
Multi-Valued Byzantine Broadcast: the t < n Case

Anonymous submission

Abstract. Byzantine broadcast is a distributed primitive that allows a specific
party to consistently distribute a message among n parties in the presence of po-
tential misbehavior of up to t of the parties. All known protocols implementing
broadcast of an `-bit message from point-to-point channels tolerating any t < n
Byzantine corruptions have communication complexity at least Ω(`n2). In this
paper we give cryptographically secure and information-theoretically secure pro-
tocols for t < n that communicate O(`n) bits when ` is sufficiently large. This
matches the optimal communication complexity bound for any protocol allowing
to broadcast `-bit messages. While broadcast protocols with the optimal com-
munication complexity exist for t < n/2, this paper is the first to present such
protocols for t < n.

Keywords: Byzantine broadcast; communication complexity; cryptographic security; information-
theoretic security; honest minority.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as follows [PSL80]: A
specific party (the sender) wants to distribute a message among n parties in such a way that
all correct parties obtain the same message, even when some of the parties are malicious. The
malicious misbehavior is modeled by a central adversary who corrupts up to t parties and takes
full control of their actions. Corrupted parties are called Byzantine and the remaining parties
are called correct. Broadcast requires that all correct parties agree on the same value v, and if
the sender is correct, then v is the value proposed by the sender. Broadcast is one of the most
fundamental primitives in distributed computing. It is used to implement various protocols
like voting, bidding, collective contract signing, etc. Basically, this list can be continued with
all protocols for secure multi-party computation as defined by Yao [Yao82,GMW87].

There exist various implementations of Byzantine broadcast from synchronous point-to-
point communication channels with different security guarantees. In the model without trusted
setup, perfectly-secure Byzantine broadcast is achievable when t < n/3 [PSL80, BGP92,
CW92]. In the model with trusted setup, cryptographically or information-theoretically secure
Byzantine broadcast is achievable for any t < n [DS83,PW96].

Closely related to the broadcast problem is the consensus problem. In consensus each party
holds a value as input, and then parties agree on a common value as output of consensus. In
this paper we consider the case where any number of parties may be Byzantine. In this case
the consensus problem is not well-defined, and hence we do not treat it here.

1.2 Efficiency of Byzantine Broadcast

In this paper we focus on the efficiency of broadcast protocols. In particular, we are interested
in optimizing their communication complexity. The communication complexity of a protocol
is defined by Yao [Yao79] to be the number of bits sent/received by correct parties during the
protocol run.1

Historically, the broadcast problem was introduced for binary values [PSL80]. However,
in various applications long values are broadcast rather than bits. Examples of such appli-
cations are general purpose multi-party computation protocols and specific tasks like voting.
Such a broadcast of long values is called multi-valued broadcast. In this paper we study the
communication complexity of multi-valued broadcast protocols.

Many known protocols for multi-valued broadcast [TC84,FH06,LV11,Pat11] are actually
constructions from a broadcast of short messages and point-to-point channels. Communication
complexity of such constructions is computed in terms of the point-to-point channels and the
broadcast for short messages usage. The security of the protocol is based on the security of
the construction and the security of the broadcast for short messages.

Let us denote the communication complexity of a short s-bit message broadcast with
B(s). The most trivial construction is to broadcast the message bit by bit, which is perfectly
secure for t < n and has communication complexity `B(1). The construction by Turpin and
Coan [TC84] is perfectly secure and tolerates t < n/3 while communicating O(`n2 + nB(1))

1 When counting the number of bits received by correct players, we take into account only messages which were
actively received by them, i.e., messages which should be received according to the protocol specification.

1

bits. The construction by Fitzi and Hirt [FH06] is information-theoretically secure and toler-
ates t < n/2 while communicating O(`n+ n3κ+ nB(n+ κ)) bits, where κ denotes a security
parameter. The construction by Liang and Vaidya [LV11] is perfectly secure and tolerates
t < n/3 while communicating O(`n+

√
`n2B(1)+n4B(1)) bits. This construction can even be

extended to tolerate more than n/3 corruptions [LV11]. However, the extended protocol in-
herently requires t < n/2 (see Appendix A for the details). The construction by Patra [Pat11]
is perfectly secure and tolerates t < n/3 while communicating O(`n+ n2B(1)) bits.

In this paper we consider the case where t < n. In this model existing protocols [DS83,
PW96] were designed to broadcast bits, but they can be easily adopted to broadcast long
messages. A simple modification of the protocol by Dolev and Strong [DS83] is cryptograph-
ically secure and has communication complexity Ω(`n2 + n3κ). Analogously, the protocol by
Pfitzmann and Waidner [PW96] is information-theoretically secure and has communication
complexity Ω(`n2 + n6κ) [Fit03]. Also the protocols of [HMR14] can be seen as multi-valued
constructions for t < n. However, their resulting communication complexity is Ω(`n3).

Another measure of protocol efficiency often considered is round complexity. There are two
principal classes of protocols with respect to this measure: constant-round and non-constant
round. In the model without trusted setup, constant-round binary Byzantine broadcast is
achievable when t < n/3 [FM88]. In the model where public-key infrastructure (PKI) has
been set up via a trusted party, constant-round binary Byzantine broadcast is achievable for
t < n/2 [KK06], but is not achievable for t < n [GKKO07].

