
A Definitional Framework for Functional Encryption∗

Christian Matt and Ueli Maurer
Department of Computer Science

ETH Zurich, Switzerland
email: {mattc, maurer}@inf.ethz.ch

Abstract

Functional encryption (FE) is a powerful generalization of various types of encryption.
We investigate how FE can be used by a trusted authority to enforce access-control policies
to data stored in an untrusted repository. Intuitively, if (functionally) encrypted data items
are put in a publicly-readable repository, the effect of the encryption should be that every
user has access to exactly (and only) those functions of the data items for which he has
previously received the corresponding decryption key. That is, in an ideal-world view, the
key authority can flexibly manage read access of users to the repository. This appears
to be exactly what FE is supposed to achieve, and most natural applications of FE can
be understood as specific uses of such a repository with access control. However, quite
surprisingly, it is unclear whether known security definitions actually achieve this goal and
hence whether known FE schemes can be used in such an application. In fact, there seems to
be agreement in the cryptographic community that identifying the right security definitions
for FE remains open.

To resolve this problem, we treat FE in the constructive cryptography framework and
propose a new conventional security definition, called composable functional encryption
security (CFE-security), which exactly matches the described ideal-world interpretation.
This definition (and hence the described application) is shown to be unachievable in
the standard model but achievable in the random oracle model. Moreover, somewhat
weaker definitions, which are achievable in the standard model, can be obtained by certain
operational restrictions of the ideal-world repository, making explicit how schemes satisfying
such a definition can (and cannot) meaningfully be used. Finally, adequate security
definitions for generalizations of FE (such as multi-input, randomized functions, malicious
ciphertext generation, etc.) can be obtained by straight-forward operational extensions of
the repository and extracting the corresponding security definitions. This leads towards a
unified treatment of the security of FE.

1 Introduction

1.1 Functional Encryption

Functional encryption (FE) is a very general concept formally introduced by Boneh, Sahai,
and Waters [BSW11]. Many types of encryption such as public-key encryption, identity-based
encryption [Sha85,MY96,BF01], and attribute-based encryption [SW05] can be seen as a special
∗An earlier version of this paper was titled “A Constructive Approach to Functional Encryption”. This is

the full version of the paper that appears in the proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF), 2015.

1

mailto:mattc@inf.ethz.ch
mailto:maurer@inf.ethz.ch

case of FE. Briefly, an FE scheme is parametrized by a value space and a set of functions on
the value space. A trusted authority holding a master secret key corresponding to the master
public key can generate secret keys for all functions in this set. Given the master public key one
can encrypt messages, and given a secret key for a particular function f and an encryption of a
value x, one can efficiently compute f(x) but does not learn anything more about x. Moreover,
even if one pools the secret keys for many functions f1, . . . fk, one can compute nothing about
an encrypted value x except for exactly these function values, i.e., f1(x), . . . , fk(x).

Formalizing these intuitive security requirements has caused more trouble than one might
expect, and several security definitions for functional encryption exist in the literature. While
some of them were shown to be too weak since schemes that should not be considered secure
could be proven to satisfy them, others are so strong that even for very simple sets of functions,
no scheme exists that satisfies them in the plain model [O’N10,BSW11,AGVW13,BO13,CIJ+13].
The research community seems to agree that it is unclear which definition is adequate or can
even be considered the “right” one for a certain application context. This raises the question of
which definition is suitable for being used in a certain application.

In an ideal-world view, however, it seems quite natural to state what one would expect from
FE. If a publicly readable data repository (e.g., a public web repository) is available, then, by
virtue of encrypting the data items before putting them into the repository, one constructs a
repository where the data is now secret and where a specific entity has the capability of assigning
to entities the right to access certain functions (but not more) of the data items stored in the
repository. Obviously, granting the access right to an entity in this ideal world view corresponds
in the real world to providing the corresponding function’s decryption key, and accessing the
data corresponds to decrypting the corresponding ciphertext.

Compared to FE, a standard public-key encryption scheme achieves the same goal of providing
access control for a repository, but access would be all-or-nothing: If one knows the secret key,
then one can decrypt, otherwise one cannot. A more versatile access control mechanism is
achieved by identity-based encryption, which allows the trusted party to grant users the right
to access data for a specific identity, where the input data contains the data itself and the
identity that should be able to access it. More advanced access policies can be implemented
using attribute-based encryption. The high flexibility of FE is demonstrated by the following
application of FE proposed in [BSW12,GKP+13]: Assume some user receives encrypted emails
that are stored on his provider’s server and he does not want to download mails with a high
probability of being spam, to avoid unnecessary traffic. The trusted party, which in this case
can coincide with the recipient of the mails, generates a special secret key for the provider that
only allows to compute the score function of the spam filter. The provider now cannot read the
contents of the mails but is still able to filter out spam and notify the recipient only about the
remaining incoming messages. The repository here corresponds to the mail server and inputting
data into the repository to sending the recipient encrypted emails.

1.2 Problem Statement

This paper addresses the following questions: Does the above-described intuition of a secure
repository really hold? Does one of the existing security definitions imply that such a view is
valid, and if so, which one? What, then, do the other definitions achieve? Could it be that
if a scheme satisfying an existing security definition is used, then the above straightforward

2

applications become insecure?1

1.3 Security Definitions and Their Semantics

Before explaining our approach to address these questions, we discuss a general issue with
cryptographic security definitions. Security definitions for cryptographic primitives such as
one-way functions, message authentication codes, public-key encryption, or FE, can serve two
entirely different purposes, which are often not clearly distinguished.

The first purpose of a security definition is to serve as a (technical) reference point, on the
one hand for devising schemes provably satisfying the definition based on a weak assumption
(e.g., a CCA-secure PKE scheme based on the DDH assumption [CS98]), and on the other
hand for building more sophisticated primitives from any scheme satisfying the definition (e.g.,
constructing a CCA-secure PKE scheme from a CPA-secure IBE scheme and a one-time signature
scheme [BCHK06]). Results about security definitions often take the form of a comparison,
for example an equivalence or a separation statement, meaning that one definition is strictly
stronger than another one.

The second purpose of a (technical) security definition is to assure the security of a certain
type of application when a scheme satisfying the (technical) security definition is used. While
definitions are usually devised with much intuition for what is needed in a certain application
(and indeed the definition is often motivated by an application story), it is important to point out
that a conventional technical security definition for a cryptographic primitive can generally not
directly imply the security of an associated application, for two independent reasons. First, the
particular use of the primitive within a protocol would have to be precisely specified. For example
how is the message to be encrypted formed, to whom is it sent, over what kind of channel,
and are certain fields like an IP address included in the MAC? Second, the application and
its security requirements would also have to be formalized precisely. For example, game-based
security definitions for key agreement do not explicitly guarantee that one can safely use the
key in a given context, nor what the requirements are for the channels over which the protocol
is executed (e.g., that they must be authenticated).

1.4 Addressing the Problem

The general question of bridging the gap between a technical (e.g., game-based) security definition
and the security of an intended application making use of the primitive is a foundational one,
and it applies also to other cryptographic primitives. Exploring it seems particularly valuable
for FE because, unlike for other cryptographic primitives, definitional issues do not seem to be
settled.

One goal of the constructive cryptography (CC) framework [MR11,Mau12] is to do exactly
this: provide constructive semantics for technical security definitions and, based on the semantics,
to compare definitions and identify the adequate one(s).

1A striking example of a failure of a security definition, which is not apparent when examining the definition
and went unnoticed for almost 20 years, was demonstrated in [KRBM07] where a provably-secure quantum key
agreement protocol was shown which becomes insecure when the key is used in the one-time pad encryption (the
application). How can such a mismatch happen, and how can it be prevented? The definition was simply not
strong enough for a generated key to be usable in an application. (This was corrected in [Ren05], where the now
established, substantially stronger security definition was stated.) In a nutshell, the security definition for key
agreement must guarantee that the generated key is as good as a uniform key, in any application.

3

The approach taken is well-established in cryptography and very natural, and it can perhaps
be seen as the only viable approach to tightly link security definitions and applications. Namely,
one formalizes the application as an ideal-world system, called a resource in CC, which captures
both what one wants and what one does not want to happen. For example, secure communication
can be modeled as a secure channel where the adversary learns at most the length of the message.
Other frameworks that capture security properties by defining an ideal functionality include
(variants of) Universal Composability (UC) [Can01,HS15,KT13] and Reactive Simulatability
(RSIM) [PW01,BPW07].2 These frameworks have a different focus and are designed bottom-
up from a specific machine model, while the constructive cryptography framework follows a
top-down approach, leading to simpler descriptions and avoiding technicalities.

The use of a cryptographic scheme can be understood as constructing a certain resource
from certain assumed resources. For example, symmetric encryption can then be understood as
constructing a secure (length-leaking) channel from an authenticated channel and a secret key,
and a key-agreement protocol can be understood as constructing a secret key (distributed to
two parties A and B, where the adversary learns nothing) from a bidirectional authenticated
channel. If the construction notion is defined correctly, this constructive approach provides
composition of constructions, i.e., the constructed resource (e.g., a secret key) can be used in any
other construction as an assumed resource, and we have modularity since the overall security
follows automatically from the individual security proofs.

1.5 Contributions of this Paper

We show that the exact characterization of FE as the construction of a certain access-controlled
repository from a public repository and certain channels (to transmit secret keys and public
keys) is indeed formally correct. This means, in particular, that one can compose constructions,
according to the composition theorem of constructive cryptography. Concretely, if one has
designed an application by defining it “on top” of a certain (assumed) repository with access
control, then this application remains secure if the repository is implemented using a public
repository, where data is encrypted using an FE scheme satisfying the appropriate definition.

However, for this to be true, none of the existing security definitions seem to suffice. Therefore
we propose a new conventional security definition for FE, called CFE-security, derived from the
constructive viewpoint, which corresponds to an adequately modified version of an established
game-based definition by Boneh, Sahai, and Waters [BSW11, Definition 4]. This suggests that
CFE-security is the appropriate definition if strong guarantees are required. We show that,
as the definition in [BSW11], CFE-security is impossible to achieve in the standard model
but achievable in the random oracle model. In doing so, we also exemplify how results in the
(programmable) random oracle model can be translated to a construction in CC.

The adequacy of CFE-security might seem surprising since it is similar to [BSW11, Defini-
tion 4] and an example from [BF13] was supposed to show that this definition is insufficient. We
recall that example and explain why the criticism is invalid. This demonstrates that traditional
security definitions for FE are not well understood, which leads to misconceptions that do not
arise in the constructive approach.

