
Formally Proved Security of Assembly Code Against

Power Analysis

A Case Study on Balanced Logic

Pablo Rauzy Sylvain Guilley
Zakaria Najm

Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI
{firstname.lastname}@telecom-paristech.fr

Abstract

In his keynote speech at CHES 2004, Kocher advocated that side-channel attacks were an
illustration that formal cryptography was not as secure as it was believed because some assump-
tions (e.g., no auxiliary information is available during the computation) were not modeled. This
failure is caused by formal methods’ focus on models rather than implementations. In this pa-
per we present formal methods and tools for designing protected code and proving its security
against power analysis. These formal methods avoid the discrepancy between the model and
the implementation by working on the latter rather than on a high-level model. Indeed, our
methods allow us (a) to automatically insert a power balancing countermeasure directly at the
assembly level, and to prove the correctness of the induced code transformation; and (b) to
prove that the obtained code is balanced with regard to a reasonable leakage model. We also
show how to characterize the hardware to use the resources which maximize the relevancy of
the model. The tools implementing our methods are then demonstrated in a case study on an
8-bit AVR smartcard for which we generate a provably protected present implementation that
reveals to be at least 250 times more resistant to CPA attacks.

Keywords. Dual-rail, DPA, CPA, formal proof, static analysis, symbolic execution, implementa-
tion, smartcard, PRESENT, block cipher, Hamming distance, OCaml.

1 Introduction

The need to trust code is a clear and proved fact, but the code itself needs to be proved before
it can be trusted. In applications such as cryptography or real-time systems, formal methods are
used to prove functional properties on the critical parts of the code. Specifically in cryptography,
some non-functional properties are also important, but are not typically subject to formal proof
yet. Side-channel attacks are a real world threat to cryptosystems; they use auxiliary information
gathered from implementations though physical channels such as power consumption, electromag-
netic radiations, or time. The amount of leaked information depends on the implementation and
as such appears difficult to model. As a matter of fact, physical leakages are usually not modeled
when it comes to prove the security properties of a cryptographic algorithm. By applying formal
methods directly on implementations we can avoid the discrepancy between the model and the
implementation. Formally proving non-functional security properties then becomes a matter of

1

modeling the leakage itself. In this paper we make a first step towards formally trustable cryp-
tosystems, including for non-functional properties, by showing that modeling leakage and applying
formal methods to implementations is feasible.

Many existing countermeasures against side-channel attacks are implemented at the hardware
level, especially as far as smartcards are concerned. However, software level countermeasures are
also very important, not only in embedded systems where the hardware cannot always be modified
or updated, but also in the purely software world. For example, Zhang et al. [ZJRR12] recently
extracted private keys using side-channel attacks against a target virtual machine running on the
same physical server as their virtual machine. Side-channel in software can also be found each
time there are some non-logic behaviors (in the sense that it does not appear in the equations /
control-flow modeling the program) such as timing or power consumption (refer to [KJJ99a]), but
also some software-specific information such as packet size for instance (refer to [MO12]).

In many cases where the cryptographic code is executed on secure elements (smartcards, TPM,
tokens, etc.) side-channel and fault analyses are the most natural attack paths. A combination of
signal processing and statistical techniques on the data obtained by side-channel analysis allows to
build key hypotheses distinguishers. The protection against those attacks is necessary to ensure
that secrets do not leak, and most secure elements are thus evaluated against those attacks. Usual
certifications are the common criteria (ISO/IEC 15408), the FIPS 140-2 (ISO/IEC 19790), or
proprietary schemes (EMVCo, CAST, etc.).

Power analysis. It is a form of side-channel attack in which the attacker measures the power
consumption of a cryptographic device. Simple Power Analysis (SPA) consists in directly interpret-
ing the electrical activity of the cryptosystem. On unprotected implementations it can for instance
reveal the path taken by the code at branches even when timing attacks [KJJ96] cannot. Differen-
tial Power Analysis [KJJ99b] (DPA) is more advanced: the attacker can compute the intermediate
values within cryptographic computations by statistically analyzing data collected from multiple
cryptographic operations. It is powerful in the sense that it does not require a precise model of the
leakage, and thus works blind, i.e., even if the implementation is blackbox. As suggested in the
original DPA paper by Kocher et al. [KJJ99a], power consumption is often modeled by Hamming
weight of values or Hamming distance of values’ updates as those are very correlated with actual
measures. Also, when the leakage is little noisy and the implementation is software, Algebraic
Side-Channel Attacks (ASCAs [RS09]) are possible; they consist in modelling the leakage by a set
of Boolean equations, where the key bits are the only unknown variables [CFGR12].

Thwarting side-channel analysis is a complicated task, since an unprotected implementation
leaks at every step. Simple and powerful attacks manage to exploit any bias. In practice, there
are two ways to protect cryptosystems: “palliative” versus “curative” countermeasures. Palliative
countermeasures attempt to make the attack more difficult, however without a theoretical founda-
tion. They include variable clock, operations shuffling, and dummy encryptions among others (see
also [GM11]). The lack of theoretical foundation make these countermeasures hard to formalize
and thus not suitable for a safe certification process. Curative countermeasures aim at providing
a leak-free implementation based on a security rationale. The two defense strategies are (a) make
the leakage as decorrelated from the manipulated data as possible (masking [MOP06, Chp. 9]), or
(b) make the leakage constant, irrespective of the manipulated data (hiding or balancing [MOP06,
Chp. 7]).

2

Masking. Masking mixes the computation with random numbers, to make the leakage (at least in
average) independent of the sensitive data. Advantages of masking are (a priori) the independence
with respect to the leakage behavior of the hardware, and the existence of provably secure masking
schemes [RP10]. There are two main drawbacks to masking. First of all, there is the possibility of
high-order attacks (that examine the variance or the joint leakage); when the noise is low, ASCAs
can be carried out on one single trace [RSVC09], despite the presence of the masks, that are
just seen as more unknown variables, in addition to the key. Second, masking demands a greedy
requirement for randomness (that is very costly to generate). Another concern with masking is
the overhead it incurs in the computation time. For instance, a provable masking of AES-128 is
reported in [RP10] to be 43 (resp. 90) times slower than the non-masked implementation with a
1st (resp. 2nd) order masking scheme. Further, recent studies have shown that masking cannot be
analyzed independently from the execution platform: for example glitches are transient leakages
that are likely to depend on more than one sensitive data, hence being high-order [MS06]. Indeed, a
glitch occurs when there is a race between two signals, i.e., when it involves more than one sensitive
variable. Additionally, the implementation must be carefully scrutinized to check for the absence
of demasking caused by overwriting a masked sensitive variable with its mask.

Balancing. Balancing requires a close collaboration between the hardware and the software: two
indistinguishable resources, from a side-channel point of view, shall exist and be used according to
a dual-rail protocol. Dual-rail with precharge logic (DPL) consists in precharging both resources,
so that they are in a common state, and then setting one of the resources. Which resource has
been set is unknown to the attacker, because both leak in indistinguishable ways (by hypothesis).
This property is used by the DPL protocol to ensure that computations can be carried out without
exploitable leakage [TV06].

