
More Efficient Cryptosystems From kth-Power Residues?

Zhenfu Cao1, Xiaolei Dong1, Licheng Wang2, and Jun Shao3

1 Department of Computer Science and Engineering, Shanghai Jiaotong University
2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications

3 School of Computer and Information Engineering, Zhejiang Gongshang University
{zfcao,dong-xl}@cs.sjtu.edu.cn, wanglc@bupt.edu.cn, chn.junshao@gmail.com

Abstract. At Eurocrypt 2013, Joye and Libert proposed a method for constructing public key cryptosystems
(PKCs) and lossy trapdoor functions (LTDFs) from (2α)th-power residue symbols. Their work can be viewed
as non-trivial extensions of the well-known PKC scheme due to Goldwasser and Micali, and the LTDF scheme
due to Freeman et al., respectively. In this paper, we will demonstrate that this kind of work can be extended more
generally: all related constructions can work for any kth-power residues if k only contains small prime factors,
instead of (2α)th-power residues only. The resultant PKCs and LTDFs are more efficient than that from Joye-Libert
method in terms of decryption speed with the same message length.

Keywords: Goldwasser-Micali cryptosystem, kth-power residuosity, k-residue discrete logarithm, ad-
ditive homomorphism, lossy trapdoor function

1 Introduction

Public key cryptosystem (PKC) is one of fundamental building blocks for securing digital communications.
Many public key encryption schemes have been proposed so far [31,18,4,15,8,22,16,13]; however, it is fair
to say that they can be classified into several main categories, such as the ElGamal-type [18,15,8,16,13],
the RSA-type [31,4,8,22], the GM-type [20,23], and others [2,26,17,25,28]. Most of the first two types of
cryptosystems focus on how to enhance the security or enrich the properties of original cryptosystem, while
most of the third type of cryptosystems focus on how to improve the effectiveness and efficiency of the
original cryptosystem.

At Eurocrypt 2013, Joye and Libert [23] proposed a very natural generalization of the GM cryptosys-
tem, while it results in the most efficient GM-type cryptosystem in terms of bandwidth (i.e., the cipher-
text length) and decryption speed. Specially, the GM cryptosystem uses quadratic residue symbols w.r.t.
modulus n, while the Joye-Libert cryptosystem makes use of (2α)th-power residue symbols w.r.t. modu-
lus n. The bandwidth and the time complexity of decryption of the Joye-Libert cryptosystem are log n and
O(α(log n)2(log log n)), respectively.

In this paper, we propose several new GM-type cryptosystems that take advantages of kth-power residue
symbols, where k = pα1

1 · · · pαss (2 ≤ p1 < · · · < ps) only contains small prime factors. Surprisingly, our
proposal is more efficient than the Joye-Libert cryptosystem in terms of decryption speed. In particular, the
time complexity of decryption in our proposal can be approximately reduced to O(α′(log n)2(log log n)),
where α′ =

∑s
i αi in general is observably less than α with the similar scales of message space and ci-

phertext space. Our proposal inherits the additive homomorphism property of the GM cryptosystem, which
allows the additively homomorphic operation on larger messages while keeping the same efficiency. Hence,
our proposal also yields efficient lossy trapdoor functions, even with better lossiness and faster inversion
algorithm compared to the Joye-Libert constructions.
? This work was supported by the National Natural Science Foundation of China (NSFC) (nos. 61033014, 61371083, 61373154,

61370194) and the NSFC A3 Foresight Program (no. 61161140320).

1.1 Related Work

At STOC 1982, Goldwasser and Micali proposed the first probabilistic key encryption scheme [20]. It is
quite simple and elegant. The public key and private key are {n, a} and p, respectively. Here, n is an RSA
modulus n = p·q, and a is a non-square in Jn,2 (i.e., the set of elements in Z∗n whose Jacobi symbol is 1). For
an `-bit message m, it is encrypted bit by bit. That is, the ciphertext is (c1, · · · , c`) where ci = 〈amix2i 〉n for
some random xi ∈ Zn. Accordingly, the message is recovered bit by bit: If ci is a quadratic residue modulo
p, then mi = 0; otherwise, mi = 1. The ciphertext is ` log n bits in length, and the time complexities of
encryption and decryption are bothO(`(log n)2). These results suggest that the GM cryptosystem is efficient
in encryption and decryption, while it is inefficient in bandwidth utilization. Several proposals were made
to address this issue.

Short afterwards (at CRYPTO 1984), by using the Blum-Blum-Shub pseudorandom generator [5,6],
Blum and Goldwasser [7] proposed another efficient probabilistic encryption scheme that achieves a smaller
bandwidth in `+ log n bits, and a smaller time complexity of encryption O(`(logn)

2

log logn). As mentioned in [7],

the decryption time complexity of the Blum-Goldwasser cryptosystem is O((log n)3) +O(`(logn)
2

log logn), and it
is slightly faster than schemes RSA [31] and Rabin [30] when ` > log n.

During 1988 to 1990, Cao [9,10,11] proposed two types of extensions of the GM cryptosystem. One
is based on the cubic residue in ring Z[ω] that allows 3-adic encoding. It results in an even fast decryption
with the same length message. The other extension is based on the kth-power residues that enables segment
encryption instead of bit encryption in the GM cryptosystem. The concept of indistinguishability due to
Goldwasser and Micali is also extended to k-indistinguishability in these work (it is also summarized in
[12]).

Four years later (at STOC 1994), Benaloh and Tuinstra [3] makes another extension on the GM cryp-
tosystem. Their cryptosystem sets the public key as a triple {n, k, a} such that n is still an RSA modulus
n = p · q, k is a prime, k|φ(n), k2 - p− 1, a ∈ Zn and aφ(n)/k 6≡ 1 (mod n), where φ(n) is Euler’s totient
function. The encryption of a message m with `-bit length but smaller than k is given by c = 〈amxk〉n
for a random x ∈ Zn. Clearly, the encryption time complexity is O((log n)2(log log n)) considering that
the encryption cost is mainly occupied by two modular exponentiations. The most promising feature of the
Benaloh-Tuinstra cryptosystem is that the bandwidth is reduced to log n bits. However, the decryption re-
quires searching over the entire message space [0, k) for locating m such that am·φ(n)/k ≡ cφ(n)/k (mod n)
holds. Thus, the scheme is in practice limited to short k, say no longer than 40 bits [23].

Another four years later (at CCS 1998), Naccache and Stern [27] further improved the GM cryptosystem
along the line of the Benaloh-Tuinstra cryptosystem. The public key is still {n, k, a}, and only k has different
properties. That is, k is a product of small (odd) primes k =

∏
pi such that pi|φ(n) and p2i - φ(n). With

the new properties of k, the message m is recovered from m ≡ mi (mod pi) through Chinese Remainder
Theorem (CRT). It results in that the size of message space could be as large as

∏
pi, while the size of

searching space is only
∑
pi. However, the condition p2i - φ(n) makes its message space cannot be further

enlarged.

Most recently (at EUROCRYPT 2013), Joye and Libert [23] made a further improvement on the Naccache-
Stern cryptosystem by setting k = 2α. But the newly conceived decryption algorithm can be efficiently fin-
ished by a bit-by-bit manner. The time complexities of encryption and decryption areO((log n)2(log log n))
and O(α(log n)2(log log n)), respectively. The fact allows the message to be very long, say 128 bits as they
suggested.

1.2 Our Contribution

In this paper, we make a further extension on Goldwasser and Micali’s work and obtain several cryptosys-
tems (including three main cryptosystems, denoted by V0, V1 and V2 respectively) that are more efficient
than other GM-type cryptosystems. The main idea is to set k as a product of powers of small primes, and
coupling with a fast decryption algorithm for recovering k-residue discrete logarithm (See Definition 4). To
prove the security of our proposal, we introduce two assumptions. One is the kth-power residuosity (kth-
PR) assumption: given an element x ∈ Z∗n such that the generalized Jacobi symbol (see Definition 3) is 1,
no probabilistic polynomial time (PPT) adversary can decide whether x is a kth-power residue or not. The
other is the strong kth-power residuosity (kth-SPR) assumption: given an element x ∈ Z∗n, no PPT adversary
can decide whether x is a kth-power residue or not. Our proposal is a generalized framework in the sense
that it can be instantiated to the GM cryptosystem, the Benaloh-Tuinstra cryptosystem, the Naccache-Stern
cryptosystem and the Joye-Libert cryptosystem with different choices of k. In brief, the highlights of our
proposal are summarized as follows.

