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Abstract
We study the natural question of how well suited the hybrid encryption paradigm is in the con-

text of key-dependent message (KDM) attacks. We prove that if a key derivation function (KDF) is
used in between the public (KEM) and symmetric (DEM) part of the hybrid scheme and this KDF
is modelled as a random oracle, then one-wayness of the KEM and indistinguishability of the DEM
together suffice for KDM security of the resulting hybrid scheme. We consider the most general
scenario, namely CCA attacks and KDM functions that can call the random oracle. Although the
result itself is not entirely unsuspected—it does solve an open problem from Black, Rogaway, and
Shrimpton (SAC 2002)—proving it is considerably less straightforward; we develop some proof
techniques that might be applicable in a wider context.
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1 Introduction

When performing public key encryption (PKE) for large messages, it is often desirable to separate the
encryption into two parts: public key techniques to encrypt a one-time symmetric key, and symmetric
key techniques to encrypt the message. This type of encryption is commonly referred to as hybrid en-
cryption. Hybrid encryption can be found in abundance in practice as it combines the benefits of flexible
key management possible in the public key setting with the efficiency of symmetric encryption. Cramer
and Shoup [27] were the first to capture hybrid encryption in a formal framework and their terminol-
ogy is now commonly accepted: the public part of the algorithm is known as the key encapsulation
mechanism (KEM), while the symmetric part, where the message is actually encrypted, is known as
the data encapsulation mechanism (DEM). The main theorem of Cramer and Shoup (regarding hybrid
encryption) is that the security properties of the KEM and the DEM can be regarded independently of
each other. Loosely speaking, if any secure KEM is combined with any secure DEM, then the resulting
public key encryption scheme is automatically secure. This theorem comes in two flavours, one for
IND-CPA and one for IND-CCA2 security. Later works [39, 36, 2] looked at rebalancing the security
properties of the KEM and the DEM such that the composition still guarantees IND-CCA2 security.

While, for good reasons, IND-CCA2 security has become the de facto security notion for public
key encryption (so much so that we do not feel the need to elaborate on its definition here), there are
situations where even this strongest of notions [14] is too weak. Particularly problematic is a situation
where private keys themselves end up being encrypted. This is far from an academic question and the
problem of secure encryption in the presence of key-dependent messages is becoming increasingly rele-
vant. Applications of KDM security arise in disk encryption systems such as BitLocker [19], axiomatic
security proofs [1, 4] and anonymous credential systems [24].

Encryption that is secure against key-dependent inputs was first studied by Abadi and Rogaway [1],
who studied security proofs for protocols and showed how security is given by a reduction if no key-
cycles exist in the protocol. Circular security was defined by Camenisch and Lysyanskaya [24] in the
context of anonymous credentials. A more thorough treatment of key-dependent message (KDM) se-
curity was given by Black, Rogaway, and Shrimpton [18], who provided definitions of KDM security
for both the public key and symmetric key setting. They proved that in the symmetric setting it is easy
to achieve IND-KDM-CPA security in the random oracle model. For the public key setting they recall
a simple scheme in the random oracle model [16], which they conjecture to be KDM secure but to the
best of our knowledge, no proof of this has appeared in the literature. The scheme neatly fits the hybrid
encryption framework, where the key encapsulation takes a random protokey r and applies a trapdoor
one-way permutation to encapsulate it. At the same time, r is hashed (giving an ephemeral key) and
XORed with the message (so the DEM is a one-time pad).1 Thus a natural question arises: how well
suited is the hybrid encryption paradigm in the context of key-dependent message attacks?

1.1 Our contribution.

Although many efforts have been made to study the security of PKE schemes under key-dependent
messages, we provide the first treatment of hybrid encryption in this context. Before describing our
result in detail, let us take a step back and look at the problem of KDM-secure hybrid encryption from
a general perspective. For the standard (IND-CPA and IND-CCA) definitions it was possible to separate
the security concerns of the KEM and the DEM. In a KDM setting it will be (a function of) the private
key of the KEM that is encapsulated by the DEM using an ephemeral symmetric key. Intuitively, this
can mean two things: either the appearance of the KEM’s private key as input to the DEM ruins the
normal separation of concerns, or the use of a freshly generated ephemeral key magically nullifies the
key dependency. While it has been shown that KDM security does not follow from standard security
definitions [3, 26], no explicit hybrid counterexamples have been given so far.

1 Note that Black et al. assume that the random oracle returns as many bits as the message is long, which would require a
slight modification to the original KEM-DEM framework.
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It turns out constructing these counterexamples is relatively easy, implying that also in the hybrid
setting dedicated constructions and proof methods are necessary to meet the strong KDM definition.
Acar et al. [3] and Cash et al. [26] consider n-circular security and present schemes that fit standard
security definitions, yet fail catastrophically in the presence of 2-cycles. In Section 4 we show that
these schemes can be cast in the hybrid framework (in a way similar to how ElGamal encryption can be
regarded as a hybrid encryption scheme) resulting in secure KEMs and DEMs, yet their combination is
insecure in the presence of 2-cycles (due to the earlier works). We also show that the scheme of Acar
et al. is not even secure against 1-cycles, whereas we suspect that the Cash et al. is under a suitable
squared-Diffie-Hellman assumption. We even conjecture that the Cash et al. scheme is fully single-key
KDM-secure in the generic group model (augmented with a pairing), which can be used to provide
a black box separation between single query and multi query IND-KDM security notions (although
breakdown of the standard hybrid is known, we are not aware of a prior explicit separation).

Our main result is presented in Section 3, where we consider the security of hybrid encryption
schemes against key-dependent message attacks in the random oracle model. We show that if the key
derivation function KDF is modelled as a random oracle, then a one-way secure (µOW-CCA) KEM
and an indistinguishable (IND-CCA) DEM combine to form a PKE scheme that is (IND-KDM-CCA)
secure against key-dependent message attacks, provided that the key-dependency does not involve the
message length (this is a standard assumption). For our result, we make a distinction between KEMs for
which there exists an efficient key-encapsulation–encapsulated-key checking oracle or not. Somewhat
surprisingly, the former category gives a significantly tighter reduction, even though it means the KEM
is weaker in some sense (in particular, it cannot be IND-CPA secure).

Although intuitively the random oracle would serve as a formidable barrier between the KEM and
the DEM, removing any correlation, the proof turns out more involved than one might at first expect. To
give a taster of the challenges, when reducing to a KEM security property, the simulation of valid DEM
ciphertexts can be problematic without knowing the underlying message. If the DEM ciphertexts are
uniformly distributed (over the randomness of the key) regardless of the message, simulation is easy (in
particular, this observation suffices to prove the Black et al. scheme passively KDM secure). However,
for arbitrary DEMs such simulation is not guaranteed and requires another game hop (to where a fixed
message is encrypted). Luckily this does not lead to a circularity (where a DEM hop requires a KEM
hop to set up, which itself requires a DEM hop to go through etc.).

Indeed, in our proof, we use the well-known identical-until-bad technique in a way similar to Dent’s
analysis of IND-CCA secure KEMs in the random oracle model [28]. However, a crucial innovation in
our proof is a novel use of the “deferred analysis” technique of [31] to analyse the bad event: it turns
out that we need to bound the events in two different games, but in one of these, the key-dependency
hinders the usual approaches. Our solution is to move the analysis of the bad event to the other game,
where the analysis is considerably easier. In contrast with the original deferred analysis, the probability
of the events changes, so we need to account for this game-hop separately.

Technically even more challenging is the reduction to the DEM’s indistinguishability, since the key
dependency function needs to be mapped to a message for the DEM. A complication arises in that an
adversary making multiple challenge queries could let the message to-be-encrypted by the DEM depend
on prior, ephemeral DEM keys. We introduce a new security notion for the DEM that captures this
type of key dependency (namely on past keys only) and show that is equivalent to standard IND-CCA.
Moreover, we show how to map key dependency functions in the PKE world to this restricted set of key
dependency functions in the DEM world by modelling the random oracle as a pseudorandom function.
Thus, rather bizarrely, our security bound for KDM security of hybrid encryption includes a PRF term,
despite there not being a PRF in the construction itself.

1.2 Related Work.

Efforts in the area of KDM security have focused on either positive results giving circular secure
schemes, or negative impossibility results. On the positive side, Boneh et al. [19] gave KDM-CPA
scheme secure under the Decisional Diffie-Hellman assumption, a result strengthened by Camenisch et
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al. [23] to a KDM-CCA scheme. Many other positive results have also been presented [40, 4, 35, 9, 10,
37, 41]. Many public key schemes have been proposed of a number theoretical nature, where the class
of functions for which KDM security can be proven is related, typically in some algebraic sense, to the
scheme itself (see [12, 20, 21, 6] and the references contained therein).

There have also been negative results, and in particular Haitner and Holenstein [34] showed the
impossibility of obtaining KDM security based on standard assumptions and using standard techniques,
and also separation results of Acar et al. [3] and Cash et al. [26].

In [7] a comparatively efficient scheme is given based on the LWE/LPN problems. Recent work has
also looked at circular security in the context of point obfuscation [25], identity-based encryption [5]
and bit-encryption [44]. The development of fully homomorphic encryption by Gentry [32] utilises
encryption of the secret key under the corresponding public key, and recent work of Brakerski and
Vaikuntanathan has looked at KDM security with FHE in more detail [22]. In the symmetric setting,
recent work has focused on authenticated encryption [15], and Bellare et al. [13] describe ciphers that
can securely encipher their own keys. In [47] Unruh presents a new definition, PROG-KDM security,
which combines KDM security and key corruptions in the same definition.

2 Preliminaries

2.1 Notation.

If x is a string then |x| denotes the length of x, and x||y denotes the concatenation of strings x and y. If

S is a finite set then |S| is its cardinality and s $←− S denotes picking s uniformly at random from S. A
property of a boolean variable, which we will call a flag, is that once true it stays true. Boolean flags
are assumed initialized to false. The adversary, which we regard as code of a program, makes calls to
the oracles, taking as input values from some finite domain associated to each oracle.