1.3 Contributions

Consider any protocol for multi-valued broadcast. Since each correct player must learn the
value proposed by the sender, the communication costs of the broadcast protocol must be
at least O(`n). In this paper we give two generic constructions for a multi-valued broadcast
which allow to achieve optimal communication complexity of O(`n) bits for t < n. The first
construction is cryptographically secure and communicates O(`n+n(B(κ)+nB(1))) bits. The
second construction is information-theoretically secure and communicates O(`n+ n3(B(κ) +
nB(1))) bits. The constructions takeO(n2) andO(n3) rounds, respectively. The following table
summarizes the complexity costs of the existing constructions for multi-valued broadcast:2

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(`n2 + nB(1)) [TC84]

O(`n+ (
√
`n2 + n4)B(1)) [LV11]

O(`n+ n2B(1)) [Pat11]

t < n/2 inf.-theor. O(`n+ n3κ+ (n2 + nκ)B(1)) [FH06]

t < n

perfect `B(1) Trivial

inf.-theor. O(`n+ (n4 + n3κ)B(1)) This paper

cryptographical O(`n+ (n2 + nκ)B(1)) This paper

In order to obtain a concrete protocol for multi-valued broadcast one takes the above con-
structions and composes them with the existing protocols for a bit broadcast (e.g., [BGP92,

2 In order to facilitate comparison we substitute B(s) with sB(1) in the complexity of the constructions, which
is trivially possible since B(s) ≤ sB(1) for all s and such arguments appear as summands inside the big O.

2

DS83,PW96]). The security of the composed protocol is then the “minimal” security provided
by the construction and the bit broadcast protocol employed. For example, when composing
information-theoretical construction for t < n/2 [FH06] with cryptographically secure proto-
col for t < n [DS83] we obtain multi-valued broadcast protocol with cryptographic security
tolerating t < n/2 and communication complexity O(`n+ n4(n+ κ)). Further instantiations
are described in the following table:

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(`n2) Trivial with [BGP92]

O(`n+
√
`n4 + n6) [LV11] with [BGP92]

O(`n+ n4) [Pat11] with [BGP92]

t < n/2
inf.-theor. O(`n+ n7κ) [FH06] with [PW96]

cryptographical O(`n+ n4(n+ κ)) [FH06] with [DS83]

t < n

inf.-theor.
Ω(`n2 + n6κ) [PW96]

O(`n+ n10κ) This with [PW96]

cryptographical
Ω(`n2 + n3κ) [DS83]

O(`n+ n5κ) This with [DS83]

We note that all multi-valued constructions are only asymptotically optimal in `, i.e., they
only outperform the trivial construction when relatively long messages are broadcast. Such
long messages appear, for example, in voting protocols [CGS97] (where the set of authorities
agree on the set of ballots), or in multi-party computation protocols [GMW87] (when all
gates on a particular level of the circuit are evaluated in parallel). In particular, multi-party
computation protocols for t < n (e.g., [AJLA+12, GGHR14]) achieve better communication
complexity when combined with the broadcast constructions presented in this paper.

Furthermore, we investigate the round complexity of constructions for multi-valued broad-
cast. While for the case of t < n/2 constant-round constructions exist (e.g., [FH06]), we prove
that in the settings with t < n constant-round constructions do not exist.3 This is a gen-
eralization of the impossibility result given in [GKKO07], because the underlying broadcast
procedure for small messages can be used to distribute PKI (by letting the parties broadcast
their public keys) and hence PKI cannot be sufficient to implement broadcast in a constant
number of rounds.

2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) P = {P1, . . . , Pn} with some
designated party called the sender, which we denote with Ps for some s ∈ {1, . . . , n}. For a
set of parties A ⊆ P let A denote P \ A. We assume that the parties are connected with
a synchronous authentic point-to-point network. Synchronous means that all parties share a
common clock and that the message delay in the network is bounded by a constant.
Broadcast definition. A broadcast protocol allows the sender Ps to distribute a value vs
among parties P such that:

3 In the notation of [HMR14] this means that no non-trivial constant-round broadcast-amplification protocols
tolerating t < n exist.

3

Termination: Every correct party Pi ∈ P terminates.
Consistency: All correct parties in P decide on the same value.
Validity: If the sender Ps is correct, then every correct party Pi ∈ P decides on the value

proposed by the sender vi = vs.

Adversary. The faultiness of parties is modeled in terms of a central adversary corrupting up
to t < n parties, making them deviate from the protocol in any desired manner. We distinguish
two types of security in this paper: cryptographic and information-theoretic. Cryptographic
security guarantees that the protocol is secure based on some computational assumptions
(e.g., signatures and/or collision-resistant hash functions), while information-theoretical (also
called statistical) security captures the fact that even a computationally unbounded adversary
cannot violate the security of the protocol with a non-negligible probability.