– Efficient in encryption and bandwidth. The encryption time complexity and the bandwidth of our pro-
posal are O((log n)2(log log n)) and log n bits, respectively. These features are as good as that in the
Benaloh-Tuinstra cryptosystem, the Naccache-Stern cryptosystem and the Joye-Libert cryptosystem.

– Lower ciphertext expansion factor. With the same length of modulus n, the ciphertext expansion factor of
scheme V2 is about 2 under some reasonable setting on k. This feature is better than all aforementioned
GM-type cryptosystems.

– Large message space. It would be good if the message space could be enlarged with the same ciphertext
space while keeping the efficiency in encryption and decryption. When k =

∏
pαii with that pi’s are

small primes, and αi’s are positive integers, the message m in our proposal is reconstructed from mi ≡
m (mod pαii) through CRT like the Naccache-Stern cryptosystem does. However, the space of mi is
enlarged from [0, pi − 1) to [0, pαii − 1) without increasing the searching space.

– Faster in decryption. The decryption time complexity of our proposal isO(α′(log n)2(log log n)), where
α′ =

∑
αi under the setting k =

∏
pαii with small distinct primes pi and positive αi (i = 1, · · · , s).

Compared with the Joye-Libert cryptosystem, our schemes can decrypt even faster in practice. The
reason is that the time complexity of decryption in our proposal is mainly occupied by α′, which is in
general observably smaller than α in the Joye-Libert cryptosystem, under the condition 2α ≈

∏
pαii (i.e.,

the roughly equal size of message space). This advantage is manifested by intensive tests (See Section
5.2).

– Additively homomorphic over large message space. Our proposal admits additive homomorphism over
large message space. In particular, scheme V2 can also yields an efficient lossy trapdoor function with
even better lossiness and faster inversion algorithm compared to the Joye-Libert constructions.

2 Background

In this section, we review some definitions related to our proposal, and introduce the notations in our paper.
In particular, we review the definitions and theorems related to kth-power residuosity, generalized Legendre
symbol, and generalized Jacobi symbol. We also define the k-residue discrete logarithm problem.

For simplicity, we would like to firstly introduce the notations used in the rest of this paper in Table 1.

Definition 1 (kth-Power Residuosity). For any positive integers k and n, we say that an integer b ∈ Z∗n is
a kth-power residue w.r.t. modulus n if and only if the following congruent equation has solution(s)

xk ≡ b (mod n). (1)

Table 1. Notations used in this paper

Notation Description
Zn the set of non-negative minimal residues w.r.t. modulus n, i.e., {0, 1, · · · , n−1}
〈x〉n x mod n, result in a non-negative minimal residue
(x)n x mod n, result in an absolute minimal residue
(a, b) the greatest common divisor of a and b
[a, b] the least common multiple of a and b
Z∗n the multiplication group w.r.t. modulus n, i.e., {a ∈ Zn|(a, n) = 1}
ordn(a) a’s order w.r.t. modulus n(
a
p

)
k

a’s generalized Legendre symbol w.r.t modulus p (see Definition 2)

J(i)p,k the set of elements a ∈ Z∗p such that
(
a
p

)
k
=
(
ωp,i
p

)
k

(see Theorem 2)(
a
n

)
k

a’s generalized Jacobi symbol w.r.t modulus n (see Definition 3)
Jn,k the set of elements a ∈ Z∗n such that

(
a
n

)
k
= 1, Jn,k = Rn,k ∪ NRn,k

Rn,k the set of kth-power residues w.r.t. modulus n, i.e., {(xk)n|x ∈ Z∗n}
NRn,k the set of kth-power non-residues in Jn,k, i.e., Jn,k \ Rn,k
log x the logarithm of x w.r.t. the base 2, i.e., log2 x

Accordingly, if Equation (1) has no solution, we say b is a kth-power non-residue w.r.t. modulus n. ut

Theorem 1 (Existence of kth-Power Residuosity). [12, Theorem 4.1, page 55] For any prime p and
integer n = pα or n = 2pα, an integer b ∈ Z∗n is a kth-power residue w.r.t. modulus n if and only if

b
φ(n)

(k,φ(n)) ≡ 1 (mod n), where φ(n) is Euler totient function. ut

Definition 2 (Generalized Legendre Symbol). For any integers a, k and prime p such that k|p − 1 and
(a, p) = 1, the generalized Legendre symbol (GLS) is defined by(

a

p

)
k

=
(
a
p−1
k

)
p
. (2)

ut

From Definition 2, it is easy to deduce that if a ≡ b (mod p), then
(
a
p

)
k
=
(
b
p

)
k
, and that GLS is

multiplicative for any integers a, b such that (a, p) = (b, p) = 1, i.e.,(
ab

p

)
k

≡
(
a

p

)
k

(
b

p

)
k

(mod p). (3)

Theorem 2 (Number of GLS). [12,24] There are exactly k distinct generalized Legendre symbols, includ-
ing 1, and there are k distinct elements ωp,0, · · · , ωp,k−1 ∈ Z∗p such that

(
ωp,0
p

)
k
= 1 and

(
ωp,i
p

)
k
6=(

ωp,j
p

)
k

(i 6= j). ut

Definition 3 (Generalized Jacobi Symbol). For integers a, k, n, where n = pq with two primes p and q,
k|p− 1, k|q − 1 and (a, n) = 1, the generalized Jacobi symbol (GJS) is defined by(a

n

)
k
=

(
a

p

)
k

(
a

q

)
k

. (4)

ut

Lemma 1 (Properties of R, J and NR). For arbitrary integers a, k and two primes p, q such that k|p −
1, k|q − 1, we have

(1) Rp,k = Jp,k.
(2) |Rp,k| = p−1

k .
(3) a ∈ Rpq,k ⇔ (a)p ∈ Rp,k and (a)q ∈ Rq,k.
(4) a ∈ NRpq,k ⇔ (a)p ∈ NRp,k and (a)q ∈ NRq,k.

Proof. Properties (1), (3) and (4) are apparently according to definitions on the related notions.1 So, let
us prove property (2). The basic idea can be find in [24]. Suppose that g is one of p’s primitive roots,
then when p - a, we have that xk ≡ a (mod p) has a solution if and only if k = (k, p − 1)|indg(a),
where indg(a) denotes a’s index (i.e., discrete logarithm) w.r.t. base g and modulus p. Thus, for indg(a) =
k, 2k, · · · , p−1k · k,

gk, g2k, · · · , g
p−1
k
k (5)

are exactly all kth-power residues w.r.t. the modulus p. From expression (5), we can see that each number is
distinct in the sense of taking modulo p. Thus, property (2) holds. ut

Definition 4 (k-Residue Discrete Logarithm, k-RDL). For prime p and two positive integers b, k such
that k|p − 1 and ordp(b) = k, the k-discrete logarithm problem is to find x (0 ≤ x < k) satisfying bx ≡ y
(mod p) for a given integer y ∈ Z∗p. We call x as y’s k-discrete logarithm w.r.t. base b and modulus p. When
k contains only small prime factors, we call x as y’s k-residue discrete logarithm (k-RDL) w.r.t. base b and
modulus p, denoted as x = RDLkb,p(y).

We will show that the k-RDL problem can be solved effectively and efficiently in Section 3.4. This fact is
the base of our subsequent construction.

3 New PKC Schemes From kth-Power Residues

In this section, we further generalize the Joye-Libert cryptosystem by presenting two main schemes.

3.1 Scheme V0

Our first construction, denoted by V0, consists of the following three algorithms.

KeyGen: On inputting the security parameter κ, KeyGen outputs the public key pk = {n, k, a} and private
key sk = {p, q}, where

– n = p · q, p = k · p′ + 1, q = k · q′ + 1, and (k, p′q′) = 1;
– p, q are big primes, while k is a product of small primes;
– p′, q′ both contain big prime factors.
– a is chosen at random from Z∗n such that ordp(a) = ordq(a) = k (See the details on how to choose
a in Section 3.3).