In our proofs we will make extensive use of the game-hopping technique. To do this we use the
notation of Bellare and Rogaway [17] and the ideas of Shoup [46]. The adversary and game outputs
can be regarded as random variables. We write Pr

[
GA = 1

]
for the probability that the game output

is 1 when we run game G with adversary A. Games Gi and Gj are identical until bad if their code
differs only in statements that follow the setting of Boolean flag bad to true. We will use the following,
fundamental lemma of game playing [17]:
Lemma 2.1. Let Gi, Gj be identical until bad games, and let A be an adversary. Then∣∣Pr

[
GAi = 1

]
−Pr

[
GAj = 1

]∣∣ ≤ Pr
[
GAj sets bad

]
.

Definition 2.2. [Pseudorandom functions] Let F : I × D → R be a family of functions from domain
D to rangeR indexed by seeds I.

For x ∈ I we let Fx(y) : D → R be defined by Fx(y) = F (x, y) ∀y ∈ D.
Let Fun[D,R] be the set of all functions fromD toR. SetD = {0, 1}λ for some security parameter

λ.
Then the PRF advantage of an adversary A attacking F is given by

AdvPRF
F, A(λ)

def
= Pr

[
x

$←− I : AFx(·) = 1
]
−Pr

[
g

$←− Fun[{0, 1}λ,R] : Ag(·) = 1
]
. (1)

2.2 Public Key and Hybrid Encryption

We briefly recall the syntax of a public key encryption scheme PKE, consisting of four algorithms
Pg, Kg, Enc, and Dec. Parameter generation Pg takes as input a security parameter λ and outputs
a set of parameters common among multiple keypairs (e.g. the description of an elliptic curve); key
generation Kg takes the parameters and outputs a public–private key pair (pk, sk); encryption Enc takes
as input the public key and a message from {0, 1}∗ (or some other message space with a well-defined
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Hyb.Pg(1λ)
parsKEM ← KEM.Pg(1λ)
parsDEM ← DEM.Pg(1λ)
return (parsKEM,parsDEM)

Hyb.Kg(pars)
(pk, sk)← KEM.Kg(parsKEM)
return (pk, sk)

Hyb.Enc(pars,pk,m)
(K,C)← KEM.encappk()
hK ← KDFpars,pk(K)
ψ ← DEM.EnchK

(m)
return (C,ψ)

Hyb.Dec(pars, sk, C, ψ)
K ← KEM.decapsk(C)
hK ← KDFpars,pk(K)
m← DEM.DechK

(ψ)
return m

Figure 1: Construction of a hybrid cryptosystem Hyb.

length measure) and outputs a ciphertext; decryption Dec takes as input the private key and a purported
ciphertext and returns a message in {0, 1}∗ or some designated error symbol ⊥. The standard security
notions for public key encryption are indistinguishability (IND) under chosen plaintext attacks (CPA),
respectively chosen ciphertext attacks (CCA). We refer to e.g. Bellare et al.[14] for formal definitions.

A popular way of constructing public key schemes is through the use of hybrid encryption, consist-
ing of a key encapsulation mechanism KEM = (KEM.Pg,KEM.Kg,KEM.encap,KEM.decap), a data
encapsulation mechanism (DEM) DEM = (DEM.Pg,DEM.Enc,DEM.Dec), and often a key deriva-
tion function KDF as compatibility layer in between, as depicted in Fig. 1. We use the term protokey
to describe the input to the KDF (above denoted K). The individual components have the following
properties.

• The KEM’s parameter and key generation work as for a public key encryption scheme. Key
encapsulation KEM.encap takes a public key and returns both a key K ∈ KKEM and an encapsu-
lation C thereof. Key decapsulation KEM.decap takes as input a private key and a purported key
encapsulation and returns a key in KKEM or some designated error symbol ⊥.

• Data encapsulation DEM.Enc takes a message m ∈ {0, 1}∗ and a symmetric key in KDEM and
outputs an encryption ψ. A data decapsulation DEM.Dec takes a message encapsulation ψ and a
symmetric key in KDEM and outputs the message m or error symbol ⊥.

• A key derivation function KDF is a deterministic algorithm implementing a mapping from KKEM

toKDEM. Note that in addition to some keyK the algorithm takes as input KEM.pk and DEM.pars
(in order to determine KKEM and KDEM).

As a notational convention, we omit parameters and implicitly assume that they are fed to every algo-
rithm, and we write key inputs as subscripts except in cases where the operation really is on the key. In
the single user setting, we often write (pk, sk) ← Gen(1λ) as shorthand for running parameter and key
generation in one go.

While hybrid encryption has been in widespread use ever since the advent of public key cryptosys-
tems, the first formalisation of the paradigm was given by Cramer and Shoup [27]. They gave security
definitions of IND-CPA and IND-CCA security for both the KEM and the DEM part and proved that in
the standard model, where the key derivation function only needs to be (close to) balanced, the public
key cryptosystem inherits security from its constituent parts, e.g. IND-CCA security for both the KEM
and the DEM part is a sufficient condition to obtain an IND-CCA secure hybrid PKE scheme. Since then
efforts have been made [39, 36, 2] to investigate how weakening the individual security notions impacts
on the security of the PKE scheme. We refer to the above-mentioned articles for general security notions
for KEMs and DEMs; in Appendix A we list the two notions, µOW-CCA (where the µ indicates there
can be multiple key pairs in the game) and IND-CCA, that are relevant for this paper.

The event CollKEM(qLR, λ), paramaterised by the number of oracle queries the adversary makes and
the security parameter, implies a collision in the ephemeral key output by the KEM, which is extremely
unlikely to occur (if it were, this would also adversely affect the KEM’s one-wayness).

Dent [28] looked at various constructions of KEMs from one-way secure public key cryptosystems
(operating on a restricted message space). He modelled the key derivation function as a random oracle
and considered it as part of the KEM. A typical example of such a construction is the use of a trapdoor
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function to encapsulate a protokey r that is subsequently hashed to arive at derived key H(r) (this is
the same KEM as mentioned in the introduction). He shows several elegant, generic KEM constructions
that are IND-CCA secure based on fairly minimal assumptions on the encryption scheme used to encrypt
the protokey. For instance, in the example above security is attained if the trapdoor function is one-
way secure even in the presence of an oracle that checks whether a ciphertext is a valid ciphertext
or not (i.e., the actual range of the trapdoor function is easily recognizable by the adversary), which
Dent calls OW-CPA+ security. If the KEM is constructed from a randomized public key cryptosystem,
security based on one-wayness is proven, provided that there is an efficient plaintext-ciphertext checking
oracle, that, when given a message and ciphertext pair, correctly determines whether the ciphertext is an
encryption of the message or not.

Our results are reminiscent of that of Dent, however whereas he exploits Cramer–Shoup’s com-
position theorem and only explicitly considered the construction of secure KEMs that incorporate the
KDF, we (necessarily) look at hybrid encryption as a whole and our emphasis will be on construct-
ing secure hybrid cryptosystems from a KEM treating the KDF separately. Thus where Dent used a
public key encryption scheme to arrive at a protokey, we use a proper key encapsulation mechanism.
As a consequence, our framework is on the one hand more general then Dent’s (e.g. we can deal with
Diffie–Hellman type KEMs more easily), yet on the other we are likely to run into similar technicalities.
In particular, we see a dichotomy in the KEMs depending on the availability of a key-encapsulation–
encapsulated-key checking oracle KEM.Checkpk(C,K) that, on input a key encapsulation C and pur-
ported encapsulated (proto) key K decides whether KEM.decapsk(C) = K or not. This leads to the
following two types of KEMs, and each type will give a different reduction in the security analysis
further on:

• In TYPE-1 KEMs there is an efficient checking oracle KEM.Checkpk(C,K). This class encom-
passes all schemes that determine the encapsulation C deterministically based on the key K, in-
cluding the usual schemes based on trapdoor permutations/functions. Diffie–Hellman type KEMs
in a pairing-based setting (where DDH is easy) can also be part of this class. (Looking ahead, in
the security proof when an adversary makes a query H(K) to its random oracle, the checking ora-
cle allows the reduction to determine whether thisK corresponds to some challenge encapsulation
C.)

• In TYPE-2 KEMs there is no efficient checking oracle. This class contains all IND-CPA secure
KEMs. (Again looking ahead, the lack of a checking oracle means that the reduction will need to
guess whether a query H(K) corresponds to a challenge ciphertext or not, leading to a less tight
reduction.)

2.3 Key Dependent Message (KDM) Security

The first formal definition of KDM security was given by Black et al. [18]. They define a KDM ana-
logue IND-KDM-CPA of the established IND-CPA security notion. Simply put, an adversary submits as
challenge a function ϕ and receives either an encryption of ϕ(sk) or of a dummy message 0|ϕ(sk)|. Ca-
menisch et al. [23] introduced the “active” version IND-KDM-CCA security as a natural blend between
IND-CCA and IND-KDM-CPA, and this is the version we will focus on. There can be multiple keys
in the system and, contrary to standard IND-CPA security, for the IND-KDM security notions it is not
possible to reduce (e.g. by hybrid argument) to a single key or single query.

The IND-KDM notions are relative to a function class Φ, which stipulates that the adversary is bound
to asking only queries ϕ ∈ Φ. For instance, if Φ corresponds to the set of all constant functions, notions
equivalent to IND-CPA and IND-CCA emerge. The challenge is to devise schemes that can be proven
secure for an as large as possible class Φ. Black et al. formally regarded ϕ modelled as an algorithm in
some fixed RAM model; furthermore they imposed length-regularity of ϕ in the sense that |ϕ(sk)| does
not depend on the value sk. Following e.g. Unruh [47], we will instead regard ϕ as an arithmetic or
Boolean circuit, which will imply that the output length of ϕ is fixed (and automatically independent of
its input).
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ExpIND-KDM-CCA[Φ]-b
PKE, A (λ):

pars← Pg(1λ)
t← 0
FL← ∅
sk← ()
b′ ← ANew,LRb,Dec(pars)
return b′

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

LRb(ϕ, i):
if ϕ 6∈ Φ(pars,pk, i) then

return  
m1 ← ϕ(sk)
m0 ← 0|m1|

C̃b ← Encpki
(mb)

FL← FL ∪ {(C̃b, i)}
return C̃b

Dec(C, i):
if (C, i) ∈ FL then

return  
m← Decski

(C)
return m

Figure 2: The general IND-KDM-CCA experiment for public key encryption. The bit b is hard-wired
into the Left-or-Right oracle LRb and determines whether a key-dependent message or a dummy is
encrypted and returned to A. Removing oracle Dec yields the IND-KDM-CPA experiment.