Contributions. DPL is a simple protocol that may look easy to implement correctly; however,
in the current context of awareness about cyber-threats, it becomes evident that (independent)
formal tools that are able to generate and verify a “trusted” implementation have a strong value.
• We describe a design method for developing balanced assembly code by making it obey

the dual-rail with precharge logic (DPL) protocol. This method consists in automatically
inserting the countermeasure and formally proving that the induced code transformation is
correct (i.e., semantic preserving).
• We present a formal method (using symbolic execution) to statically prove the absence of

power consumption leakage in assembly code provided that the hardware it runs on satisfies
a finite and limited set of requirements corresponding to our leakage model.
• We show how to characterize the hardware to run the DPL protocol on resources which

maximize the relevancy of the leakage model.
• We provide a tool called paioli which implements the automatic insertion of the DPL counter-

measure in assembly code, and, independently, is able to statically prove the power balancing
of a given assembly code.
• Finally, we demonstrate our methods and tool in a case study on a software implementation

of the present [BKL+07] cipher running on an 8-bit AVR micro-controller. Our practical
results are very encouraging: the provably balanced DPL protected implementation is at least
250 times more resistant to power analysis attacks than the unprotected version while being
only 3 times slower.

3

Related work. The use of formal methods is not widespread in the domain of implementations
security. In cases where they exist, security proofs are usually done on mathematical models
rather than implementations. An emblematic example is the Common Criteria [Con13], that bases
its “formal” assurance evaluation levels on “Security Policy Model(s)” (class SPM) and not on
implementation-level proofs. This means that it is the role of the implementers to ensure that their
implementations fit the model, which is usually done by hand and is thus error-prone. For instance,
some masking implementations have been proved; automatic tools for the insertion of masked code
have even been prototyped [MOPT12]. However, masking relies a lot on randomness, which is a rare
resource and is hard to formally capture. Thus, many aspects of the security are actually displaced
in the randomness requirement rather that soundly proved. Moreover, in the field of masking, most
proofs are still literate (i.e., verified manually, not by a computer program). This has led to a recent
security breach in what was supposed to be a proved [RP10] masking implementation [CGP+12].
Previous similar examples exist, e.g., the purported high-order masking scheme [SP06], defeated
one year after in [CPR07].

Timing and cache attacks are an exception as they benefit from the work of Köpf et al. [KB07,
KD09]. Their tool, CacheAudit [DFK+13], implements formal methods that directly work on x86
binaries.

In this light it is easy to conclude that the use of formal methods to prove the security of
implementations against power analysis is a need, and a technological enabler: it would guarantee
that the instantiations of security principles are as strong as the security principles themselves.

Organization of the paper. The DPL countermeasure is studied in Sec. 2. Sec. 3 details our
method to balance assembly code and prove that the proposed transformation is correct. Sec. 4
explains the formal methods used to compute a proof of the absence of power consumption leak-
age. Sec. 5 is a practical case study using the present algorithm on an AVR micro-controller.
Conclusions and perspectives are drawn in Sec. 6.

2 Dual-Rail with Precharge Logic

Balancing (or hiding) countermeasures have been employed against side-channel since early 2004,
with dual-rail with precharge logic. The DPL countermeasure consists in computing on a redundant
representation: each bit y is implemented as a pair (yFalse, yTrue). The bit pair is then used in a
protocol made up of two phases:

1. a precharge phase, during which all the bit pairs are zeroized (yFalse, yTrue) = (0, 0), such that
the computation starts from a known reference state;

2. an evaluation phase, during which the (yFalse, yTrue) pair is equal to (1, 0) if it carries the
logical value 0, or (0, 1) if it carries the logical value 1.

The value (yFalse, yTrue) = (1, 1) is unused. As suggested in [MAM+03], it can serve as a canary to
detect a fault.

2.1 State of the Art

Various DPL styles for electronic circuits have been proposed. Some of them, implementing the
same logical and functionality, are represented in Fig. 1; many more variants exist, but these four

4

are enough to illustrate our point. The reason for the multiplicity of styles is that the indistin-
guishability hypothesis on the two resources holding yFalse and yTrue values happens to be violated
for various reasons, which leads to the development of dedicated hardware. A first asymmetry
comes from the gates driving yFalse and yTrue. In wave dynamic differential logic (WDDL [TV04a]),
these two gates are different: logical or versus logical and. Other logic styles are balanced with this
respect. Then, the load of the gate shall also be similar. This can be achieved by careful place-
and-route constraints [TV04b, GHMP05], that take care of having lines of the same length, and
that furthermore do not interfere one with the other (phenomenon called “crosstalk”). As those
are complex to implement exactly for all secure gates, the masked dual-rail with precharge logic
(MDPL [PM05]) style has been proposed: instead of balancing exactly the lines carrying yFalse and
yTrue, those are randomly swapped, according to a random bit, represented as a pair (mFalse,mTrue)
to avoid it from leaking. Therefore, in this case, not only the computing gates are the same (viz.
a majority), but the routing is balanced thanks to the extra mask. However, it appeared that
another asymmetry could be fatal to WDDL and MDPL: the gates pair could evaluate at different
dates, depending on their input. It is important to mention that side-channel acquisitions are very
accurate in timing (off-the-shelf oscilloscopes can sample at more than 1 Gsample/s, i.e., at a higher
rate than the clock period), but very inaccurate in space (i.e., it is difficult to capture the leakage of
an area smaller than about 1 mm2 without also recording the leakage from the surrounding logic).
Therefore, two bits can hardly be measured separately. To avoid this issue, every gate has to include
some synchronization logic. In Fig. 1, the “computation part” of the gates is represented in a grey
box. The rest is synchronization logic. In SecLib [GCS+08], the synchronization can be achieved
by Muller C-elements (represented with a symbol C [SEE98]), and act as a decoding of the inputs
configuration. Another implementation, balanced cell-based differential logic (BCDL [NBD+10]),
parallelize the synchronization with the computation.

2.2 DPL in Software

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Figure 1: Four dual-rail with precharge logic styles.

In this paper, we want to run DPL
on an off-the-shelf processor. There-
fore, we must: (a) identify two sim-
ilar resources that can hold true and
false values in an indiscernible way for
a side-channel attacker; (b) play the
DPL protocol by ourselves, in soft-
ware. We will deal with the former
in Sec. 4.2. The rest of this section
deals with the latter.

The difficulty of balancing the
gates in hardware implementations is
simplified in software. Indeed in soft-
ware there are less resources than
the thousands of gates that can be
found in hardware (aimed at com-
puting fast, with parallelism). Also,
there is no such problem as early evaluation, since the processor executes one instruction after

5

the other; therefore there are no unbalanced paths in timing. However, as noted by Hoogvorst et
al. [HDD11], standard micro-processors cannot be used as is for our purpose: instructions may clob-
ber the destination operand without precharge; arithmetic and logic instructions generate numbers
of 1 and 0 which depend on the data.

r1 ← r0

r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0

r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2

r3 ← r0

r3 ← op[r1]
d ← r0

d ← r3

Figure 2: DPL macro
for d = a op b.

To reproduce the DPL protocol in software requires (a) to work at
the bit level, and (b) to duplicate (in positive and negative logic) the
bit values. Every algorithm can be transformed so that all the manipu-
lated values are bits (by the theorem of equivalence of universal Turing
machines), so (a) is not a problem. Regarding (b), the idea is to use
two bits in each register / memory cell to represent the logical value it
holds. For instance using the two least significant bits, the logical value
1 could be encoded as 1 (01) and the logical value 0 as 2 (10). Then, any
function on those bit values can be computed by a look-up table indexed
by the concatenation of its operands. Each sensitive instruction can be
replaced by a DPL macro which does the necessary precharge and fetch
the result from the corresponding look-up table.

Fig. 2 shows a DPL macro for the computation of d = a op b, using
the two least significant bits for the DPL encoding. The register r0 is an
always-zero register, a and b hold one DPL encoded bit, and op is the
address in memory of the look-up table for the op operation.