Moreover, we show that a weaker security definition by Gorbunov, Vaikuntanathan, and Wee
[GVW12, Definition 1], which is achievable in the standard model, is sufficient for constructing a

2The paper [SPPM13] provides an ideal functionality for functional encryption in UC, but only for a special
class of functional encryption schemes, namely attribute-based encryption. Thus, their results are not suitable to
derive a general definitional framework for functional encryption as we do in this paper.

4

repository that restricts the number and order of interactions, making explicit how such schemes
can (and cannot) meaningfully be used.

Finally, we show how adequate security definitions for generalizations of FE (multi-input,
randomized functions, malicious ciphertext generation, etc.) can be obtained by straight-forward
extensions of the repository. For a constructive security definition (requiring that a certain
repository be constructed), one can extract the corresponding conventional security definition
and compare it to existing generalized definitions. We conjecture that the latter do generally
not correspond to a meaningful construction of a repository, but carrying out the complete
analysis for all definitions is beyond the scope of this paper.

Overall, this leads to a unified treatment of many FE variants and makes explicit how they
can be composed within a higher-level protocol.

2 Preliminaries

2.1 Resources, Converters, and Distinguishers

The results in this paper are formulated using the theory of constructive cryptography. In
this section, we introduce the relevant concepts, following [MR11] and the exposition given
in [MRT12]. We consider different types of systems, which are objects with interfaces via which
they interact with their environment. Interfaces are denoted by uppercase letters. One can
compose two systems by connecting one interface of each system. The composed object is again
a system.

The types of systems we consider are resources, converters, and distinguishers. Resources
have a finite set I of interfaces and are denoted by upper-case bold-face letters or upper-case
sans-serif fonts. Resources with interface set I are called I-resources. Converters have one
inner and one outer interface and are denoted by lowercase Greek letters. The inner interface
of a converter α can be connected to interface I ∈ I of a resource R, which yields a new
resource denoted by αIR. The outer interface of α then serves as the new interface I of the
composed resource αIR. We also write αIR instead of αIIR for a converter αI . The sequential
composition of two converters α and β is naturally defined by (α ◦ β)IR := αI(βIR). For
I-resources R1, . . . ,Rm, the parallel composition [R1, . . . ,Rm] is defined as the I-resource
where each interface I ∈ I allows to access the corresponding interfaces of all sub-systems Ri

as sub-interfaces. The parallel composition [α1, . . . , αm] of converters α1, . . . , αm is defined by
[α1, . . . , αm]I [R1, . . . ,Rm] := [αI1R1, . . . , α

I
mRm].

A distinguisher D for resources with n interfaces is a system with n+ 1 interfaces, where
n of them connect to the interfaces of a resource and a bit is output at the remaining one.
We write P(DR = 1) to denote the probability that D outputs the bit 1 when connected to
the resource R. The goal of a distinguisher is to distinguish two resources by outputting a
different bit when connected to a different resource. Its success is measured by the distinguishing
advantage.

Definition 2.1. The distinguishing advantage of a distinguisher D for resources R and S is
defined as

∆D(R,S) := |P(DR = 1)− P(DS = 1)| .

If ∆D(R,S) = 0 for all distinguishers D, we say R and S are equivalent, denoted by R ≡ S. If

5

the distinguishing advantage is negligible for all efficient distinguishers, we say R and S are
computationally indistinguishable3, denoted by R ≈ S.

2.2 Examples of Resources

An important example of resources are communication channels. They allow the sender A to
send messages from the message space M := {0, 1}∗ to the receiver B. We define two such
channels, which differ in what an eavesdropper E learns about the messages. Outputs at
interface E correspond to the information that is leaked to all dishonest parties. The channels
we consider in this paper can transmit an arbitrary number of messages.

Definition 2.2. An authenticated channel from A to B, denoted by AUTA,B , is a resource with
three interfaces A, B, and E. On input a message m ∈M at interface A, the same message is
output at interfaces B and E.

This channel is called authenticated because E cannot modify the messages. The secure
channel defined below additionally guarantees that an eavesdropper can only learn the length of
the transferred messages.

Definition 2.3. A secure channel from A to B, denoted by SECA,B, is a resource with three
interfaces A, B, and E. On input a message m ∈M at interface A, the same message is output
at interface B and the length |m| of the message is output at interface E.

2.3 Construction of Resources

A protocol is a tuple of converters with the purpose of constructing a resource (with desired
properties) from an assumed resource (that is available). Depending on which parties are
considered potentially dishonest, we get a different notion of construction.

As an example from [CMT13], consider the setting for public-key encryption with honest
A and B where we want to construct a secure channel SECA,B from authenticated channels
AUTB,A and AUTA,B in presence of a dishonest eavesdropper E. Here, the assumed resource
is R := [AUTB,A,AUTA,B] and the constructed resource is S := SECA,B. In such a setting,
a protocol π = (πA, πB) constructs S from R with potentially dishonest E if there exists an
efficient converter σE (called simulator) such that

πAπB⊥ER ≈ ⊥ES and πAπBR ≈ σES,

where ⊥ blocks all interactions at the corresponding interface and σE provides a sub-interface
to the distinguisher for both channels that constitute the assumed resource. The first condition
is referred to as correctness condition and ensures that the protocol implements the required
functionality if there is no eavesdropper. The second condition is referred to as security condition
and ensures that whatever Eve can do when connected to the assumed resource without necessarily
following the protocol, she could do as well when connected to the constructed resource by using
the simulator σE .

3In fact, the systems considered in this paper are asymptotic objects, i.e., they correspond to families of
systems indexed by a security parameter. The distinguishing advantage is a function of this parameter and
efficient means that the running time is polynomial in the security parameter. To simplify the presentation,
security parameters are omitted in this work.

6

RπA
A

πB
B

πC

C

≈
S

A B

C

(a) Correctness condition.

RπA
A B

πC

C

≈
S

A
σB

B

C

(b) Security condition.

Figure 1: Depiction of the two conditions of the construction notion in Definition 2.4.

While Eve in the above example can be seen as an attacker to whom no guarantees need
to be given, the setting in this paper includes one potentially dishonest party that can also be
honest. Hence, all parties are assigned a protocol and all interactions provided by the constructed
resource are guaranteed to all honest parties following their protocol. On the other hand, a
dishonest party should not be able to do more than specified by the constructed resource. We
consider a construction notion for three parties A, B, and C, where B is potentially dishonest.
The following definition is a special case of the abstraction notion from [MR11] that considers
many dishonest and mutually distrusting parties.

Definition 2.4. Let R and S be {A,B,C}-resources and let π = (πA, πB, πC) be a protocol.
We say π constructs S from R (with potentially dishonest B), denoted by

R
π

==⇒ S,

if there exists an efficient converter σB such that4

πAπBπCR ≈ S and πAπCR ≈ σBS.

See Figure 1 for a graphical representation of the conditions in the above definition. Similarly
to the public-key encryption example above, the first condition ensures correctness of the protocol
and the second condition ensures that all attacks on the protocol by B can be translated via σB
to attacks on the constructed resource S.

The notion of construction is composable, which intuitively means that S can be replaced
by πAπBπCR in any context without affecting the security if we have R

π
==⇒ S. More

precisely, we have for all resources R, R′ S, S′, and T and for all protocols π = (πA, πB, πC),
π′ = (π′A, π

′
B, π

′
C), and φ = (φA, φB, φC)

R
π

==⇒ S ∧ S
φ

==⇒ T =⇒ R
φ◦π

==⇒ T,

R
π

==⇒ S ∧ R′
π′

==⇒ S′ =⇒ [R,R′]
[π,π′]
==⇒ [S,S′],

where φ ◦ π := (φA ◦ πA, φB ◦ πB, φC ◦ πC) and [π, π′] := ([πA, π
′
A], [πB, π

′
B], [πC , π

′
C]). The

first property guarantees that the composition of construction steps yields a secure overall
construction and the second property ensures that a construction remains secure in any context,
i.e., regardless of what happens in parallel. See [MR11,Mau12] for a proof of these statements
and further discussions.

4Note that we require the existence of one simulator for all efficient distinguishers. This simulator does
therefore not depend on the distinguisher and hence is black-box.

7

2.4 Functional Encryption

A functional encryption scheme is a generalized public-key encryption scheme defined for a set F
of functions with common domain X. Given the public key, one can encrypt data x ∈ X and
given a secret key for a function f ∈ F , one can efficiently compute f(x) from an encryption
of x. The secret keys for all f ∈ F can be generated using a so-called master secret key which is
generated together with the public key. To capture which information ciphertexts leak about
the encrypted data, a special leakage function f0 ∈ F is considered. An intuitive security
requirement guarantees that given a ciphertext for some x and secret keys for f1, . . . , fn, one
should not be able to learn more about x than what can be learned from f0(x), . . . , fn(x). We
here only define the syntax and correctness condition of a functional encryption scheme and
refer to later sections for formal security definitions. The definition here only covers unary and
deterministic functions. See Section 8 for a discussion of more general notions of functional
encryption.

Definition 2.5. Let X be a nonempty set and F be a set of functions with domain X such that
F contains a distinguished leakage function f0. A functional encryption scheme for F consists of
the efficient probabilistic algorithms setup, keygen, enc, and dec. The algorithm setup generates
a public key pk and a master secret key mk. Given mk and some f ∈ F , keygen generates a
secret key skf for this f where skf0 equals the empty string. Given pk and some x ∈ X, enc
computes a ciphertext c such that dec(skf , c) 6= f(x) with negligible probability,5 where the
probability is over the randomness of all algorithms.

Remark. Following [BSW11], we assume everyone can always evaluate f0. This can be seen
as a rather artificial requirement; if f0(x), e.g., reveals the bit length |x| of x, there has to be
an efficient algorithm that precisely computes |x| from a ciphertext. A more natural approach
would not guarantee all parties to compute f0, but rather not exclude in the security definition
that dishonest parties can do so. To formalize that something is not guaranteed but potentially
possible, the constructive cryptography framework provides the concept of filtered resources
(see [MR11] for more details). While all results in this paper extend to such a definition, we
stick to the definition above to simplify the presentation.

3 Repositories and Access Control

3.1 Repository Resources

In this section, we introduce a repository resource that allows users to input and access data
and that naturally captures how a repository works. We first define a repository with access
control and then specify a public repository without access control as a special case thereof.
Users can input data from a data set X into the repository. After inputting data, the resource
returns a handle (e.g., a URL or a memory address) from a set H via which the data can be
accessed later. This handle could be chosen by the resource, by the user who inputs data, or by
both in an interactive protocol. Since the particular procedure to generate handles is irrelevant
for our purposes, we will refer to a method getHandle that returns an element of H without
describing its implementation. We only assume that the returned handles are distinct, that is,
no data is overwritten.