Our syntax also differs from that of Black et al. as we make a distinction between parameter and
key generation, which is not uncommon in multi-user settings. Since ϕ implements a function from
a Cartesian product of secret key spaces to the message space and these spaces can depend on the
parameter generation (e.g. which cyclic group is used for DLP based systems), the security experiment
incorporates a check that ϕ is syntactically valid (however, we will henceforth drop explicit mention of
it).
Definition 2.3. Let PKE = (Gen,Enc,Dec) be a public key encryption scheme (with security parameter
λ). Let Φ be a collection of circuits that map a (number of) secret key(s) to an element in the message
space. Then the IND-KDM-atk[Φ] advantage of an adversary A against PKE relative to key-dependent
message attacks for circuit class Φ and atk ∈ {CPA,CCA} is defined by

AdvIND-KDM-atk[Φ]
PKE, A (λ)

def
=
∣∣∣∣Pr

[
ExpIND-KDM-atk[Φ]-1

PKE, A (λ) = 1
]
−Pr

[
ExpIND-KDM-atk[Φ]-0

PKE, A (λ) = 1
]∣∣∣∣

where the experiment ExpIND-KDM-CCA[Φ]-b
PKE, A (λ) is given in Fig. 2, and removing the decryption oracle

yields experiment ExpIND-KDM-CPA[Φ]-b
PKE, A (λ).

2.3.1 Alternative Definitions and Special Cases.

We will use variants of this definition in this paper but will retain this format for consistency. A special
case of KDM security is the 1-cycle case of the wider field of circular security, a framework in which a
scheme remains secure under a so-called ‘key-cycle’, where we have a cycle of public/secret key-pairs
(pki, ski) for i = 1, ..., t, and each ski is encrypted under pk(i mod t)+1.

Backes et al. [10, 9] used a different framework where the adversary does not have direct access to
the results of encryptions but instead can instruct the system to create keys, perform encryptions and
other operations etc. with the subsequent capacity to learn part of the system’s state. This is a poten-
tially stronger framework (see also Dent [29]) reminiscent of work on cryptographic APIs (e.g. [38]).
The latest such definition (the PROG-KDM security definition provided by Unruh [47]) also allows for
corruptions, but it is not easy to see how it can be satisfied in a non-programmable random oracle setting
(let alone the standard model). In this work we will contend ourselves with the easier (and weaker)
notion based on the original work by Black et al.

3 IND-KDM-CCA Security of Hybrid Encryption

3.1 Restricted KDM Security of the DEM

We introduce a security notion for DEMs called IND-PKDM-CCA (‘Prior-KDM’), where an adversary’s
KDM capability is restricted to (encryptions of) functions of all ‘past’ DEM keys in the system. The
formal security game for IND-PKDM-CCA is depicted in Fig. 3. Our reductions for KDM security of
hybrid encryption will use this IND-PKDM-CCA security notion for the DEM. However, by a hybrid
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argument one can show that this restricted form of KDM attacks is not all that useful to an attacker—the
notion is in fact equivalent to IND-CCA security (see Appendix B).

ExpIND-PKDM-CCA-b
DEM, A (λ):

pars← DEM.Pg(1λ)
i← 0
FL← ∅
b′ ← ANew,LRb,Dec(pars)
return b′

New():
i← i+ 1
Ki ← DEM.Kg(pars)
return i

LRb(j, ϑ):
if j 6∈ [i] then

return  
m1 ← ϑ(Kj−1)
m0 ← 0|m1|

ψ ← DEM.EncKj
(mb)

FL← FL ∪ {(j, ψ)}
return ψ

Dec(j, ψ):
if (j, ψ) ∈ FL then

return  
m← DEM.DecKj(ψ)
return m

Figure 3: The IND-PKDM-CCA security experiment for data encapsulation mechanism DEM. Here
ϑ(Ki−1) indicates the function ϑ can depend on all keys in range {K0, ...,Ki−1}.

3.2 Hybrid Encryption is IND-KDM-CCA Secure (in the ROM)

Let Hyb = (Hyb.Gen,Hyb.Enc,Hyb.Enc) be a hybrid encryption scheme and let A be an adversary. In
the hybrid setting there are two types of keys present: the private key of the KEM and the ephemeral key
for the DEM, where knowledge of the private KEM key leads to immediate recovery of the ephemeral
key. When we regard Hyb as a public key encryption scheme in the context of key-dependent messages,
it follows from Fig. 1 that it is on the private key of the KEM that key-dependent messages (that are
input to the DEM) will depend. For concreteness, in Fig. 4 we have expanded Fig. 2 in the context of
hybrid encryption where the key derivation function is modelled as a random oracle. The forbidden list
FL ensures that the adversary cannot trivially win.

We show that any KEM/DEM system that has a TYPE-1 µOW-CCA KEM and an IND-CCA DEM
gives a IND-KDM-CCA[Φ] secure hybrid encryption scheme provided that the key derivation function
KDF is modelled as a random oracle, and the functions in Φ can call the random oracle. By this we
mean that when modelled as circuits, ϕ ∈ Φ can have gates that explicitly call the random oracle. Here,
the µ indicates that there is a choice of multiple targets to invert. Recall that our modelling of functions
in ϕ ∈ Φ as circuits implicitly implies that ϕ is length-regular, meaning that given pk and ϕ, one can
uniquely determine the length of ϕ(sk) (this is the same restriction as made by Black et al. [18] and
Backes et al. [9]). This result is formalized in Theorem 3.1. In Theorem C.1 we provide an analogous,
but significantly less tight result for TYPE-2 KEMs.

Proof intuition. In our proof we make use of the game-playing technique [46, 17] and introduce a
sequence of games, as described in Fig. 5, and the games themselves are specified in Fig. 6. Apart
from the simple, syntactical transitions (2) and (3), there are five game-hops to bound A’s advantage
distinguishing ExpIND-KDM-CCA-1

Hyb, A (λ) and ExpIND-KDM-CCA-0
Hyb, A (λ). These are denoted with solid lines.

Here (4) and (5) are identical-until-bad hops. The ‘Forbidden List’ FL ensures that the adversary cannot
win trivially. We define bad to be the event that the adversary queries the random oracle on a protokey
K previously used by the left-or-right oracle.

So far, this is all standard fair: use the security of the KEM to decouple the key encapsulated by
the KEM and the one used by the DEM (where Dent [28] used the same bad event in his analysis of
IND-CCA secure KEMs), followed by a straightforward indistinguishability hop to the DEM. Unfor-
tunately, with the introduction of key-dependent messages the latter hop has become quite a bit more
burdensome; moreover bounding the bad event in the presence of key-dependent messages is somewhat
troublesome. To overcome these challenges, our proof uses a number of techniques. To invoke the
DEM’s indistinguishability, the standard reduction would pick all the KEM keypairs and use these to
simulate the KEM part of the hybrid encryption scheme (to run the adversary against the entire PKE).
Since the reduction itself is playing the DEM indistinguishability game, it can use its DEM oracles to
complete the DEM part (as the protokey encapsulated by the KEM and the ephemeral key used by the
DEM are decoupled at this point). However if an adversary (against the PKE) may make queries with
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ExpIND-KDM-CCA-b
Hyb, A (λ):

pars← Pg(1λ)
t← 0
sk← ()
HLIST ← ∅
FL← ∅
b′ ← ANew,H,LRH

b ,DecH

(pars)
return b′

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

H:
On query K:
if (K,hK) ∈ HLIST

return hK
else

hK
$←− {0, 1}λ

HLIST ← HLIST ∪ {(K,hK)}
return hK

LRH
b (ϕ, i):

if ϕ 6∈ Φ(pars,pk, i) then
return  

m1 ← ϕH(sk)
m0 ← 0|m1|

(C,K)← KEM.encappki
()

hK ← H(K)
ψb ← DEM.EnchK

(mb)
FL← FL ∪ {(C,ψb, i)}
return (C,ψb)

DecH(C,ψ, i):
if (C,ψ, i) ∈ FL then

return  
K ← KEM.decapski

(C)
if K =⊥ then

return ⊥KEM

hK ← H(K)
m← DEM.DechK

(ψ)
if m =⊥ then

return ⊥DEM

return m

Figure 4: The IND-KDM-CCA indistinguishability experiment made explicit for multi-key hybrid en-
cryption in the random oracle model. The adversary is allowed to query decryptions of the challenge
ciphertexts under different public keys than the ones generated by LRb, and this restriction is dealt with
by the list FL.

KDM functions that call the random oracle, it could in principle submit functions that decrypt past key
encapsulations and, with the help of the random oracle, turn them in past DEM keys (effectively, the
KDM function can cause the event that would normally have triggered bad). Since the reduction does
not know the actual DEM keys being used, it suddenly finds itself in a tight spot and a direct hybrid
argument (to get rid of past DEM keys) does not seem to work.

Our solution is to leverage the newly introduced IND-PKDM-CCA notion. Since we model the
KDM functions as circuits, it turns out to be possible to describe a compiler that turns a KDM function
against the PKE into one against the DEM. There is however one further complication. For the public
key scheme, we model the hash function as a random oracle and the KDM function has access to the
random oracle. Yet, for the DEM scheme there is no random oracle present, which would suggest that
the KDM function in the DEM world should not depend on one either. Moreover, it is not possible
to predict on which values the KDM function would call the random oracle. Thus, when the random
oracle is implemented by the reduction using lazy sampling, though it could hard-code the hash list so
far into the circuit, the simulation might fail once fresh values are requested. To handle this, we (partly)
model the random oracle as a pseudorandom function (rather than using lazy sampling). This provides
the reduction a succinct description of the entire random oracle and it can safely embed the key to the
pseudorandom function in the circuit used in the IND-PKDM-CCA game. The introduction of a PRF
requires two additional hops (6) and (8).