This DPL macro assumes that before it starts the state of the pro-
gram is a valid DPL state (i.e., that a and b are of the form /.+(01|10)/1) and leaves it in a valid
DPL state to make the macros chainable.

The precharge instructions (like r1 ← r0) erase the content of their destination register or
memory cell before use. If the erased datum is sensitive it is DPL encoded, thus the number of bit
flips (i.e., the Hamming distance of the update) is independent of the sensitive value. If the erased
value is not sensitive (for example the round counter of a block cipher) then the number of bit flips
is irrelevant. In both cases the power consumption provides no sensitive information.

The activity of the shift instructions (like r1 ← r1 � 1) is twice the number of DPL encoded bits
in r1 (and thus does not depend on the value when it is DPL encoded). The two most significant
bits are shifted out and must be 0, i.e., they cannot encode a DPL bit. The logical or instruction
(as in r1 ← r1 ∨ r2) has a constant activity of one bit flip due to the alignment of its operands.
The logical and instructions (like r1 ← r1 ∧ 3) flips as many bits as there are 1s after the two least
significant bits (it’s normally all zeros).

Accesses from/to the RAM (as in r3 ← op[r1]) cause as many bit flips as there are 1s in the
transferred data, which is constant when DPL encoded. Of course, the position of the look-up table
in the memory is also important. In order not to leak information during the addition of the offset
(op + r1 in our example), op must be a multiple of 16 so that its four least significant bits are 0
and the addition only flips the number of bits at 1 in r1, which is constant since at this moment r1

contains the concatenation of two DPL encoded bit values.
We could use other bits to store the DPL encoded value, for example the least and the third

least significant bits. In this case a and b have to be of the form /.+(0.1|1.0)/, only one shift
instruction would have been necessary, and the and instructions’ mask would be 5 instead on 3.

1As a convenience, we use regular expressions notation.

6

Prog ::= (Label? Inst? (’;’ <comment>)? ’\n’)*

Label ::= <label-name> ’:’

Inst ::= Opcode0

| Branch1 Addr

| Opcode2 Lval Val

| Opcode3 Lval Val Val

| Branch3 Val Val Addr

Opcode0 ::= ’nop’

Branch1 ::= ’jmp’

Opcode2 ::= ’not’ | ’mov’

Opcode3 ::= ’and’ | ’orr’ | ’xor’ | ’lsl’ | ’lsr’

| ’add’ | ’mul’

Branch3 ::= ’beq’ | ’bne’

Val ::= Lval | ’#’ <immediate-value>

Lval ::= ’r’ <register-number>

| ’@’ <memory-address>

| ’!’ Val (’,’ <offset>)?

Addr ::= ’#’ <absolute-code-address>

| <label-name>

Figure 3: Generic assembly syntax.

mov r1 r0

mov r1 a

and r1 r1 #3

lsl r1 r1 #1

lsl r1 r1 #1

mov r2 r0

mov r2 b

and r2 r2 #3

orr r1 r1 r2

mov r3 r0

mov r3 !r1,op

mov d r0

mov d r3

Figure 4: DPL macro of
Fig. 2 in assembly.

3 Generation of DPL Protected Assembly Code

Here we present a generic method to protect assembly code against power analysis. To achieve
that we implemented a tool (See App. A) which transforms assembly code to make it compliant
with the DPL protocol described in Sec. 2.2. To be as universal as possible the tool works with a
generic assembly language presented in Sec. 3.1. The details of the code transformation are given
in Sec. 3.2. Finally, a proof of the correctness of this transformation is presented in Sec. 3.3.

3.1 Generic Assembly Language

Our assembly language is generic in that it uses a restricted set of instructions that can be mapped
to and from virtually any actual assembly language. It has the classical features of assembly
languages: logical and arithmetical instructions, branching, labels, direct and indirect addressing.
Fig. 3 gives the BNF of the language while Fig. 4 gives the equivalent code of Fig. 2 as an example
of its usage.

The semantics of the instructions are intuitive. For Opcode2 and Opcode3 the first operand is
the destination and the other are the arguments. The mov instruction is used to copy registers,
load a value from memory, or store a value to memory depending on the form of its arguments. We
remark that the instructions use the “instr dest op1 op2” format, which allows to map similar
instructions from 32-bit processors directly, as well as instructions from 8-bit processors which only
have two operands, by using the same register for dest and op1 for instance.

7

3.2 Code Transformation

Bitsliced code. As seen in Sec. 2, DPL works at the bit level. Transforming code to make it
DPL compliant thus requires this level of granularity. Bitslicing is possible on any algorithm2, but
we found that bitslicing an algorithm is hard to do automatically. In practice, every bitslice imple-
mentations we found were hand-crafted. However, since Biham presented his bitslice paper [Bih97],
many block ciphers have been implemented in bitslice for performance reasons, which mitigate this
concern. So, for the sake of simplicity, we assume that the input code is already bitsliced.

DPL macros expansion. This is the main point of the transformation of the code.

Definition 1 (Sensitive value). A value is said sensitive if it depends on sensitive data. A sensitive
data depends on the secret key or the plaintext.3 .

Definition 2 (Sensitive instruction). We say that an instruction is sensitive if it may modify the
Hamming weight of a sensitive value.

All the sensitive instructions must be expanded to a DPL macro. Thus, all the sensitive data
must be transformed too. Each literal (“immediate” values in assembly terms), memory cells that
contain initialized constant data (look-up tables, etc.), and registers values need to be DPL encoded.
For instance, using the two least significant bits, the 1s stay 1s (01) and the 0s become 2s (10).

Since the implementation is bitsliced, only the logical (bit level) operators are used in sensitive
instructions (and, or, xor, lsl, lsr, and not). To respect the DPL protocol, not instructions are
replaced by xor which inverse the positive logic and the negative logic bits of DPL encoded values.
For instance if using the two least significant bits for the DPL encoding, not a b is replaced by xor

a b #3. Bitsliced code never needs to use shift instructions since all bits are directly accessible.
Moreover, we currently run this code transformation only on block ciphers. Given that the code

is supposed to be bitsliced, this means that the branching and arithmetic instructions are either
not used or are used only in a deterministic way (e.g., looping on the round counter) that does not
depend on sensitive information.

Thus, only and, or, and xor instructions need to be expanded to DPL macros such as the one
shown in Fig. 4. This macro has the advantage that it actually uses two operands instructions only
(when there are three operands in our generic assembly language, the destination is the same as
one of the two others), which makes its instructions mappable one-to-one even with 8-bit assembly
languages.

Look-up tables. As they appear in the DPL macro, the addresses of look-up tables are sensitive
too. As seen in Sec. 2.2, the look-up tables must be located at an address which is a multiple of 16
so that the last four bits are available when adding the offset (in the case where we use the last four
bits to place the two DPL encoded operands). Fig. 5 present the 16 values present in the look-up
tables for and, or, and xor.

Values in the look-up tables which are not at DPL valid addresses, i.e., addresses which are not
a concatenation of 01 or 10 with 01 or 10, are preferentially DPL invalid, i.e., 00 or 11. Like this

2Intuitively, the proof invokes the Universal Turing Machines equivalence (those that work with only {0, 1} as
alphabet are as powerful as the others)

3Other works consider that a sensitive data must depend on both the secret key and the plaintext (as it is usually
admitted in the “only computation leaks” paradigm; see for instance [RP10, §4.1]). Our definition is broader, in
particular it also encompasses the random probing model [ISW03].