Enc: On inputting a message m ∈ Zk, the encryptor selects x ∈ Z∗n at random and outputs the ciphertext

c = 〈amxk〉n. (6)

1 Note that when k is odd, NRpq,k = NRp,k = NRq,k = ∅ since in this case for any a in Z∗p (resp. Z∗q), we have that
(
a
p

)
k
6= −1

(resp.
(
a
q

)
k
6= −1).

Dec: On inputting a ciphertext c ∈ Z∗n, the decryptor knowing p can obtain the message as follows.
1. Compute b =

(
a
p

)
k
, which actually can be pre-computed.

2. Compute y =
(
c
p

)
k
.

3. Recover the message m = RDLkb,p(y) by using the method in Section 3.4.

Correctness At first, let us prove that ordp(b) = k, where b =
(
a
p

)
k

is specified by the decryption process.
From a’s order is k and

1 ≡ bordp(b) ≡ a
p−1
k

ordp(b) (mod p),

we have that k|p−1k ordp(b). Since (k, p−1k) = 1, we have that k|ordp(b). On the other hand, it is easy to

verify that bk ≡ a
p−1
k
k ≡ 1 (mod p). Thus, ordp(b)|k. Therefore, ordp(b) = k. Next, from Equation (7),

we can easily obtain the correctness of our proposal.

y ≡
(
c

p

)
k

≡
(
am

p

)
k

(
xk

p

)
k

≡
(
a

p

)m
k

≡ bm (mod p) (7)

Remark 1. Recall that Shor’s quantum algorithm [32] for factoring n consists of the following classical step:
If for some random element a ∈ Z∗n, ordn(a) = k is even, then (ak/2 ± 1, n) might be a non-trivial factor
of n. However, if we choose a such that ordp(a) = k and ordq(a) = k hold simultaneously, then even if k
is even, this will not lead to the factorization of n. In fact, in this case we have n|ak/2 + 1, p - ak/2 − 1 and
q - ak/2 − 1. That is, (ak/2 ± 1, n) must be 1 or n.

Remark 2. In fact, scheme V0 still works well if ordp(a) = ordq(a) = t · k for some positive integer t
containing only small prime factors. Moreover, the method in Section 3.3 for generating a with condition
ordp(a) = ordq(a) = k can also work well for generating a with condition ordp(a) = ordq(a) = t · k. The
only thing we need to do is to view t · k as a new k′ and call Algorithm 2 with input (p, q, k′, k′) to get the
required a.

It is worth to mention that when both t and k only contain small prime factors, we further require
ordp(a) = ordq(a). If not, the following attack would work: Assume that all the prime factors of t and k
are belong to {pi1 , · · · , pimax}, and the maximum exponent of the prime factor of t and k is αmax, then one

can find factorization of n by computing (a
pji1
·...·pjimax − 1, n) for j ∈ {1, · · · , αmax}.

3.2 Scheme V1

Our second construction, denoted by V1, consists of the following three algorithms.

KeyGen: On inputting the security parameter κ, KeyGen outputs the public key pk = {n, k, a} and private
key sk = {p, q}, where

– n = p · q, p = k · p′ + 1, q = k · q′ + 1, and (k, p′q′) = 1;
– p, q are big primes, while k is a product of small primes;
– p′, q′ both contain big prime factors.
– a is a primitive root w.r.t. the modulus p.

Enc: On inputting a message m ∈ Zk, the encryptor selects x ∈ Z∗n at random and outputs the ciphertext

c = 〈amxk〉n. (8)

Dec: On inputting a ciphertext c ∈ Z∗n, the decryptor knowing p can obtain the message as follows.
1. Compute b =

(
a
p

)
k
, which actually can be pre-computed.

2. Compute y =
(
c
p

)
k
.

3. Recover the message m = RDLkb,p(y) by using the method in Section 3.4.

Correctness The only difference between scheme V0 and scheme V1 lies in the methods of choosing a. To
prove the correctness of V1, we only need to prove that ordp(b) = k still holds. At first, it is easy to verify
that bk ≡ a

p−1
k
k ≡ 1 (mod p), thus ordp(b)|k. Next, if there is k′|k (k′ < k) such that bk

′ ≡ 1 (mod p),
then we have that aδ ≡ 1 (mod p) for δ = p−1

k/k′ < p − 1. This is contrary to the fact that a is a primitive
root w.r.t. the modulus p. Therefore, b’s order w.r.t. to the modulus p is exactly k.

Remark 3. Scheme V1 still works well if ordp(a) = t · k for some positive integer t containing one large
prime factor at least. In addition, Algorithm 1 in Section 3.3 for generating a with condition ordp(a) = k
can also work well for generating a with condition ordp(a) = t · k. It is also worth to mention that scheme
V1 can resist the attack described in Remark 2 since t contains one large prime factor at least.

Remark 4. We notice that the cases k = 2 and k = 2α (α ≥ 1) are roughly corresponding to the GM
cryptosystem and the Joye-Libert cryptosystem, respectively. The only subtle difference is the choice of a.
In particular, a is not explicitly selected from NRn,k in our proposal. Actually, Joye and Libert’s idea for

proving that ordp
((

a
p

)
2α

)
= 2α (when a ∈ NRn,2) cannot be easily extended to the case of k > 2 or

the case that k only contains small prime factors. Fortunately, we evade this obstacle by presenting different
methods for choosing a.

3.3 Methods for Choosing a

In this subsection, we will discuss the methods for choosing a. Before giving the concrete methods, we need
the following lemmas at first.

Lemma 2. For u, v ∈ Z∗p for prime p, if (ordp(u), ordp(v)) = 1, then ordp(uv) = ordp(u)ordp(v).

Proof. The proof follows the idea in [12, page 123]. From (uv)ordp(uv) ≡ 1 (mod p), we have that

((uv)ordp(uv))ordp(u) ≡ (uordp(u)vordp(u))ordp(uv) ≡ vordp(u)ordp(uv) ≡ 1 (mod p).

The above reduction shows that ordp(v)|ordp(u)ordp(uv), which leads to ordp(v)|ordp(uv). Similarly,
ordp(u)|ordp(uv) holds. Hence, we have that ordp(u)ordp(v)|ordp(uv).

On the other hand, (uv)ordp(u)ordp(v) ≡ 1 (mod p) leads to ordp(uv)|ordp(u)ordp(v). Hence, we have
that ordp(uv) = ordp(u)ordp(v). ut

Lemma 3. If p, p′ are primes, p′α|p− 1, p′α+1 - p− 1, α ≥ 1, b
p−1
p′ 6≡ 1 (mod p), and a = 〈b

p−1
p′α 〉p, then

we have that ordp(a) = p′α.

Proof. The proof also follows the idea in [12, page 124]. From ap
′α ≡ (b(p−1)/p

′α
)p
′α ≡ 1 (mod p), we

have that ordp(a)|p′α. On the other hand, we also have ordp(a) = p′α. If not, we have that ordp(a) = p′α
′

for some α′ < α, which leads to

1 ≡ aordp(a) ≡ (b(p−1)/p
′α
)ordp(a) ≡ b(p−1)/p′

α−α′

(mod p)

Raise the both sides of the above equation to the power of p′α−α
′−1, we can obtain that b(p−1)/p

′ ≡ 1
(mod p), which is a contradiction for the condition of b. This finishes the lemma. ut

Now, let us at first give the method for choosing a ∈ Z∗p such that ordp(a) = k. Assume that k =∏s
i=1 p

αi
i , where pi (i = 1, · · · , s, p1 < · · · < ps) are distinct primes, and αi ≥ 1. Our main idea is to

generate ai ∈ Z∗p (i = 1, · · · , s) such that ordp(ai) = pαii , and then compute a = a1 · . . . · as mod p.
According to Lemma 2, we have that ordp(a) =

∏s
i=1 ordp(ai) =

∏s
i=1 p

α
i = k. Thus, we only need to

show how to choose ai such that ordp(ai) = pαii . In fact, we can choose randomly bi from Z∗p such that

b
p−1
pi
i 6≡ 1 (mod p). (9)

After that, compute ai = 〈b
(p−1)/pαii
i 〉p. According to Lemma 3, we have that ordp(ai) = pαii . Piecing all

above together, the algorithmic description of generation of a can be found in Algorithm 1.

Algorithm 1 Generation of a with ordp(a) = k
Input:

Prime p and integer k, where k|p− 1, k =
∏s
i=1 p

αi
i , and pi’s are distinct primes.