The bounding of event bad is relatively easy on the m0-side of the diagram, as one does not need to
know the KEM’s private key sk in order to simulate the data encapsulations: bad is bounded in G3 by
AdvµOW-CCA

KEM, B . However, on the m1-side of the diagram it is less obvious how to bound the bad event,
since it is not possible to simulate the key-dependent values. The solution is to move the bad event from
the m1-side to the m0-side using the separate hop (12), which bounds the difference between Pr [bad]
in games G2 and G3. This incurs a second AdvIND-PKDM-CCA

DEM, C term to the bound.
Bounding of the bad event breaks down if distinct queries to the LR oracle made identical KDF

queries. We bound this event by the separate quantity CollKEM(qLR, λ). It might be possible to avoid
this technicality by changing the scheme so it hashes H(C,K) instead of just H(K).
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G0 : H = F, LR1

DEM.EnchK (m1)

G1 : H 6= F, LR1

DEM.EncfK (m1)

G5 : H = F, LR0

DEM.EnchK (m0)

G4 : H 6= F, LR0

DEM.EncfK (m0)

ExpIND-KDM-CCA-1
Hyb, A (λ) ExpIND-KDM-CCA-0

Hyb, A (λ)

G2 : H 6= F(PRF), LR1

DEM.EncfK (m1)
G3 : H 6= F(PRF), LR0

DEM.EncfK (m0)

(4)

AdvIND-PKDM-CCA
DEM, C
(10)

(2) (3)

(5)

(8) (9)(7) (6)

AdvIND-PKDM-CCA
DEM,D
(12)

Game Oracle Oracle Model Message
Exp1 H LS m1

G0 H = F LS m1

G1 H 6= F LS m1

G2 H 6= F PRF m1

G3 H 6= F PRF m0

G4 H 6= F LS m0

G5 H = F LS m0

Exp0 H LS m0

Figure 5: Diagrammatic overview of the game hopping structure of proof that an µOW-CCA TYPE-1
secure KEM and an IND-CCA secure DEM yield a IND-KDM-CCA secure hybrid scheme in the random
oracle model. The games are defined formally in Fig. 6, here the boxes indicate the game Gi and which
oracles comprise the game. The transitions are labelled by the equations in the proof. The table indicates
which oracle is used to handle A’s calls, how we model the random oracle (LS denotes lazy sampling)
and which message is encrypted. The boxed items indicate where a change occurs in the hop from one
game to another.

Interpretation. When it comes to hybrid schemes, our result is very general. Indeed, it even gener-
alizes the work by Dent [28] (restricted to IND-CPA-security) as we can deal with key encapsulation
schemes where the protokey is derived from the randomness in a hard-to-invert fashion. For instance, if
Gp is a cyclic group of order p with generator g, an obvious Diffie–Hellman inspired KEM would pick
private key x ∈ Z∗p, set public key gx and compute a key encapsulation by generating a random r ∈ Z∗p,
releasing gr as the encapsulation of K = grx. Our theorems can deal with this situation (where the
KEM is TYPE-1 iff DDH is easy in Gp), but it is not covered by the KEMs given by Dent.

Black et al. [18] suggest the use of a variant of TDP-KEM combined with a one-time pad as a
KDM-secure public key scheme in the random oracle model. Here TDP-KEM is shorthand for trapdoor-
permutation-KEM, where the public and private key of the KEM match that of the trapdoor permutation
and key encapsulation takes a random K in the domain of the trapdoor permutation, applies the per-
mutation to encapsulate and outputs H(K) as ephemeral key, or, in the hybrid model with explicit key
derivation function (Fig. 4) the KEM would output K as ephemeral protokey.

As a result of our theorem, if we restrict this scheme to any fixed-size message length, security is
guaranteed. Strictly speaking, for arbitrary length messages, we would need to allow signalling of (an
upper bound on) the message length to the random oracle so it can output the required number of bits.
This is primarily a syntactical issue that we did not feel sufficiently important to incorporate into our
main framework. Since TDP-KEM has an obvious checking oracle, we regard our Theorem 3.1 settling
the problem left open by Black et al.
Theorem 3.1. Let Hyb be a hybrid PKE scheme (Fig. 1) with a TYPE-1 KEM, with the key derivation
function modelled by a random oracle. Let Φ be any set of functions, including those which have random
oracle access. Let F be a family of pseudorandom functions. Then for any adversary A calling LR at
most qLR times, there exists algorithms B and C (of comparable computational complexity) such that

AdvIND-KDM-CCA[Φ]
Hyb, A (λ) ≤ 2AdvµOW-CCA

KEM, B (λ)+2AdvIND-PKDM-CCA
DEM, C (λ)+2CollKEM(qLR, λ)+4AdvPRF

F, A(λ) .

This theorem, combined with Theorem B.1, yields the following corollary relating to standard defi-
nitions.
Corollary 3.2. As above, and let n be the number of DEM keys in the system, then:

AdvIND-KDM-CCA[Φ]
Hyb, A (λ) ≤ 2AdvµOW-CCA

KEM, B (λ)+2n·AdvIND-CCA
DEM, C (λ)+2CollKEM(qLR, λ)+4AdvPRF

F, A(λ) .
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Proof. [of Theorem 3.1]
We recall that Fig. 4 contains a description of the security games ExpIND-KDM-CCA-b

Hyb, A (λ) that are
obtained by specifying the general PKE IND-KDM-CCA games for hybrid encryption where the key
derivation function is modelled by a random oracle H. (For simplicity, we omit explicit mention of the
class Φ in the description of the security experiments.) As is customary, we use lazy sampling to define
H’s behaviour, maintaining a list HLIST of query pairs (K,hK) produced by H so far.

ExpIND-KDM-CCA[Φ]-b
PKE, A (λ):

pars← Pg(1λ)
t← 0
sk← ()
HLIST,FLIST,FL← ∅
b′ ← ANew,H,LRb,Dec(pars)
return b′

LRb(ϕH, i):
if ϕH 6∈ Φ(pars,pk, i) then

return  
m1 ← ϕ(sk)
m0 ← 0|m1|

(C,K)← KEM.encappki
()

hK ← F(K)
ψb ← DEM.EnchK

(mb)
FL← FL ∪ {(C,ψb, i)}
return (C,ψb)

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

H(K):
if (K,hK) ∈ HLIST

return hK
if (K,hK) ∈ FLIST

set bad← true

return hK
hK

$←− {0, 1}λ
HLIST ← HLIST ∪ {(K,hK)}
return hK

F(K):
if (K,hK) ∈ FLIST

return hK
if (K,hK) ∈ HLIST

set bad← true

return hK
hK

$←− {0, 1}λ
FLIST ← FLIST ∪ {(K,hK)}
return hK

HF(K):
if (K,hK) ∈ FLIST

return hK
if (K,hK) ∈ HLIST

return hK
hK

$←− {0, 1}λ
HLIST ← HLIST ∪ {(K,hK)}
return hK

Dec(C,ψ, i):
if (C,ψ, i) ∈ FL then

return  
call K ← Decap(C, i)
if K =⊥ then

return ⊥KEM

hK ← HF(K)
m← DEM.DechK

(ψ)
if m =⊥ then

return ⊥DEM

return m

ExpIND-KDM-CCA[Φ]-b
PKE, A (λ):

pars← Pg(1λ)
t← 0

x
$←− {0, 1}λ

sk← ()
HLIST,FLIST,FL← ∅
b′ ← ANew,H,LRb,Dec(pars)
return b′

H(K):
if (K,hK) ∈ HLIST

return hK
if (K,hK) ∈ FLIST

set bad← true
hK ← PRFx(K)
FLIST ← FLIST ∪ {(K,hK)}
return hK

HF(K):
if (K,hK) ∈ FLIST

return hK
if (K,hK) ∈ HLIST

return hK
hK ← PRFx(K)
HLIST ← HLIST ∪ {(K,hK)}
return hK

Figure 6: Security games used for proof Theorem 3.1. Games G2 and G3 are described below the line,
with all items the same as above apart from these changes. Games G0 and G5 correspond to the code
including the highlighting, implying that H = F (as far as I/O behaviour is concerned). Games G1−G4

have H 6= F as two independently sampled random oracles. Games G2 and G3 model the random oracle
as a PRF, rather than using lazy sampling. Games G0, G1 and G2 correspond to b = 1, whereas Games
G3, G4 and G5 correspond to b = 0.

In the game there are four distinct places where queries to H could be made. Firstly, the adversary
A can make direct H queries; any query to the oracle LRb will require one ‘direct’ call to H for the key
derivation and may include a number of indirect calls as part of the specified function ϕ; and finally as a
decryption query for key derivation. For the purpose of our game-hopping approach, we need to be able
to make a clear distinction between these cases. To this end, we introduce two additional oracles: F and
HF. We make a syntactical change so that LRb always uses F for its key derivation, and Dec always uses
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HF. Oracle HF synchronises with items that are added to lists for both H and F. By ensuring that F, H
and HF implement the same random oracle (i.e. are functionally equivalent, exhibiting exactly the same
input/output behaviour), the changed games are equivalent to the original security experiments.