3 Protocols Overview

We present cryptographically and information-theoretically secure constructions for multi-
valued broadcast. Both constructions are built over point-to-point channels and an oracle for
broadcasting short messages. When describing protocols we often say that players broadcast
messages, while meaning that they actually use the given broadcast oracle.

On the highest level both constructions broadcast the long message block by block, where
each block is broadcast using a special protocol for block broadcast. This block broadcast
protocol achieves optimal communication complexity only in good executions, while in bad
executions more bits need to be communicated. We select the number of blocks in such a
way that good executions outnumber bad ones and the total communication complexity is
optimal. Whether an execution is good or bad is determined using the Dispute Control Frame-
work [BH06]. Dispute control is a technique which keeps track of disputes (also called con-
flicts) between players and ensures that occurred disputes cannot show up again. Intuitively,
an execution is good if it is dispute-free, and bad otherwise.

We employ the dispute control framework as follows. We consider a set of unordered pairs
of parties ∆, where {Pi, Pj} ∈ ∆ represents the fact that parties Pi and Pj accuse each other
of being Byzantine. Parties start a protocol by setting ∆ to be the empty set. Then during
the protocol run they add new disputes to ∆ when they learn about new accusations. We
ensure that ∆ always remains valid, meaning that if {Pi, Pj} ∈ ∆ then at least one of the
players Pi, Pj is Byzantine.

4 Cryptographically Secure Construction

First, we present a protocol CryptoBlockBC for broadcasting blocks. CryptoBlockBC makes
use of an external procedure for broadcasting short values and a set of disputes ∆. Then we
plug CryptoBlockBC in the protocol CryptoBC, which broadcasts an `-bit message block by
block q times. In each invocation of CryptoBlockBC we will use the same global variable ∆
with the disputes among the players. This means that if parties Pi and Pj conflict during
some block broadcast, then they conflict in all later invocations of CryptoBlockBC. Then, we
count the communication complexity of the resulting construction and select q which makes
its optimal.

4

4.1 Block Broadcast Protocol CryptoBlockBC

The protocol CryptoBlockBC employs a collision-resistant hash function CRHash, i.e., no
efficient algorithm can find two different inputs v, v′ with CRHash(v) = CRHash(v′).4 In the
beginning of the protocol the sender broadcasts a hash h = CRHash(vs) of the value it holds.
The goal of the protocol is to ensure that all correct players learn vs. All parties during the
protocol run are divided into two sets: H and H. The set H consists of happy players who
have already learned vs, and H who have not. At each iteration of CryptoBlockBC we try to
move a player from H to H. We select a pair of players Px, Py such that Px ∈ H and Py ∈ H.
Then Px sends the value it holds to Py. This procedure is meaningless if parties Px, Py are in
the dispute, so the pair is chosen such that {Px, Py} 6∈ ∆. Once Py receives a value from Px
it verifies that its hash is h; in the positive case Py is included in H and in the negative case
a conflict between Px and Py is found. Hence at each iteration we either include one player
into H or we discover a new conflict between a pair of players.

Protocol CryptoBlockBC(vs):
1. Parties initialize happy set H to be {Ps}.
2. Sender Ps: Broadcast h := CRHash(vs).
3. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do
r.1 Px: Send vx to player Py. Denote received value by vy.
r.2 Py: If h = CRHash(vy) broadcast 1, else broadcast 0.
r.3 If Py broadcasted 1 then parties add Py to H , otherwise they add {Px, Py} to ∆.

4. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 1. Given that the initial dispute set ∆s is valid and CRHash is a collision-resistant
hash function, protocol CryptoBlockBC achieves broadcast (of vs) and terminates with a valid
dispute set ∆e. Furthermore, the protocol terminates in O(n + d) rounds communicating at
most B(|h|) + (n + d)(|vs| + B(1)) bits, where d = |∆e| − |∆s|, |h| is the output length of
CRHash, and |vs| is the block length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always
hold the same value v such that CRHash(v) = h. A player is included into H under condition
that it broadcasts 1 at Step r.2, which he does only if it holds a value v with CRHash(v) =
h. Hence for any two correct players Pi, Pj ∈ H it must hold that CRHash(vi) = h and
CRHash(vj) = h. Since CRHash is collision-resistant it implies that vi = vj .

5

(Validity of ∆e) We show that whenever Px and Py are correct then {Px, Py} is not added
to ∆ at Step r.3. A correct Px ∈ H holds vx with CRHash(vx) = h and sends vx = vy to Py at
Step r.1, who successfully verifies that CRHash(vy) = h and broadcasts 1 at Step r.2, hence
{Px, Py} is not added to ∆ at Step r.3.
(Termination) At each iteration of the while loop either the happy set H or the dispute
set ∆ grows. |H| is limited by n and |∆| is limited by n2, hence the number of iterations is
limited.

4 This is rather informal definition of collision resistance for unkeyed hash functions, for a more formal
treatment see [Rog06].

5 More formally, when an adversary can provoke two correct players to hold colliding values for CRHash
with non-negligible probability, then this adversary can be used to construct an efficient collision-finding
algorithm for CRHash.