8

index 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

and 00 , 00 , 00 , 00 , 00 , 01 , 10 , 00 , 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00

or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00 , 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00 , 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

Figure 5: Look-up tables for and, or, and xor.

a, b, d

Before 0, 0, ? 0, 1, ? 1, 0, ? 1, 1, ?
After 0, 0, 0 0, 1, 0 1, 0, 0 1, 1, 1

Figure 6: and d a b.

a, b, d

Before 10, 10, ? 10, 01, ? 01, 10, ? 01, 01, ?

After 10, 10, 10 10, 01, 10 01, 10, 10 01, 01, 01

Figure 7: DPL and d a b (see Fig. 8).

if an error occurs during the execution (such as a fault injection for instance) it poisons the result
and all the subsequent computations will be faulted too (infective computation).

3.3 Correctness Proof of the Transformation

Formally proving the correctness of the transformation requires to define what we intend by “cor-
rect”. Intuitively, it means that the transformed code does the “same thing” as the original one.

Definition 3 (Correct DPL transformation). Let S be a valid state of the system (values in
registers and memory). Let c be a sequence of instructions of the system. Let Ŝ be the state of the
system after the execution of c with state S, we denote that by S

c−→ Ŝ. We write dpl(S) for the
DPL state (with DPL encoded values of the 1s and 0s in memory and registers) equivalent to the
state S.
We say that c′ is a correct DPL transformation of the code c if S

c−→ Ŝ =⇒ dpl(S)
c′−→ dpl(Ŝ).

Proposition 1 (Correctness of our code transformation). The expansion of the sensitive instruc-
tions into DPL macros such as presented in Sec. 2.2 is a correct DPL transformation.

Proof. Let a and b be instructions. Let c be the code a; b (instruction a followed by instruction b).

Let X, Y , and Z be states of the program. If we have X
a−→ Y and Y

b−→ Z, then we know that
X

c−→ Z (by transitivity).
Let a′ and b′ be the DPL macro expansions of instructions a and b. Let c′ be the DPL transfor-

mation of code c. Since the expansion into macros is done separately for each sensitive instruction,
without any other dependencies, we know that c′ is a′; b′.

If we have dpl(X)
a′−→ dpl(Y) and dpl(Y)

b′−→ dpl(Z), then we know that dpl(X)
c′−→ dpl(Z).

This means that a chain of correct transformations is a correct transformation. Thus, we only
have to show that the DPL macro expansion is a correct transformation.

Let us start with the and operation. Since the code is bitsliced, there are only four possibilities.
Fig. 6 shows these possibilities for the and d a b instruction.

Fig. 8 shows the evolution of the values of a, b, and d during the execution of the macro which
and d a b expands to. We assume the look-up table for and is located at address and. Fig. 7 sums
up the Fig. 8 in the same format as Fig. 6.

9

a, b 10, 10 10, 01 01, 10 01, 01
d r1 r2 r3 d r1 r2 r3 d r1 r2 r3 d r1 r2 r3

mov r1 r0 ? 0 ? ? ? 0 ? ? ? 0 ? ? ? 0 ? ?

mov r1 a ? 10 ? ? ? 10 ? ? ? 01 ? ? ? 01 ? ?

and r1 r1 #3 ? 10 ? ? ? 10 ? ? ? 01 ? ? ? 01 ? ?

shl r1 r1 #1 ? 100 ? ? ? 100 ? ? ? 010 ? ? ? 010 ? ?

shl r1 r1 #1 ? 1000 ? ? ? 1000 ? ? ? 0100 ? ? ? 0100 ? ?

mov r2 r0 ? 1000 0 ? ? 1000 0 ? ? 0100 0 ? ? 0100 0 ?

mov r2 b ? 1000 10 ? ? 1000 01 ? ? 0100 10 ? ? 0100 01 ?

and r2 r2 #3 ? 1000 10 ? ? 1000 01 ? ? 0100 10 ? ? 0100 01 ?

orr r1 r1 r2 ? 1010 10 ? ? 1001 01 ? ? 0110 10 ? ? 0101 01 ?

mov r3 r0 ? 1010 10 0 ? 1001 01 0 ? 0110 10 0 ? 0101 01 0

mov r3 !r1,and4 ? 1010 10 10 ? 1001 01 10 ? 0110 10 10 ? 0101 01 01

mov d r0 0 1010 10 10 0 1001 01 10 0 0110 10 10 0 0101 01 01

mov d r3 10 1010 10 10 10 1001 01 10 10 0110 10 10 01 0101 01 01

Figure 8: Execution of the DPL macro expanded from and d a b.

This proves that the DPL transformation of the and instructions are correct. The demonstration
is similar for or and xor operations.

The automatic DPL transformation of arbitrary assembly code has been implemented in our
tool described in App. A.

4 Formally Proving the Absence of Leakage

Now that we know the DPL transformation is correct, we need to prove its efficiency security-wise.
We prove the absence of leakage on the software, while obviously the leakage heavily depends on
the hardware. Our proof thus makes an hypothesis on the hardware: we suppose that the bits
we use for the positive and negative logic in the DPL protocol leak the same amount. This may
seem like an unreasonable hypothesis, since it is not true in general. However, the protection can
be implemented in a soft CPU core (LatticeMicro32, OpenRISC, LEON2, etc.), that would be
laid out in an FPGA or in an ASIC with special balancing constraints at place-and-route. The
methodology follows the guidelines given by Chen et al. in [CSS13]. Moreover, we will show in
Sec. 4.2 how it is possible, using stochastic profiling, to find bits which leakages are similar enough
for the DPL countermeasure to be sufficiently efficient even on non-specialized hardware. That
said, it is important to note that the difference in leakage between two bits of the same register
should not be large enough for the attacker to break the DPL protection using SPA or ASCA.

Formally proving the balance of DPL code requires to properly define the notions we are using.

Definition 4 (Leakage model). The attacker is able to measure the power consumption of parts
of the cryptosystem. We model power consumption by the Hamming distance of values updates,
i.e., the number of bit flips. It is a commonly accepted model for power analysis, for instance with
DPA [KJJ99b] or CPA (Correlation Power Analysis [BCO04]). We write H(a, b) the Hamming
distance between the values a and b.

Definition 5 (Constant activity). The activity of a cryptosystem is said to be constant if its power
consumption does not depend on the sensitive data and is thus always the same.
Formally, let P (s) be a program which has s as parameter (e.g., the key and the plaintext).
According to our leakage model, a program P (s) is of constant activity if:

4see Fig. 5

10

• for every values s1 and s2 of the parameter s, for each cycle i, for every sensitive value v, v
is updated at cycle i in the run of P (s1) if and only if it is updated also at cycle i in the run
of P (s2);
• whenever an instruction modifies a sensitive value from v to v′, then the value of H(v, v′)

does not depend on s.

Remark 1. The first condition of Def. 5 mostly concerns leakage in the horizontal / time dimension,
while the second condition mostly concerns leakage in the vertical / amplitude dimension.

Remark 2. The first condition of Def. 5 implies that the runs of the program P (s) are constant
in time for every s. This implies that a program of constant activity is not vulnerable to timing
attacks, which is not so surprising given the similarity between SPA and timing attacks.

4.1 Computed Proof of Constant Activity

To statically determine if the code is correctly balanced (i.e., that the activity of a given program
is constant according to Def. 5), our tool relies on symbolic execution. The idea is to run the code
of the program independently of the sensitive data. This is achieved by computing on sets of all the
possible values instead of values directly. The symbolic execution terminates in our case because
we are using the DPL protection on block ciphers, and we avoid combinatorial explosion thanks
to bitslicing, as a value can initially be only 1 or 0 (or rather their DPL encoded counterparts).
Indeed, bitsliced code only use logical instructions as explained in Sec. 3.2, which will always return
a result in {0, 1} when given two values in {0, 1} as arguments.