5The definition in [BSW11] requires dec(skf , c) = f(x) with probability 1, but we do not need this stronger
condition because our construction notion does not require perfect correctness, see Definition 2.4.

8

Motivated by the syntax of functional encryption, we consider a set F of access functions
containing functions with domain X and allow users to retrieve such functions of input data.
Which functions a user can access depends on the rights of this user, i.e., for each f ∈ F users
can have the right to obtain f(x) for previously input x ∈ X. Everyone has the right to obtain
f0(x) for a special function f0 and a trusted authority can grant users additional rights.

We consider a resource with an interface for Alice who can input data, an interface for Bob
who can access data, and an interface for the trusted party Charlie who can grant rights to Bob.
Alice and Bob are not necessarily single users but correspond to roles users can have. All results
in this paper regard Bob as the only potentially dishonest party. In case he is dishonest, one
can also think of him as a group of dishonest and colluding parties who possibly try to combine
their rights to get access to a function of some data none of them alone could access. Hence,
one dishonest party is sufficient to cover collusion resistance. Similarly, the resource can be used
in a context with multiple honest parties inputting data.

Definition 3.1. Let X be a nonempty set and F a set of functions with domain X and f0 ∈ F .
The resource REPF has the interfaces A, B, and C. It internally manages the set R of functions
Bob is allowed to access, and a map M assigning to a handle h ∈ H the value M [h] ∈ X ∪ {⊥}
where ⊥ /∈ X is a special symbol. Initially, R = {f0} and M [h] = ⊥ for all h ∈ H. The resource
works as follows:
Interface A

Input: x ∈ X
h← getHandle

M [h]← x
output h at interface A

Interface B

Input: (f, h) ∈ F ×H
if f ∈ R and M [h] 6= ⊥ then

output f(M [h]) at interface B

Interface C

Input: f ∈ F
R← R ∪ {f}
output f at interface B

All inputs not matching the given format are ignored.6

Remark. Note that Bob needs to know the handles to access data. Hence, when this resource is
used in a larger protocol, Alice needs to send Bob the handles over an additional channel. This is
in fact very natural: If Alice uploads a document to her web server and wants Bob to download
it, she needs to tell him the URL, e.g., via email. See Appendix A for an example application of
the resource that demonstrates how other protocols can use the constructed repository and how
to apply the composition theorem of the constructive cryptography framework.

We now define a public repository without access control, which will serve as an assumed
resource in our constructions. It corresponds to a repository as defined above where f0 is the
identity function on X, i.e., everyone is allowed to access the (identity function of) stored data.

6We define all resources to ignore invalid inputs. Alternatively, the resources could return error messages.
While this alternative might be closer to the behavior of real systems, we decided to simply ignore invalid inputs
because they are not relevant for our results.

9

AUTC,A SECC,B

PREPC

πA πB

πC

(pk,mk)← setup()

pk

pk

pk

f

skf ← keygen(mk, f)

(f, skf)

(f, skf) f

x

h

c← enc(pk, x)
c

h

(f, h)

y

h

c
y ← dec(skf , c)

Figure 2: Overview of the protocol (πA, πB, πC). The dashed rectangle represents the assumed
resource, corresponding to the parallel composition of AUTC,A, SECC,B , and PREPC, the dotted
line depicts that a dishonest Bob can learn the public key while the protocol does not use it.
The whole figure corresponds to a refinement of the left part of Figure 1a. By Lemma 3.3, this
resource is computationally indistinguishable from REPF .

Definition 3.2. Let X be a nonempty set, f0 := idX : X → X,x 7→ x, and P := {f0}. We
define the public repository for X as PREPX := REPP . For inputs at Bob’s interface, we will
write h instead of (idX , h) to simplify notation.

3.2 Access Control via Functional Encryption

A versatile repository supports a large class of access functions and restricts Bob’s initial rights
as much as possible. In this section, we describe how to use functional encryption to construct
such a repository from a public repository. More precisely, let E = (setup, keygen, enc, dec) be a
functional encryption scheme for a set F of functions with domain X and let C be the range of
enc. Our goal is to construct REPF from PREPC. To distribute keys, we additionally need an
authenticated channel AUTC,A from Charlie to Alice and a secure channel SECC,B from Charlie
to Bob,7 i.e., the assumed resource in our construction corresponds to [PREPC,AUTC,A, SECC,B].

To achieve this construction, we define the protocol π = (πA, πB, πC) for the functional
encryption scheme E as follows: At the beginning, πC invokes (pk,mk) ← setup(), stores mk
and sends pk to Alice over the authenticated channel. This public key is internally stored by πA.
On input x ∈ X at its outer interface, πA outputs c← enc(pk, x) at its inner interface to the
repository and outputs the returned handle h at its outer interface. On input f ∈ F at its outer
interface, πC computes skf ← keygen(mk, f) and sends (f, skf) to B over the secure channel.
The corresponding secret key is stored by πB and f is output at its outer interface. On input
(f, h) ∈ F ×H at its outer interface, πB outputs h at its inner interface to the repository if it
has stored a secret key skf for this function f or if f = f0. If it receives a ciphertext c from the
repository, it outputs y ← dec(skf , c) at its outer interface. All other inputs are ignored. See
Figure 2 for an illustration of the protocol.

7For both channels, a dishonest Bob assumes the role of an eavesdropper. That is, he can learn the public
key, which is sent over the authenticated channel from Charlie to Alice. If the resource is used in a context with
many Bobs, it is important that the channel from Charlie to each of them is secure to prevent dishonest users
from eavesdropping secret keys.

10

The following lemma states that this protocol constructs the desired resource if all parties
are honest. It follows directly from the correctness of the functional encryption scheme.

Lemma 3.3. For the protocol π = (πA, πB, πC) defined above, we have

πAπBπC [PREPC,AUTC,A,SECC,B] ≈ REPF .

4 Security of Functional Encryption Schemes

4.1 Definition of CFE-Security

The protocol described in the previous section constructs the desired resource with a dishonest
Bob only if the underlying functional encryption scheme satisfies a suitable security definition. We
propose such a definition, based on [BSW11, Definition 4], and refer to it as composable functional
encryption security8 (CFE-security for short). We extend the definition from [BSW11] to adaptive
adversaries that can choose messages depending on ciphertexts for previous messages. This
extension was already mentioned in that paper but not formalized. Our definition additionally
restricts oracle access of the involved algorithms. These changes are discussed after the definition.
We note that SS1-security defined in [BO13] also corresponds to an adaptive variant of [BSW11,
Definition 4] but also differs in other aspects and is not equivalent to the definition we propose
here. In particular, SS1-security includes some auxiliary inputs that the authors claim to
eliminate a weakness described in [BF13]. However, as we explain in Section 4.3, the effect
pointed out in [BF13] is in fact not a weakness, so there is no need for a fix.

We follow the notation from [BSW11], i.e., for algorithms A and B, AB(·)(x) denotes that A
gets x as input and has oracle access to B, that is, B(q) is answered to A in response to an
oracle query q. Moreover, A(·)[[s]] means that A gets s as an additional input and can update
its value. More precisely, A(x)[[s]] corresponds to the algorithm that invokes (y, s)← A(x, s)
and returns y.

Definition 4.1. Let E = (setup, keygen, enc, dec) be a functional encryption scheme for a
set F of functions with domain X. We introduce the experiments in Figure 3 for an efficient
probabilistic oracle algorithm Adv1 and efficient probabilistic algorithms Adv2, S1, S2, and
S3. The advantage of a distinguisher D in distinguishing the outputs of these experiments is
denoted by ∆D

(
CFE-ExpReal

E,Adv,CFE-Exp
Ideal
E,Adv,S

)
.

We say E is CFE-secure if there exist S1, S2, and S3 such that the distinguishing advantage
is negligible for all Adv1, Adv2 and for all efficient distinguishers.

Note that τ can be used to share the state between Adv1 and Adv2 and s to share the state
between S1, S2, and S3. Intuitively, S1 simulates the generation of the public key, S2 generates
simulated secret keys, and S3 simulates ciphertexts for values x given only the images of x under
the functions the adversary has already requested secret keys for. A scheme is considered secure
if these simulated values are indistinguishable from the corresponding values generated by the
actual protocol. The intuition is that in this case, a ciphertext does not leak anything about
the encrypted value that an adversary cannot conclude from the function values he is supposed
to learn.

8This name is justified by Theorem 4.4, which together with the composition theorem of the constructive
cryptography framework implies that CFE-secure schemes indeed guarantee composability. In an earlier version
of this paper, it was called “fully adaptive security” (“FA-security”).

11

CFE-ExpReal
E,Adv

(pk,mk)← setup()
(l, τ)← (0, 0)
repeat

l← l + 1
xl ← Adv

keygen(mk,·)
1 (pk)[[τ]]

cl ← enc(pk, xl)
t← Adv2(cl)[[τ]]

until t = true
return τ

CFE-ExpIdeal
E,Adv,S

(pk, s)← S1()
(l, τ)← (0, 0)
repeat

l← l + 1
xl ← Adv

O(·,x1,...,xl−1)[[s]]
1 (pk)[[τ]]

(f1, . . . , fq)← all queries by Adv1 so far
cl ← S3(f0(xl), . . . , fq(xl))[[s]]
t← Adv2(cl)[[τ]]

until t = true
return τ

Figure 3: Experiments for the CFE security definition. The oracle O in the ideal experiment is
defined as O(f, x1, . . . , xl−1)[[s]] := S2(f, f(x1), . . . , f(xl−1))[[s]].

As mentioned before, this definition is close to a fully adaptive version of the one given
in [BSW11]. One difference is that Adv2 is not given oracle access to a key-generation oracle in
our definition. This simplifies especially the ideal experiment and is not necessary here since
Adv2 can store its query in τ and Adv1 can then query its oracle and continue the execution of
Adv2 in the following iteration. Furthermore, S3 in [BSW11] has oracle access to Adv2 and can
therefore run Adv2 on several inputs and discard undesired outputs. Our definition is stronger
because we do not allow this. It was already noted in [AGVW13] that this oracle access might
be problematic. Note that, in contrast to [BSW11, Definition 4], it is sufficient to return τ
because Adv2 can encode all relevant information in it and S3 cannot tamper with it.