In Fig. 6, G0 corresponds to such a modified, yet equivalent game, in this case for b = 1. The b = 0
sibling game is called G5. In both these games the oracles H and F each maintain their own list, HLIST,
respectively FLIST, yet control code ensures (a) that these two lists can not containK overlap in the sense
that no triple (K,hK , h′K) can exist for which both (K,hK) ∈ HLIST and (K,h′K) ∈ FLIST and (b) that
the oracles H and F will look up elements from the other oracle’s list, thus ensuring synchronisation.
As a result of this design, F and H are functionally equivalent to each other in the games G0 and G5,
implying that from an adversary’s point of view G0 is equivalent to ExpIND-KDM-CCA-1

Hyb, A (λ), or

Pr
[
G0
A = 1

]
= Pr

[
ExpIND-KDM-CCA-1

Hyb, A (λ) = 1
]
. (2)

Similarly we claim that G5 is equivalent to ExpIND-KDM-CCA-0
Hyb, A (λ), so

Pr
[
G5
A = 1

]
= Pr

[
ExpIND-KDM-CCA-0

Hyb, A (λ) = 1
]
. (3)

We proceed by a more interesting hop, where we make F and H independent. The oracles F and H are
modified such that when a query is made to one oracle (say H) that has previously been queried to the
other (F) then a fresh value is still created (and added to HLIST). Moreover, in this case the flag bad is
set to true first. This is described in Fig. 6, where the new G1 corresponds to the b = 1 case and G4 to
the b = 0 case. By syntactical inspection, G0 and G1 are identical up to the point at which the flag is set,
enabling application of the fundamental lemma of game-hopping:∣∣∣Pr

[
G0
A = 1

]
− Pr

[
G1
A = 1

]∣∣∣ ≤ Pr [A sets bad in G1] (4)

and in a similar vein G4 and G5 are identical until bad, so∣∣∣Pr
[
G4
A = 1

]
− Pr

[
G5
A = 1

]∣∣∣ ≤ Pr [A sets bad in G4] . (5)

(To bound the difference between games G4 and G5 a standard hop involving the KEM’s IND-CCA
advantage is an alternative.)

The hop between the key-dependent scenario and the non-key-dependent world will be problematic
later on due to the fact that if ϕ calls the random oracle, the simulation cannot correctly answer these
queries since it does not know the values of the DEM keys in the system, only their indices. To counter
this we add two additional hops in which we use a PRF rather than lazy sampling to model our random
oracle. We regard the ϕ that acts on sk (of the KEM) as a circuit, with some gates that call the RO. Thus
there is a (one-to-one) mapping from ϕ circuits (which act on sk) to ϑ circuits (that act on the DEM
keys). We assume that there is some kind of ‘safe storage’ of all DEM keys. In this manner it is possible
to track the past RO queries that are made by these ϑ functions.

These H gates will have some inputs, and will check if the input string corresponds to some HLIST
entry, or an FLIST entry. If it is an F query, then assign a Ki to some of the output wires (since the
game does not know the Ki but it can use them). The issue, however, is that if A gives a circuit ϕ that
makes an H query in a gate, and subsequently makes another H query then the HLIST lists will not be
synchronised.

To counter this, consider H as a pseudorandom function PRF : {0, 1}λ × KDEM → {0, 1}λ chosen
from some PRF-secure function family F , parameterised by some seed x ∈ {0, 1}λ, rather than using
lazy sampling. Denote PRFx(K) as being the PRF applied to input K and seed x. The gates for H now
store the FLIST, and when calls to F are made we can wire up the corresponding Ki values. When the
function makes H calls, we simply implement the PRF on the given input. To make this subtle change,
we need to implement another two (symmetrical) game hops in which we change the way we model the
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random oracle from lazy sampling (LS) to using a PRF. The difference between A’s advantage against
G1 and its advantage against G2 is bounded by A’s advantage in breaking the PRF:2

Pr
[
G1
A = 1

]
−Pr

[
G2
A = 1

]
≤ AdvPRF

F, A(λ) (6)

Pr [A sets bad in G1]−Pr [A sets bad in G2] ≤ AdvPRF
F, A(λ) (7)

and likewise the difference between A’s advantage against G3 and its advantage against G4 is bounded
by the PRF advantage:

Pr
[
G3
A = 1

]
−Pr

[
G4
A = 1

]
≤ AdvPRF

F, A(λ) (8)

Pr [A sets bad in G4]−Pr [A sets bad in G3] ≤ AdvPRF
F, A(λ) (9)

Now we are in a position to consider the hop between games G2 and G3. In game G2 the response
from the Left-or-Right oracle is given to the adversary by LR1, resulting to an encryption of m1 =
ϕ(sk) in ExpIND-KDM-CCA-1

Hyb, A (λ), whereas in game G3, the Left-or-Right oracle is implemented by LR0,
leading to an encryption of m0 = 0|ϕ(sk)| (as in ExpIND-KDM-CCA-0

Hyb, A (λ)). To show that games G2

and G3 are distinguishable only with small probability we introduce an adversary C that attacks the
IND-PKDM-CCA property of the DEM, and show that as long as the DEM is secure in this respect, then
the output of the games is indistinguishable. More precisely,

Pr
[
G2
A = 1

]
−Pr

[
G3
A = 1

]
≤ AdvIND-PKDM-CCA

DEM, C (λ) (10)

The consequence of F and H being independently sampled oracles is that in games G2 and G3 the
encapsulated key and the key used for the DEM are effectively decoupled (as the adversary has no direct
access to F). This decoupling allows us to use a DEM hop to prove equation (10), as shown by the
reduction in Fig. 7. In the game that C plays, it runs A as a black-box that returns a valid ϕ, then C
creates messages m0 and m1 in the same way that the LRb oracle does in the other games. However,
where in the games G2 and G3 there was an explicit oracle F that provided linkage between a key K
output by the KEM and its corresponding key hK actually used by the DEM, in the simulation C uses
its own oracles to create the keys hK in the IND-PKDM-CCA experiment it itself is playing. To do this,
we need to move the function ϕ that acts on the KEM secret keys to the function ϑ, that acts upon DEM
keys. The set Kϑ contains all the DEM keys that are currently in the system. To simulate the DEM hop
we need to make sure that the ϑ circuit in the IND-PKDM-CCA game is consistent with the circuit that
acts on all of the DEM keys in the system in the PKE game. Every time A makes an F query in its PKE
game we need to add that key to the set of keys that ϑ can act upon.

In this decoupled scenario, reduction C generates the (pk, sk) pairs itself. The seed of the PRF is
then ‘hardwired’ into the gates of ϑ so when A’s KDM function makes a RO call, it is dealt with by this
setup. This allows the simulation to go through without C actually knowing which valuesKi are queried
to the RO. The messages m1 and m0 are then ‘created’ just as they are in A’s LR queries. Now D calls
its own oracles LR, New and Dec (in the IND-PKDM-CCA game) and returns a pair (C,ψb) asA would
have expected.

The LR oracle in the simulation translates the ϕ into a ϑ. If this function makes an oracle call Ki,
the simulation checks HLIST for an entry containing Ki, and if present returns the corresponding hK . If
the value is on FLIST then the simulation will know the index of the key but not the value itself, and thus
a PRF gate can be called to retrieve the corresponding hK . If it is on neither list, simply initiate PRF on
Ki.

Since the adversaryA has no direct access to F this indirect simulation of F is perfect. As a result, if
C is in ExpIND-PKDM-CCA-1

DEM, C (λ) thenA will behave towards C exactly as it would do in G2, and similarly
if C is in ExpIND-PKDM-CCA-0

DEM, C (λ) then A will behave as in G3, proving (10).

2The more usual hop in a proof would be to replace a pseudorandom function by a perfectly random function, whereas here
the perfect object is substituted by a computational approximation—for bounding the difference between the two worlds the
‘direction’ is irrelevant.
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C playing ExpIND-PKDM-CCA-b
DEM, C (λ):

pars← KEM.Pg(1λ)
sk← ()
FLIST ← ∅
HLIST ← ∅
FL← ∅
x

$←− {0, 1}λ
b′ ← ALRb,New,H,Dec(pk)
return b′

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

LRb(ϕH, n):
ϕH → ϑ
if ϕH makes RO call Ki then

hK ← PRFx(K)
Kϑ ← Kϑ ∪Ki

m1 ← ϑ(Kϑ)
m0 ← 0|m1|

(C,K)← KEM.encappkn
()

if (K,hK) ∈ HLIST then
ABORT

if (K, j) ∈ FLIST then
call ψb ← LR(j, ϑ)

else
call j ← New()
FLIST ← FLIST ∪ {(K, j)}
call ψb ← LR(j, ϑ)

FL← FL ∪ {(j, ψ)}
return (C,ψb)

H(K):
if (K,hK) ∈ HLIST

return hK
hK ← PRFx(K)
HLIST ← HLIST ∪ {(K,hK)}
return hK

Dec(ψ):
call m← Dec(ψ)
return m

Figure 7: Description of reduction C used to prove (10). When C runs A, it needs to create an environ-
ment ExpIND-KDM-CCA

Hyb, A . It makes New queries and specifies the public key index n in its LRb queries.
The messages m0 and m1 and also C and K are ’created’ just as they are in normal LRb, whereas hK
is virtually set to whatever value is used in the game C itself is playing by C’s calls to New, LR and Dec
(from ExpIND-PKDM-CCA

DEM, C ). Note that C need not know hK for this simulation.

All that remains is bounding the probability of the bad event in games G2 and G3, followed by a
collection of the various terms into a single bound on the advantage.

The analysis of the bad event in game G3 is easiest, as here the adversary is given an encryption of
a zero string which is clearly not key-dependent (since the adversary directly specifies its length). By
simple code-inspection, it emerges that A can set the flag bad to true in two places in G3: either in a
direct oracle query to H on a K that has already been queried to F by LR0; or if LR0 calls F on a K
that has previously been queried to H directly by A. Intuitively, the former constitutes a break against
the one-wayness of the KEM, and the latter should just be very unlikely (although we actually bound it
by a break as well to avoid the need for an additional assumption on the way K as output by KEM is
distributed). Fig. 8 shows the reduction B for which

Pr [A sets bad in G3] ≤ AdvµOW-CCA
KEM, B (λ) + CollKEM(qLR, λ) (11)

First we observe that if Enc (internally) creates a pair (C,K) and (C ′,K ′) satisfying K = K ′ yet
C 6= C ′ the simulation will with high probability produce F(K) 6= F(K ′), indicating that in that case
it is not perfect. However, the event that such a pair is created by a KEM ought to be small. We define
CollKEM(q, λ) as the probability this happens in q queries to the encapsulation oracle.

In order to simulate correctly, we require that the reductions can make as many New calls as A can.
To do this we can simply set an upper bound on the number of New calls thatA makes, and then restrict
the number of calls the reductions can make by this figure.