Output:
a ∈ Z∗p such that ordp(a) = k.

1: a← 1;
2: for i from 1 to s do
3: Loop: bi

$←− Zp; . Choose ai such that ordp(ai) = pαii
4: if b(p−1)/pi

i ≡ 1 (mod p) then
5: goto Loop;
6: end if
7: ai ← 〈b

(p−1)/p
αi
i

i 〉p;
8: a← 〈aai〉p;
9: end for

10: Output a.

Next, let us give the method for generating a ∈ Z∗pq such that ordp(a) = ordq(a) = k. By using the
above method, we can find a1 ∈ Z∗p and a2 ∈ Z∗q such that ordp(a1) = k1 and ordq(a2) = k2, respectively.
Then, according to CRT, from a ≡ a1 (mod p) and a ≡ a2 (mod q), we can obtain

a = 〈M1 · q · a1 +M2 · p · a2〉pq,

where M1 and M2 are positive integers such that

M1 · q ≡ 1 (mod p), and M2 · p ≡ 1 (mod q).

Therefore, ordp(a) = ordp(a1) = k1 and ordq(a) = ordq(a2) = k2. This process is detailed in Algorithm
2. In particular, when k1 = k2 = k, we obtain a as required in scheme V0. When (k1, k2) = 1, we obtain a
as required in scheme V2 that will introduced later.

3.4 Solve the k-RDL Problem

Suppose that p is a prime and k, b are two positive integers such that k|p − 1 and ordp(b) = k. When k
contains only small prime factors, we can solve the following k-RDL problem efficiently as long as there

Algorithm 2 Generation of a with ordp(a) = k1, ordq(a) = k2
Input:

Two primes p, q and two integers k1, k2, where k1|p− 1, k2|q− 1, (k1, k2) = 1, k1 =
∏s
i=1 p

αi
i , k2 =

∏t
i=1 q

βi
i , and pi, qi’s

are distinct primes.
Output:

a ∈ Z∗pq such that ordp(a) = k1, ordq(a) = k2.

1: Get a1 ∈ Z∗p such that ordp(a1) = k1 by calling Algorithm 1 with input (p, k1);
2: Get a2 ∈ Z∗q such that ordq(a2) = k2 by calling Algorithm 1 with input (q, k2);
3: M1 ← 1/q mod p;
4: M2 ← 1/p mod q;
5: a← 〈M1 · q · a1 +M2 · p · a2〉pq;
6: Output a.

exists a solution:
y ≡ bm (mod p). (10)

The basic idea of computing m ∈ Zk follows that in [12, pages 126–128].
Assume that k =

∏s
i=1 p

αi
i , where pi are small primes such that p1 < · · · < ps and αi ≥ 1 (i =

1, · · · , s). Our main idea is to generate mi ∈ Zpαii (i = 1, · · · , s) such that

mi ≡ m (mod pαii), (11)

and then compute m ∈ Zk satisfying Equation (10) by using CRT. Therefore, the main task of computing
m is to compute mi (i = 1, · · · , s) satisfying Equation (11).

Firstly, suppose that y0 = y and mi can be represented as

mi = mi,0 +mi,1 · pi + · · ·+mi,αi−1 · p
αi−1
i . (12)

Then from Equation (11), we have that(
y0
p

)
p
αi
i

≡
(
bmi

p

)
p
αi
i

≡
(
b

p

)mi
p
αi
i

(mod p). (13)

Raise the both sides of Equation (13) to the power of pαi−1i , we have that

y
p−1
pi

0 ≡ b
p−1
pi
·mi ≡ b

p−1
pi
·(mi,0+mi,1·pi+···+mi,αi−1·p

αi−1
i) ≡ b

p−1
pi
·mi,0 (mod p). (14)

We can determine mi,0 by searching it in {0, 1, · · · , pi − 1}. This is quite efficient since pi is small.
Next, set y1 = 〈y0 · b−mi,0〉p. Similar with Equation (14), we have that

y

p−1

p2
i

1 ≡ b
p−1

p2
i

(mi,1pi+···+mi,αi−1p
αi−1
i)

≡ b
p−1
pi
·mi,1 (mod p). (15)

Again, we can determine mi,1 by searching it in {0, 1, · · · , pi − 1}. Similarly, we can determine mi,j for
(j = 2, · · · , αi − 1) iteratively, and finally recover mi according to Equation (12).

The above process of computing mi can be improved. Notice that 〈b
p−1
pi
·`i〉p (`i = 0, · · · , pi − 1) is

independent withmi, we can pre-compute and store them in a table Ti. Then, after obtaining 〈y(p−1)/p
j+1
i

j 〉p,

we can look up it in the table Ti to determine mi,j (j = 0, 1, · · · , αi − 1) directly, without further exponen-
tiation calculation. If necessary, we can further employ the hash table technique suggested in [27] to reduce
the cost for storing and searching in Ti.

The algorithmic description of solving k-RDL problem can be found in Algorithm 3.

Algorithm 3 Fast Solution of k-RDL Problem
Input:

Prime modulus p, base b, and integer k, where ordp(b) = k, k|p− 1, k =
∏s
i=1 p

αi
i , and pi’s are small distinct primes.

Integer y ∈ Zp
Output:

m ∈ Zk such that bm ≡ y (mod p)

1: for i from 1 to s do
2: βi,0 ← 1; . Pre-computing, construct Ti

3: βi,1,← 〈b
p−1
pi 〉p;

4: Ti ← {βi,0, βi,1};
5: for `i from 2 to pi − 1 do
6: βi,`i = 〈βi,1 · βi,`i−1〉p;
7: Ti ← Ti ∪ {βi,`i};
8: end for
9: end for

10: for i from 1 to s do
11: mi ← 0; y0 ← y;
12: P0 ← 1; P1 ← pi;
13: for j from 0 to αi − 1 do
14: t← 〈y(p−1)/P1

j 〉p;
15: locate t = βi,`i in Table Ti; . Searching in Ti
16: mi,j ← `i;
17: P0 ← mi,jP0;
18: mi ← mi + P0; . Reconstruct mi

19: yj+1 ← 〈yjb−P0〉p;
20: P0 ← P1;
21: P1 ← P1 · pi;
22: end for
23: end for
24: m← CRT(m1, p

α1
1 ; · · · ;ms, p

αs
s); . Reconstruct m

25: Output m.

4 Security Proofs

In this section, we will give the security analysis of our proposal in two parts. In the first part, we obtain
the semantic security under a weak assumption but with restrictions on the prime factors of k. In particular,
we prove that our proposal is semantically secure under the kth-PR assumption, while k should satisfy that
k = 2α

∏s
i=1 p

αi
i , where α = max{α1, · · · , αs}, and p1 < · · · < ps are small odd primes. In the second

part, we obtain the semantic security with less restriction on k, but under a strong assumption. In particular,
we prove that our proposal is semantically secure under the kth-SPR assumption.

4.1 Security Under the kth-PR Assumption

Before giving the security analysis, we would like to introduce the kth-power residuosity (kth-PR) assump-
tion and some basic results related to the kth-PR assumption.

Definition 5 (kth-Power Residuosity (kth-PR) Assumption). Let n = pq be the product of two large
primes p and q with k|p − 1 and k|q − 1. The kth-power residuosity problem in Z∗n is to distinguish the
following two distributions

D0 = {x : x
$←− NRn,k} and D1 = {x : x

$←− Rn,k}. (16)

The kth-power residuosity assumption posits that, without knowing the factorization of n, the advantage
Advk

th−PR
A (1κ) of any PPT kth-power residuosity distinguisher A defined as follows is negligible with

respect to the system security parameter κ,

Advk
th−PR
A (1κ) = |Pr[A(x, k, n) = 1|x← NRn,k]− Pr[A(x, k, n) = 1|x← Rn,k]|

where probabilities are taken over all coin tosses.

Theorem 3. Let k = 2α
∏s
i=1 p

αi
i and k′ = 2

∏s
i=1 pi, where α = max{α1, · · · , αs}, and pi’s are distinct

small odd primes. Then, we have that the kth-PR assumption implies the k′th-PR assumption. More pre-
cisely, for any PPT k′th-power residuosity distinguisher A with advantage ε′, there exists a PPT kth-power
residuosity distinguisher B with advantage ε such that ε′ ≤ 4p2s·α

s ε.