Unlike many other definitions (e.g., [O’N10,BF13,GVW12,GKP+13]), we do allow S1 and
S2 to “fake” the public key and the secret keys, respectively. In contrast to what is claimed
in [BF13], it turns out that this is not a problem (see Section 4.3 for more details). This shows
that there are many degrees of freedom in defining security experiments for functional encryption
and that the consequences of a particular choice are often unclear. On the other hand, the
constructive approach we follow in this paper makes explicit what a protocol satisfying the
definitions achieves, by specifying the resource that is constructed.

4.2 Equivalence of CFE-Security and Construction of Repository

The goal of this section is to prove that the protocol defined in Section 3.2 constructs the
corresponding repository resource if and only if the underlying functional encryption scheme is
CFE-secure. This implies that CFE-security is precisely the definition needed for our purpose.
The following lemma shows that CFE-security is sufficient for the construction.

Lemma 4.2. Let S1, S2, and S3 be efficient probabilistic algorithms. Then there exists an effi-
cient converter σB such that for all efficient distinguishers D for πAπC [PREPC,AUTC,A,SECC,B]
and σBREPF , there is an efficient probabilistic oracle algorithm Adv1, an efficient probabilistic
algorithm Adv2, and an efficient distinguisher D′ for the CFE experiment such that

∆D
(
πAπC [PREPC,AUTC,A, SECC,B], σBREPF

)
= ∆D′

(
CFE-ExpReal

E,Adv,CFE-Exp
Ideal
E,Adv,S

)
.

Proof. We define σB as follows. See Figure 4 for a graphical overview of the simulator.

12

REPF σB

inner
interface

outer
interface

sub-interface
simulating SECC,B

sub-interface
simulating AUTC,A

sub-interface
simulating PREPC

(pk, s)← S1()
pk

f

(f, hi)

yi
skf ← S2(f, . . . , yi, . . .)[[s]]

(f, skf)

h(fi, h)

yi
c← S3(. . . , yi, . . .)[[s]] c

Figure 4: Overview of the simulator σB from the proof of Lemma 4.2 attached to REPF . This
figure corresponds to a refinement of the right part of Figure 1b. Lemma 4.2 implies that this
resource is computationally indistinguishable from the resource one obtains by removing πB
from Figure 2 if the used functional encryption scheme is CFE-secure.

Initialization
(l, q)← (0, 0)
(pk, s)← S1()
output pk at outer sub-interface simulating AUTC,A

Inner Interface
Input: f ∈ F
q ← q + 1
fq ← f
for i = 1, . . . , l do

output (f, hi) at inner interface, let yi be the returned value
skf ← S2(f, y1, . . . , yl)[[s]]
output (f, skf) at outer sub-interface simulating SECC,B

Outer Interface
Input: h ∈ H

if ∃k ∈ {1, . . . , l} : hk = h then
output ck at outer sub-interface simulating PREPC

else if output (f0, h) at inner interface is not ignored then . some data is stored for handle h
l← l + 1
hl ← h
for i = 0, . . . , q do

output (fi, h) at inner interface, let yi be the returned value
cl ← S3(y0, . . . , yq)[[s]]
output cl at outer sub-interface simulating PREPC

Now let D be an efficient distinguisher for the resources πAπC [PREPC,AUTC,A,SECC,B] and
σBREPF . We can assume without loss of generality that D inputs h ∈ H at interface B only if
this h was output at interface A before, because other h will be ignored by both resources. We
further assume that each h ∈ H is input at most once, since both resources return the same
value for each input of the same handle h.

13

We now describe the algorithms Adv1 and Adv2. When Adv1 is invoked with pk and
τ = 0, it starts a new simulation of the distinguisher D, outputting pk at interface B from
the authenticated channel. When D inputs f ∈ F at interface C, Adv1 invokes its oracle with
query f and outputs f and the answer to D at interface B from the secure channel. When
D inputs x ∈ X at interface A, Adv1 invokes getHandle and outputs the returned handle h
at interface A. It further sets M [h]← x for a map M . When D inputs h ∈ H at interface B,
Adv1 saves M and the state of D in τ and returns M [h]. When D returns a bit b, Adv1 sets
τ ← (return, b) and returns a random x ∈ X. After Adv1 terminated, Adv2 is invoked on input
a ciphertext c and τ . If τ = (return, b), for some b ∈ {0, 1}, Adv2 returns true. Otherwise, it
saves c in τ and returns false. Afterwards, Adv1 is invoked on input pk and τ 6= 0. In this case,
it reads c and the state of D from τ and continues the simulation by outputting c at interface B
from the repository. Adv1 then proceeds as above.

The distinguisher D′ on input τ = (return, b) outputs the bit b. Note that the distribution
of the outputs of D′ given outputs of the real experiment equals the distribution of the outputs
of D connected to the resource πAπC [PREPC,AUTC,A,SECC,B] and the output distribution of D′

given outputs of the ideal experiment equals the distribution of the outputs of D connected to
σBREPF . Hence, the corresponding distinguishing advantages are the same.

The next lemma shows that CFE-security is not only sufficient but also necessary for
constructions of the desired repository resource. Since this notion is even stronger than [BSW11,
Definition 4], known impossibility results translate to our model.

Lemma 4.3. Let σB be an efficient converter. Then there exist efficient probabilistic algorithms
S1, S2, and S3 such that for all efficient probabilistic oracle algorithms Adv1, all efficient
probabilistic algorithms Adv2, and all efficient distinguishers D for the CFE experiment, there
exists an efficient distinguisher D′ for πAπC [PREPC,AUTC,A,SECC,B] and σBREPF such that

∆D
(
CFE-ExpReal

E,Adv,CFE-Exp
Ideal
E,Adv,S

)
= ∆D′

(
πAπC [PREPC,AUTC,A, SECC,B], σBREPF

)
.

Proof. The algorithms S1, S2, and S3 together simulate an execution of σB. S1 starts the
simulation, prepares an initially empty map M (i.e., M [f][h] = ⊥ for all f and h), and sets
(l, q)← (0, 0). It returns the first output at the outer interface of σB together with an encoding
of the state of σB, l, q, and M in s. On input f ∈ F , f(x1), . . . , f(xl) and some s, S2 extracts
M , l, q, h1, . . . , hl, and the state of σB from s, sets q ← q + 1, fq ← f , and M [fq][hi]← f(xi)
for i = 1, . . . , l. It then inputs f at the inner interface of σB. When σB outputs (f, skf) at
its outer interface, S2 stores the state of σB together with M , q, and fq in s and returns skf .
On input (f0(x), . . . , fq(x)) and s, S3 extracts the state of σB, M , l, q, and f1, . . . , fq from s,
sets l← l + 1, invokes hl ← getHandle (if getHandle requires interaction with interface A, S3
emulates it using an arbitrary fixed strategy), sets M [fi][hl]← fi(x) for i = 0, . . . , q, and inputs
h at the outer sub-interface of σB simulating the repository. When σB outputs c at its outer
interface, S3 saves the state of σB, M , l, and hl in s and returns c. Outputs of the form (f, h)
at the inner interface of σB are handled equally by S1, S2, and S3 by inputting M [f][h] at its
inner interface if M [f][h] 6= ⊥. Otherwise, that input is ignored. Note that such input is ignored
if and only if f has not been input at the inner interface of σB or h has not been input at its
outer interface before. This is consistent with REPF if all handles returned at interface A are
immediately input at interface B afterwards. The distinguisher defined below always does this.

Now let Adv1 be an efficient probabilistic oracle algorithm, Adv2 an efficient probabilistic
algorithm, and let D be an efficient distinguisher for the CFE experiment. We define a

14

distinguisher D′ for the resources πAπC [PREPC,AUTC,A, SECC,B] and σBREPF as follows. It
first runs Adv1 on input the initial output pk at interface B and τ = 0. A query f ∈ F from
Adv1 to its oracle is answered by inputting f at interface C, receiving (f, skf) at interface B,
and returning skf as the answer. When Adv1 returns x, D′ inputs x at interface A and then
the returned handle h at interface B to the repository (where D′ uses the same strategy as S3
for inputs at interface A for getHandle, such that handles are equally distributed). When c is
output at interface B, the distinguisher D′ invokes Adv2 on input c and τ . If it returns t = false,
D′ repeats this procedure by running Adv1 on input pk and τ . Otherwise, D′ invokes D on
input τ . Finally, D′ outputs the output of D. Since the distribution of τ if D′ is connected to
πAπC [PREPC,AUTC,A, SECC,B] is the same as in the real CFE experiment and the same as in
the ideal one if D′ is connected to σBREPF , the corresponding distinguishing advantages are
equal.

Combining lemmata 3.3, 4.2, and 4.3, we get the following theorem:

Theorem 4.4. For the protocol π defined above, we have

[PREPC,AUTC,A,SECC,B]
π

==⇒ REPF ⇐⇒ E is CFE-secure.

4.3 Alleged Insufficiency of BSW’s Security Definition

The results from the previous section seem to contradict an example given in [BF13], which was
meant to show that [BSW11, Definition 4] is not adequate and which can easily be extended to our
definition. We first recall the example for a fixed set of functions from the full version of [BF13]
and then explain why it is not a problem in our context. Assume E = (setup, keygen, enc, dec) is
a functional encryption scheme for a set F of functions with domain X with idX ∈ F and P ⊆ F
where P is a family of trapdoor one-way permutations on X. We consider a modified scheme
E ′ = (setup′, keygen′, enc, dec′) as follows. The algorithm setup′ first runs setup and samples
a permutation p∗ ∈ P according to the key-generation algorithm of the trapdoor one-way
permutation. It then includes the description of p∗ in the public key pk′ := (pk, p∗) and the
master secret key mk′ := (mk, p∗) (and discards the trapdoor). The algorithm keygen′ on input
(mk′, f) does the same as keygen if f 6= p∗, and returns (p∗, skid) with skid ← keygen(mk, idX) if
f = p∗. The algorithm enc is not modified and dec′ on input ((p∗, skid), c) returns p∗(dec(skid, c))
and dec(skf , c) on input (skf , c). As in [BF13], it can be shown that E ′ is CFE-secure if E is.
Intuitively, the simulator, which generates the public key, can store the trapdoor and hence
compute x from p∗(x), enabling it to simulate.

According to [BF13], this scheme should not be considered secure because one can learn x
instead of only p∗(x) given a key for p∗. They conclude that the simulator should therefore
not be allowed to generate the public key. We claim that this is actually not a problem: An
adversary cannot choose for which p ∈ P he wants to learn x instead of p(x), but a p∗ is
chosen at random by the key-generation algorithm of the trapdoor one-way permutation. By
simply invoking this algorithm themselves, all users can obtain a trapdoor for such a random
permutation p∗ and hence compute x from p∗(x) even if the original scheme is used. The only
difference is that in the modified scheme, this particular permutation is contained in the public
key and the master secret key. Using this permutation in another protocol built on top of the
modified scheme would be problematic if the designer of the composed protocol assumes that
one cannot compute x if given a key for this p∗ (which is the case in the original scheme if
the description of a random p∗ is included in the public key, but not in the modified scheme).