5

(Consistency) We prove that in the end of the protocol all correct players belong either to
H (and decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains
valid in all iterations, hence for correct players Px and Py the pair {Px, Py} 6∈ ∆. Hence, if
Px ∈ H and Py ∈ H then the while loop does not terminate.
(Validity) The sender Ps is always in H. If Ps is correct then it decides on vs and due to the
consistency criterion all other correct players decide on vs as well.
(Complexity analysis) At each iteration of the while loop either H or ∆ grows. Hence, the
total number of iterations of the while loop is upper bounded by n+ d where d is |∆e| − |∆s|.
This implies that the number of rounds the construction employs is O(n+d). Furthermore, the
total communication costs of the protocol are upper bounded by B(|h|) + (n+ d)(|vs|+B(1)).

ut

4.2 Constructing Broadcast for Long Messages

Now we plug in CryptoBlockBC in the protocol CryptoBC which broadcasts a message block
by block.

Protocol CryptoBC(vs, q):
1. Parties initialize dispute set ∆ with the empty set.
2. Sender Ps: Cut vs in q pieces v1, . . . , vq (add padding if required).
3. For r = 1, . . . , q invoke CryptoBlockBC(vr), denote the output of party Pi by vri .
4. ∀Pi ∈ P: If one of vri = ⊥ then output ⊥, otherwise output v1i || · · · ||v

q
i .

Since block broadcast is invoked q times, due to Lemma 1 the total communication com-
plexity is at most

q∑
i=1

[
B(|h|) + (n+ di)(`/q + B(1))

]
= qB(|h|) + (qn+

q∑
i=1

di)(`/q + B(1))

bits. We know that the sum of di is upper bounded by the total number of possible disputes n2.
Hence we have that communication complexity is upper bounded by qB(|h|)+(qn+n2)(`/q+
B(1)). By setting q = n we get that the total communication is at most 2`n+2n2B(1)+nB(|h|)
which is O(`n+ n(B(κ) + nB(1))).

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈ O(n + di).
Hence, for q = n we have that the total number of rounds is O(n2).

The following theorem summarizes the cryptographically secure construction presented in
this section:

Theorem 1. In the setting with t < n, the construction CryptoBC with q = n achieves
cryptographically secure broadcast of `-bit messages in O(n2) rounds by communicating O(`n+
n(B(κ) + nB(1))) bits (where κ is a security parameter and B(s) is the complexity of the
underlying broadcast for short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate CryptoBC with
the protocol [DS83]:

Theorem 2. Instantiating the construction CryptoBC with q = n and [DS83] as underlying
broadcast for short messages results in a cryptographically secure multi-valued broadcast pro-
tocol for t < n with communication complexity O(`n+n5κ) (where κ is a security parameter).

6

5 Information-Theoretically Secure Construction

This section is organized similar to the cryptographic case. First, we present a protocol
ITBlockBC for broadcasting blocks which is analogous to CryptoBlockBC, with the differ-
ence that it relies on a universal hash function instead of a collision-resistant one. As in the
cryptographic case we then plug ITBlockBC in the ITBC protocol, which broadcasts a mes-
sage block by block q times. Then, we count the communication complexity of the resulting
protocol ITBC, and select the number of blocks q which makes it optimal.

5.1 Universal Hash Functions

Consider a family of functions U = {Uk}k∈K indexed with a key set K, where each function
Uk maps elements of some set X to a fixed set of bins Y. The family U is called ε-universal if
for any two distinct messages v1 and v2,

|{k ∈ K | Uk(v1) = Uk(v2)}|
|K|

≤ ε.6

A ε-universal hash function can for example be constructed as follows: Let X = {0, 1}`,
K = Y = GF(2ν), and any value v ∈ {0, 1}` be interpreted as a polynomial fv over GF(2ν) of
degree d`/νe − 1. The hash function is defined as Uk(v) = fv(k). We know that two distinct
polynomials of degree d`/νe − 1 can match in at most d`/νe − 1 points. Hence, for any two
distinct v1, v2 ∈ {0, 1}`,

|{k ∈ {0, 1}ν | Uk(v1) = Uk(v2)}|
2ν

≤ d`/νe − 1

2ν
≤ 2−ν`.

So, {Uk}k∈{0,1}ν is a family of (2−ν`)-universal hash functions.
We will denote a ε-universal hash function with ITHash.

5.2 Block Broadcast Protocol ITBlockBC

Similarly to the cryptographic case all parties during the protocol ITBlockBC run are divided
into two sets: H and H. The set H consists of happy players who have already learned
vs, and H who have not. The difference to the cryptographic case is that the set H is not
monotonically growing—it may happen that the same player may be added/removed from H
several times. At each iteration of ITBlockBC we try to move a player from H to H. We select
a pair of players Px, Py such that Px ∈ H, Py ∈ H and {Px, Py} 6∈ ∆. Then Px sends the value
it holds to Py. Now player Py needs to verify that the value received from Px is the value
that correct parties in H hold. In order to do so, Py broadcasts a key k for ε-universal hash
function ITHash, and then Ps broadcasts a hash h for this key. As long as Py honestly chooses
k uniformly at random, with overwhelming probability correct players will obtain different
hashes if they hold different values. If a party in H ∪ {Py} \ {Ps} holds a value with a hash
h, then he broadcasts 1, and 0 otherwise (the sender Ps does not broadcast because if he is
correct he can broadcast only 1). If every party broadcasts 1, then the iteration was successful

6 This is a combinatorial definition of a universal hash function, usually the last condition is written proba-

bilistically as Pr[k
$←− K : Uk(v1) = Uk(v2)] ≤ ε.