The proof of this theorem is not as easy as it may seem. We shall postpone the proof until we have
established a few preliminary lemmas. In this subsection, we implicitly contains n, p, q, k in all the parts
related to kth-PR assumption, and they remain the same.

Lemma 4. Let t = (2 · pi)αi and t′ = 2 · pi for some small odd prime pi, then we have that the tth-PR
assumption implies the t′th-PR assumption. More precisely, for any PPT t′th-power residuosity distinguisher
A with advantage ε′, there exists a PPT tth-power residuosity distinguisher B with advantage ε such that
ε′ ≤ 4p2s·α

s ε. In other words, define a series of sets as

D
(i)
j = {(x(2pi)j)n : x ∈ NRn,2pi} (j = 0, · · · , αi − 1). (17)

We have that if (2pi)th-PR assumption holds, then elements sampled randomly and uniformly from the set
D

(i)
j are computationally indistinguishable from elements sampled randomly and uniformly from Rn,(2pi)αi

for all j ∈ {0, 1, · · · , αi − 1}. That is,

D
(i)
0

c
≈ D(i)

1

c
≈ · · ·

c
≈ D(i)

αi−1
c
≈ Rn,(2pi)αi . (18)

Proof. The proof is given in two steps.
CLAIM 1. If (2pi)th-PR assumption holds, for j = 1, · · · , αi−1, no PPT adversary can distinguish elements
in D(i)

j from elements in D(i)
j−1.

Suppose that A is a PPT distinguisher that can tell apart from the uniform distribution of elements in
D

(i)
j from that in D(i)

j−1 with non-negligible advantage ε′. Let us construct a PPT (2pi)
th-power residue

distinguisher B that can solve the (2pi)
th-power residuosity problem with non-negligible advantage ε such

that ε′ ≤ 4p2i · ε.
B takes as input w ∈ Jn,2pi and aims to tell apart w ∈ Rn,2pi or w ∈ NRn,2pi . To this end, B chooses

a random element z $←− Z∗n, sets x = (z(2pi)
j
w(2pi)

j−1
)n and feeds A with (x, (2pi)

j , n). When A halts, B
outputs whatever A outputs.

Now, let us show that the above reduction is correct.

– Case I: Suppose w ∈ Rn,2pi , then we have x 6∈ D(i)
j−1 and

w ≡ w′2pi (mod n) (19)

for some w′ ∈ Z∗n. Consider that the generalized Legendre symbol
(
w′

p

)
2pi

(resp.
(
w′

q

)
2pi

) takes at

most 2pi different values, and z ∈R Z∗n is chosen randomly and uniformly, then the probability to have(
zw′

n

)
2pi

= 1 and zw′ 6∈ Rn,2pi (20)

is at least 1
4p2i

according to property (2) of Lemma 1. If the condition (20) holds, the resultant elements

zw′ mod n are statistically indistinguishable from random elements of NRn,2pi . With Equation (19), we
can further have x ≡ (zw′)(2pi)

j
(mod n). Thus, x ∈ D(i)

j . Recall that the condition (20) is equivalent
to (

zw′

p

)
2pi

=

(
zw′

q

)
2pi

= −1. (21)

We can deduce that x 6∈ D
(i)
j+1. If not, we have a representation x ≡ y(2pi)

j+1
(mod n) for some

y ∈ NRn,2pi , which implies
(
x
p

)
(2pi)j+1

= 1. But this is impossible, since from Equation (21) we have

that (
x

p

)
(2pi)j+1

=

(
(zw′)(2pi)

j

p

)
(2pi)j+1

=
(
(zw′)(2pi)

j
) p−1

(2pi)
j+1

=

(
zw′

p

)
2pi

= −1. (22)

Consequently, x ≡ (zw′)(2pi)
j
(mod n) is uniformly distributed in D(i)

j with probability at least 1
4p2i

.

– Case II: Suppose w ∈ NRn,2pi , then we clearly have x ∈ D(i)
j−1 because x ≡ (z2piw)(2pi)

j−1
(mod n)

and z2piw ∈ NRn,2pi . ut

CLAIM 2. If (2pi)th-PR assumption holds, no PPT adversary can distinguish the uniform distribution of
element in D(i)

αi−1 from that in Rn,(2pi)αi .
LetA be an algorithm that can distinguish random elements inD(i)

αi−1 from random elements in Rn,(2pi)αi
with non-negligible advantage ε′. Let us build a (2pi)

th-power residuosity distinguisher B with the same
non-negligible advantage ε = ε′.
B takes as input an element w ∈ Jn,2pi with the goal of deciding whether w ∈ Rn,2pi or w ∈ NRn,2pi .

To do this, B simply defines x = (w(2pi)
αi−1

)n and runs A on input of (x, (2pi)αi , n). When A halts, B
outputs whatever A outputs.

It is easy to see that this reduction is correct: If w ∈ Rn,2pi , then x ∈ Rn,(2pi)αi . If w ∈ NRn,2pi , we

immediately have x ∈ D(i)
αi−1. ut

Combining CLAIM 1 and CLAIM 2, we can get the expected reduction chain (18). Note that the loss
factor of the advantages in each reduction step is at most 1

4p2i
, and all reductions are directly based on

the (2pi)
th-PR assumption. For achieving the indistinguishability result of D(i)

j

c
≈ Rn,(2pi)αi for j =

0, · · · , αi − 1, we need at most αi steps. Thus, the total loss factor of the advantages is at most 1
4p2i ·αi

.
This concludes the Lemma. �

Lemma 5. For a prime p and two positive integers k1, k2 with k1|p−1, k2|p−1. If x ∈ Rp,k1 and x ∈ Rp,k2 ,
then x ∈ Rp,[k1,k2], where [k1, k2] denotes the least common multiple of k1 and k2.

Proof. x ∈ Rp,k1 and x ∈ Rp,k2 imply that x ≡ rk1i ≡ rk22 (mod p) for some k1, k2. Then, for p’s any
primitive root g, we have

r1 ≡ ga (mod p) and r2 ≡ gb (mod p)

for some a, b. Thus,
x ≡ gak1 ≡ gbk2 (mod p).

This suggests ak1 ≡ bk2 (mod p− 1). Then, we have

a
k1

(k1, k2)
≡ k2

(k1, k2)
b

(
mod

p− 1

(k1, k2)

)
.

and k1
(k1,k2)

|b. Thus, we get

r2 ≡
(
g
b/

k1
(k1,k2)

) k1
(k1,k2)

(mod p)

and

x ≡
(
g
b/

k1
(k1,k2)

) k1k2
(k1,k2)

≡
(
g
b/

k1
(k1,k2)

)[k1,k2]

(mod p).

That is, x ∈ Rp,[k1,k2]. ut

We are now in a position to prove Theorem 3.

Proof. Firstly, we set t =
∏s
i=1(2pi)

αi for some distinct primes pi’s and positive integers αi’s (i =
1, · · · , s), and define I as the following Cartesian product

I = {0, 1, · · · , α1} × · · · × {0, 1, · · · , αs}.

Then, for any given vector a = (a1, · · · , as) ∈ I , let us define a series of Cartesian product sets

Da = D(1)
a1 × · · · ×D

(s)
as , (23)

where D(i)
αi = Rn,(2pi)αi (i = 1, · · · , s), while D(i)

ai for ai < αi (i = 1, · · · , s) is defined in (17).
The basic idea to prove Theorem 3 is that if k′th-PR assumption holds, then for any given two vectors

a, b ∈ I , the elements sampled randomly and uniformly from Da are computationally indistinguishable
from that from Db. That is,

Da
c
≈ Db. (24)

More precisely, if there exists a PPT distinguisher A that can tell apart elements randomly chosen from
Da from that from Db with advantage ε′, then there exists a kth-power residue distinguisher B that can
decide whether a given random element is in NRn,k or not with advantage ε ≥ s

4p2sα
ε′, where α =

max{α1, · · · , αs}.
At first, let us consider the case of s = 2, i.e., a = (a1, a2) and b = (b1, b2). We only need to discuss

the situation when a1 6= b1 and a2 6= b2 (otherwise the conclusion is hold apparently according to Lemma
4.

