryptography.

We use the representation of large integers and elements of �nite �elds as
byte arrays using radix 28 typical on such 8-bit architectures.

3 The NaCL library, re-contextualized

The Networking and Cryptographic Libray, NaCL pronounced �salt�, was one
deliverable of the European Commission funded project CACE (2008-2010). Ul-
terior developments were continued within ECRYPT II, the European Network
of Excellence in Cryptology. Its well-known features are its high-level API for
public-key authenticated encryption and cryptographic signatures; its high-level
of security and protection against timing attacks; its record speed on modern

TRS-80 with a grain of salt 3

architectures; and its availability as free of copyright restrictions. The library
was precisely designed to these characteristic features in a situated context as
re�ected upon by its authors [6], namely repeated breaches of con�dentiality and
integrity on the Internet, in spite of widely accepted standards such as AES-128
and RSA-2048 and publicly available implementations such as OpenSSL.

Our two-pronged approach aims primarily at porting as much as the NaCl
functions to the TRS-80, but also at reassessing these contextualized features in
a di�erent context, the early home-computing subculture�now arguably extinct
or viewed as akin to historical preservation. As much as the architecture of the
Internet provides today the context for the need and design of the NaCl libray,
the TRS-80 platform and, more broadly speaking, the practices of the then com-
munity of its users should provide the background context of this retrocomputing
variant of the modern library.

The implementation o�ers scalar multiplication on the elliptic curve Curve25519
[3] and a stream cipher. Instead of the Salsa20 stream cipher in the original de-
sign [6] we chose to implement a variant, ChaCha [4], which has also recently
been successfully implemented on FPGA [1]. Obviously porting cryptographic
functions to a memory-restricted architecture such as the original Model 1 with
16KB, requires high reuse of code across all primitive operations in order to
minimize its size. Generic 32-byte addition, subtraction and, crucially, multipli-
cations are coded in assembly language and shared across all modular arithmetic
operations, some of which are written in C. On the other hand, issues of secret
branch conditions and secret load addresses, for instance, often sources of tim-
ing attacks, are somewhat subdued in this implementation as there is no cache
optimization nor branch prediction technique. Still, we kept to the strategy exem-
pli�ed by other NaCl implementations on modern architectures avoiding leaking
secret data through branch conditions.

Entropy pool and randomness generation presented quite another interesting
contextual issue. NaCl uses the OS-provided random number generator (RNG),
reading random bytes from /dev/urandom. The BASIC Level II interpreter in
ROM [11] features a pseudo-RNG through two calls: RANDOM to seed the PRNG,
and RND(N) which returns a single-precision �oating point value between 0 and 1
if N is 0; a random integer between 1 and N , included, when N > 0. After some
disassembling of the ROM and further interacting with the TRS-80 discussion
groups, it surfaced that this PRNG is a Linear Congruential Generator based
on the following iteration: xn = 4253261xn−1 + 372837 mod 224. The seed
(24-bit long) is stored at a speci�c lower RAM address where RANDOM overwrites
its middle byte with the Z80 internal R register. There is no seed initialization
at power-up or reset, so that failure to call RANDOM causes the same sequence of
random numbers to be produced in successive calls to RND. Interestingly enough,
the same LCG was apparently already present in the older Level I, which was
based, however, on a completely di�erent BASIC, namely TinyBASIC. A 224

modulus LCG is also present in the later QuickBasic, GW Basic (with constants
214013 and 2531011), and even in Visual Basic 6 (with constants 1140671485

4 Jean-Marie Chauvet

and 12820163) all released by Microsoft in the following decade. Hardly crypto-
graphically secure entropy pools!

Of course, one can use the implementation, like NaCl for that matter, in a
way that doesn't require local randomness simply by generating key pairs on
an external device and transferring them on the TRS-80. Which of course leads
us right into the central role of cassettes as both data storage and data com-
munication (audio) channel�a topic we return to in the last section. In light of
the famously erratic results of cassette operations for programs (CLOAD, CSAVE)
and for data (PRINT#)�a hallmark �feature� of the Model 1�an alternate explo-
ration is to �ddle with the low-level I/O instructions of the Z80 (IN a,(n), OUT
(n),a) to sample some noisy bytes from a vintage audio cassette [8]. (The au-
thor's vintage cassette edition of Rumours by Fleetwood Mac worked well, but
David Bowie and Foreigner also yielded interesting results.)

The question of the BASIC API is important in maintaining at least a thin
varnish of authenticity to the e�ort, as this language became the prominent in-
strument in the programming usage the budding home-computing community
engaged in [7] at the time. We kept it to a rough minimum, however, as con-
strained memory didn't really allowed much sophistication. The cryptographic
functions are machine language routines �rst read from (again) cassette through
the SYSTEM command. The BASIC Level II commands POKE I,B and PEEK(I)

respectively sets the value of memory location I to B and returns the value
at memory location I. The messages to be encrypted, as well as the keys, if
generated externally, are thus �poked� individually and byte-wise at determined
locations in memory. The machine language routines themselves are called using
the USR(N) idiom in BASIC Level II, once the entry point of the selected rou-
tine has been �poked� in reserved addresses 16526 and 16527, LSB �rst�such an
idiosyncratic procedure that it remains a highlight of the TRS-80 folklore that
no user could ignore.