Our tool implements an interpreter for our generic assembly language which work with sets of
values. The interpreter is equipped to measure all the possible Hamming distances of each value
update, and all the possible Hamming weight of values. It watches updates in registers, in memory,
and also in address buses (since the addresses may leak information when reading in look-up tables).
If for one of these value updates there are different possible Hamming distances or Hamming weight,
then we consider that there is a leak of information: the power consumption activity is not constant
according to Def. 5.

Example. Let a be a register which can initially be either 0 or 1. Let b be a register which can
initially be only 1. The execution of the instruction orr a a b will set the value of a to be all the
possible results of a ∨ b. In this example, the new set of possible values of a will be the singleton
{1} (since 0 ∨ 1 is 1 and 1 ∨ 1 is 1 too). The execution of this instruction only modified one value,
that of a. However, the Hamming distance between the previous value of a and its new value can
be either 0 (in case a was originally 1) or 1 (in case a was originally 0). Thus, we consider that
there is a leak.

By running our interpreter on assembly code, we can statically determine if there are leakages
or if the code is perfectly balanced. For instance for a block cipher, we initially set the key and the
plaintext (i.e., the sensitive data) to have all their possible values: all the memory cells containing
the bits of the key and of the plaintext have the value {0, 1} (which denotes the set of two elements:
0 and 1). Then the interpreter runs the code and outputs all possible leakage; if none are present,
it means that the code is well balanced. Otherwise we know which instructions caused the leak,
which is helpful for debugging, and also to locate sensitive portions of the code.

For an example in which the code is balanced, we can refer to the execution of the and DPL
macro shown in Fig. 8. There we can see that the Hamming distance of the updates does not

11

depend on the values of a and b. We also note that at the end of the execution (and actually, all
along the execution) the Hamming weight of each value does not depend on a and b either. This
allows to chain macros safely: each value is precharged with 0 before being written to.

4.2 Hardware Characterization

The DPL countermeasure relies on the fact that the pair of bits used to store the DPL encoded
values leak the same way, i.e., that their power consumptions are the same. This property is
generally not true in non-specialized hardware. However, using the two closest bits (in terms of
leakage) for the DPL protocol still helps reaching a better immunity to SCAs, especially ASCAs
that operate on a limited number of traces.

The idea is to compute the leakage level of each of the bits during the execution of the algorithm,
in order to choose the two closest ones as the pair to use for the DPL protocol and thus ensure
an optimal balance of the leakage. This is facilitated by the fact that the algorithm is bitsliced.
Indeed, it allows to run the whole computation using only a chosen bit while all the others stay
zero. We will see in Sec. 5.1 how we characterized our smartcard in practice.

5 Case Study: present on an AVR Micro-Controller

5.1 Profiling the AVR Micro-Controller

We want to limit the size of the look-up tables used by the DPL macros. Thus, DPL macros
need to be able to store two DPL encoded bits in the four consecutive bits of a register. This lets
13 possible DPL encoding layouts on 8-bit. Writing X for a bit that is used and x otherwise, we
have: 1. xxxxxxXX 2. xxxxxXXx 3. xxxxXXxx 4. xxxXXxxx 5. xxXXxxxx 6. xXXxxxxx 7. XXxxxxxx
8. xxxxxXxX 9. xxxxXxXx 10. xxxXxXxx 11. xxXxXxxx 12. xXxXxxxx 13. XxXxxxxx. As explained
in Sec. 4.2, we want to use the pair of bits that have the closest leakage properties, and also which
is the closest from the least significant bit, in order to limit the size of the look-up tables.

To profile the AVR chip (we are working with an Atmel ATmega163 AVR smartcard, which is
notoriously leaky), we ran eight versions of an unprotected bitsliced implementation of present,
each of them using only one of the 8 possible bits. We used the NICV (Normalized Inter-Class
Variance [BDGN14a], also called coefficient of determination) as a metric to evaluate the leakage
level of the variables of each of the 8 versions. Let us denote by L the (noisy and non-injective)
leakage associated with the manipulation of the sensitive value V , both seen as random variables;
then the NICV is defined as the ratio between the inter-class and the total variance of the leakage,
that is: NICV = Var[E[L|V]]

Var[L] . By the Cauchy-Schwarz theorem, we have 0 6 NICV 6 1; thus the
NICV is an absolute leakage metric. A key advantage of NICV is that it detects leakage using public
information like input plaintexts or output ciphertexts only. We used a fixed key and a variable
plaintext on which applying NICV gave us the leakage level of all the intermediate variables in
bijective relation with the plaintext (which are all the sensible data as seen in Def. 1). As we can
see on the measures plotted in Fig. 10 (which can be found in App. B), the least significant bit
leaks very differently from the others, which are roughly equivalent in terms of leakage5. Thus, we
chose to use the xxxxxXXx DPL pattern to avoid the least significant bit.

5These differences are due to the internal architecture of the chip, for which we don’t have the specifications.

12

5.2 Generating Balanced AVR Assembly

We wrote an AVR bitsliced implementation of present that uses the S-Box in 14 logic gates from
Courtois et al. [CHM11]. This implementation was translated in our generic assembly language (see
Sec. 3.1). The resulting code was balanced following the method discussed in Sec. 3, except that
we used the DPL encoding layout adapted to our particular smartcard, as explained in Sec. 5.1.
App. C presents the code of the adapted DPL macro. The balance of the DPL code was then
verified as in Sec. 4. Finally, the verified code was mapped back to AVR assembly. All the code
transformations and the verification were done automatically using our tool.

5.3 Cost of the Countermeasure

bitslice DPL cost

code (B) 1620 3056 ×1.88
RAM (B) 288 352 +64

#cycles 78, 403 235, 427 ×3

Figure 9: DPL cost.

The table in Fig. 9 compares the perfor-
mances of the DPL protected implementation
of present with the original bitsliced version
from which the protected one has been derived.
The DPL countermeasure multiplies by 1.88
the size of the compiled code. This low fac-
tor can be explained by the numerous instruc-
tions which it is not necessary to transform (the
whole permutation layer of the present algorithm is left as is for instance). The protected version
uses 64 more bytes of memory (sparsely, for the DPL macro look-up tables). It is also only 3 times
slower6, or 24 times if we consider that the original bitsliced but unprotected code could operate
on 8 blocks at a time.

Note that these experimental results are only valid for the present algorithm on the Atmel
ATtiny 45 device we used. Further work is necessary to compare these results to those which would
be obtained with other algorithms such as AES, and on other platforms such as ARM processors.

5.4 Attacks

We attacked three implementations of the present algorithm: a bitsliced but unprotected one, a
DPL one using the two less significant bits, and a DPL one using two bits that are more balanced
in term of leakage (as explained in Sec. 5.1). On each of these, we computed the success rate of
using monobit CPA of the output of the S-Box as a model. The monobit model is relevant because
only one bit of sensitive data is manipulated at each cycle since the algorithm is bitsliced, and also
because each register is precharged at 0 before a new intermediate value is written to it, as per the
DPL protocol prescribe. Note that this means we consider the resistance against first-order attacks
only. Actually, we are precisely in the context of [MOS11], where the efficiency of correlation and
Bayesian attacks gets close as soon as the number of queries required to perform a successful attack
is large enough. This justifies our choice of the CPA for the attack evaluation.