A successful distinguisher that can tell apart uniform distributions over D(1)
a1 × D

(2)
a2 and D(1)

b1
× D(2)

b2

means that it cannot only tell apart uniform distributions over D(1)
a1 and D(1)

b1
, but also tell apart uniform

distributions over D(2)
a2 and D(2)

b2
. More precisely, if there exists a PPT distinguisher A that can tell apart

uniform distributions over D(1)
a1 × D

(2)
a2 and D(1)

b1
× D(2)

b2
with non-negligible advantage ε′, then both A’s

advantages for telling apart uniform distributions over D(1)
a1 and D(1)

b1
, and D(2)

a2 and D(2)
b2

are no less than
ε′. However, according to the proof of Lemma 4, such A means a 2p1-th residue distinguisher B1 with
advantage

ε1 ≥
1

4p21 · |a1 − b1|
ε′,

and a 2p2-th residue distinguisher B2 with advantage

ε2 ≥
1

4p22 · |a2 − b2|
ε′.

With access to either B1 or B2, we can easily decide whether a given element x ∈ Z∗n is belong to NRn,2p1p2
or not. Thus, we obtain a (2p1p2)-th residue distinguisher B with advantage

ε = ε1 + ε2 ≥
(

1

4p21|a1 − b1|
+

1

4p22|a2 − b2|

)
ε′. (25)

By a very similar reduction, we have that for s > 2, if there exists a PPT distinguisher A that can tell
apart uniform distributions over D(1)

a1 × · · · × D
(s)
as and D(1)

b1
× · · · × D(s)

bs
with non-negligible advantage

ε, then we can obtain a k′th residue distinguisher B, which can be used to decide whether a given element
x ∈ Z∗n is belong to NRn,k or not, with advantage

ε = ε1 + · · ·+ εs ≥
(

1

4p21|a1 − b1|
+ · · ·+ 1

4p2s|as − bs|

)
ε′. (26)

In particular, when a = (0, · · · , 0) and b = (α1, · · · , αs), we have that

Da
c
≈ Db = Rn,(2p1)α1 × · · · × Rn,(2ps)αs

and Equation (26) becomes

ε = ε1 + · · ·+ εs ≥
(

1

4p21α1
+ · · ·+ 1

4p2sαs

)
ε′ ≥ s

4p2sα
ε′. (27)

Further, according to Lemma 4, Lemma 5 and

[(2p1)
α1 , · · · , (2ps)αs] = 2αpα1

1 · · · p
αs
s = k

with α = max{α1, · · · , αs}, if there is a PPT distinguisher that can tell apart Da and Db, we can easily
decide whether a given element x ∈ Z∗n is belong to NRn,k or not.

This finishes the proof. ut

Now, we can give the security proof of our proposal based on the kth-PR assumption.

Theorem 4. Let k = 2α
∏s
i=1 p

αi
i and k′ = 2

∏s
i=1 pi, where α = max{α1, · · · , αs}, and pi’s are distinct

small odd primes. If a ∈ NRn,k′ , then scheme V0 and scheme V1 are semantically secure under the kth-PR
assumption. More precisely, for any PPT IND-CPA adversary A, we have a distinguisher B such that

Advind−cpaA (1κ) ≤ 4p2s · α
s
·Advkth−PRB (1κ).

Proof. The basic idea is very similar to the proof of Theorem 2 of [23] in which the so-called Gap-2α-Res
assumption was used. Let us define two games G0 and G1 as follows: In G0, the challenger C sends the real
public key (n, k, a) to the adversary A, while in G1, C at first picks z ∈ Z∗n at random and sets a′ = 〈xk′〉n,
then sends A the forged public key (n, k, a′). Apparently, in G1, a′ ∈ Rn,k′ . Thus, the ciphertext carries no
information about the message andA has no advantage in GameG1. The left thing is to prove that these two
games are indistinguishable in A’s view. The only difference between G0 and G1 is that a ∈ NRn,k′ in G0,
while a ∈ Rn,k′ in G1. Therefore, under the kth residuosity assumption, A has no non-negligible advantage
to distinguish them. ut

4.2 Security Under the kth-SPR Assumption

Definition 6 (Strong kth Power Residuosity (kth-SPR) Assumption). Let n = pq be the product of two
large primes p and q with k|p− 1 and k|q− 1. The strong kth-power residuosity problem in Z∗n is to decide
whether a given random element a ∈ Z∗n is a kth-power residue or not. The strong kth-power residuosity
assumption posits that, without knowing the factorization of n, the advantage Advk

th−SPR
A (1κ) of any PPT

strong kth-power residuosity distinguisher A, defined as the follows, is negligible with respect to the system
security parameter κ,

Advk
th−SPR
A (1κ) = |Pr[A(x, k, n) = 1|x← Z∗N]− Pr[A(x, k, n) = 1|x← Rn,k]|

where probabilities are taken over all coin tosses.

Theorem 5. Scheme V0 and scheme V1 are semantically secure under the strong kth-power residuosity
assumption.

Proof. Under the strong kth-power residuosity assumption, our scheme is still provably secure even without
the condition a ∈ NRn,k′ . Consider that in Game G0, ordp(a) = k in scheme V0 and ordp(a) = p − 1 in
scheme V1, then (a)p 6∈ Rp,k in both cases. Thus, a 6∈ Rn,k. The remained reduction is identical to what was
given in the proof of Theorem 4, except that in Game G1, the assignment a′ = 〈xk′〉n should be replaced
with a′ = 〈xk〉n. ut

Remark 5. The confidence of using the strong kth-power residue assumption lies in the result given by
Adleman and McDonnell [1]. It shows that if there exists an oracle that can determine whether or not
a random z < n is a kth-power residue (modulo n), then we can build an efficient (although not quite
polynomial time) algorithm to factor n [14].

5 Implementation Issues, Performance and Applications

5.1 Provable Security Under the kth-PR Assumption

Careful reader may notice that there exists a small gap between the proof of Theorem 4 and real setting of
our proposal. That is, the part of public key a does not always satisfy a ∈ NRn,k′ . In this section, we fill the
gap by introducing a probabilistic generation of such a.

Recall that k = 2αpα1
1 · · · pαss , k′ = 2p1 · · · ps, and p − 1 = kp′. We select hp ∈ Z∗p at random, and set

r = 〈hk
′·p′
p 〉p. Clearly, we have that

(
r
p

)
k′

= 1. If p ≡ 3 (mod 4), we then set rp ← 〈−r〉p. In this case,(
rp
p

)
k′

=
(
−r
p

)
k′

= −1. If p ≡ 1 (mod 4), then α > 1. We need further elaboration. Let ζ = e2iπ/2
α

be

the primitive 2α-th root of unity, where i =
√
−1, we then set rp = 〈ζ · r〉p. Now, we have that(

rp
p

)
k′
≡
(
ζ

p

)
k′
≡ ζ

p−1
k′ ≡ e

2iπ
2α
· p−1
2p1···ps ≡ eiπ·

p−1
2αp1···ps ≡ −1 (mod p).

Similarly, we can select hq ∈ Z∗q at random and get rq such that
(
rq
q

)
k′

= −1. By using CRT, we have
that

a = rp + p〈p−1(rq − rp)〉q

as what we need. In fact, since a ≡ rp (mod p) and a ≡ rq (mod q), we have that

(a
n

)
k′
=

(
rp
p

)
k′
·
(
rq
q

)
k′
= (−1) · (−1) = 1.

That is, a ∈ NRn,k′ .
Next, let us analyze the order of b =

(
a
p

)
k
. It is easy to check that a2k/k

′ ≡ 1 (mod p) holds in both

cases. Thus, we have that l = ordp(b)|ordp(a)|2k/k′. Based on our test, we find that when hp and hq are
selected at random, l reaches the up bound 2k/k′ with high probability. Note that due to the decrease of l,
the message space is reduced from [0, k) to [0, l).

5.2 Performance Analysis and Comparisons

In this section, we only count the time cost in algorithms Enc and Dec, but not that in algorithm KeyGen,
since it is run only once.

