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Abstract. Self-pairings are a special subclass of pairings and have inter-

esting applications in cryptographic schemes and protocols. In this paper,

we explore the computation of the self-pairings on supersingular elliptic

curves with embedding degree k = 3. We construct a novel self-pairing

which has the same Miller loop as the Eta/Ate pairing. However, the pro-

posed self-pairing has a simple final exponentiation. Our results suggest

that the proposed self-pairings are more efficient than the other ones on

the corresponding curves. We compare the efficiency of self-pairing com-

putations on different curves over large characteristic and estimate that

the proposed self-pairings on curves with k = 3 require 44% less field

multiplications than the fastest ones on curves with k = 2 at AES 80-bit

security level.

Keywords: Tate pairing, Weil pairing, Self-pairing, Pairing based cryptogra-

phy.

1 Introduction

Pairing based cryptography has been one of the most active area in cryptologic

research in the past years [7, 23]. This leads to the improvement of mathematical

algorithmic foundations of pairings. For the general bilinear pairing e(P,Q) on

(hyper-)elliptic curves, many variants of the Tate pairings have been proposed

in efficiency [6, 2, 13, 12, 18, 24, 14].

Self-pairings e(P, P ) are a special subclass of pairings, which are of vital use

in several cryptographic applications, such as on-line/off-line signature scheme of

Zhang et al. [27] and the designated confirmer signature [26]. Since both input
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points are equal in the self-pairings, it is natural to ask whether self-pairings

can be computed faster than the general case. By using the distortion maps on

supersingular elliptic curves [25, 9], the authors of [28] propose the novel self-

pairing with a simple final exponentiation. This idea has been also generalized

to the hyperelliptic case [10].

It is known that self-pairings can be constructed on supersingular elliptic

curves with distortion maps. Verheul first introduces the notion of distortion

maps on supersingular elliptic curve with k = 3 [25]. This curve is defined over

a finite field Fp2 for p a prime p ≡ 2 (mod 3), and has p2 − p + 1 Fp2 -rational

points. The general bilinear pairings on this elliptic curve have been studied by

Hu et al. in [19] and improved by Galbraith et al. in [8]. This curve has many

merits in performance. Firstly, the Miller loop of the Eta/Ate pairings on this

curve can be shortened to a half of that of the reduced Tate pairing. This is better

than computing pairings on supersingular curves over large prime fields with

k = 2. Secondly, the authors of [5] propose a variant Miller’s iteration formula

which makes the denominator elimination technique available for pairing friendly

curves with odd embedding degrees. Finally, for supersingular elliptic curves with

k = 3 we can generate the suitable parameters which allow the pairings to be

computed quickly [8], i.e., the bit length of the Miller loop and the order of

the prime field Fp can be chosen to have a low Hamming weight. Therefore, it

is meaningful to consider the self-pairing computation on supersingular curves

with k = 3.

The self-pairing computation has been investigated on supersingular elliptic

curves with even embedding degrees [28]. It should be remarked that the novel

self-pairings have been obtained by using distortion maps which are non-trivial

automorphisms of these curves simultaneously. However, the distortion map on

supersingular elliptic curves with k = 3 is not an automorphism of the curve.

This leads to the ignorance of this kind of curves in [28]. In this paper, we tackle

this problem and propose a new self-pairing with a simple final exponentiation

by using distortion maps. Although the structure of the proposed self-pairing

is like that of the Tate pairing, the whole results are obtained by employing

the Weil pairing. We conclude that the proposed self-pairing is the fastest on

supersingular elliptic curves with k = 3.

The recent prominent developments of the function field Sieve algorithm on

finite fields with small characteristic [17, 16, 11] lead to the weakness of pairings
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on supersingular elliptic curves with characteristic 2 or 3. Thus we compare the

efficiency of self-pairings on the different curves over large characteristic. Our

results indicate that the proposed self-pairing on curves with k = 3 can be more

efficient than the fastest one on curves with k = 2 at AES 80-bit security level.

The remained of this paper is organized as follows. Section 2 gives prelimi-

naries of pairings and supersingular elliptic curves with k = 3. The main results

are presented in Section 3. Efficiency considerations are given in Section 4. Some

conclusions are drawn in Section 5.

2 Mathematical background

In this section we first recall the definitions of the Tate and Weil pairings, and

Miller’s algorithm to compute them. Then we give some facts about supersingu-

lar elliptic curves with k = 3.