7

Ps

H

Stay happy
(Ps and those

who broadcasted 1)

Become unhappy
(broadcasted 0)

PzPiu
Piu+1

Conflict

Fig. 1. Conflict finding in ITBlockBC

and Py is added to H. Otherwise, some of the parties in H ∪{Py} do not hold the right value
and we search for new disputes.
An important difference from the cryptographic case is that disputes may occur not only
between Px and Py, but between any two parties in H. In order to find such disputes, one
must be able to reason about the history of how H was formed. We will keep a history set T
which will contain pairs of players (Px, Py) such that Py learned the value it holds from Px.

Protocol ITBlockBC(vs):
1. Parties initialize happy set H to be {Ps} and history set T to be ∅.
2. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do
r.1 Px: Send vx to player Py. Denote received value by vy. Add (Px, Py) to T .
r.2 Py: Generate random k ∈ K and broadcast it.

Sender Ps: Broadcast h := ITHashk(vs).
r.3 ∀Pi ∈ H ∪ {Py} \ {Ps}: If h = ITHashk(vi) then broadcast 1, otherwise 0.
r.4 If all parties broadcasted 1

- Add Py to H.
else

- For all (Pi, Pj) ∈ T s.t. Pi broadcasted 1 (resp. Pi = Ps) and
Pj broadcasted 0, add {Pi, Pj} to ∆.

- Set H to {Ps}, T to ∅.
3. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 2. Given that the initial dispute set ∆s is valid and ITHash is a universal hash
function, protocol ITBlockBC achieves broadcast (of vs) and terminates with a valid dispute
set ∆e (except with negligible probability). Furthermore, the protocol terminates in O(n+ nd)
rounds communicating at most (n+nd)(|vs|+B(|h|) +B(|k|) +nB(1)) bits, where d = |∆e| −
|∆s|, |h| is the output length of ITHash, |k| is the key length of ITHash, and |vs| is the block
length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always
hold the same value v. More precisely, we need to show that if a correct player Py is added to
H, then, given that all correct players in H hold the same value v, it holds that vy = v. We have
that all parties in H ∪ {Py} \ {Ps} broadcast 1 at Step r.3. This implies that Py successfully
verifies that ITHashk(vy) = h, and all correct parties in H verify that ITHashk(v) = h.
Due to the fact that Py is correct, the key k is chosen uniformly at random, so given that
ITHashk(vy) = ITHashk(v), it must hold with overwhelming probability 1− ε that vy = v.
Second, we show that if the condition at Step r.4 is false then at least one new conflict is

8

found. We have that not all players in H ∪ {Py} \ {Ps} broadcasted 1. Consider two possible
cases:
(Exists Pz ∈ H \ {Ps} which broadcasts 0 at step r.3) For Pz to be included in H there must

exist a sequence of players Pi1 , Pi2 , . . . , Pik in H such that Pi1 = Ps, Pik = Pz and
(Pij , Pij+1) ∈ T for all j = 1, . . . , k − 1 (see illustration in Figure 1). In the rth itera-
tion some of the players in H stayed happy (Ps and those who broadcasted 1) and some
become unhappy (broadcasted 0). We know that Ps stayed happy and Pz became unhappy.
Hence in a row Pi1 , Pi2 , . . . , Pik there are players of both types. Then we have that exist two
players Piu , Piu+1 such that Piu stays happy and Piu+1 becomes unhappy. By construction
of T , (Piu , Piu+1) ∈ T implies that {Piu , Piu+1} is not yet in ∆. Consequently, the pair
{Piu , Piu+1} will be identified as having a conflict and will be added to ∆.

(Each Pi ∈ H \ {Ps} broadcasts 1 at step r.3) It means that Px broadcasts 1 (or Px = Ps)
and Py broadcasts 0. Hence the new dispute {Px, Py} will be added to ∆.

Now we proceed with the proof of the current lemma.
(Validity of ∆e) We show that whenever Pi and Pj are correct then {Pi, Pj} is never added
to ∆. The pair {Pi, Pj} is added to ∆ only when Pi sent some v to Pj (i.e., (Pi, Pj) ∈ T), and
they disagree for some key k whether ITHashk(v) equals h. Hence, Pi or Pj is corrupted.
(Termination) There can be at most n successive iterations where the set H grows (condition
at Step r.4 is true). As shown above whenever condition at Step r.4 is false a new conflict
is found. The number of conflicts is limited and so must be the number of the while loop
iterations.
(Consistency) We prove that in the end of the protocol all correct players belong either to
H (and decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains
valid in all iterations, hence for any two correct players Px, Py, the pair {Px, Py} 6∈ ∆. Hence,
if Px ∈ H and Py ∈ H then the while loop does not terminate.
(Validity) The correct sender Ps is always in H. The sender Ps decides on vs and due to the
consistency criterion all other correct players decide on vs as well.
(Complexity analysis) There can be at most n consecutive iterations, where no conflict is
found, hence the total number of iterations is at most n + nd, where d = |∆e| − |∆s|. This
implies that the number of rounds the construction employs is O(n+nd). Furthermore, since
the communication costs of each iteration are at most |vs|+B(|h|) +B(|k|) + nB(1), we have
that the total communication costs of the protocol are upper bounded by (n + nd)(|vs| +
B(|h|) + B(|k|) + nB(1)). ut