The tool chain is the instrument of port and recontextualization: we used the
Open Source SDCC suite of tools (on SourceForge: sdcc.sourceforge.net), which
provides a C compiler and a Z80 assembler/linker, and a Z80 emulator. We also
used ZEMU, a Z80 emulator by Joe Moore; z80dasm, a disassembler; and several
TRS-80 emulators (sdltrs, available at sdltrs.sourceforge.net, and TRS32 from
www.trs-80emulators.com). Critical to the success of the implementation is of
course Knut Roll-Lund's pair of programs playcas and wav2cas which translate
to and from the audio format as recorded on tape to digital binaries, e�ectively
allowing replacement of the cassette player with a PC hooked through the au-
dio/microphone jacks. We created a few additional Python scripts to translate
from the standard IHX format to the custom cassette binary format as speci�ed
in the TRS-80 original manuals [11]. And, of course, tests were ran on the au-
thor's loyal 16K machine from 1978. Note that most of these tools and utilities
are often the passionate work of hobbyists producing�perhaps disconcertingly�
retrocomputing �assemblages� involving an admixture of technologies from dif-
ferent historical periods.

TRS-80 with a grain of salt 5

4 Implementing ChaCha

The ChaCha state matrix is simply represented as an array of 64 bytes. The
cipher consists of 8 rounds that alter this state through logical and arithmetic
transformations. In ChaCha these operations (plus, xor and bit rotations) apply
to 32-bit integers. Here we coded the addition and the bit shu�ing in assembly
language in order to operate on 4 bytes at a time. Constants, nonces and message
slices are entered byte-wise either in the core machine language for constants or
by �poking� from the BASIC minimal API. Once initialized, the cipher calls 4
times a sequence of eight quarter-rounds on four 4-byte state elements.

Having a minimal number of registers available, the bit operations implemen-
tation resorts to storing and loading from global memory, heavily using the IX
and HL registers. Overall one quarter-round function call requires 8257 T-states.
(The Z80 machine cycles are sequenced by an internal state machine which builds
each machine cycle out of 3, 4, 5 or 6 T-states depending on context.) The entire
round of calculation needs 266,688 T-states. The code size of ChaCha is 1,465
bytes and uses 74 bytes of data memory. Execution time clocked on 16K TRS-80
is about 0.3 s.

5 Implementing Scalar Multiplication on Curve25519

The main computational e�ort in the Curve25519 elliptic-curve Di�e-Hellman
primitive [3] is the scalar multiplication using the x-coordinate based di�erential
Montgomery addition. All arithmetic is done over the �eld F2255−19. The scalar
multiplication consists of 255 so-called ladder steps, 255 conditional swaps, each
one based on a single bit of the scalar, and one �nal inversion to recover the �nal
x coordinate. Each ladder step, in turn, is a sequence of 13 multiplications in-
cluding squarings, 4 constant multiplications (by 4, and by 486,662), 3 additions
and 3 subtractions on arrays of 32 bytes.

The most speed-critical operations are multiplications and squarings which
we didn't specialize to reduce code size. The multiplication of 2 byte-sized in-
tegers with accumulation into a 4-byte integer (MULADD) is implemented in
assembly. It is used as the core operation in a straightforward implementation of
a 32-byte by 32-byte Comba multiplication. On top of the multiplication we need
several additions, implemented in assembly: adding a 1-byte and a 2-byte inte-
ger to a 32-byte integer with carry propagation (ADD013233 and ADD023233);
adding two 32-byte integer with carry (ADD323233) and one 32-byte to a 33-byte
integer (ADD323333); and subtration of 32-byte integer from a larger 32-byte
integer (SUB323232). The entire Comba multiplication uses 558,811 T-states
and 1,024 calls to MULADD.

Throughout the scalar multiplication we reduce modulo 2256 − 38. After a
multiplication, reduction is obtained by splitting for the 32-byte MSB part of
the result, multiplying it by 38 and adding to the 32-byte LSB (MUL38x3233
followed by ADD323333). As carry may be propagated we reiterate multiply-
ing the MSB by 38 and adding to the LSB, choosing the appropriate addition

6 Jean-Marie Chauvet

implementation from the set mentioned in the last paragraph (i.e. ADD023233
on each iteration). After and addition or subtraction, only the last steps are
required since the carry is 1-byte long (i.e. the ADD023233 iterations). The �nal
inversion in F2255−19 is performed as an exponentiation to 2255 − 21 using the
addition chain of of 254 squarings and 11 multiplications found in the reference
implementation [3]. Finally we reduce to P = 2255 − 19 by subtracting P once
if the value is greater then P (as it is, by de�nition, less than 2P).