The workload of algorithm Enc in our proposal is the same as the Joye-Libert cryptosystem, i.e., it is
mainly occupied by two modular exponentiations. However, the time cost in algorithm Dec has a subtle
difference. Dec in the both cryptosystems is quite efficient due to efficient solutions of k-residue discrete
logarithm that is performed by a “bit-by-bit” manner. The “bit-by-bit” manner is actually performed in a
binary manner in the Joye-Libert cryptosystem, while it is performed in a pi-adic manner in our proposal,
where pi could be larger than 2. Theoretically, for message space Z2α , the decryption time in the Joye-
Libert cryptosystem is proportional to α. That is, its time complexity in algorithm Dec is O(α · Te(n)),
where Te(n) = O((log n)2(log log n)) is the time complexity for performing modular exponentiations.
While it is proportional to α′ =

∑
αi in our proposal. Note that the time cost on searching in Table Ti in

our proposal can be made to constant, say by using the hash table technique as used in [27]. Therefore, the
time complexity in algorithm Dec in our proposal can be approximately reduced to

Tdec(n) = O

(
Te(n) ·

s∑
i=1

αi

)
.

The above analysis also says that for the same size message space, as long as α′ < α, our scheme could
outperform the Joye-Libert cryptosystem in algorithm Dec. This is manifested by our testing on different
choice on k. Our testing environment and common settings are given below.

– CPU: Intel(R) Core(TM)2 Duo E6550@2.33GHz.
– RAM: 3GB.
– OS: Windows 7, Service Pack 1.
– Supporting Library: MIRCAL Version 5.4, produced by Shamus Software Corp.
– p′, q′: Large numbers contain a big prime no less than 600 bits.
– Size of message space: Roughly equal to 2128.
– n’s in all tests are of similar bit-length.

Table 2. Decryption Speed (s)
k Aver. Dec. Time (s)

2128 0.404940
381 0.266570
556 0.187670
746 0.154760
1138 0.129200
1335 0.118080
1732 0.109210
1931 0.105460
9720 0.068800
25716 0.055850
57114 0.050070
92913 0.048670

When k = 2128 (i.e., α = 128), our proposal is instan-
tiated to the Joye-Libert cryptosystem, the average decryption
time, over 100 trials, is about 400ms. When k = 381, the aver-
age decryption time is reduced to about 267ms. When k = 556

and k = 746, the decryption time is further reduced to about
188ms and 155ms, respectively. We performed similar tests on
all small primes less than 1000, while keeping the message space
size similar with but not smaller than 2128. The results are il-
lustrated in Figure 1, and some results with typical settings on
k are given in Table 2. From Figure 1, we can see that when
small primes, say pi < 100, are used, the average decryption
time decreases dramatically along the increase of used primes. It
follows the fact that once k is fixed, when pi increases, the ex-
ponent αi = dlogpi ke decreases apparently, and the decryption
cost is mainly determined by αi, instead of the value of pi. This
conclusion is further manifested by Figure 2, where the average
decryption time is plotted w.r.t. each setting on exponent value.
Our test also suggests that this kind of speed-up ratio vanishes when pi becomes too large.

5.3 Enlarge Message Space by Using Chinese Remainder Theorem

In our schemes V0 and V1, the message space is Zk, while the ciphertext space is Z∗n. Thus, if we assume that
the bit-lengths of k, p′ and q′ are roughly equal, i.e. log p ≈ log q ≈ 2 log k. Then, the ciphertext expansion
factor is

ρV0 = ρV1 =
log n

log k
=

log p+ log q

log k
≈ 4.

Now, if we set p = k1p
′ + 1, q = k2q

′ + 1, then the public key is pk = (n, k, a), while the private key
is sk = (p, q, k1, k2), where

Fig. 1. Decryption Speed

Fig. 2. Decryption Time vs. Exponent Value

– n = p · q and k = k1 · k2.
– (k1, k2) = (k1, p

′) = (k2, q
′) = 1.

– p′, q′ both contain large prime factors
– k1, k2 both only contain small odd prime factors.
– a is a common primitive root w.r.t. the modulus p and the modulus q.

Then, upon receiving a ciphertext c = amxk ∈ Z∗n, the decryptor knowing (p, q, k1, k2) can recover the
message m ∈ Zk as follows.

1. Compute bp =
(
a
p

)
k1
, bq =

(
a
q

)
k2

, which can actually be pre-computed.

2. Compute yp =
(
c
p

)
k1
, yq =

(
c
q

)
k2

.

3. Compute m1 = RDLk1bp,p(yp) and m2 = RDLk2bq ,q(yq) by using the method in Section 3.4.
4. Reconstruct the message m ∈ Zk from

m ≡ m1 (mod k1) and m ≡ m2 (mod k2),

by using CRT.

The correctness of the above scheme is apparently since ordp(bp) = k1 and ordq(bq) = k2. By doing so, we
obtain an improved scheme, denoted by V2, that achieves better ciphertext expansion factor

ρV2 =
log n

log k
≈ log φ(n)

log k
=

log k1 + log k2 + log p′ + log q′

log k1 + log k2
≈ 2

under the reasonable assumption that the lengthes of k1, k2, p′ and q′ are roughly equal.
The security analysis of scheme V2 can be obtained similar with that of schemes V0 and V1.

Remark 6. In fact, scheme V2 still works well if ordp(a) = t1 · k1 and ordq(a) = t2 · k2 for some positive
integers t1, t2, where both t1 and t2 contain one large prime factor at least. In addition, Algorithm 2 in
Section 3.3 for generating a with conditions ordp(a) = k1 and ordq(a) = k2 can also work well for
generating a with conditions ordp(a) = t1 · k1 and ordq(a) = t2 · k2.

5.4 Lossy Trapdoor Functions From kth-Power Residues

Lossy Trapdoor Functions (LTDFs), introduced by Peikert and Waters at STOC’08 [29], have been proven
to be an extremely useful and versatile cryptographic primitive [21]. Many research efforts have recently
been dedicated to design efficient LTDFs based on different cryptographic assumptions [21,19]. Recently,
Joye and Libert [23] proposed a quite efficient LTDF with short outputs and keys, and large lossiness based
on their GM-type cryptosystem. By using the same framework of Joye-Libert, our proposal can also yield
an efficient LTDF with short outputs and keys, and large lossiness.

Before giving our construction on LTDFs, we briefly recall the definition of lossy trapdoor functions
given in [29,21]. Informally, a collection of lossy trapdoor functions consists of two families of functions.
Functions in one family are injective and can be efficiently inverted using a trapdoor. Functions in the other
family are “lossy”, which means that the size of their image is significantly smaller than the size of their
domain. The only computational requirement is that a description of a randomly chosen function from the
family of injective functions is computationally indistinguishable from a description of a randomly chosen
function from the family of lossy functions [19].

Formally, for given security parameter κ, a collection of (µ, ν)-lossy trapdoor functions is a 4-tuple of
PPT algorithms InjGen, LossyGen, Evaluation and Inversion:

– InjGen outputs a pair (σ, t) ∈ {0, 1}∗ × {0, 1}∗ where σ is an index of an injective function f , while t
is f ’s trapdoor.

– LossyGen outputs σ ∈ {0, 1}∗ as an index of an lossy function f .
– Evaluation takes as input an function index σ ∈ {0, 1}∗ and an input x ∈ {0, 1}µ, outputs the value
fσ(x) such that
• if σ is an output of InjGen, then fσ(·) is an injective function.
• if σ is an output of LossyGen, then fσ(·) has image size 2µ−ν .

– Inversion takes as input an image fσ(x) and the corresponding trapdoor t, outputs x.
– The two ensembles {σ|(σ, t)← InjGen(1κ)} and {σ|σ ← LossyGen(1κ)} are computationally indis-

tinguishable.

Now, our construction goes as follows. Without loss of generality, let us assume that the desired input
using k-adic encoding and the length is no more than ` (i.e., µ = ` log k).

– InjGen(1κ): To sample an injective function, algorithm InjGen performs the following steps:
1. Generate a modulus n = pq such that p = kp′+1 and q = kq′+1, where both p′ and q′ contain large

prime factors, while k is a product of small primes. Choose a such that ordp(a) = ordq(a) = k, or
a is a primitive root w.r.t. modulus p.

2. For each i ∈ {1, · · · , `}, pick hi in the subgroup of order p′q′, by setting hi = gki mod n for a
randomly chosen gi ∈ Z∗n.

3. Choose r1, · · · , r`
R←− Zp′q′ and compute a matrix Z = (zi,j)i,j∈{1,··· ,`} with

zi,j =

{
ahrij mod n, if i = j

hrij mod n, otherwise.