5.3 Constructing Broadcast for Long Messages

Similarly to the cryptographic case, we plug ITBlockBC in the protocol ITBC which simply
broadcasts a message block by block. The protocol ITBC is a copy of the protocol CryptoBC
with the only difference that CryptoBlockBC is substituted with ITBlockBC.

Due to Lemma 2 the total communication complexity of ITBC is at most

q∑
i=1

[
(n+ din)(`/q+B(|h|) +B(|k|) + nB(1))

]
= n(q+

q∑
i=1

di)(`/q+B(|h|) +B(|k|) + nB(1)).

This expression is bound by n(q + n2)(`/q + B(|h|) + B(|k|) + nB(1)). By setting q = n2

we have that communication costs are at most 2`n + 2n3(B(|h|) + B(|k|) + nB(1))) which is
O(`n+ n3(B(κ) + nB(1))).

9

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈ O(n + ndi).
Hence, for q = n2 we have that the total number of rounds is O(n3).

The following theorem summarizes the information-theoretically secure construction pre-
sented in this section:

Theorem 3. In the setting with t < n, the construction ITBC with q = n2 achieves information-
theoretically secure broadcast of `-bit messages in O(n3) rounds by communicating O(`n +
n3(B(κ) + nB(1))) bits (where κ is a security parameter and B(s) is the complexity of the
underlying broadcast for short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate ITBC with the
protocol [PW96]:

Theorem 4. Instantiating the construction ITBC with q = n2 and [PW96] as underlying
broadcast for short messages results in an information-theoretically secure multi-valued broad-
cast protocol for t < n with communication complexity O(`n + n10κ) (where κ is a security
parameter).

6 On The Round Complexity of Multi-Valued Constructions

While the primary goal of this paper is to build communication efficient protocols, one often
optimizes the protocols with respect to another measure of the protocols’ efficiency, number of
rounds employed by a protocol. According to this measure there are two principal classes of the
protocols: constant-round and non-constant round. In the following we investigate whether it
is possible to obtain protocols optimal in both measures, that is, constant-round multi-valued
broadcast protocols with optimal communication complexity for t < n.

The goal of this paper is to build protocols for efficient multi-valued constructions. We
stress that by construction we understand a protocol for n players which realizes multi-valued
broadcast on top of bilateral channels and a special procedure for broadcasting bits. We
explicitly distinguish such constructions and plain multi-valued broadcast protocols (e.g.,
[DS83,PW96]) that directly implement broadcast from bilateral channels.

When t < n/2 both communication and round optimal multi-valued broadcast protocols
can be built by combining constant-round construction [FH06] with a constant-round binary
broadcast protocol (e.g., [KK06,GKKO07]). For the case of arbitrary t < n it has been shown
that no plain protocol can achieve broadcast in a constant number of rounds [GKKO07]. In the
context of this paper this shows that no concrete instantiation of a multi-valued construction
and a procedure for broadcasting bits can be constant-round. However, it is still interesting
to understand whether a non-trivial constant-round construction for multi-valued broadcast
exists separately. Next we show that this is not possible, i.e., there is a separation between
t < n/2 and t < n cases not only for broadcast protocols but between constructions for
multi-valued broadcast as well.

A construction’s failure probability (based on the definition [GY89]). Consider
any multi-valued construction protocol π = (π1, . . . , πn). A scenario is a triple (v,B,A)
where v ∈ {0, 1}` is a value that the sender broadcasts, B ⊆ P is a set of malicious players
controlled with an adversarial strategy A. We call an execution of the protocol π in a scenario
successful if the outputs of honest parties P \ B satisfy broadcast properties (validity and
consistency). We define the error επ,v,B,A to be the probability of an unsuccessful execution

10

over the randomness used by honest parties and the adversary in the corresponding scenario.7

Then the failure probability of π is defined as max
v,B,A

επ,v,B,A, i.e., as the maximum failure

among all scenarios.

Impossibility framework. We employ a standard indistinguishability argument that is
used to prove that certain security goals cannot be achieved by any protocol in the Byzantine
environment [PSL80]. Such a proof goes by contradiction, i.e., by assuming that the security
goals can be satisfied by means of some protocol π = (π1, . . . , πn). Then the programs πi
are used to build a configuration with contradictory behavior. The configuration consists of
(possibly) multiple copies of πi connected with bilateral channels and given admissible inputs.
Once the configuration is built, one simultaneously starts all the programs in the configuration
and analyzes the outputs produced by the programs locally. By arguing that the view of some
programs πi and πj in the configuration is indistinguishable from their view when run by
the corresponding players Pi and Pj (while the adversary corrupts the remaining players in
P \ {Pi, Pj}) we can deduce consistency conditions on the outputs by πi and πj that lead
to a contradiction. The main novelty in the following proof is that we consider an extended
communication model where in addition to bilateral channels players are given access to a
special procedure for broadcasting short messages. While following the path described above,
we need to additionally describe how the calls to this procedure are handled.