If a collision as above does not happen then B creates a perfect simulation of G3 as long as bad is not
set. Moreover, at the very point a query is made that would have caused bad to be set in G3, the reduction
B uses its KEM-checking oracle KEM.Check to detect that bad was set and retrieves the corresponding
key K, plus the index of the Enc query this key belongs to.

As a technical aside, to simulate G3 the reduction needs to answer the adversary A’s LR0 queries.
Since A gives out ϕ and expects an encryption of 0|ϕ(sk)|, it is necessary (in order to simulate correctly)
for B to learn |ϕ(sk)| without knowing sk. Here the length regularity condition is required: given pk
and ϕ, we can determine |ϕ(sk)| and thus simulate LR0.

The analysis of the bad event in G2 is more problematic and a direct approach (as done for G3)
does not work. Instead, we take inspiration from the “deferred analysis” technique of Gennaro and
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B playing ExpµOW-CCA
KEM, B (λ):

receive pk
i← 0
HLIST,FLIST,FL← ∅
b′ ← AH,LR,Dec(pk)
return ⊥

H(K):
if (K,hK) ∈ HLIST

return hK
for (C, h, j) ∈ FLIST

if KEM.Check(C,K) = true
exit (j,K)

hK
$←− {0, 1}λ

HLIST ← HLIST ∪ {(K,hK)}
return hK

LR(ϕ, i):
m0 ← 0|ϕ(sk)|

call C ← Encap(i)
hK ← FSIM(C, i)
i← i+ 1
ψ ← DEM.EnchK

(m0)
FLIST ← FLIST ∪ {(C,ψ, i)}
return (C,ψ)

FSIM(C, i):
for (K,hK) ∈ HLIST do

if KEM.Check(C,K) = true then
exit (i,K)

if (C, hC , j) ∈ FLIST
h← hC

else
h

$←− {0, 1}λ
FLIST ← FLIST ∪ {(C, h, i)}
return h

Dec(C,ψ, i):
if (C,ψ, i) ∈ FL then

return  
call K ← Decap(C, i)
if K =⊥ then

return ⊥KEM

hK ← H(K)
m← DEM.DechK

(ψ)
if m =⊥ then

return ⊥DEM

return m

Figure 8: Description of reduction B used to prove (11). When B runs A, it needs to create an environ-
ment ExpIND-KDM-CCA

Hyb, A . The line “exit (j,K)” indicates that B at that point terminates running A and
returns (j,K) to its own environment (as guess for Kj). As long as Enc (internally) does not create a
pair (C,K) and (C ′,K ′) with K = K ′ yet C 6= C ′ the simulation is perfect.

Shoup [31]. Rather than analysing the bad events in G2, we will defer the analysis to G3 (for which we
already have a bound). However, it is not at all evident that in the hop G2 to G3 the probability the bad
flag is set stays the same (as was the case for the deferred analysis by Gennaro and Shoup). Indeed, it is
unlikely to be the case, however we are able to show that the difference between the two bad events from
occurring is bound by IND-PKDM-CCA advantage of an adversary D (as described in Fig. 9) against
the DEM, or

Pr [A sets bad in G2]−Pr [A sets bad in G3] ≤ AdvIND-PKDM-CCA
DEM, D (λ) . (12)

Similarly to the analysis of (10), it is necessary to translate the function ϕ into a ϑ, and align the
simulated queries correctly. We set this up so that the bad event in the security games corresponds to D
causing an ABORT in the reduction.

1. If D is in game IND-PKDM-CCA-1 then, unless ABORT occurs, this is a perfect simulation of
G2 for A.

2. If D is in game IND-PKDM-CCA-0 then, unless ABORT occurs, this is a perfect simulation of
G3 for A.

3. D will ABORT iff the event bad occurs in (either) G2 (or G3).

Consequently we have

Pr [A sets bad in G2] = Pr
[
D sees ABORT in ExpIND-PKDM-CCA-1

]
Pr [A sets bad in G3] = Pr

[
D sees ABORT in ExpIND-PKDM-CCA-0

]
.

Since by construction (and definition) we also have

Pr
[
D sees ABORT in ExpIND-PKDM-CCA-b

]
= Pr

[
ExpIND-PKDM-CCA-b = 1

]
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D playing ExpIND-PKDM-CCA-b
DEM, D (λ):

pars← Pg(1λ)
t← 0
sk← ()
HLIST,FLIST,FL← ∅
x

$←− {0, 1}λ
b′ ← ANew,H,LRb,Dec(pk)
if an ABORT occurs then

return 1
return 0

H(K):
if (K,hK) ∈ HLIST then

return hK
if (K, ∗) ∈ FLIST then

ABORT
hK ← PRFx(K)
HLIST ← HLIST ∪ {(K,hK)}
return hK

LRb(ϕH, n):
ϕH → ϑ
if ϕH makes RO call Ki then

hK ← PRFx(K)
Kϑ ← Kϑ ∪Ki

m1 ← ϑ(Kϑ)
m0 ← 0|m1|

(C,K)← KEM.encappkn
()

if (K,hK) ∈ HLIST then
ABORT

if (K, j) ∈ FLIST then
call ψb ← LR(j, ϑ)

else
call j ← New()
FLIST ← FLIST ∪ {(K, j)}
call ψb ← LR(j, ϑ)

FL← FL ∪ {(j, ψ)}
return (C,ψb)

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

Dec(j, ψ):
call m← Dec(j, ψ)
return m

Figure 9: Description of reduction D used to prove (12). When D runs A, it needs to create an en-
vironment ExpIND-KDM-CCA

Hyb, A . The messages m0 and m1 and also C and K are ‘created’ just as they
are in normal LRb, whereas hK is virtually set to whatever value is used in the game D itself is play-
ing by D’s calls to New, LR and Dec (from ExpIND-PKDM-CCA

DEM, D ). The number of keypairs D can ask
for is upper-bounded by the number of New queries A makes. Note that D need not know hK for this
simulation.

and so our claim (12) follows. Finally we put all of the above together and arrive at the claimed bound .

Adv
IND-KDM-CCA[Φ]
Hyb, A (λ) =

˛̨̨
Pr[ExpIND-KDM-CCA-1

Hyb, A (λ) = 1]−Pr
h
ExpIND-KDM-CCA-0

Hyb, A (λ) = 1
i˛̨̨

=
˛̨̨
Pr
ˆ
G0
A = 1

˜
−Pr

ˆ
G5
A = 1

˜˛̨̨
[by (2),(3)]

=
˛̨̨
Pr
ˆ
G0
A = 1

˜
−Pr

ˆ
G1
A = 1

˜
+ Pr

ˆ
G1
A = 1

˜
−Pr

ˆ
G2
A = 1

˜
+ Pr

ˆ
G2
A = 1

˜
- Pr

ˆ
G3
A = 1

˜
+ Pr

ˆ
G3
A = 1

˜
−Pr

ˆ
G4
A = 1

˜
+ Pr

ˆ
G4
A = 1

˜
−Pr

ˆ
G5
A = 1

˜˛̨̨
≤

˛̨̨
Pr
ˆ
G0
A = 1

˜
−Pr

ˆ
G1
A = 1

˜
+ AdvPRF

F, A(λ) + Pr
ˆ
G2
A = 1

˜
−Pr

ˆ
G3
A = 1

˜
+ AdvPRF

F, A(λ) + Pr
ˆ
G4
A = 1

˜
−Pr

ˆ
G5
A = 1

˜˛̨̨
[by (6), (8)]

≤
˛̨̨
Pr [A sets bad in G1]

˛̨̨
+ Pr [A sets bad in G4] + [by (4), (5)]

+ AdvIND-PKDM-CCA
DEM, C (λ) + 2AdvPRF

F, A(λ) [by (10)]

≤
˛̨̨
Pr [A sets bad in G2] + AdvPRF

F, A(λ)
˛̨̨

+ Pr [A sets bad in G3] + AdvPRF
F, A(λ)+ [by (7), (9)]

+ AdvIND-PKDM-CCA
DEM, C (λ) + 2AdvPRF

F, A(λ)

≤ 2Pr [A sets bad in G3] + AdvIND-PKDM-CCA
DEM, C (λ) + AdvIND-PKDM-CCA

DEM, D (λ) + 4AdvPRF
F, A(λ) [by (12)]

≤ 2AdvIND-PKDM-CCA
DEM, C (λ) + 2AdvµOW-CCA

KEM, B (λ) + 2CollKEM(qLR, λ) + 4AdvPRF
F, A(λ) . [by (11)]

4 Separation Results

In this section, we detail two schemes that are secure under standard security definitions, yet are insecure
when the adversary has access to a key cycle of length 2. We recall that security against 2-cycles is
referred to as CYC-security. We cast the two schemes, both reliant on the SXDH assumption [8] and
containing somewhat ‘artificial properties,’ in the hybrid framework. Since there is no need to make
anything other than cosmetic changes to the schemes to make them hybrid, the security and insecurity
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results relating the full schemes follow from the original papers (and we refer to the original papers for
full details and proofs).

By inspection, it also easy to see that both KEMs are IND-CPA secure under the SXDH assumption
and that the DEMs are one-time IND-CPA secure, assuming a key derivation function is pseudorandom.
The reason the schemes nonetheless fail to fall under our framework, is that the key derivation function
is only applied to part of the key. Indeed, it is the other part of the key (and how it is used by the
DEM) that has been carefully crafted by the original authors to ensure CYC-insecurity. As a result, these
existing counterexamples also serve as proof that the KEM–DEM framework per se does not provide
any ‘leverage’ when it comes to increasing resistance against key-dependent message attacks.

4.1 Writing Acar et al.’s es2 as a KEM and DEM

Acar et al. [3] present schemes that are IND-R-secure (indistinguishable from random) if the SXDH
problem is hard, yet not CYC-secure. Let GS be a group scheme for which SXDH is hard. The original
paper shows es2 = (es2.Pg, es2.Kg, es2.Enc, es2.Dec, es2.MsgR, es2.CtxtR), an asymmetric scheme.
The paper also presents a symmetric scheme but our focus will be on es2. The decryption keys are in the
message space.