2.1 Tate pairing

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be an

elliptic curve defined over Fq, and let P∞ be the point at infinity. Let r be a

prime such that r | #E(Fq), where #E(Fq) denotes the order of the rational

point group E(Fq). Assume that r2 does not divide qk − 1 and k is greater than

1, where k is the embedding degree with respect to r. We denote by E[r] the

r-torsion group of E.

Let P ∈ E[r] and R ∈ E(Fqk). Let DP be a degree zero divisor which is

equivalent to (P )− (P∞). For every integer i and point P , let fi,P be a rational

function such that its divisor div(fi,P ) = i(P )−([i]P )−(i−1)(P∞). In particular,

div(fr,P ) = rDP . Let µr be the r-th roots of unity in Fqk . Then the reduced

Tate pairing [3] is defined as follows

e : E[r] × E(Fqk) → µr,

e(P,R) = fr,P (R)
qk

−1

r .

Note that fr,P (R)a(q
k
−1)/r = far,P (R)(q

k
−1)/r for any integer a. If points P and

R can be restricted to specific subgroups of the r-torsion group E[r], the variants

of the reduced Tate pairing can be constructed in efficiency [6, 2, 13, 18, 24, 14].
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2.2 Weil pairing

Using the same notation as before, one can make a few slight modifications and

then define the Weil pairing. Let k be the minimal positive integer such that

E[r] ⊂ E(Fqk). According to the results in [1], if r ∤ q − 1 and (r, q) = 1, then

E[r] ⊂ E(Fqk) if and only if r|qk − 1, i.e., the embedding degree for the Weil

pairing is equal to the embedding degree for the Tate pairing in this case.

Suppose that P, Q ∈ E[r] and P 6= Q. Let DP and DQ be two degree

zero divisors which are equivalent to (P ) − (P∞) and (Q) − (P∞), respectively.

Let fr,P and fr,Q be two rational functions on E with div(fr,P ) = rDP and

div(fr,Q) = rDQ. Then the Weil pairing [15, 22] is a map

ê : E[r] × E[r] → µr,

ê(P,Q) = (−1)r
fr,Q(P )

fr,P (Q)
.

Note that the Weil pairing also plays an essential role in algorithmic founda-

tions of pairings. For example, the pairing variants of the Weil pairing can be

obtained [14, 29]. The new self-pairings are proposed by using the symmetric

structure of the Weil pairing [28, 10].

2.3 Miller’s algorithm

In essence, Miller’s algorithm [21, 22] is to compute the evaluation of the rational

function fi,P at point R in polynomial time.

For P1, P2 ∈ E, we denote by lP1,P2
the equation of the line through points

P1 and P2 (if P1 = P2, then lP1,P2
is the tangent to the curve E at P1 or P2, and

if one of P1 or P2 is the infinity point, then the lP1,P2
is a vertical line at the

other point). We define vP1
to be the equation of the line between P and P∞ if

P1 is not equal to P∞.

Now we restrict P to be a point in E[r]. Recall fj,P to be a rational function

on the elliptic curve with its divisor div(fj,P ) = j(P ) − ([j]P ) − (j − 1)(P∞).

Then for i, j ∈ Z, we have

div(fi+j,P ) = div(fi,P fj,P
liP,jP
v(i+j)P

).

This gives an iteration formula which is useful in Miller’s algorithm. For even em-

bedding degrees, the denominator technique can be applied since the evaluation
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of v(i+j)P at the corresponding point belongs to a proper subfield of Fqk [3]. For

odd embedding degrees, the authors of [5] propose an efficient iteration formula,

i.e.,

div(fi+j,P ) = div(
1

f−i,P f−j,P l−iP,−jP
).

This speeds up the computations of the basic doubling and addition steps in

Miller’s algorithm on pairing friendly curves with odd embedding degrees. It

should be also mentioned that the authors of [20, 8] give another efficient de-

nominator elimination technique if the odd embedding degree is divisible by

3.

Note that all rational functions above are defined up to a non-zero constant.

In implementations, one often requires a unique value in finite fields. So we fix a

local uniformizer at the infinity point as tP∞
= x/y on elliptic curves with short

Weierstrass form. Following [12] we will assume that all rational functions f are

normalized at infinity, i.e., the Laurent expansion of f at the infinity point P∞

is of the form f = tiP∞

+ · · · for some i ∈ Z. Then the evaluation of the rational

functions can be determined uniquely in implementations.