Theorem 5. Every non-trivial 8 multi-valued construction for t < n which takes less than
n− 1 rounds fails with probability at least 1/(2n).

Proof. Take any non-trivial construction π = (π1, . . . , πn) which requires q < n−1 rounds and
has error probability ε. Without loss of generality, assume as well that the sender is P1, i.e.,
the sender’s program is π1. On the highest level our proof consists of three steps. (i) we define
a configuration (inspired by [GKKO07]). (ii) we show that all programs in the configuration
must output the same value v with probability 1−nε. (iii) we use an information flow argument
to prove that there is a program in the configuration that outputs v with probability at most
1/2. Finally, we combine the probability inequalities given by (ii) and (iii) to conclude that
ε ≥ 1/(2n).
(i) Consider a chain of n programs π1, π2, π3, . . . , πn connected with bilateral channels as
shown in Figure 2. In this configuration only programs that are connected communicate, i.e.,
π1 communicates only with π2 and receives no messages from parties in P \ {P1, P2}. Let π1
be given as input a uniform random variable V chosen from the input domain {0, 1}`. Now
we execute the programs. Whenever any program broadcasts any value using the broadcast
procedure this value is delivered to all programs in the configuration.
(ii) First, we prove that any pair of connected programs (πi, πi+1) in the chain outputs the
same value. One can view the configuration as the player Pi running the program πi and
Pi+1 running πi+1 while the adversary corrupting P \ {Pi, Pi+1} is simulating the programs
π1, . . . , πi−1 and πi+2, . . . , πn. Due to the consistency property, πi and πi+1 must output the
same value with probability at least 1 − ε. Since every connected pair of programs in the
chain outputs the same value with probability at least 1 − ε, then all the programs in the

7 In all executions we assume that the procedure to broadcast bits is perfectly secure, i.e., the values broadcast
with it are consistently delivered to the parties.

8 By non-trivial we mean every construction which broadcasts strictly less bits with the broadcast procedure
than the length of the message broadcast `.

11

π1 π2 π3 π4 π5 π6 π7 . . . πn
V

Fig. 2. The configuration to show the impossibility of non-trivial construction

configuration output the same value with probability at least 1 − (n − 1)ε. Moreover, the
configuration can be viewed as P1 executing π1 while the adversary corrupts P \ {P1} and
simulates the remaining programs. Due to the validity property, π1 must output V with
probability at least 1 − ε. Finally, all the programs in the chain output V with probability
1− nε.
(iii) Let Sri be a random variable denoting the state of the program πi in the chain after r
rounds of the protocol execution. By state we understand the input that the program has, the
set of all messages that the program received up to the rth round over point-to-point channels
and via the underlying broadcast procedure together with the random coins it has used. Let
Br be a random variable denoting the list of the values that have been broadcast with the
broadcast procedure up to the rth round.
After r rounds only programs π1, π2, . . . , πr+1 can receive full information about V . The
remaining programs in the chain πr+2, πr+3, . . . , πn can receive only the information that was
distributed with the broadcast procedure, i.e., the information contained in Br. That is, one
can verify by induction that for any r and for all i ≥ r+2 holds I(V ;Sri |Br) = 0. Hence, for the
last program in the chain πn after q rounds of computation it holds that I(V ;Sqn|Bq) = 0 and
hence I(V ;Sqn) ≤ H(Bq). Because we assumed that the construction is non-trivial, at most
`−1 bits can be broadcast with the broadcast procedure. Hence, we have that H(Bq) ≤ `−1.
Combining these facts we get that I(V ;Sqn) ≤ ` − 1. Hence, the last program πn outputs V
with probability at most 1/2. However, we have shown above that all programs (including πn)
output V with probability at least 1 − nε. Hence, we have that 1/2 ≥ 1 − nε which implies
that ε ≥ 1/(2n). ut

7 Conclusions

Existing multi-valued broadcast protocols achieve optimal communication complexity only
for t < n/3 [LV11] or t < n/2 [FH06]. In this paper we proposed the first multi-valued
broadcast protocols that tolerate any t < n Byzantine corruptions and achieve optimal com-
munication complexity O(`n) for sufficiently long messages of ` bits. One of the proposed
protocols is cryptographically secure and the other one is information-theoretically secure.
The cryptographically secure protocol is based on the security of the signature scheme and
a collision-resistance of the hash function employed. It communicates O(`n+ n5κ) bits. The
information-theoretically secure protocol may fail with a negligible probability and needs to
communicate O(`n+ n10κ) bits.
The presented constructions CryptoBC and ITBC require O(n2) and O(n3) rounds, respec-
tively. While constant-round constructions are unachievable, it is still unresolved whether
more round-efficient constructions exist. We leave round-complexity optimizations and prov-
ing stronger lower bounds as open questions.