Lemmas 3 and 4 of [3] prove this scheme to be IND-R-secure but not CYC-secure. We will now cast
this scheme in a hybrid framework and comment on the security properties. Fig. 10 details hybrid scheme
Hyb1 = (Hyb1.Pg,Hyb1.Kg,Hyb1.KEM.encap,Hyb1.DEM.Enc, .Hyb1.KEM.decap,Hyb1.DEM.Dec)
which is a straightforward adaptation of the es2 scheme. The KEM part generates keys that are uniform
over the keyspace, however it is important to note that the keyspace of the DEM part depends on pars,
so we must allow some joint parameter generation between the KEM and the DEM. The changes from
the original scheme are only cosmetic, and as a result the security properties of the original scheme,
namely IND-R-secure yet KDM- and CYC-insecure still hold.

The KEM as described by us is IND-CPA secure under the SXDH assumption: parameters, public
key, key encapsulation and encapsulated key form two independent DDH instances in each of the groups,
so replacing any of these (in particular the keys) with unrelated random elements from the same group
will go unnoticed (assuming SXDH). The DEM is deterministic, and hence it can clearly not be multi-
time secure. However, it is one-time secure: For every T1 and m2, there is a unique Ω1 such that
T1 = Ωm2

1 , indicating that m2 is information-theoretically hidden given T1 and similarly for m1 and T2;
moreover, if H is a balanced function, then m1 + H(. . . , Z1) operates as a perfect one-time pad. Thus
the DEM is perfectly one-time secure if H is a balanced function. If H is a pseudorandom generator,
security degrades to one-time IND-CPA security.

As an aside, while Acar et al. noted the scheme was insecure against 2-cycles, they did not remark
on 1-cycles. It is easy to see that security also breaks down in this case: If ϕ(sk) = ϕ(x1, x2) =
(x1, x2) then an adversary can disinguish the encryption of (m1,m2) = (x1, x2): T1 = g

x1u1/x2

1 and
T2 = g

x2u2/x1

2 so e(T1, T2) = e(g1, g2)x1u1x2u2/x1x2 = e(g1, g2)u1u2 = e(U1, U2) so the adversary can
simply check if these values coincide.
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Hyb1.Pg(1λ) Hyb1.DEM.Enc(pars,pk,K, (m1,m2))

(p,G1,G2,GT , e, g1, g2) $←− GS(1λ) (Z1, Z2,Ω1,Ω2)← K

pars← (p,G1,G2,GT , e, g1, g2) T1 ← Ω1/m2
1 ; T2 ← Ω1/m1

2

return pars c1 ← m1 +H(pars, 1, Z1)
c2 ← m2 +H(pars, 2, Z2)
ψ ← (T1, T2, c1, c2)

Hyb1.Kg(pars) return ψ

x1, x2
$←− Z∗p

X1 ← gx1
1 ; X2 ← gx2

2 Hyb1.KEM.decap(pars, sk, C)
sk← (x1, x2) ; pk← (X1, X2) (x1, x2)← sk ; (Y1, Y2, U1, U2)← C
return (pk, sk) Z1 ← Y x1

1 ; Z2 ← Y x2
2

Ω1 ← Ux1
1 ; Ω2 ← Ux2

2

K ← (Z1, Z2,Ω1,Ω2)
Hyb1.KEM.encap(pars,pk) return K

(X1, X2)← pk ; y1, y2, u1, u2
$←− Z∗p

Y1 ← gy11 ; U1 ← gu1
1 ; Z1 ← Xy1

1 Hyb1.DEM.Dec(pars,K, ψ)
Y2 ← gy22 ; U2 ← gu2

2 ; Z2 ← Xy2
2 (T1, T2, c1, c2)← ψ

Ω1 ← Xu1
1 ; Ω2 ← Xu2

2 (Z1, Z2,Ω1,Ω2)← K
C ← (Y1, Y2, U1, U2) m1 ← c1 −H(pars, 1, Z1)
K ← (Z1, Z2,Ω1,Ω2) m2 ← c2 −H(pars, 2, Z2)
return (C,K) return (m1,m2)

Figure 10: Hybrid scheme Hyb1 based on es2 of [3]. KEM is IND-CPA if DDH in G1 holds.

4.2 Writing Cash et al.’s ΠCPA as a KEM and DEM

The encryption scheme of Cash et al. [26] ΠCPA = (ΠCPA.Pg,ΠCPA.Kg,ΠCPA.Enc,ΠCPA.Dec), also
uses asymmetric bilinear groups e : G1 ×G2 → GT of prime order p, and assumes that G1 and G2 are
distinct and that the DDH assumption holds in both (aka the SXDH assumption). The scheme includes
functions encode :M→ {0, 1}l(λ) and decode : {0, 1}l(λ) →M, which denote an invertible encoding
scheme, where l(λ) is the polynomial length of the encoded message. Let F : GT → {0, 1}l(λ) be a
pseudorandom generator.

The authors show that this scheme is IND-CPA secure, however when given a circular encryption of
two keys, an adversary can distinguish another ciphertext with probability 1/2. In fact, with probability
1/2 over the coins used in key generation, the adversary can recover both secret keys. In the appendix of
the full version of their paper, the authors give another scheme that is IND-CPA secure without using the
‘group-switching’ technique, and experiences catastrophic collapse in the presence of a 2-cycle, with
even higher adversarial success probability.

Fig. 11 details hybrid scheme Hyb2 = (Hyb2.Pg,Hyb2.Kg,Hyb2.KEM.encap,Hyb2.DEM.Enc,
Hyb2.KEM.decap,Hyb2.DEM.Dec) which is a straightforward casting of the ΠCPA scheme. in the
hybrid framework. Let us see what we can say about the relevant security properties. Again, the
changes are only cosmetic, the (in)security properties of the original scheme, namely IND-CPA-secure
yet CYC-insecure carry over without reserve. Here we consider the security of the KEM and the DEM
as defined by us. The DEM is secure for arguments similar to those used for the Acar et al. scheme: it is
one-time IND-CPA secure provided that F is a pseudorandom generator.

By construction, if β = 0 the KEM part takes place primarily in G1, whereas β = 1 there is a
symmetric move to G2. Consequently, we only need to analyse the KEM security for β = 0 and the β =
1 follows by symmetry. For β = 0, we have that (g1, C1, Y2,K2) forms a DDH tuple; if we substitute
~Y1 = gx1

1 for Y1 and inverseR through the pairing resulting in ~R = e(R, g2) and let C̃2 = ~R. ~Y1
r

(all this
only makes the adversary’s life easier) then the same holds for the tuple (g1, ~Y1, ~R, C̃2/~R). We conclude
that the KEM (for β = 0) is one-way secure if the CDH assumption holds in G1 and and IND-CPA if
the DDH assumption holds (in G1).

We observe that the scheme ΠCPA is not trivially insecure under 1-cycles. In fact, if the square
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decision Diffie Hellman (SDDH) [11] assumption holds in both groups the scheme seems 1-cycle secure
and we conjecture that the scheme is actually fully single-key IND-KDM[Φ] secure in the Generic Group
Model [45] (adapted to the asymmetric pairing setting).

Hyb2.Pg(1λ) Hyb2.DEM.Enc(pars,pk,K,M)

(p,G1,G2,GT , e, g1, g2) $←− GS(1λ) (β, Y1, Y2)← pk ; (α,m1,m2)←M
pars← (p,G1,G2,GT , e, g1, g2) (K1,K2)← K
return pars I ← F (K1)⊕ encode(M)

C4 ← I
if β = 0:

Hyb2.Kg(pars) C3 ← Km2
2 .gm2

1

x1, x2
$←− Z∗p ; β $←− {0, 1} if β = 1:

Y1 ← e(g1, g2)x1 C3 ← Km2
2

if β = 0: ψ ← (C3, C4)
Y2 ← gx2

1 return ψ
if β = 1:
Y2 ← gx2

2 Hyb2.KEM.decap(pars, sk, C)
sk← (β, x1, x2) ; pk← (β, Y1, Y2) (β, x1, x2)← sk ; (C1, C2)← C
return (pk, sk) if β = 0:

R← (C2/e(C1, g2)x1) ; K2 ← Cx2
1

Hyb2.KEM.encap(pars,pk) if β = 1:
(β, Y1, Y2)← pk R← (C2/e(g1, C1)x1) ; K2 ← Cx2

1

r
$←− Z∗p ; R $←− GT K1 ← R ; K ← (K1,K2)

C2 ← R.Y r1 ; K1 ← R ; K2 ← Y r2 return K
if β = 0:
C1 ← gr1 Hyb2.DEM.Dec(pars,K, ψ)

if β = 1: (C3, C4)← ψ ; (K1,K2)← K
C1 ← gr2 M ′ ← F (K1)⊕ C4

C ← (C1, C2) ; K ← (K1,K2) M ← decode(M ′)
return (C,K) return M

Figure 11: Asymmetric scheme Hyb2 based on ΠCPA of Cash et al. [26]. Message space is M =
{0, 1} ×Z∗p ×Z∗p thus m1 and m2 must be non-zero, these values can be included in the message space
by proper encoding. The ciphertext space is Gβ+1×GT ×Gβ+1×{0, 1}l(λ). Note that Y2 may be either
in G1 or G2 depending on the structure of the public key.

5 Conclusions and Open Problems

As stated, our result is very general as it incorporates active attacks, and allows KDM functions that call
the random oracle. The proof method incorporates the use of a PRF and the non-standard IND-PKDM-CCA
notion of security on the DEM (notably, a notion equivalent to IND-CCA). In the scenario where the
adversary’s KDM functions cannot call the random oracle, direct reductions to IND-CCA security of the
DEM are possible, however there is an additional bad event caused when there exists (C, i) and (C ′, i′)
such that KEM.decapski(C) = KEM.decapski′

(C ′) = K and the adversary manages to decapsulate to a
previously seen protokey, without triggering the forbidden list FL. It is consequently possible to bound
both of the bad events together.