The scalar multiplication performs 3,562 calls to the modular multiplications
which resolve to 3,647,488 calls to the MULADD core; the reciprocal performs
266 and 272,384 calls respectively. A complete modular multiplication use an
average of 733,244 T-states. Needless to say, for a machine clocked at 1,77 MHz
this translates into prohibitive execution times. We measured an average of 44
minutes (!) for scalar multiplication and a comparatively swift 4 minutes for
modular inversion on an original 16K TRS-80, bringing key generation to a
respectable total time of 48 minutes. The total code size is 7,880 bytes and uses
an additional 733 bytes of globals.

6 Conclusions

The implementation presented here exempli�es some aspects of the world of
retrocomputing, a set of diverse practices involving contemporary engagement
with old computer systems. As testi�ed by performance measurements, this ver-
sion of a NaCl subset de�nitely cannot aim at the highest speed, even on 8-bit
architectures. Performance of modern 8-bit platforms such as current microcon-
trollers are already many steps higher than a�orded by the Z80-based TRS-80.
Moreover it does not pretend to be optimal. There is indeed ample room for
optimization in this �rst-pass implementation (e.g. looking at special code for
squarings, better operand caching in spite of the limited number of registers...).

However, in contrast to retrocomputing recognized as being simply preser-
vation � although maintaining an original TRS-80 with monitor and tape deck
in working condition to this date requires constant attention � the current work
illustrates a hobbyist approach to remix and resituating. For instance, while
both the RSA publication and the TRS-80 general release date back from 1977,
the use of elliptic curves in cryptography is posterior (1985), and the choice of
elliptic curve with proper formulas for fast Di�e-Hellman resulted from research
work posterior to 2000. So there is a transformative aspect in this assemblage
of elements from di�erent historical periods, a novel recombination, remixing
theory published in the mid-eighties with applied considerations from the early
2000s jammed into a vintage late-seventies machine, which may simply seem like
an authentic artifact from the period to a naive observer. Another hybridization
worth noting is the use of an ad-hoc application on contemporary PCs to �play�
programs stored in the original cassette data format. This is a short step to
preserving TRS-80 programs and data, old or new, on-line, where this TRS-
80/modern PC collage e�ectively allows CLOAD from the cloud.

TRS-80 with a grain of salt 7

Several features of the selected cryptographic library are important to today's
applications in the current data and network security context. It is important to
resituate or map these features into the characteristic identity feature set of the
original machine. Hence the BASIC-driven interface and the idea of exchanging
public keys by exchanging cassette tapes, which were typical practices then in
programming for the TRS-80 and in distributing programs.

Acknowledgements

The author wishes to thank Neil Morrison, George Phillips, and Al Petrofsky of
the TRS-80 Yahoo! group for their wise advice and knowledgeable help in the
historical investigation of random number generation in BASIC dialects.

References

1. Nuray At, Jean-Luc Beuchat, Eiji Okamoto, Ismail San, and Teppei Yamazaki.
Compact Hardware Implementations of ChaCha, BLAKE, Three�sh, and Skein
on FPGA. Cryptology ePrint Archive, Report 2013/113, 2013. http://eprint.

iacr.org/.
2. Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In Fast

Software Encryption: 12th International Workshop, FSE 2005, Paris, France,

February 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in

Computer Science, pages 32�49. Springer, 2005.
3. Daniel J. Bernstein. Curve25519: New Di�e-Hellman Speed Records. In Moti

Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key

Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 207�228.
Springer, 2006.

4. Daniel J. Bernstein. ChaCha, a variant of Salsa20. In ECRYPT, editor, SACS
2008 The State of the Art of Stream Ciphers, Information Society Technologies,
page 273. 2008.

5. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-Speed High-Security Signatures. In Bart Preneel and Tsuyoshi Takagi, edi-
tors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 124�142.
Springer, 2011.

6. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. Cryptology ePrint Archive, Report 2011/646, 2011.
http://eprint.iacr.org/.

7. David Brin. Why Johnny can't code. Salon.com, 2006.
8. Pierre Giraud and Alain Pinaud. La pratique du TRS-80, volume 2. Editions du

P.S.I., 1980.
9. Michael Hutter and Peter Schwabe. NaCl on 8-Bit AVR Microcontrollers. In

Amr Youssef, Abderrahmane Nitaj, and AboulElla Hassanien, editors, Progress
in Cryptology AFRICACRYPT 2013, volume 7918 of Lecture Notes in Computer

Science, pages 156�172. Springer Berlin Heidelberg, 2013.
10. Lance A. Leventhal. Z80 Assembly Language Programming. Osborne and Asso-

ciates, 1979.
11. Edwin R. Paay. Level II ROM Reference Manual. MICRO-80 Products, 1980.
12. Jr. William Barden. TRS-80 Assembly-Language Programming. Radio Shack,

1979.