2.4 Supersingular elliptic curves with embedding degree three

In this subsection, we will recall the construction of the supersingular elliptic

curve with k = 3 which has been given in [25]. This curve is useful in pairing

implementations and has been considered for general pairings in [19, 8]. Now we

mainly investigate the self-pairing computation on this curve.

Let p be a prime with p ≡ 2 (mod 3). Consider the underlying supersingular

elliptic curves over Fp2

E : y2 = x3 + ρ2, (1)

where ρ ∈ Fp2\Fp and ρ2 is not a cube in Fp2 . The order of the rational point

group E(Fp2) is p2 − p+ 1. Let r be a large prime dividing p2 − p+ 1 and then

the embedding degree for E with respect to r is k = 3.

Suppose that β is an element in Fp6 with β3 = ρ. Let a = ρ−(2p−1)/3 and

b = ρ−(p−1). One can define a distortion map φ [25] on the curve E as follows.

φ : E → E,

(x, y) → (aβxp, byp).
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Note that there exists another distortion map ψ on the curve E

ψ : E → E,

(x, y) → ((aβ)−pxp, byp).

which satisfies ψ◦φ = πp2 , where πp2 is the well-known Frobenius endomorphism

on the curve E. By Lemma 8 of [9], the distortion map φ maps the 1-eigenspace

of Frobenius to the p2-eigenspace of Frobenius in E[r]. It will be shown that the

distortion map ψ also maps the 1-eigenspace of Frobenius to the p2-eigenspace

of Frobenius in E[r] as follows.

Lemma 1. Let P ∈ G1 = Ker(πp2 − [1])∩E[r] = Ker(π̂p2 − [p2]) ∩E[r] where

π̂p2 is the dual of Frobenius endomorphism πp2 . Then ψ(P ) ∈ G2 = Ker(πp2 −

[p2]) ∩ E[r] = Ker(π̂p2 − [1]) ∩ E[r].

Proof. Let P = (x0, y0) ∈ G1 and then ψ(P ) = ((aβ)−pxp0, by
p
0). By Lemma 3

of [4], it suffices to show that tr(ψ(P )) = P∞. Note that

tr(ψ(P )) = ψ(P ) + πp2(ψ(P )) + π2
p2(ψ(P ))

= ((aβ)−pxp0, by
p
0) + ((aβ)−p

3

xp0, by
p
0) + ((aβ)−p

5

xp0, by
p
0).

The second equality in the above holds because x0, y0 and b are contained in

Fp2 . The three distinct points ψ(P ), πp2 (ψ(P )) and π2
p2(ψ(P )) have the same

y-coordinate, which implies that they are collinear. It gives that tr(ψ(P )) = P∞

by the group law of elliptic curves and thus ψ(P ) ∈ G2. ⊓⊔

3 Self-pairings on supersingular elliptic curves with

embedding degree three

The main result of this paper is summarized in the following theorem.

Theorem 1. Let E be the supersingular elliptic curve defined by the equation (1).

Let r be a large prime satisfying r | #E(Fp2 ) = p2 − p+ 1 and r2 ∤ (p6 − 1). Let

Ti be the integers such that Ti ≡ (p2)i (mod r) with i = 1, 2. Then

es(P, P ) , fTi,P (ψ(P ))3(p+1)(p3−1).

is a self-pairing for P ∈ G1 = Ker(πp2 − [1]) ∩ E[r],
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The proof of Theorem 1 is split into the following short lemmas. It follows

from Lemma 5 of [12] that the rational function fm,ψ(P ) ◦ ψ equals fdegψ
m,P mul-

tiplying by a non-zero constant provided that ψ is a purely inseparable map on

E. For our purposes, the exact value of the non-zero constant is determined in

the following lemma.

Lemma 2. Let P ∈ G1 = Ker(πp2 − [1])∩E[r] and m be an integer. Then there

exists a non-zero constant γm such that

fm,ψ(P ) ◦ ψ = γmf
p
m,P ,

where γm = (b(aβ)p)m if r|m and γm = (b(aβ)p)(m−1) otherwise.

Proof. By definition we have

div(fm,ψ(P )) = m(ψ(P )) − ([m]ψ(P )) − (m− 1)(P∞).

Since the map ψ is purely inseparable of degree p, it follows that

(ψ∗)div(fm,ψ(P )) = pm(P ) − p([m]P ) − p(m− 1)(P∞) = div(fpm,P ).