Once we move to the scenario where functions can call the random oracle, it is necessary to consider
how the adversary could exploit this issue. First of all the adversary makes an arbitrary LR query,
receiving an encryption under some protokey K1 encapsulated in C1. It then makes another LR query,
this time submitting a function that depends on the K1 used in its previous query, receiving (C2, ψ2).
Then a decryption query of the form m′ ← Dec(C1, ψ2) does not fall on the forbidden list and could
yield information about m′ to the attacker. From this perspective it is a challenge to negotiate the issue
of simulating the keys in the DEM hop without using a PRF, and to realise direct reductions to a standard
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security notion such as IND-CCA.
The natural open problem that arises from this work is consideration of KDM security of the hybrid

framework in the standard model. The main goal is to develop a composition theorem, with or without a
KDF, that states standard, individual security notions for the KEM and the DEM to yield a KDM secure
hybrid system, with security against passive and active attacks.
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A Standard Security Notions for KEMs and DEMs

Now we look at the security definitions for the individual components of the hybrid system, and their
security definitions.
Definition A.1. Let KEM = (KEM.Pg,KEM.Kg,KEM.encap,KEM.decap) be a key encapsulation
mechanism. Then the µOW-CCA advantage of an adversary A against KEM is defined by

AdvµOW-CCA
KEM, A (λ)

def
= Pr

[
ExpµOW-CCA

KEM, A (λ) = 1
]

where the experiment ExpµOW-CCA
KEM, A (λ) is given in Fig. 12.

ExpµOW-CCA
KEM, A (λ):

pars← KEM.Pg(1λ)
t← 0
n← 0
sk← ()
HLIST ← ∅
FL← ∅
(j,K)← ANew,H,Enc,Dec(pk)
if K = Kj

return 1
return 0

New():
t← t+ 1
(pkt, skt)← Kg(pars)
Append skt to sk
return pkt

Enc(i):
n← n+ 1
(C,K)← KEM.encappki

()
FL← FL ∪ {(C, i)}
Kn ← K
return C

H(K):
if (K,hK) ∈ HLIST

return hK
else

hK
$←− {0, 1}λ

HLIST ← HLIST ∪ {(K,hK)}
return hK

Dec(C, i):
if {(C, i)} ∈ FL then

return  
K ← KEM.decapski

(C)
return K

Figure 12: The µOW-CCA security experiment (in the random oracle model). A can obtain as many
key encapsulations as desired (specifying an index i for the public key it wishes to receive an encryption
under) and needs to predict correctly the key of one of the encapsulations. A can decapsulate values of
C, under specified secret key ski, as long as such a pair was not created by Enc. The normal OW-CCA
game limits the number of Enc queries to one.

Definition A.2. Let DEM = (DEM.Pg,DEM.Kg,DEM.Enc,DEM.Dec) be a data encapsulation mech-
anism. Then the IND-CCA advantage of an adversary A against DEM is defined by

AdvIND-CCA
DEM, A (λ)

def
= Pr

[
ExpIND-CCA

DEM, A (λ) = 1
]

where the experiment ExpIND-CCA
DEM, A (λ) is given in Fig. 13.
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ExpIND-CCA-b
DEM, A (λ):

pars← DEM.Pg(1λ)
FL← ∅
K ← DEM.Kg(pars)
b′ ← ALRb,Dec(pars)
return b′

LRb(m0,m1):
if |m0| 6= |m1| then

return  
ψ ← DEM.EncK(mb)
FL← FL ∪ {ψ}
return ψ

Dec(ψ):
if ψ ∈ FL then

return  
m← DEM.DecK(ψ)
return m

Figure 13: The IND-CCA security experiments for DEM.

B IND-PKDM-CCA is Equivalent to IND-CCA

For our main result, Theorem 3.1, we introduced and used a restricted KDM security of a DEM, called
IND-PKDM-CCA security (Fig. 3). This notion is in fact equivalent to the standard IND-CCA security
of the DEM. That IND-PKDM-CCA security implies IND-CCA security follows from standard relations
between different formulations of IND-CCA security, plus the fact that a non-key dependent message
can be queried (in the KDM world) by using a constant function. We show the reverse direction, namely
that IND-CCA security for DEMs implies the IND-PKDM-CCA notion, by a hybrid argument.
Theorem B.1. Let DEM be a data encapsulation mechanism. Then for adversary A1, there exists an
algorithm A2 of comparable computational complexity such that

AdvIND-PKDM-CCA
DEM, A1

(λ) ≤ n ·AdvIND-CCA
DEM, A2

(λ) .

Proof. We seek a contradiction, by assuming that DEM is IND-CCA secure but not IND-PKDM-CCA
secure, so there exists an algorithm A1 that breaks IND-PKDM-CCA. If we have n + 1 keys in the
system, then we have n+ 1 hybrid experiments Hyb-t as described below (for t ∈ {0, ..., n}).

ExpHyb-t
DEM, A(λ):

pars← DEM.Pg(1λ)
i← 0
FL← ∅
b′ ← ANew,LRb,Dec(pars)
return b′

LRb(j, ϑ):
if j 6∈ [i] then

return  
m1 ← ϑ(Kj−1)
m0 ← 0|m1|

if j ≤ t then
ψ ← DEM.EncKj

(m1)
else

ψ ← DEM.EncKj
(m0)

FL← FL ∪ {(j, ψ)}
return ψ

New():
i← i+ 1
Ki ← DEM.Kg(pars)
return i

Dec(j, ψ):
if (j, ψ) ∈ FL then

return  
m← DEM.DecKj(ψ)
return m

Figure 14: The hybrid games Hyb-t for a DEM. Again ϕ(Ki−1) indicates function can depend on all
keys in range {K0, ...,Ki−1}.

In the t = 0 hybrid we have j > 0 (∀j) so this refers to IND-PKDM-CCA-0, and for t = n we
have j ≤ t (∀j) which always returns an encryption of m1 corresponding to IND-PKDM-CCA-1, which
gives rise to equation (14).

AdvIND-PKDM-CCA
DEM, A1

(λ)
def
=

∣∣∣Pr
[
b← {0, 1}; ExpIND-PKDM-CCA-b

DEM, A1
(λ) = b

]
− 1/2

∣∣∣ (13)

=
∣∣∣Pr

[
ExpIND-PKDM-CCA-1

DEM, A1
(λ) = 1

]
−Pr

[
ExpIND-PKDM-CCA-0

DEM, A1
(λ) = 1

]∣∣∣
=

∣∣∣Pr
[
ExpHyb-n

DEM, A(λ) = 1
]
−Pr

[
ExpHyb-0

DEM, A(λ) = 1
]∣∣∣ (14)

≤ n ·AdvIND-CCA
DEM, A2

(λ) (15)

Since we made the assumption that A1 breaks IND-PKDM-CCA, A1 can distinguish at least one
gap between two hybrids in the sum. If we assume that A1 can distinguish between Hyb-t∗ and
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Hyb-(t∗-1) for some t∗, then we need to build a reduction A2 that can simulate all queries, and thus
can compute m1 (and subsequently m0) by itself, and feed into the IND-CCA oracle and win the
game. That is to say, A1’s advantage in distinguishing between Hyb-t∗ and Hyb-(t∗-1) is greater than
1/n · AdvIND-PKDM-CCA-b

DEM, A1
(λ). Utilising this fact, we create an algorithm A2 attacking the IND-CCA

property of DEM, as detailed below, to prove equation (15).

A2 playing ExpIND-CCA-b
DEM, A2

(λ):
pars← DEM.Pg(1λ)
for j ∈ [n] \ {t∗} do Kj ← DEM.Kg(pars)
b′ ← ALRb,Dec

1 (pars)
return b′

LRb(j, ϑ):
if j < t∗ then

m1 ← ϑ(Kj−1)
ψ ← DEM.EncKj

(m1)
if j > t∗ then

m0 ← 0|m1|

ψ ← DEM.EncKj
(m0)

if j = t∗ then
m1 ← ϑ(Kj−1)
m0 ← 0|m1|

call ψ ← LR(m0,m1)
return ψ

Dec(ψ):
call m← Dec ψ
return m

Figure 15: Description of reduction A2 used to prove (15). When A2 runs A1, it needs to create
an environment ExpIND-PKDM-CCA-b

DEM, A1
. The “call ψ” line details that A1 calls the IND-CCA oracle LR,

receiving an encryption ofmb under the correct IND-CCA challenge keyK. The line “callm” indicates
that A1 calls the decryption oracle of the IND-CCA game on ψ.

For j < t∗ it is possible for the reduction simlulate m1 correctly using Kj−1, and for j > t∗ we
use the length regularity condition on ϑ to create the m0 value to feed into the hybrids. Since we know
A1 can beat IND-PKDM-CCA for j = t∗, we make the input values to the IND-CCA game’s LR oracle
be the same as the m1 and m0 values used in the IND-PKDM-CCA game, ensuring that the reduction
captures this correctly.

C IND-KDM Security of TYPE-2 Hybrid Encryption

Theorem C.1. Let Hyb be a hybrid PKE scheme as defined above that comprises an OW-CCA TYPE-2
KEM and an IND-CCA DEM. For any adversaryA that asks at most q oracle queries (encryption queries
+ direct RO queries + indirect RO queries), and for all length-regular ϕ ∈ Φ, there exists algorithms B
and C such that
AdvIND-KDM-CCA[Φ]

Hyb, A (λ) ≤ 2q ·AdvOW-CCA
KEM, B (λ) + 2AdvIND-PKDM-CCA

DEM, C (λ) + 4AdvPRF
F, A(λ).

Proof. The proof is identical to the proof of Theorem 3.1 up until equation (11), and instead we have:

Pr[A sets bad in G3] ≤ q ·AdvOW-CCA
KEM, B (λ) (16)

In TYPE-2 KEMs an adversary playing the OW-CCA game cannot check if each query is equal to the
challenge. As a result, in the simulation of LR0 the probability that we can win the KEM game when A
sets bad in G2 is 1

q , where q is the total number of queries that A makes. This factor carries through in
the term collection at the end of the proof.
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