15

However, if schemes are composed according to the constructive cryptography framework, such
confusion cannot arise since the protocol converters use the keys only internally and do not
publish them to their outer interfaces. Hence, the constructed resource does not provide a
distinguished function corresponding to the permutation in the public key to any party. This
means that when the constructed resource is used in another protocol, that protocol cannot
explicitly use this particular p∗. Because p∗ ∈ P is chosen randomly and P needs to be large,
the probability that it is still used in another context is negligible. Therefore the modified
scheme is as secure as the original one in all applications if the protocols are composed properly.

5 Special Cases and Impossibility Results

5.1 Public-Key Encryption and its Impossibility

As described in [BSW11], many types of encryption can be seen as special cases of functional
encryption. We restate how standard public-key encryption is captured as a special case and
explain why this immediately leads to strong impossibility results.

Consider public-key encryption with plaintext space M . We can set X := M and FPKE :=
{f0, idX} with f0 : X → N, x 7→ |x| revealing the bit length of x. This provides the same
functionality as public-key encryption [BSW11]: The holder of the secret key (corresponding to
the key for idX) can decrypt a ciphertext to the encrypted message while without the secret
key, one can only learn the length of the message.

Depending on how the encryption scheme is intended to be used, different security properties
are required. Typically, one assumes that there is a legitimate receiver Bob knowing the secret
key from the beginning and an eavesdropper Eve who never learns the secret key. The repository
resource REPFPKE

, however, allows to adaptively grant Bob the right to learn the input data. In
case of a dishonest Bob, this enables the distinguisher to adaptively retrieve the secret key after
receiving ciphertexts. Hence, we are in a situation of adaptive adversaries [CFGN96]. Therefore,
the result by Nielsen [Nie02] stating that the length of secret keys in any adaptively secure
scheme must be at least the total number of bits to be encrypted, on which the impossibility
results in [BSW11,BO13] are based, can be applied directly here. Since there is no restriction on
the number of messages Alice can input in the repository, the distinguisher can input messages
whose total length exceed an upper bound on the length of secret keys before granting access
rights to Bob. We therefore get the following theorem as a direct consequence of Theorem 4.4 and
the result from [Nie02]. This shows another advantage of our constructive approach, namely that
defining security of a protocol by what it achieves simplifies reusing results without reproving
them for new definitions as in [BSW11] and [BO13].

Theorem 5.1. There is no CFE-secure functional encryption scheme for FPKE.

As we have seen, while public-key encryption can be considered to be a special case of
functional encryption, typical security definitions for public-key encryption do not correspond
to the given security definition for functional encryption. This is not a weakness of our security
definition but comes from the fact that public-key encryption is usually used in a specific setting
and thus a less restrictive definition is sufficient. See [CMT13] for a treatment of public-key
encryption in the constructive cryptography framework. Similarly, it is still meaningful to
consider security definitions for other special cases of functional encryption such as identity-
based and attribute-based encryption that take into account how these schemes are intended to
be used.

16

5.2 Circumventing Impossibility Results

As seen in the previous section, realizing CFE-secure functional encryption schemes, even for
very simple sets of functions, is impossible without further assumptions. In general, there are
two ways to circumvent such impossibility results. One can either start with a stronger assumed
resource or construct a weaker resource. The authors in [BSW11] use a random oracle to realize
secure functional encryption schemes for a large class of functions. This falls in the first category
and can be understood in our model as adding a random oracle to the assumed resource. In
Section 6, we recast the scheme from [BSW11] in our framework and show that it can be used
to construct REPF from [PREPC,AUTC,A,SECC,B,RO]. Bellare and O’Neill [BO13] generalize
the result from [BSW11] and obtain secure functional encryption schemes without random
oracles by allowing the keys to be longer than all encrypted messages together. This can also be
interpreted as restricting the amount of data the repository can store. Hence, this is an example
of weakening the constructed resource.

Many papers consider different security definitions [O’N10,BO13,GVW12,AGVW13,GKP+13,
GGH+13] that are not subject to impossibility results. However, changing a security definition
can lead to an inadequate notion of security and it might not be clear how the resulting schemes
can be used. A result from [CIJ+13] shows how to transform a functional encryption scheme
for the set of all n-input Boolean circuits satisfying a weak security definition to a scheme
that satisfies a stronger security definition in the random oracle model. This provides a bridge
between considering weaker definitions and using stronger assumed resources (i.e., including
random oracles) to achieve strong security notions.

In the Section 7, we follow the approach of constructing weaker resources. In particular, we
introduce restricted repositories and show that schemes satisfying a definition from [GVW12]
can be used to construct such repositories.

6 Construction in the Random Oracle Model

We recast the scheme presented in [BSW11] as “the modified ‘brute-force’ construction” in
our framework. It allows us to construct REPF for all F that contain only a polynomial (in
the security parameter) number of functions that all have domain X and codomain {0, 1}k
for some k ∈ N. The assumed resource in this construction contains a random oracle with
codomain {0, 1}k. We now define such a random oracle as a resource.

Definition 6.1. The resource RO has interfaces A, B, and C. On input x ∈ {0, 1}∗ at
interface I ∈ {A,B,C}, if x has not been input before (at any interface), RO chooses y ∈ {0, 1}k
uniformly at random, outputs y at interface I, and stores (x, y) internally; if x has been input
before, RO outputs the value y at interface I that has been stored together with x.

Remark. The simulator in the proof of the construction will answer queries to the random
oracle made by the distinguisher. Since the simulator can answer these queries arbitrarily as
long as they are consistent with previous answers and appear to be uniform, the simulator has
additional power, which allows us to overcome the impossibility result from Section 5.1. This
setting is often referred to as programmable random oracle model because the simulator can in
some sense “reprogram” the random oracle.

Now let X be some nonempty set and F = (f0, . . . , fs) with fi : X → {0, 1}k. Further let
(K,E,D) be a semantically secure public-key encryption scheme. Let C be the set of s+ 1-tuples

17

where the first component is a k-bit string and the other components consist of an element from
the range of E and a k-bit string. We define the protocol πRO = (πRO

A , πRO
B , πRO

C) to construct
REPF from [PREPC,AUTC,A,SECC,B,RO] as follows: At the beginning, πRO

C invokes (pki, ski)←
K() for i ∈ {1, . . . , s}, stores the ski and sends (pk1, . . . , pks) to Alice over the authenticated
channel. The public keys are internally stored by πRO

A . On input x ∈ X at its outer interface,
πRO
A chooses r1, . . . , rs uniformly at random from {0, 1}λ where λ is the security parameter. It

then outputs ri at its inner interface to the random oracle and receives the answer r′i for each
i ∈ {1, . . . , s}. Finally, it outputs c← (f0(x), (E(pk1, r1), r′1⊕f1(x)), . . . , (E(pks, rs), r

′
s⊕fs(x)))

at its inner interface to the repository and outputs the returned handle h at its outer interface.
On input fi ∈ F at its outer interface, πRO

C sends (fi, ski) to B over the secure channel. The
converter πRO

B then stores the secret key and outputs fi at its outer interface. On input
(fi, h) ∈ F ×H at its outer interface, πRO

B outputs h at its inner interface to the repository if
it has stored the secret key ski or if i = 0. If it receives c = (c0, . . . , cs) from the repository, it
outputs c0 at its outer interface if i = 0, and if i 6= 0, it decrypts the first component of ci with
D(ski, ·) and outputs the result at its inner interface to RO. When RO answers with r, πRO

B

outputs the bitwise XOR of r and the second component of ci at its outer interface. All other
inputs are ignored.

Theorem 6.2. We have

[PREPC,AUTC,A, SECC,B,RO]
πRO

==⇒ REPF .

Proof sketch. Correctness is straightforward to verify. To prove the security condition, we
consider the simulator σB that initially generates (pki, ski) ← K() for i ∈ {1, . . . , s} and
outputs (pk1, . . . , pks) at its outer sub-interface simulating AUTC,A. To answer queries to the
simulated random oracle, the simulator maintains a list O of all previous inputs and outputs.
Queries in O are answered consistently. For a fresh input, the simulator chooses a value
uniformly at random from {0, 1}k, outputs this value at its outer sub-interface simulating
RO, and updates O. To simulate PREPC, as the simulator in the proof of Lemma 4.2, σB
keeps track of all queried handles and the generated ciphertexts, answers repeated queries
consistently, and ignores queries for invalid handles. A fresh ciphertext for handle h is generated
as (y0, (E(pk1, r1), r′1), . . . , (E(pks, rs), r

′
s)), where y0 is obtained from REPF via the query (f0, h)

and r1, . . . , rs ∈ {0, 1}λ, r′1, . . . , r′s ∈ {0, 1}k are chosen uniformly at random. Moreover, the
simulator obtains yi from REPF via the query (fi, h) for all fi for which access has been granted,
and adds (ri, r

′
i ⊕ yi) to O.

On input fi ∈ F at its inner interface, σB outputs (fi, ski) at its outer sub-interface
simulating SECC,B. Furthermore, it obtains yj,i from REPF via the query (fi, hj) for all hj for
which ciphertexts have been simulated. Let (yj,0, (E(pk1, rj,1), r

′
j,1), . . . , (E(pks, rj,s), r

′
j,s)) be

these ciphertexts. Finally, σB adds (rj,i, r
′
j,i ⊕ yj,i) to O. Whenever an entry (x, y) is supposed

to be added to O and this list already contains an entry for x, the simulator aborts.
Note that if the simulator does not abort, if all ri chosen by σB are unique and different

from previous oracle queries by the distinguisher, and if the distinguisher does not query the
random oracle on a value r such that E(pki, r) is contained in some ciphertext generated by σB
for some i, the simulation is perfect. Since (K,E,D) is semantically secure, it can be shown
that the probability of these events is negligible. Thus, πRO

A πRO
C [PREPC,AUTC,A, SECC,B,RO]

and σBREPF are computationally indistinguishable.

18

7 Weaker Security Definitions and Restricted Variants of Repos-
itory Resources

7.1 Definitions

We now define restricted variants of repository resources, which may still be sufficient for certain
applications and can then be used as sketched in Appendix A.