The results are shown in Fig. 14 (which can be found in App. D.2). They demonstrate that the
first DPL implementation is at least 10 times more resistant to first-order power analysis attacks

6Notice that present is inherently slow in software (optimized non-bitsliced assembly is reported to run in about
11, 000 clock cycles on an Atmel ATtiny 45 device [EGG+12]) because it is designed for hardware. Typically, the
permutation layer is free in hardware, but requires many bit-level manipulations in software. Nonetheless, we precise
that there are contexts where present must be supported, but no hardware accelerator is available.

13

(requiring almost 1, 500 traces) than the unprotected one. The second DPL implementation, which
takes the chip characterization into account, is 34 times more resistant (requiring more than 4, 800
traces).

Interpreting these results requires to bear in mind that the attacks setting was largely to the
advantage of the attacker. In fact, these results are very pessimistic: we used our knowledge of
the key to select a narrow part of the traces where we knew that the attack would work, and we
used the NICV [BDGN14a] to select the point where the signal-to-noise ratio (abridged SNR in the
sequel) of the CPA attack is the highest (see similar use cases of NICV in [BDGN14b]). We did this
so we could show the improvement in security due to the characterization of the hardware. Indeed,
without this “cheating attacker” (for the lack of a better term), i.e., when we use a monobit CPA
taking into account the maximum of correlation over the full round, as a normal attacker would
do, the unprotected implementation breaks using about 400 traces (resp. 138 for the “cheating
attacker”), while the poorly balanced one is still not broken using 100, 000 traces (resp. about
1, 500). We do not have more traces than that so we can only say that with an experimental SNR
of 15 (which is quite large so far), the security gain is more than 250× and may be much higher
with the hardware characterization taken into account as our results with the “cheating attacker”
shows.

As a comparison7, an unprotected AES on the same smartcard breaks in 15 traces, and in 336
traces with a first order masking scheme using less powerful attack setting (see success rates of
masking in App. D.1), hence a security gain of 22×. Besides, we notice that our software DPL
protection thwarts ASCAs. Indeed, ASCAs require a high signal to noise ratio on a single trace.
This can happen both on unprotected and on masked implementation. However, our protection
aims at theoretically cancelling the leakage, and practically manages to reduce it significantly,
even when the chosen DPL bit pair is not optimal. Therefore, coupling software DPL with key-
update [MSGR10] allows to both prevent against fast attacks on few traces (ASCAs) and against
attacks that would require more traces (regular CPAs).

6 Conclusions and Perspectives

Contributions. We present a method to protect any bitsliced assembly code by transforming it
to enforce the dual-rail with precharge logic (DPL) protocol, which is a balancing countermeasure
against power analysis. We provide a tool which automates this transformation. We also formally
prove that this transformation is correct, i.e., that it preserves the semantic of the program.

Independently, we show how to formally prove that assembly code is well balanced. Our tool
is also able to use this technique to statically determine whether some arbitrary assembly code’s
power consumption activity is constant, i.e., that it does not depend on the sensitive data. In
this paper we used the Hamming weight of values and the Hamming distance of values update as
leakage models for power consumption, but our method is not tied to it and could work with any
other leakage models that are computable. We present how to characterize the targeted hardware
to make use of the resources which maximize the relevancy of our leakage model to run the DPL
protocol.

7We insist that the comparison between two security gains is very platform-dependent. The figures we give are
only valid on our specific setup. Of course, for different conditions, e.g., lower signal-to-noise ratio, masking might
become more secure than DPL.

14

We then applied our methods using our tool using an implementation of the present cipher on
a real smartcard, which ensured that our methods and models are relevant in practice. In our case
study, the provably balanced DPL protected implementation is at least 250 times more resistant to
power analysis attacks than the unprotected version while being only 3 times slower. These figures
could be better. Indeed, they do not take into account hardware characterization which helps the
balancing a lot, as we were able to see with the “cheating attacker”. Moreover, we have used the
hardware characterization data grossly, only to show the added-value of the operation, which as
expected is non-negligible. And of course interpreting our figures require to take into account that
the ATmega163, the model of smartcard that we had at our disposal, is notoriously leaky.

These results shows that software balancing countermeasures are realistic. Indeed, our formally
proved countermeasure is an order of magnitude less costly than the state of the art of formally
proved masking [RP10].

Future work. The first and foremost future work surely is that our methods and tools need to
be further tested in other experimental settings, across more hardware platforms, and using other
cryptographic algorithms.

We did not try to optimize our present implementation (neither for speed nor space). However,
automated proofs enable optimization: indeed, the security properties can be checked again after
any optimization attempt (using proofs computation as non-regression tests, either for changes in
the DPL transformation method, or for handcrafted optimizations of the generated DPL code).

Although the mapping from the internal assembly of our tool to the concrete assembly is
straightforward, it would be better to have a formal correctness proof of the mapping.

Our work would also benefit from automated bitslicing, which would allow to automatically
protect any assembly code with the DPL countermeasure. However, it is still a challenging issue.

Finally, the DPL countermeasure itself could be improved: the pair of bits used for the DPL
protocol could change during the execution, or more simply it could be chosen at random for
each execution in order to better balance the leakage among multiple traces. Besides, unused bits
could be randomized instead of being zero in order to add noise on top of balancing, and thus
reinforce the hypotheses we make on the hardware. An anonymous reviewer of the PROOFS 2014
workshop suggested that randomness could instead be used to mask the intermediate bits. Indeed,
the reviewer thinks that switching bus lines may only increase noise, while masking variables may
provide sound resistance, at least at first order. The resulting method would therefore: 1. gain
both the 1st-order resistance of masking countermeasures and the significant flexibility of software-
defined countermeasures; 2. still benefit from the increase of resistance resorting to the use of the
DPL technique, as demonstrated by present paper. This suggestion is of course only intuitive and
lacks argumentation based on precise analysis and calculation.

We believe formal methods have a bright future concerning the certification of side-channel
attacks countermeasures (including their implementation in assembly) for trustable cryptosystems.

15

References
[BCO04] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a Leakage Model. In CHES,

volume 3156 of LNCS, pages 16–29. Springer, August 11–13 2004. Cambridge, MA, USA.

[BDGN14a] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV: Normalized Inter-Class Variance for
Detection of Side-Channel Leakage. In International Symposium on Electromagnetic Compatibility” (EMC ’14 /
Tokyo). IEEE, May 12-16 2014. Session OS09: EM Information Leakage. Hitotsubashi Hall (National Center of
Sciences), Chiyoda, Tokyo, Japan.

[BDGN14b] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-channel Leakage and Trace Compres-
sion Using Normalized Inter-class Variance. In Proceedings of the Third Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’14, pages 7:1–7:9, New York, NY, USA, 2014. ACM.

[Bih97] Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, editor, FSE, volume 1267 of Lecture
Notes in Computer Science, pages 260–272. Springer, 1997.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES, volume 4727
of LNCS, pages 450–466. Springer, September 10-13 2007. Vienna, Austria.

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault. Analysis of the algebraic side
channel attack. J. Cryptographic Engineering, 2(1):45–62, 2012.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain. Higher-Order Masking
Schemes for S-Boxes. In Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages
366–384. Springer, 2012.

[CHM11] Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving Circuit Optimisation Problems in Cryptog-
raphy and Cryptanalysis. IACR Cryptology ePrint Archive, 2011:475, 2011. (Also presented in SHARCS 2012,
Washington DC, 17-18 March 2012, on page 179).