12

References

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold fhe. In Proceedings of the 31st Annual International Conference on Theory and
Applications of Cryptographic Techniques, EUROCRYPT’12, pages 483–501, Berlin, Heidelberg,
2012. Springer-Verlag.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consensus. In
Computer Science Research, pages 313–322. Plenum Publishing Corporation, New York, NY, USA,
1992. Preliminary version appeared in STOC ’89.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute
control. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography Conference — TCC 2006,
volume 3876 of Lecture Notes in Computer Science, pages 305–328. Springer-Verlag, March 2006.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In Advances in Cryptology - EUROCRYPT ’97, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 103–118. Springer,
1997.

[CW92] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement protocol with
optimal message bit complexity. Information and Computation, 97:61–85, March 1992. Preliminary
version appeared in PODC ’89.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983. Preliminary version appeared in STOC ’82.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine agreement. In Pro-
ceedings of the 26th annual ACM symposium on Principles of distributed computing, PODC ’06,
pages 163–168, New York, NY, USA, 2006. ACM.

[Fit03] Matthias Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD
thesis, ETH Zurich, March 2003. Reprint as vol. 4 of ETH Series in Information Security and
Cryptography, ISBN 3-89649-853-3, Hartung-Gorre Verlag, Konstanz, 2003.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Janos Simon,
editor, STOC, pages 148–161. ACM, 1988.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc from
indistinguishability obfuscation. In Yehuda Lindell, editor, TCC, volume 8349 of Lecture Notes in
Computer Science, pages 74–94. Springer, 2014.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of
authenticated broadcast with a dishonest majority. In Proceedings of the 48th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS ’07, pages 658–668, Washington, DC, USA,
2007. IEEE Computer Society.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings
of the 19th annual ACM symposium on Theory of computing, STOC ’87, pages 218–229, New York,
NY, USA, 1987. ACM.

[GY89] R. L. Graham and A. C. Yao. On the improbability of reaching byzantine agreements. In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, STOC ’89, pages 467–478, New
York, NY, USA, 1989. ACM.

[HMR14] Martin Hirt, Ueli Maurer, and Pavel Raykov. Broadcast amplification. In Yehuda Lindell, editor,
TCC, volume 8349 of Lecture Notes in Computer Science, pages 419–439. Springer, 2014.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agree-
ment. In In Advances in Cryptology—Crypto ’06, pages 445–462. Springer-Verlag, 2006.

[LV10a] Guanfeng Liang and Nitin Vaidya. Complexity of multi-value byzantine agreement. Technical re-
port, University of Illinois at Urbana-Champaign, 2010. Available at http://www.crhc.illinois.
edu/wireless/papers/ba_sum_capacity_0729.pdf.

[LV10b] Guanfeng Liang and Nitin Vaidya. Short note on complexity of multi-value byzantine agreement.
CoRR, abs/1007.4857, 2010.

[LV11] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with Byzantine failures.
In Proceedings of the 30th annual ACM symposium on Principles of distributed computing,
PODC ’11, pages 11–20, New York, NY, USA, 2011. ACM. The arxiv version is available at
http://arxiv.org/abs/1101.3520.

13

[LV14] Guanfeng Liang and Nitin Vaidya. Personal Communication, 2014.
[Pat11] Arpita Patra. Error-free multi-valued broadcast and Byzantine agreement with optimal communi-

cation complexity. In Proceedings of the 15th international conference on Principles of Distributed
Systems, OPODIS ’11, pages 34–49. Springer, 2011.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, 1980.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and Byzantine
agreement for t ≥ n/3. Technical report, IBM Research, 1996.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, VIETCRYPT, volume
4341 of Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

[TC84] Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement to multivalued Byzan-
tine agreement. Information Processing Letters, 18(2):73–76, 1984.

[Yao79] Andrew C. Yao. Some complexity questions related to distributive computing (preliminary report).
In Proceedings of the eleventh annual ACM symposium on Theory of computing, STOC ’79, pages
209–213, New York, NY, USA, 1979. ACM.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE
Computer Society.

14

A On the Constructions of Liang and Vaidya [LV11,LV10a,LV10b]

In [LV11] it is stated that the broadcast constructions presented there can be extended to
tolerate t ≥ n/3. We contacted the authors and they said that this statement is misleading
and it should have been “t < n/2” instead of “t ≥ n/3” to be more clear [LV14]. Below we
detail why [LV11] inherently requires t < n/2 and cannot be extended beyond this bound
(this reasoning applies to the related constructions [LV10a,LV10b]).

Essentially, the construction relies on a player set S such that all players in S have the
same value v and S is guaranteed to contain at least one correct player. The value v is the
value that should be agreed on. This technique requires that such S is unique. Uniqueness of
S can be guaranteed only when t < n/2. When t ≥ n/2, even if all correct players do share the
same value v, the Byzantine players can always pretend to have a different value v′ and create
a larger player set S′ just among themselves to prevent protocol from reaching agreement.

15