Therefore,

fm,ψ(P ) ◦ ψ = γmf
p
m,P

for some non-zero constant γm. Let tP∞
= x/y be the local parameter at infinity

for this curve. Assume that the order of the rational function fm,ψ(P ) at the

infinity point is h. Then h = −m if r | m and h = −(m−1) if r ∤ m. Since fm,ψ(P )

is normalized by assumption, the local expansion of fm,ψ(P ) at the infinity point

is

fm,ψ(P ) = thP∞
+ · · · = (x/y)h + · · · .

As tP∞
◦ ψ = ( 1

b(aβ)p )(xy )p, this implies that the local expansion of fm,ψ(P ) ◦ ψ

at the infinity point is

fm,ψ(P ) ◦ ψ = (
1

b(aβ)p
)h(

x

y
)hp + · · · .

As fm,P is normalized, it follows that fpm,P = (x/y)hp + · · · . Comparing the ex-

pression of fm,ψ(P ) ◦ψ with that of fpm,P gives γm = (b(aβ)p)
−h

which concludes

the proof of Lemma 2. ⊓⊔
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We will show that fm,P (φ(P )) can be related to fm,P (ψ(P ))p
2

in the following

Lemma 3. This observation is simple but useful for constructing the new self-

pairings.

Lemma 3. Using the notation defined as previous, we have

fm,P (φ(P )) = fm,P (ψ(P ))p
2

.

Proof. Note that the rational function fm,P in the function field Fp2(E) can be

written as

fm,P = c0 + c1x+ c2x
2

where c0, c1 and c2 are the rational functions over Fp2 in terms of y. Put

P = (x0, y0) where x0, y0 ∈ Fp2 . Then ψ(P ) = ((aβ)−pxp0, by
p
0) and φ(P ) =

(aβxp0, by
p
0). By abuse of notation, the valuation of the rational function ci at

the points φ(P ) and ψ(P ) can be also denoted by ci with i = 0, 1, 2. It follows

that

fm,P (φ(P )) = c0 + c1(aβx
p
0) + c2(aβx

p
0)

2. (2)

On the other hand,

fm,P (ψ(P )) = c0 + c1(aβ)−pxp0 + c2(aβ)−2p(xp0)
2. (3)

Raising to the power p2 at both sides of (3), we have

(fm,P (ψ(P )))p
2

= c0 + c1(aβ)−p
3

xp0 + c2(aβ)−2p3 (xp0)
2. (4)

To prove the assertion of this lemma, it suffices to show that aβ = (aβ)−p
3

by

comparing (2) with (4). As β = ρ1/3 and α = ρ−(2p−1)/3, it follows that

(αβ)3(p+1) = (ρ−(2p−1)ρ)p+1 = ρ−2(p2−1) = 1.

Note that p3 + 1 = (p + 1)(p2 − p + 1) and 3 | (p2 − p + 1). It follows that

3(p+ 1)|(p3 + 1) and then (aβ)p
3+1 = 1. This completes the proof. ⊓⊔

By combining Lemma 2 and 3, we can establish the relationships between fm,ψ(P )(P )

and fm,P (ψ(P )).

Lemma 4. Using the notation defined as previous, we have

fm,ψ(P )(P ) = γmfm,P (ψ(P ))p
3

,

where γm = (b(aβ)p)m if r|m and γm = (b(aβ)p)(m−1) otherwise.
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Proof. Now we consider the evaluation of fm,ψ(P ) at point P . Note that 〈P 〉 6=

〈ψ(P )〉 and P is not a 2-torsion point. Thus fm,ψ(P )(P ) makes sense. Since

P ∈ E(Fp2) = Ker(πp2 − [1]), we obtain

fm,ψ(P )(P ) = (fm,ψ(P ) ◦ πp2)(P ) = (fm,ψ(P ) ◦ ψ ◦ φ)(P ).

It follows from Lemma 2 that

(fm,ψ(P ) ◦ ψ ◦ φ)(P ) = (fm,ψ(P ) ◦ ψ)(φ(P )) = γm(fm,P (φ(P )))p.

Therefore,

fm,ψ(P )(P ) = γm(fm,P (φ(P )))p.

By Lemma 3, we have

fm,P (φ(P )) = (fm,P (ψ(P )))p
2

.

It also gives that

fm,ψ(P )(P ) = γm(fm,P (ψ(P )))p
3

.

⊓⊔

Proof (of Theorem 1). Without loss of generality, we only prove the case T = T1.