Definition 7.1. Let L,Q ∈ N ∪ {∞}, X be a nonempty set, and let F be a set of functions
with domain X and f0 ∈ F . We define the resource REPAD

F,L,Q to be identical to REPF as in
Definition 3.1 but only allow up to L inputs at interface A and Q inputs at interface C and
ignore further inputs (in case L or Q equals ∞, no restriction is placed on the number of inputs,
i.e., REPAD

F,∞,∞ ≡ REPF). We further define a nonadaptive variant REPNA
F,L,Q that ignores all

inputs at interface C after the first input at interface A.

Since the resources only accept a given number of inputs at interfaces A and C, we have to
adjust the protocols to behave the same way. We therefore consider a functional encryption
scheme E = (setup, keygen, enc, dec) for a set F of functions with domain X where C is the range
of enc. We then define the protocol πAD,L,Q := (πLA, πB, π

AD,Q
C) as π in Section 3.2, but πLA and

πAD,Q
C additionally keep track of the number of inputs at their outer interface and ignore all of

them after the first L and Q inputs, respectively.
The following lemma states that this protocol yields a restricted repository with access

control if all parties are honest. It follows directly from the correctness of the functional
encryption scheme.

Lemma 7.2. For the protocol πAD,L,Q = (πLA, πB, π
AD,Q
C) defined above, we have

πLAπBπ
AD,Q
C [PREPC,AUTC,A,SECC,B] ≈ REPAD

F,L,Q.

To construct the nonadaptive variant, the protocol at interface C has to ignore all inputs
after the first input at interface A. Hence, it needs to know whether there has already been any
input at interface A, i.e., whether the repository is still empty. We thus introduce for a nonempty
set X the resource PREP∅X that is identical to PREPX as in Definition 3.2 but additionally
accepts the input isEmpty at interface C which is answered with true if the repository is empty,
and false otherwise. We then define πNA,L,Q := (πLA, πB, π

NA,Q
C) where πNA,Q

C on each input
at its outer interface outputs isEmpty at its inner interface to the repository and ignores the
input (and all subsequent inputs) if the repository answers false, and otherwise does the same
as πAD,Q

C .
As above, correctness of the functional encryption scheme implies the following lemma.

Lemma 7.3. For the protocol πNA,L,Q = (πLA, πB, π
NA,Q
C) defined above, we have

πLAπBπ
NA,Q
C [PREP∅C,AUTC,A,SECC,B] ≈ REPNA

F,L,Q.

Having defined these resources and protocols, we can derive the following security definitions.

Definition 7.4. Let E = (setup, keygen, enc, dec) be a functional encryption scheme for a set F
of functions with domain X where C is the range of enc and let L,Q ∈ N ∪ {∞}. We say E is
(L,Q)-AD-CFE-secure if

[PREPC,AUTC,A,SECC,B]
πAD,L,Q

==⇒ REPAD
F,L,Q,

19

NA-SIM-ExpReal
E,Adv

(pk,mk)← setup()

(x, τ)← Adv
keygen(mk,·)
1 (pk)

c← enc(pk, x)
α← Adv2(pk, c, τ)
return (α, x)

NA-SIM-ExpIdeal
E,Adv,S

(pk,mk)← setup()

(x, τ)← Adv
keygen(mk,·)
1 (pk)

(f1, . . . , fq)← oracle queries by Adv1

(sk1, . . . skq)← replies from keygen oracle
(y0, . . . , yq)← (f0(x), . . . , fq(x))

c← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)
α← Adv2(pk, c, τ)
return (α, x)

Figure 5: Experiments for the Q-NA-SIM security definition. Note that q ≤ Q for Adv1 that
make at most Q queries.

and E is (L,Q)-NA-CFE-secure if

[PREP∅C,AUTC,A,SECC,B]
πNA,L,Q

==⇒ REPNA
F,L,Q.

Note that CFE-security corresponds to (∞,∞)-AD-CFE-security by Theorem 4.4. We
now recall a simulation-based single-message security definition from [GVW12], which we will
compare to our new notions in the next section.

Definition 7.5. Let E = (setup, keygen, enc, dec) be a functional encryption scheme for a set F
of functions with common domain X. We introduce the two experiments in Figure 5 for an
efficient probabilistic oracle algorithm Adv1 and efficient probabilistic algorithms Adv2 and S.
The advantage of a distinguisher D in distinguishing the outputs of these experiments is denoted
by ∆D

(
NA-SIM-ExpReal

E,Adv,NA-SIM-ExpIdealE,Adv,S

)
.

For Q ∈ N, the scheme E is Q-NA-SIM-secure if there exists an efficient probabilistic
algorithm S such that ∆D

(
NA-SIM-ExpReal

E,Adv,NA-SIM-ExpIdealE,Adv,S

)
is negligible for all efficient

probabilistic oracle algorithms Adv1 that make at most Q queries, all efficient probabilistic
algorithms Adv2, and for all efficient distinguishers D.

7.2 Sufficiency of NA-SIM-Security

In this section, we show that Q-NA-SIM-security is sufficient to construct a nonadaptive
repository with potentially dishonest B. This shows that the scheme constructed in [GVW12],
which satisfies this definition, can be used in a composable framework. In particular, this shows
how to construct a nonadaptive repository for the set of all functions that are computed by
polynomial-size circuits, when the number of granted access rights is bounded.

Note that in contrast to Definition 4.1, all keys the adversary sees in the ideal experiment are
generated by the algorithms of the functional encryption scheme and not by a simulator. While
this is an artificial restriction for constructing single-input repositories, it interestingly allows us
to prove that this definition is sufficient to construct a repository for many inputs. A similar
result was already shown in [GVW12] but our result is stronger because we allow subsequent
inputs to depend on previous ciphertexts whereas the many-message definition in [GVW12]
restricts the adversary to input all messages at once before seeing a ciphertext.

Lemma 7.6. Let L,Q ∈ N and let S be an efficient probabilistic algorithm. Then there
exists an efficient converter σB such that for all efficient distinguishers D for the resources

20

πLAπ
NA,Q
C [PREP∅C,AUTC,A, SECC,B] and σBREP

NA
F,L,Q, there is an efficient probabilistic oracle

algorithm Adv1 that makes at most Q queries, an efficient probabilistic algorithm Adv2, and an
efficient distinguisher D′ for the NA-SIM experiment such that

∆D
(
πLAπ

NA,Q
C [PREP∅C,AUTC,A,SECC,B], σBREP

NA
F,L,Q

)
= L ·∆D′

(
NA-SIM-ExpReal

E,Adv,NA-SIM-ExpIdealE,Adv,S

)
.

Proof. We define σB as follows:

Initialization
(l, q)← (0, 0)
(pk,mk)← setup()
output pk at outer sub-interface simulating AUTC,A

Inner Interface
Input: f ∈ F
q ← q + 1
fq ← f
skq ← keygen(mk, f)
output (f, skq) at outer sub-interface simulating SECC,B

Outer Interface
Input: h ∈ H

if ∃k ∈ {1, . . . , l} : hk = h then
output ck at outer sub-interface simulating PREP∅C

else if output (f0, h) at inner interface is not ignored then . some data stored for handle h
l← l + 1
hl ← h
for i = 0, . . . , q do

output (fi, h) at inner interface, let yi be the returned value
cl ← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)

output cl at outer sub-interface simulating PREP∅C

Now let D be an efficient distinguisher for the resources πLAπ
NA,Q
C [PREP∅C,AUTC,A, SECC,B]

and σBREPNA
F,L,Q. We can assume that D does not make any inputs that are ignored by both

resources. Hence, we can assume that after getting a public key from interface B, D makes up
to Q inputs of the form f ∈ F at interface C. Afterwards, it makes inputs of the form x ∈ X at
interface A and h ∈ H at interface B for h that were output at interface A before. As in the
proof of Lemma 4.2, we can also assume without loss of generality that each h is input at most
once, because both resources return the same value for each input of the same h.

We let Adv1, Adv2, and D′ emulate D. At the beginning, Adv1 sets l← 0, draws a number
l̂ ∈ {1, . . . , L} uniformly at random and outputs pk at interface B from the authenticated
channel for D. When D inputs f ∈ F at interface C, Adv1 makes the oracle-query f and
outputs f and the answer sk at interface B from the secure channel. When D inputs x at
interface A, Adv1 invokes getHandle and outputs the returned handle h at interface A. It
further sets M [h]← x for a map M . When D inputs h ∈ H at interface B, Adv1 increments l
by one. If l < l̂, Adv1 outputs enc(pk,M [h]) at interface B from the repository. If l ≥ l̂, Adv1

saves M , the list f1, . . . , fq of queried functions, the answers sk1, . . . , skq, and the state of D

21

in τ and returns (M [h], τ). On input (pk, c, τ), Adv2 reads M , f1, . . . , fq, sk1, . . . , skq, and the
state of D from τ and continues the simulation of D by outputting c at interface B from the
repository. When D inputs x at interface A, Adv2 invokes getHandle, outputs the returned
handle h at interface A, and sets M [h] ← x. When D inputs h ∈ H at interface B, Adv2

computes y0 ← f0(M [h]), . . . , yq ← fq(M [h]) and c′ ← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)
and outputs c′ at interface B from the repository. When D outputs a bit, Adv2 returns this bit.
The distinguisher D′ on input (α, x) simply outputs α.

We prove the bound on the distinguishing advantage by a hybrid argument. To this end,
consider for i = 0, . . . , L the system Hi that corresponds to πLAπ

NA,Q
C [PREP∅C,AUTC,A, SECC,B]

for the first i inputs of the form h ∈ H at interface B, and that subsequently on input h ∈ H at
interface B behaves as follows: If h has been output at interface A but not input at interface B
before, the resource outputs S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq) at interface B, where q is
the number of inputs at interface C, fj corresponds to the jth input at interface C, skj to the
value the resource output in return at interface B together with fj , and yj = fj(x) for the
x ∈ X that was input at interface A before the resource returned h. Inputs h ∈ H at interface B
for h that have not been output before at interface A are ignored, and inputting the same h
more than once always yields the same output as after its initial input. Note that we have
HL ≡ πLAπ

NA,Q
C [PREP∅C,AUTC,A, SECC,B] and H0 ≡ σBREPNA

F,L,Q. Further note that

P
(
D′ NA-SIM-ExpReal

E,Adv = 1
)

=
L∑
i=1

P
(
l̂ = i

)
· P
(
D′ NA-SIM-ExpReal

E,Adv = 1 | l̂ = i
)

=
1

L

L∑
i=1

P(DHi = 1)

and similarly

P
(
D′ NA-SIM-ExpIdealE,Adv,S = 1

)
=

1

L

L∑
i=1

P(DHi−1 = 1).