[Con13] Common Criteria Consortium. Common Criteria (aka CC) for Information Technology Security Evaluation
(ISO/IEC 15408), 2013.
Website: http://www.commoncriteriaportal.org/.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel Cryptanalysis of a Higher Order
Masking Scheme. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES, volume 4727 of LNCS, pages 28–44.
Springer, 2007.

[CSS13] Zhimin Chen, Ambuj Sinha, and Patrick Schaumont. Using Virtual Secure Circuit to Protect Embedded Software
from Side-Channel Attacks. IEEE Trans. Computers, 62(1):124–136, 2013.

[DFK+13] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. CacheAudit: A Tool for the
Static Analysis of Cache Side Channels. IACR Cryptology ePrint Archive, 2013:253, 2013.

[EGG+12] Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan Indesteege, Stéphanie Kerckhof,
François Koeune, Tomislav Nad, Thomas Plos, Francesco Regazzoni, François-Xavier Standaert, and Löıc van
Oldeneel tot Oldenzeel. Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny De-
vices. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT, volume 7374 of Lecture Notes in
Computer Science, pages 172–187. Springer, 2012.

[GCS+08] Sylvain Guilley, Sumanta Chaudhuri, Laurent Sauvage, Philippe Hoogvorst, Renaud Pacalet, and Guido Marco
Bertoni. Security Evaluation of WDDL and SecLib Countermeasures against Power Attacks. IEEE Transactions
on Computers, 57(11):1482–1497, nov 2008.

[GHMP05] Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu, and Renaud Pacalet. The “Backend Duplication” Method. In
CHES, volume 3659 of LNCS, pages 383–397. Springer, 2005. August 29th – September 1st, Edinburgh, Scotland,
UK.

[GM11] Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfigurable devices. In Bart Preneel
and Tsuyoshi Takagi, editors, CHES, volume 6917 of LNCS, pages 33–48. Springer, 2011.

[HDD11] Philippe Hoogvorst, Jean-Luc Danger, and Guillaume Duc. Software Implementation of Dual-Rail Representation.
In COSADE, February 24-25 2011. Darmstadt, Germany.

16

http://www.commoncriteriaportal.org/

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against Probing Attacks. In
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, August 17–21 2003. Santa
Barbara, California, USA.

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for adaptive side-channel attacks. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and
Communications Security, pages 286–296. ACM, 2007.

[KD09] Boris Köpf and Markus Dürmuth. A provably secure and efficient countermeasure against timing attacks. In CSF,
pages 324–335. IEEE Computer Society, 2009.

[KJJ96] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of CRYPTO’96, volume 1109 of LNCS, pages 104–113. Springer-Verlag,
1996.

[KJJ99a] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener, editor,
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[KJJ99b] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Proceedings of CRYPTO’99,
volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

[MAM+03] Simon Moore, Ross Anderson, Robert Mullins, George Taylor, and Jacques J.A. Fournier. Balanced Self-Checking
Asynchronous Logic for Smart Card Applications. Journal of Microprocessors and Microsystems, 27(9):421–430,
October 2003.

[MO12] Luke Mather and Elisabeth Oswald. Pinpointing side-channel information leaks in web applications. J. Crypto-
graphic Engineering, 2(3):161–177, 2012.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, December 2006. ISBN 0-387-30857-1, http://www.dpabook.org/.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler Assisted Masking. In Emmanuel
Prouff and Patrick Schaumont, editors, CHES, volume 7428 of LNCS, pages 58–75. Springer, 2012.

[MOS11] Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for All - All for One: Unifying Stan-
dard DPA Attacks. Information Security, IET, 5(2):100–111, 2011. ISSN: 1751-8709 ; Digital Object Identifier:
10.1049/iet-ifs.2010.0096.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the Side-Channel Leakage of Masked AES Hardware Implemen-
tations. In CHES, volume 4249 of LNCS, pages 76–90. Springer, October 10-13 2006. Yokohama, Japan.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco Regazzoni. Fresh Re-Keying:
Security against Side-Channel and Fault Attacks for Low-Cost Devices. In AFRICACRYPT, volume 6055 of
LNCS, pages 279–296. Springer, May 03-06 2010. Stellenbosch, South Africa. DOI: 10.1007/978-3-642-12678-9 17.

[NBD+10] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley. BCDL: A high perfor-
mance balanced DPL with global precharge and without early-evaluation. In DATE’10, pages 849–854. IEEE
Computer Society, March 8-12 2010. Dresden, Germany.

[PM05] Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-charge Logic: DPA-Resistance Without Routing
Constraints. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES
2005, volume 3659 of LNCS, pages 172–186. Springer, 2005.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of AES. In Stefan Mangard and
François-Xavier Standaert, editors, CHES, volume 6225 of LNCS, pages 413–427. Springer, 2010.

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic Side-Channel Attacks. In Feng Bao, Moti Yung,
Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume 6151 of Lecture Notes in Computer Science, pages 393–410.
Springer, 2009.

[RSVC09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Algebraic Side-Channel Attacks on
the AES: Why Time also Matters in DPA. In CHES, volume 5747 of Lecture Notes in Computer Science, pages
97–111. Springer, September 6-9 2009. Lausanne, Switzerland.

[SEE98] Maitham Shams, Jo. C. Ebergen, and Mohamed I. Elmasry. Modeling and comparing CMOS implementations of
the C-Element. IEEE Transactions on VLSI Systems, 6(4):563–567, December 1998.

17

http://www.springer.com/
http://www.dpabook.org/

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David Pointcheval, editor, CT-RSA,
volume 3860 of LNCS, pages 208–225. Springer, 2006.

[TPR13] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through Confidence: Evaluating the Effectiveness
of a Side-Channel Attack. In Guido Bertoni and Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture
Notes in Computer Science, pages 21–36. Springer, 2013.

[TV04a] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure DPA Resistant ASIC or
FPGA Implementation. In DATE’04, pages 246–251. IEEE Computer Society, February 2004. Paris, France.
DOI: 10.1109/DATE.2004.1268856.

[TV04b] Kris Tiri and Ingrid Verbauwhede. Place and Route for Secure Standard Cell Design. In Kluwer, editor, Proceedings
of WCC / CARDIS, pages 143–158, Aug 2004. Toulouse, France.

[TV06] Kris Tiri and Ingrid Verbauwhede. A digital design flow for secure integrated circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems, 25(7):1197–1208, 2006.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM side channels and their use to
extract private keys. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer
and Communications Security, pages 305–316. ACM, 2012.

A paioli

We implemented paioli8 using the OCaml9 programming language, which type safety helps to
prevent many bugs. On our present case-study, it runs in negligible time (� 1 second), both for
DPL transformation and simulation, including balance verification. The unprotected (resp. DPL)
bitslice AVR assembly file consists of 641 (resp. 1456) lines of code. We use nibble-wise jumps in
each present operation, and an external loop over all rounds.

Adapters. To easily adapt it to any assembly language, it has a system of plugins (which we call
“adapters”) that allows to easily write a parser and a pretty-printer for any language and to use
them instead of the internal parser and pretty-printer (which are made for the internal language
we use, see Sec. 3.1) without having to recompile the whole tool.

DPL transformation. If asked so, paioli is able to automatically apply the DPL transformation
as explained in Sec. 3.2. It takes as arguments which bits to use for the DPL protocol, the offset at
which to place the pattern for look-up tables (for example, we used an offset of 1 to avoid resorting
to the least significant bit which leaks differently), and where in memory should the look-up tables
start. Given these parameters, the tool verifies that they are valid and consistent according to
the DPL protocol, and then it generates the DPL balanced code corresponding to the input code,
including the code for look-up tables initialization. Optionally, the tool is able to compact the look-
up tables (since they are sparse), still making sure that their addresses respect the DPL protocol
(Sec. 2.2).