Since r2 ∤ (T 3 − 1), it follows that the pairing ê(P, ψ(P ))(T
3
−1)/r keeps non-

degeneracy. It is obvious from the definition of the Weil pairing that

ê(P, ψ(P ))(T
3
−1)/r = (−1)(T

3
−1) fT 3

−1,ψ(P )(P )

fT 3
−1,P (ψ(P ))

= (−1)(T
3
−1) fT 3,ψ(P )(P )

fT 3,P (ψ(P ))
.

It follows from Lemma 4 that

fT 3,ψ(P )(P ) = γm(fT 3,P (ψ(P )))p
3

,

where γm = (b(aβ)p)(T
3
−1)p and m = T 3. Hence

ê(P, ψ(P ))(T
3
−1)/r = (−1)T

3
−1γmfT 3,P (ψ(P ))p

3
−1. (5)

Note that P ∈ G1 = E[r]∩Ker(π̂p2−[p2]) and ψ(P ) ∈ G2 = E[r]∩Ker(π̂p2−[1])

by Lemma 1. Due to the discussion in Section 3.2 of [13] (or see the proof of

Theorem 1 in [2]), we see that

fT 3,P (ψ(P )) = (fT,P (ψ(P )))T
2+Tp2+p4 . (6)



10

Substituting (6) into the equation (5), we have

ê(P, ψ(P ))(T
3
−1)/r = (−1)T

3
−1γm(fT,P (ψ(P )))(p

3
−1)c, (7)

where c = T 2 + Tp2 + p4 ≡ 3p4 (mod r). As b(p+1) = 1, (aβ)3(p+1) = 1 and

p+ 1 ≡ 0 (mod 2), then ((−1) · γm)3(p+1) = 1. Since r does not divide 3(p+ 1),

both sides of (7) can be raised to the power 3(p+ 1) and the left hand side still

keeps non-degeneracy. Therefore,

ê(P, ψ(P ))3(p+1)(T 3
−1)/r = (fT,P (ψ(P )))3(p+1)(p3−1)c. (8)

Following the argument of Theorem 2 in [14], we can ignore the exponent c from

the final exponentiation. In fact, it is seen that

fr2,P (ψ(P ))3(p+1)(p3−1) = ê(P, ψ(P ))r·3(p+1) = 1.

By the Chinese Remainder Theorem, we can find T ′ = T + τr2 for some integer

τ such that T ′ ≡ 0 (mod r′) for all prime numbers r′ 6= r dividing p6 − 1. Then

c′ = T ′2 + T ′p2 + p4 ≡ 3p4 (mod r) and (c′, p6 − 1) = 1. By replacing T by T ′

in Equation (8), we obtain

ê(P, ψ(P ))3(p+1)(T ′3
−1)/r = (fT ′,P (ψ(P )))3(p+1)(p3−1)c′ . (9)

Let c̄′ be an integer c̄′c′ ≡ 1 (mod p6 − 1). Raising Equation (9) to the power c̄′

we get

ê(P, ψ(P ))3c̄
′(p+1)(T 3

−1)/r = fT+τr2,P (ψ(P ))3(p+1)(p3−1)

= fT,P (ψ(P ))3(p+1)(p3−1)fτr2,P (ψ(P ))3(p+1)(p3−1)

= fT,P (ψ(P ))3(p+1)(p3−1).

It follows that

es(P, P ) , fT,P (ψ(P ))3(p+1)(p3−1)

is a well-defined self-pairing. This completes the whole proof of Theorem 1. ⊓⊔

Remark 1. In implementations, the parameter T1 can be chosen to have a low

Hamming weight and be possibly as small as r1/ϕ(k) by Algorithm 1 [8]. This

also shows that the parameter T1 is optimal in efficiency.

Remark 2. The main advantage of the proposed self-pairings on curves with

k = 3 is that the final exponentiation 3(p + 1)(p3 − 1) has a simple expression
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in terms of p. Note that the final exponentiation for the reduced Tate pairing or

its variants is

(p6 − 1)/r = (p3 − 1)(p+ 1)(l0 + l1p),

where l0 and l1 are two small positive integers. We will also give efficiency com-

parisons between the proposed self-pairings and the self-pairings based on the

Eta/Ate pairings in later sections.

Remark 3. It should be remarked that the final exponentiation for the self-

pairings on E2 of [28] is 6(p− 1), not 4(p− 1). Here we give a brief explanation.

Let φ be the distortion map on E2 of [28], i.e. φ : E2 → E2 : (x, y) → (βx, y)

where β3 = 1. Then tP∞
◦ φ = βx/y. For eliminating the non-zero constant in

terms of β, the final exponentiation should be divided by 3. The authors of [10]

have also noticed this.