We therefore have

∆D
(
πLAπ

NA,Q
C [PREP∅C,AUTC,A,SECC,B], σBREP

NA
F,L,Q

)
= |P(DHL = 1)− P(DH0 = 1)|

=

∣∣∣∣∣
L∑
i=1

P(DHi = 1)−
L∑
i=1

P(DHi−1 = 1)

∣∣∣∣∣
=
∣∣∣L · P(D′ NA-SIM-ExpReal

E,Adv = 1
)
− L · P

(
D′ NA-SIM-ExpIdealE,Adv,S = 1

)∣∣∣
= L ·∆D′

(
NA-SIM-ExpReal

E,Adv,NA-SIM-ExpIdealE,Adv,S

)
.

Note that since an efficient distinguisher can only make a polynomial number of inputs at
interface A, lemmata 7.3 and 7.6 imply the following theorem.

Theorem 7.7. Let Q ∈ N, E be a Q-NA-SIM-secure functional encryption scheme, and let
πNA,∞,Q be the protocol defined above for E. We then have

[PREP∅C,AUTC,A, SECC,B]
πNA,∞,Q

==⇒ REPNA
F,∞,Q.

Stated equivalently, Q-NA-SIM-security implies (∞, Q)-NA-CFE-security.

22

8 Capturing More General Notions of Functional Encryption

Recent papers generalize the notion of functional encryption to support functions of several
variables [GGJS13,GKL+13,ABF+13] or randomized functions [GJKS15,GGJS13,ABF+13].
While a detailed treatment of these extensions is beyond the scope of this paper, we sketch
how to capture them and further extensions in our model. Using our approach, one only needs
to specify the involved resources; the corresponding security definitions are then implied by
the constructive cryptography framework and one can extract equivalent traditional security
definitions as we have done to obtain CFE-security. In contrast to that, adjusting a traditional
security definition appropriately to support additional features is a challenging task and it is
often unclear which guarantees a specific definition provides. Whether existing definitions are
sufficient to achieve the constructions we propose in this section is an open question, but we
conjecture that this is not the case.

8.1 Dishonest Senders

So far, we have assumed that Alice is always honest, that is in the real world, dishonest users
do not encrypt data that is decrypted by someone else. Dropping this assumption is a very
natural extension, which is indeed required for many applications. This scenario can be captured
by simply considering dishonest users at interface A. According to a general principle of the
constructive cryptography framework, security then means that interactions at interface A
can also be simulated. Otherwise, all definitions in our paper remain unchanged. See [MR11]
for more details. While in the context of randomized functions [GJKS15,GGJS13], security
definitions have been considered that prevent the sender from tampering with the randomness,
we are not aware of any results that provide guarantees against dishonest senders beyond
preventing them from manipulating randomness.

8.2 Randomized Functions

It is straightforward to extend the repositories defined in Definition 7.1 to support randomized
functions as follows: For a set F of functions with domain R×X, the repository on input (f, h)
at interface B chooses r ∈ R uniformly at random and outputs f(r,M [h]) at interface B if the
right to access f has been granted to B and M [h] 6= ⊥. One can consider two cases here: Either
the randomness r is chosen freshly for each input at interface B or the resource remembers all
inputs and only samples r for fresh inputs (and uses the same randomness if the same pair (f, h)
is input again). This can, of course, be combined with dishonest senders as explained above.

8.3 Functions of Several Variables

To compute on a database where each entry is encrypted separately, one needs to support
functions f with domain Xn. Our constructed resources can be generalized to capture that
by answering inputs (f, h1, . . . , hn) ∈ F ×Hn at interface B with f(M [h1], . . . ,M [hn]) if the
right to access f has been granted. The setting considered in [GGJS13] is even more general:
The functions there have domain X1 × . . .×Xn and the key used to encrypt xi ∈ Xi can be
different from the one used to encrypt xj ∈ Xj for i 6= j. To capture this setting, we extend
our constructed resource to have interfaces A1, . . . , An instead of interface A where elements
in Xi can be input at interface Ai. Moreover, [GGJS13,GKL+13] allow some of the encryption
keys to be secret while others are public. This can be covered easily in our model by adjusting

23

BSW-SIM

CFE (∞,∞)-AD-CFE (∞, Q)-NA-CFE

Q-NA-SIM

Theorem 4.4

Theorem 7.7

Figure 6: Implications among security definitions. BSW-SIM corresponds to [BSW11, Defini-
tion 4] and Q-NA-SIM corresponds to the non-adaptive case of [GVW12, Definition 1]. The
separations follow from the impossibility of BSW-SIM and CFE-security and the possibility of
Q-NA-SIM-security.

the assumed resource: For the keys that are supposed to be secret, the channel from the key
authority C to the corresponding Ai has to be secure instead of only authenticated. This ensures
that dishonest parties cannot learn these keys, in contrast to the (public) keys sent over only
authenticated channels.

Remark. Note that the impossibility result in Section 5.1 does not rely on the fact that the
encryption key is public. Hence, the impossibility extends to the case where all encryption keys
are secret.

9 Conclusions and Open Problems

To better understand the space of possible security definitions for functional encryption schemes,
we have put forward a new approach to defining their security. To this end, we have defined a
public repository resource and repositories with access control. We then showed how a functional
encryption scheme can be used to construct the latter from the former in the sense of constructive
cryptography.

We have proposed CFE-security based on a security definition by Boneh, Sahai, and Waters
and discussed the implications of some details in such definitions. Furthermore, we have shown
that CFE-security is equivalent to constructing a repository with access control. Moreover, we
have explained how impossibility results that have been known before functional encryption
emerged can directly be applied in our context without reproving anything. To circumvent
these impossibility results, we have considered weaker repository resources, which lead to weaker
security definitions. We have further shown that a security definition for which functional
encryption schemes exist is sufficient to construct such a weaker resource. Therefore, we have
made explicit how those schemes can be used in a composable way. See Figure 6 for an overview
of the implications among security definitions considered in this paper.

We have further outlined how to extend our constructed resource to support functions of
several variables and randomized functions. Whereas traditional security definitions require non-
trivial adjustments for such functions, reopening the question which definitions are appropriate,
we only need to specify the involved resources and apply the definitions from the constructive
cryptography framework.

An interesting goal is to find practical protocols that construct the unrestricted repository
for a large set of functions using more powerful assumed resources, e.g., including a random
oracle. Moreover, our constructive approach naturally leads to further open questions: To our
knowledge, dishonest senders have only been considered in the context of randomized functions

24

and only to prevent them from tampering with the randomness. However, one could also try to
find functional encryption schemes for deterministic functions that can be used to construct a
repository if dishonest users can also input data. Another open problem is how several dishonest
Bobs that are not colluding but mutually distrusting can be handled, which is a valid scenario in
real applications. These problems involve more than one potentially dishonest party. While not
considered in this paper, the constructive cryptography framework provides general definitions
to treat such situations.

Acknowledgment

The authors would like to thank Phil Rogaway for very helpful feedback on an earlier draft of
this paper. The work was supported by the Swiss National Science Foundation (SNF), project
no. 200020-132794.

References

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon,
Stefano Tessaro, and David A. Wilson, On the relationship between functional
encryption, obfuscation, and fully homomorphic encryption, Cryptography and
Coding (Martijn Stam, ed.), Lecture Notes in Computer Science, vol. 8308, Springer
Berlin Heidelberg, 2013, pp. 65–84.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee,
Functional encryption: New perspectives and lower bounds, Advances in Cryptology
– CRYPTO 2013 (Ran Canetti and Juan A. Garay, eds.), Lecture Notes in Computer
Science, vol. 8043, Springer Berlin Heidelberg, 2013, pp. 500–518.

[BCHK06] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz, Chosen-ciphertext
security from identity-based encryption, SIAM J. Comput. 36 (2006), no. 5, 1301–
1328.

[BF01] Dan Boneh and Matt Franklin, Identity-based encryption from the Weil pairing,
Advances in Cryptology — CRYPTO 2001 (Joe Kilian, ed.), Lecture Notes in
Computer Science, vol. 2139, Springer Berlin Heidelberg, 2001, pp. 213–229.

[BF13] Manuel Barbosa and Pooya Farshim, On the semantic security of functional en-
cryption schemes, Public-Key Cryptography – PKC 2013 (Kaoru Kurosawa and
Goichiro Hanaoka, eds.), Lecture Notes in Computer Science, vol. 7778, Springer
Berlin Heidelberg, 2013, pp. 143–161.

[BO13] Mihir Bellare and Adam O’Neill, Semantically-secure functional encryption: Possi-
bility results, impossibility results and the quest for a general definition, Cryptology
and Network Security (Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Da-
hab, eds.), Lecture Notes in Computer Science, vol. 8257, Springer International
Publishing, 2013, pp. 218–234.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner, The reactive simulatability
(RSIM) framework for asynchronous systems, Inf. Comput. 205 (2007), no. 12,
1685–1720.

25

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters, Functional encryption: Definitions and
challenges, Theory of Cryptography (Yuval Ishai, ed.), Lecture Notes in Computer
Science, vol. 6597, Springer Berlin / Heidelberg, 2011, pp. 253–273.

[BSW12] , Functional encryption: a new vision for public-key cryptography, Commun.
ACM 55 (2012), no. 11, 56–64.

[Can01] R. Canetti, Universally composable security: a new paradigm for cryptographic pro-
tocols, Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium
on, 2001, pp. 136–145.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor, Adaptively secure multi-
party computation, Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing (New York, NY, USA), STOC ’96, ACM, 1996, pp. 639–648.

[CIJ+13] Angelo Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano, On the achievability of simulation-based security for functional
encryption, Advances in Cryptology – CRYPTO 2013 (Ran Canetti and Juan A.
Garay, eds.), Lecture Notes in Computer Science, vol. 8043, Springer Berlin Heidel-
berg, 2013, pp. 519–535.

[CMT13] Sandro Coretti, Ueli Maurer, and Björn Tackmann, Constructing confidential
channels from authenticated channels—public-key encryption revisited, Advances in
Cryptology - ASIACRYPT 2013 (Kazue Sako and Palash Sarkar, eds.), Lecture
Notes in Computer Science, vol. 8269, Springer Berlin Heidelberg, 2013, pp. 134–153.

[CS98] Ronald Cramer and Victor Shoup, A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack, Advances in Cryptology — CRYPTO
’98 (Hugo Krawczyk, ed.), Lecture Notes in Computer Science, vol. 1462, Springer
Berlin Heidelberg, 1998, pp. 13–25.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters, Candidate indistinguishability obfuscation and functional encryption for
all circuits, Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, Oct 2013, pp. 40–49.