4. Output the function index σ = (n,Z) and the trapdoor p.
– LossyGen(1κ): The process of LossyGen is identical to the process of InjGen, except that

1. the matrix entry zi,j = hrij mod n for ∀i, j ∈ {1, · · · , `}.
2. without outputting p.

– Evaluation: Given σ = (n,Z = (zi,j)i,j∈{1,··· ,`}), the algorithm Evaluation encodes the input x as
k-adic string x̃ = x1 · · ·x` with xi ∈ Zk for each i. Then, it computes and returns ỹ = (y1, · · · , y`)
with yj =

∏`
i=1 z

xi
i,j mod n ∈ Z∗n.

– Inversion: Given trapdoor p and ỹ = (y1, · · · , y`) ∈ Z`n, one can apply the decryption algorithm for
each yj to recover xj ∈ Zk (j = 1, · · · , `) and then reconstruct x =

∑`
j=1 xjk

j−1, since when Z is

given by algorithm InjGen, we have that
(
yj
p

)
k
≡
(
a
p

)xj
k

(mod p) holds.

It is easy to see that the above LTDF construction is quite similar with that in [23], which leads to the
similar security analysis. Hence, we omit the security analysis, but just give analysis on the lossiness.

In our LTDF, the input space is Z`k, but the output is entirely determined by
∑`

i=1 rixi mod p′q′, where
r1, · · · , r` ∈ Zp′q′ are selected at random, while x1, · · · , x` ∈ Zk are specified by inputs. Thus, the image
size is at most p′q′, and the residual leakage is at most log(p′q′) bits. That is, we lose ν(2) = ` log k −
log(p′q′) = log k`+2

φ(n) bits. This suggests that the lossiness would increase if k or ` increases. In the k-adic
context, our LTDF loses exactly ν(k) = `− logk(p

′q′) k-adic “bits”. Usually, we set log k ≈ log p′ ≈ log q′

for a large message space. Then, we have that ν(k) = `−2. This means that our LTDF keeps only two k-adic
“bits”, and loses all other k-adic “bits”. We can also have that ν(2) = (`− 2)α for α = log k. Further, when
` ≥ 4, we get ν(2) ≥ 2α. This lossiness is very parallel to what was obtained in [23].

One interesting question is that the above LTDF is based on scheme V0 or scheme V1, how about the
lossiness when the LTDF is based on scheme V2? As usual, we assume that log k1 ≈ log p′ ≈ log k2 ≈
log q′, then the lossiness could be improved to ν(2) = (`− 1)α for α = log k and ν(k) = `− 1. This result
says that by using scheme V2, we can obtain an LTDF that keeps only one k-adic “bit” and loses all other
k-adic “bits”. This shows that by using the same building framework, the smaller the ciphertext expansion
factor of the GM-type cryptosystem, the better the lossiness of the resulting LTDF. Recall the ciphertext
expansion factor of the Joye-Libert cryptosystem, it is

ρJL =
log n

α
>

log n
1
4 log n− κ

> 4 ≈ ρV0 = ρV1 ≈ 2ρV2 .

As a result, the LTDF based on scheme V2 is better than that based on the Joye-Libert cryptosystem in terms
of lossiness.

6 Conclusions

It never overestimates the importance of the GM cryptosystem. It enriches modern cryptography on many
aspects. On one hand, it plays a major role in the development of modern cryptography by introducing the
concept of “semantic security” and “indistinguishability”. On the other hand, it is the first additive homomor-
phic encryption scheme. Many subsequent improvements focus on how to reduce the bandwidth, ciphertext
expansion factor, or encryption/decryption cost, while keeping the property of additive homomorphism. By
using (2α)th-power residues, the Joye-Libert cryptosystem, a non-trivial extension of the GM cryptosystem,
is not only efficient in bandwidth and encryption/decryption speed, but also supports additive homomor-
phism over an exponential-scale message space. In this paper, we have made further extension on the GM
cryptosystem by using kth-power residues where k is merely required to be a product of powers of small
primes. The proposed schemes do not only inherit all advantages from the Joye-Libert cryptosystem, but also
enhance the decryption speed observably. Moreover, scheme V2 achieves lower ciphertext expansion factor
and results in a lossy trapdoor functions with better lossiness compared to the Joye-Libert constructions.

Acknowledgement

We would like to thank David Naccache, Daniel Brown, Richard Heylen, Zhengjun Cao, and Yanbin Pan
for useful comments.

References

1. Leonard M. Adleman and Robert McDonnell. An application of higher reciprocity to computational number theory (abstract).
In FOCS 1982, pages 100–106. IEEE Computer Society Press, 1982.

2. Miklos Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC 1996, pages 99–108. ACM Press,
1996.

3. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In STOC 1994, pages 544–553. ACM Press, 1994.
4. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In

CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 1998.
5. Lenore Blum, Manuel Blum, and Michael Shub. Comparison of two pseudo-random number generators. In CRYPTO 1982,

pages 61–78. Plenum Press, 1983.
6. Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-random number generator. SIAM Journal on

Computing, 15(2):364–383, May 1986.

7. Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption scheme which hides all partial informa-
tion. In CRYPTO 1984, volume 196 of Lecture Notes in Computer Science, pages 289–299. Springer-Verlag, 1985.

8. Dan Boneh, Antoine Joux, and Phong Q. Nguyen. Why textbook ElGamal and RSA encryption are insecure. In ASIACRYPT
2000, volume 1976 of Lecture Notes in Computer Science, pages 30–43. Springer-Verlag, 2000.

9. Zhenfu Cao. A type of public key cryptosystem based on Eisenstein ring Z[ω]. In Proceedings of the 3rd Chinese Conference
of Source Coding, Channel Coding and Cryptography, pages 178–186, 1988.

10. Zhenfu Cao. A type of puclic key cryptosystem based on kth power residues (extended abstract). Chinese Journal of Natural,
12(11):877, 1989.

11. Zhenfu Cao. A type of puclic key cryptosystem based on kth power residues (full version). Journal of Chinese Institute of
Communications, 11(2):80–83, 1990.

12. Zhenfu Cao. Public-key Cryptography (in Chinese). Heilongjiang Education Press, 1993.
13. David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. In EUROCRYPT 2008, volume

4965 of Lecture Notes in Computer Science, pages 127–145. Springer-Verlag, 2008.
14. Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure election scheme. In FOCS 1985, pages

372–382. IEEE Computer Society Press, 1985.
15. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext

attack. In CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.
16. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key

encryption. In EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer-Verlag, 2002.
17. Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography. In Post-quantum cryptography, pages 193–241. Springer-

Verlag, 2009.
18. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on

Information Theory, 31(4):469–472, 1985.
19. David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More constructions of lossy and correlation-

secure trapdoor functions. In PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages 279–295. Springer-Verlag,
2010.

20. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences (preliminary version
published at STOC 1982), 28(2):270–299, 1984.

21. Brett Hemenway and Rafail Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash proof systems. Electronic
Colloquium on Computational Complexity (ECCC), Revision 2 of Report No. 127 (2009), 2009.

22. Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in TLS. In CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 127–142. Springer-Verlag, 2002.

23. Marc Joye and Benoı̂t Libert. Efficient cryptosystems from 2k-th power residue symbols. In EUROCRYPT 2013, volume 7881
of Lecture Notes in Computer Science, pages 76–92. Springer-Verlag, 2013.

24. Zhao Ke and Qi Sun. Elementary Number Theory (in Chinese). Advanced Education Press, 2001.
25. R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114–116. Jet Propulsion Lab, 1978. DSN

Progress Report 44.
26. Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography, pages 147–192. Springer-

Verlag, 2009.
27. David Naccache and Jacques Stern. A new public key cryptosystem based on higher residues. In CCS 1998, pages 59–66.

ACM Press, 1998.
28. Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Post-quantum cryptography, pages 95–145. Springer-

Verlag, 2009.
29. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC 2008, pages 187–196. ACM Press,

2008.
30. Michael Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical Report MIT/LCS/TR-

212, Laboratory for Computer Science, Massachusetts Institute of Technology, January 1979.
31. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-key cryptosys-

tems. Communication of ACM, 21(2):120–126, 1978.
32. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In FOCS 1994, pages 124–134. IEEE

Computer Society Press, 1994.