4 Efficiency comparison

Now the performance of the proposed self-pairings is considered in this section.

We first analyze the efficiency of the different self-pairings on the supersingular

elliptic curves with k = 3. Then we compare the efficiency of the self-pairings on

elliptic curves with k = 2 and k = 3 at AES 80-bit security level.

It is obvious that another choice for implementing the self-pairings on super-

singular curves with k = 3 is the Eta/Ate pairing fT1,P (ψ(P ))(p
6
−1)/r. The final

exponentiation of the proposed self-pairings equals 3(p + 1)(p3 − 1), and that

of the Eta/Ate pairing equals (p6 − 1)/r. After computing (p3 − 1)(p + 1), one

cube is required for the proposed self-pairings. This is faster than computing the

exponent (p2 −p+1)/r for the self-pairings based on the Eta/Ate pairing. Since

the Miller loop step in both cases is identical, we conclude that the proposed

self-pairings are faster than the previous fastest self-pairings on the curves with

k = 3.

Now we compare the efficiency of self-pairings on supersingular elliptic curves

over large different prime fields at AES 80-bit security level since discrete loga-

rithms in small characteristic are more vulnerable than that in large character-

istic [16]. By Algorithm 1 of [8], we can generate the corresponding curves for

efficiency comparison.

We denote byMi, Si and Ii the cost of multiplication, squaring, and inversion

in Fpi for i = 1, 2, 6. For purposes of comparison, the cost of these operations
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should be expressed in terms of the multiplication in the base prime field. Let

S1 = M1, I1 = 10M1, S2 = 2M1, M2 = 3M1, I2 = 14M1, S6 = 11M1, M6 =

15M1 and I6 = 53M1 as assumed in [13, 8].

Let Fp2
1

be a finite field with p2
1 elements where p1 is a 192-bit prime number.

We consider self-pairing computations on supersingular elliptic curve E over

Fp2
1

with k = 3. let M1 denote the cost of a multiplication in Fp1 . Since the

corresponding parameters can be generated with a low Hamming weight, we will

count the doubling steps in the Miller loop roughly. the cost of each doubling

step in projective coordinates is 7S2+(5+3 ·3)M2+2S6+M6 = 93M1 according

to [5]. Assume that the bit length of the parameter T1 equals 86. Then the total

cost for the Miller loop is 85 ·93 = 7905M1. the cost for computing the exponent

3(p+1)(p3−1) equals 109M1 provided that we neglect the cost of the Frobenius

map in finite fields. Thus the total cost for computing the self-pairings is 8014M1.

Let Fp2 be a finite field with p2 elements where p2 is a 512-bit prime number.

We consider the computation of self-pairings on the curve E1 in [28] with k = 2.

let M
′

1 denote the cost of a multiplication in Fp2 where the bit-length of p2

is 512. For comparison purposes the cost of a multiplication in Fp2 should be

expressed in terms of the number of Fp1 multiplications. Using basic Karatsuba

trick, we estimate 1M
′

1 = (512/192)1.58 ≈ 4.7M1. the cost of each doubling step

in projective coordinates is 19M
′

1 according to [5]. Assume that the bit length

of the order of the corresponding subgroup equals 160. Then the total cost for

the Miller loop is 159 · 19 = 3021M
′

1 ≈ 14198M1. the cost for computing the

exponent 4(p− 1) equals 21M
′

1 ≈ 99M1. Thus the total cost for computing the

self-pairings proposed in [28] is 14297M1.

We summarize the above estimations into Table 1. We can see that the pro-

posed self-pairings on supersingular curves with k = 3 are more efficient than

that of [28] on supersingular curves with k = 2.

Table 1. Cost of self-pairing computations on different curves

Curves Size of p Cost of Miller Loop Cost of Final Exponentiation Total Cost

E(F
p
2

1

) k = 3 192 7905M1 109M1 8014M1

E′(Fp2
) k = 2 512 14198M1 99M1 14297M1
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5 Conclusion

In this paper, we showed how to speed up the computation of the self-pairings

on supersingular elliptic curves with k = 3. We demonstrated that the proposed

self-pairings can be the fastest on supersingular curve with k = 3. We indicated

that the proposed self-pairings on curves with k = 3 require 44% less field

multiplications than the fastest ones on curves with k = 2 at AES 80-bit security

level.
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