Simulation. If asked so, paioli can simulate the execution of the code after its optional DPL
transformation. The simulator is equipped to do the balance verification proof (see Sec. 4) but it
is not mandatory to do the balance analysis when running it. It takes as parameters the size of
the memory and the number of register to use, and initializes them to the set of two DPL encoded

8http://pablo.rauzy.name/sensi/paioli.html
9http://ocaml.org/

18

http://pablo.rauzy.name/sensi/paioli.html
http://ocaml.org/

0.0

1.0

0.5

N
IC

V

Time (restarts for each bit)
bit 0 bit 5bit 3bit 1 bit 6bit 4bit 2 bit 7

Figure 10: Leakage level during unprotected encryption for each bit of the ATmega163.

values of 1 and 0 corresponding to the given DPL parameters. The tool can optionally display the
content of selected portions of the memory or of chosen registers after execution, which is useful
for inspection and debugging purpose for example.

Balance verification. The formal verification of the balance of the code is an essential function-
ality of the tool. Indeed, bugs occur even when having a thorough and comprehensive specification,
thus we believe that it is not sufficient to have a precise and formally proven method for generating
protected code, but that the results should be independently verified (see Sec. 4).

B Characterization of the AVR Micro-Controller

Fig. 10 shows the leakage level computed using NICV [BDGN14a] for each bit of the Atmel AT-
mega163 AVR smartcard that we used for our tests (see Sec. 5.1). We can see the first bit leaks
very differently from the others. Thus it is not a good candidate to appear in the bit pair used for
the DPL protocol.

C DPL Macro for the AVR Micro-Controller

r1 ← r0

r1 ← a
r1 ← r1 ∧ 6
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0

r2 ← b
r2 ← r2 ∧ 6
r1 ← r1 ∨ r2

r3 ← r0

r3 ← op[r1]
d ← r0

d ← r3

Figure 11: DPL macro for
d = a op b on the ATmega163.

Once we profiled our smartcard as described in Sec. 5.1, we de-
cided to use the bits 1 and 2 for the DPL protocol (xxxxxXXx),
that is, the DPL value of 1 becomes 2 and the DPL value of 0
becomes 4. To avoid using the least significant bit (which leaks
very differently from the others), we decided to align the two
DPL bits for look-up table access starting on the bit 1 rather
than 0 (xxxXXXXx). With these settings, the DPL macro auto-
matically generated by paioli is presented in Fig. 11 (it follows
the same conventions as Fig. 2). As we can see the only modifi-
cation is the mask applied in the logical and instructions which
is now 6 instead of 3 to reflect the new DPL pattern.

Note that the least significant bit is now unused by the DPL
protocol and allowed paioli to compact the look-up tables used
by the DPL macros. Indeed, their addresses need to be of

19

(a) Univariate CPA attack on unprotected AES.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Undefended implementation of AES

Traces count

S
u
cc
es
s
ra
te

80% Success rate : 15 traces

(b) Bi-variate 2O-CPA on first-order protected AES.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2O-DPA on 1st order masked implementation of AES

Traces count

S
u
cc
es
s
ra
te

80% Success rate : 336 traces

Figure 12: Attacking AES on the ATmega163 : success rates.

the form /.+0000./ leaving the least significant bit free and
thus allowing to interleave two look-up tables one on another
without overlapping of their actually used cells (see Sec. 3.2).

D Attacks

D.1 Attack results on masking (AES)

For the sake of comparison, we provide attack results on the same smartcard tested with the same
setup. Figure 12 shows the success rate for the attack on the first byte of an AES.

We estimate the number of traces for a successful attack as the abscissa where the success rate
curve first intersects the 80% horizontal line.

D.2 Attack results on DPL (present)

Fig. 14 shows the success rates and the correlation curves when attacking our three implementations
of present. The sensitive variable we consider is in line with the choice of Kocher et al. in their
CRYPTO’99 paper [KJJ99a]: it is the least significant bit of the output of the substitution boxes
(that are 4× 4 in present).

In Fig. 13, we give, for the unprotected bitslice implementation, the correspondence between the
operations of present and the NICV trace. The zones of largest NICV correspond to operations
that access (read or write) sensitive data in RAM. To make the attacks more powerful, they are not
done on the maximal correlation point over the full first round of present10 (500, 000 samples),
but rather on a smaller interval (of only 140 samples, i.e., one clock period of the device) of high
potential leakage revealed by the NICV computations, namely sBoxLayer.

This makes the attack much more powerful and has to be taken into account when interpreting
its results. In fact, the results we present are very pessimistic: we used our knowledge of the key
to select a narrow part of the traces where we knew that the attack would work, and we used the
NICV [BDGN14a] to select the point where the SNR of the CPA attack is the highest. We did this

10Note that using the maximum correlation point to attack the DPL implementations resulted in the success
rate remaining always at ≈ 1/16 (there are 24 key guesses in present when targeting the first round, because the
substitution boxes are 4× 4) in average (at least on the number of traces we had (100, 000)) on both on them.

20

Figure 13: Correspondence between NICV and the instructions of present.

so we could show the improvement in security due to the characterization of the hardware. Indeed,
without this “cheating attacker” (for the lack of a better term), i.e., when we use a monobit CPA
taking into account the maximum of correlation over the full round, as a normal attacker would
do, the unprotected implementation breaks using about 400 traces (resp. 138 for the “cheating
attacker”), while the poorly balanced one is still not broken using 100, 000 traces (resp. about
1, 500). We do not have more traces than that so we can only say that with an experimental SNR
of 15 (which is quite large so far), the security gain is more than 250× and may be much higher
with the hardware characterization taken into account as our results with the “cheating attacker”
shows. Another way of understanding the 250-fold data complexity increase for the CPA is to turn
this figure into a reduction of the SNR: according to [TPR13, BDGN14b], our DPL countermeasure
has attenuated the SNR by a factor of at least

√
250 ≈ 16.

21

(a) Monobit CPA attack on unprotected bitslice implementation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice, unprotected

Traces count

Su
cc

es
s

ra
te

80% Success rate : 138 traces

0 50 100 150 200 250 300 350 400 450

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

CPA for all 16 guesses (correct one in black), after 400 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

(b) Monobit CPA attack on poorly balanced DPL implementation (bits 0 and 1).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, poorly balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 1470 traces (optimistic)

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

(c) Monobit CPA attack on better balanced DPL implementation (bits 1 and 2).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, better balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 4810 traces

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

Figure 14: Attacks on our three implementations of present;
Left : success rates (estimated with 100 attacks/step), and

Right : CPA curves (whole first round in (a), and only sBoxLayer for (b) and (c)).

22

	Introduction
	Dual-Rail with Precharge Logic
	State of the Art
	DPL in Software

	Generation of DPL Protected Assembly Code
	Generic Assembly Language
	Code Transformation
	Correctness Proof of the Transformation

	Formally Proving the Absence of Leakage
	Computed Proof of Constant Activity
	Hardware Characterization

	Case Study: present on an AVR Micro-Controller
	Profiling the AVR Micro-Controller
	Generating Balanced AVR Assembly
	Cost of the Countermeasure
	Attacks

	Conclusions and Perspectives
	paioli
	Characterization of the AVR Micro-Controller
	DPL Macro for the AVR Micro-Controller
	Attacks
	Attack results on masking (AES)
	Attack results on DPL (present)