[GGJS13] Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai, Multi-input func-
tional encryption, Cryptology ePrint Archive, Report 2013/727, 2013.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai, Functional encryp-
tion for randomized functionalities, Theory of Cryptography (Yevgeniy Dodis and
Jesper Buus Nielsen, eds.), Lecture Notes in Computer Science, vol. 9015, Springer
Berlin Heidelberg, 2015, pp. 325–351 (English).

[GKL+13] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou,
Multi-input functional encryption, Cryptology ePrint Archive, Report 2013/774,
2013.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich, Reusable garbled circuits and succinct functional encryption, Proceedings

26

of the 45th annual ACM symposium on Symposium on theory of computing (New
York, NY, USA), STOC ’13, ACM, 2013, pp. 555–564.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee, Functional encryption
with bounded collusions via multi-party computation, Advances in Cryptology –
CRYPTO 2012 (Reihaneh Safavi-Naini and Ran Canetti, eds.), Lecture Notes in
Computer Science, vol. 7417, Springer Berlin Heidelberg, 2012, pp. 162–179.

[HS15] Dennis Hofheinz and Victor Shoup, Gnuc: A new universal composability framework,
Journal of Cryptology 28 (2015), no. 3, 423–508 (English).

[KRBM07] Robert König, Renato Renner, Andor Bariska, and Ueli Maurer, Small accessible
quantum information does not imply security, Phys. Rev. Lett. 98 (2007), 140502.

[KT13] Ralf Küsters and Max Tuengerthal, The IITM Model: a simple and expressive model
for universal composability, Cryptology ePrint Archive, Report 2013/025, 2013.

[Mau12] Ueli Maurer, Constructive cryptography – a new paradigm for security definitions and
proofs, Theory of Security and Applications (Sebastian Mödersheim and Catuscia
Palamidessi, eds.), Lecture Notes in Computer Science, vol. 6993, Springer Berlin
Heidelberg, 2012, pp. 33–56.

[MR11] Ueli Maurer and Renato Renner, Abstract cryptography, The Second Symposium
on Innovations in Computer Science, ICS 2011 (Bernard Chazelle, ed.), Tsinghua
University Press, January 2011, pp. 1–21.

[MRT12] Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann, Confidentiality and in-
tegrity: A constructive perspective, Theory of Cryptography — TCC 2012 (Ronald
Cramer, ed.), Lecture Notes in Computer Science, vol. 7194, Springer Berlin Heidel-
berg, 2012, pp. 209–229.

[MY96] Ueli Maurer and Yacov Yacobi, A non-interactive public-key distribution system,
Designs, Codes and Cryptography 9 (1996), no. 3, 305–316.

[Nie02] Jesper Buus Nielsen, Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case, Advances in Cryptology — CRYPTO
2002 (Moti Yung, ed.), Lecture Notes in Computer Science, vol. 2442, Springer
Berlin Heidelberg, 2002, pp. 111–126.

[O’N10] Adam O’Neill, Definitional issues in functional encryption, Cryptology ePrint
Archive, Report 2010/556, 2010.

[PW01] Birgit Pfitzmann and Michael Waidner, A model for asynchronous reactive sys-
tems and its application to secure message transmission, Proceedings of the 2001
IEEE Symposium on Security and Privacy (Washington, DC, USA), SP ’01, IEEE
Computer Society, 2001, pp. 184–200.

[Ren05] Renato Renner, Security of quantum key distribution, Ph.D. thesis, ETH Zurich,
September 2005.

27

[Sha85] Adi Shamir, Identity-based cryptosystems and signature schemes, Advances in
Cryptology (George Robert Blakley and David Chaum, eds.), Lecture Notes in
Computer Science, vol. 196, Springer Berlin Heidelberg, 1985, pp. 47–53.

[SPPM13] Rifki Sadikin, YoungHo Park, KilHoum Park, and SangJae Moon, Universal com-
posability notion for functional encryption schemes, Journal of the Korea Industrial
Information System Society 18 (2013), 17–26.

[SW05] Amit Sahai and Brent Waters, Fuzzy identity-based encryption, Advances in Cryp-
tology – EUROCRYPT 2005 (Ronald Cramer, ed.), Lecture Notes in Computer
Science, vol. 3494, Springer Berlin Heidelberg, 2005, pp. 457–473.

A Application of the Constructed Repository Resource

In this section, we demonstrate how a repository with access control can be used in applications
and how this relates to the composition theorem of the constructive cryptography framework.
As a simple application, consider a university that wants its students to learn the results of
their exams as well as the average result of each exam. This can be accomplished by entering
the results into a repository and granting the students appropriate access rights. To formalize
this, we introduce the resource EXAM_DB that can directly be used by the university to enter
results such that students are automatically notified about their results. We construct this
resource from a repository with access control REPNA

F,∞,Q as introduced in Section 7.9 To notify
the students about the results and communicate the handles needed to access the data in the
repository, our construction additionally requires authenticated channels to the students.

For simplicity, we describe a resource that allows one student called Bob to access his results.
As mentioned in Section 3.1, analyzing the security with a single potentially dishonest party is
sufficient to guarantee security against several colluding dishonest parties, so the results here
can be applied to a real world application with many students. The described protocols can be
extended to such a setting in an obvious way by granting each student the appropriate rights
and sending the notifications to every student.

We now describe the resource EXAM_DB in more detail. After the examiner Alice inputs
the ID of a lecture together with a list of students and the number of points they were awarded,
Bob receives the lecture ID, the number of participants, his number of points, and the average
points. More concretely, let L be the set of lectures and S be the set of students registered at the
university. Now consider the resource EXAM_DB that on input (lecture, ((s1, p1), . . . , (sn, pn))) ∈
L× (S ×N)∗ at interface A, outputs (lecture, n, p, p̄) ∈ L×N2×Q at interface B, where p = pj
with sj being Bob’s student ID and p̄ = 1

n

∑n
i=1 pi.

We will construct the resource EXAM_DB from a repository with access control. To
this end, let X := L × (S × N)∗. We do not require the repository to hide the length
of stored entries, i.e., we set f0 : X → N, (lecture, ((s1, p1), . . . , (sn, pn))) 7→ n. We further
consider for every student s ∈ S the function fs : X → N ∪ {⊥} that maps an entry to
the number of points for student s if s occurs in the list, and ⊥ otherwise. Finally, let
favg : X → Q, (lecture, ((s1, p1), . . . , (sn, pn))) 7→ 1

n

∑n
i=1 pi. We set F := {f0, favg}∪{fs | s ∈ S}

and consider [REPNA
F,∞,Q,AUTA,B] for Q ≥ 2|S| (because every s ∈ S is granted access to favg

and fs) as the assumed resource in our construction.
9Of course, one can instead use REPF if it is available, since REPNA

F,∞,Q is more restricted than REPF .

28

The protocol πEx := (πExA , πExB , πExC) is defined as follows: Initially, πExC outputs fBob and
favg at its inner interface. The converter πExA on input x = (lecture, ((s1, p1), . . . , (sn, pn))) ∈
L × (S ×N)∗ at its outer interface, outputs x at its inner interface to the repository. When
the repository returns a handle h, πExA sends (lecture, h) to Bob over the authenticated channel.
On input (lecture, h) at its inner interface, πExB inputs (f0, h), (fBob, h), and (favg, h) at its
inner interface to the repository. Let the returned values from the repository be n, p, and p̄,
respectively. The converter then outputs (lecture, n, p, p̄) at its outer interface. We now show
that this protocol indeed constructs the desired resource EXAM_DB.

Proposition A.1. We have

[REPNA
F,∞,Q,AUTA,B]

πEx

==⇒ EXAM_DB.

Proof. It is easy to see that

πExA πExB πExC [REPNA
F,∞,Q,AUTA,B] ≡ EXAM_DB.

We define a simulator σB as follows: Initially, it outputs fBob and favg at its outer sub-
interface simulating REPNA

F,∞,Q. On input (lecture, n, p, p̄) at its inner interface, it invokes
h← getHandle, internally stores (h, n, p, p̄), and outputs (lecture, h) at its outer sub-interface
simulating AUTA,B. On input (f0, h), (fBob, h), or (favg, h) at its outer interface for some h
that has been stored, it outputs the corresponding stored n, p, or p̄, respectively, at its outer
sub-interface simulating REPNA

F,∞,Q. Other inputs are ignored. We then have

πExA πExC [REPNA
F,∞,Q,AUTA,B] ≡ σBEXAM_DB

and the claim follows.

By the composition theorem mentioned in Section 2.3, one can first construct REPNA
F,∞,Q

from a public repository via a protocol π′ as demonstrated in Section 7 and then use πEx to
construct EXAM_DB. Due to this modularity, the protocol πEx does not need to consider
functional encryption or know how REPNA

F,∞,Q was constructed. This makes the protocol and its
security analysis very simple. The composition theorem guarantees that the overall construction
(corresponding to an application of the protocol πEx ◦ π′) is secure. Moreover, security is still
guaranteed if AUTA,B is in parallel constructed from an insecure channel using some secure
authentication protocol. Traditional security definitions for functional encryption do not offer
such guarantees.

Note that πExC has to grant Bob the rights before A makes any inputs. Using the constructive
approach, this is obvious since REPNA

F,∞,Q does not allow any inputs at interface C after an
input at interface A. In a real world application, this corresponds to sending all keys to the
students before the exam session starts (and using fresh keys every semester). If a student forgot
to register and asks for his key after some results have already been published, the university
cannot give him a key without destroying all security guarantees. When a functional encryption
scheme is used to build EXAM_DB from scratch using traditional security definitions, this fact
might be less obvious.

29

	Introduction
	Functional Encryption
	Problem Statement
	Security Definitions and Their Semantics
	Addressing the Problem
	Contributions of this Paper

	Preliminaries
	Resources, Converters, and Distinguishers
	Examples of Resources
	Construction of Resources
	Functional Encryption

	Repositories and Access Control
	Repository Resources
	Access Control via Functional Encryption

	Security of Functional Encryption Schemes
	Definition of CFE-Security
	Equivalence of CFE-Security and Construction of Repository
	Alleged Insufficiency of BSW's Security Definition

	Special Cases and Impossibility Results
	Public-Key Encryption and its Impossibility
	Circumventing Impossibility Results

	Construction in the Random Oracle Model
	Weaker Security Definitions and Restricted Variants of Repository Resources
	Definitions
	Sufficiency of NA-SIM-Security

	Capturing More General Notions of Functional Encryption
	Dishonest Senders
	Randomized Functions
	Functions of Several Variables

	Conclusions and Open Problems
	Acknowledgment
	Application of the Constructed Repository Resource

