
Quad-RC4: Merging Four RC4 States towards a

32-bit Stream Cipher?

Goutam Paul1, Subhamoy Maitra1, and Anupam Chattopadhyay2

1 Indian Statistical Institute,
Kolkata 700 108, India.

{goutam.paul,subho}@isical.ac.in
2 MPSoC Architectures, RWTH Aachen University,

52074 Aachen, Germany.
anupam@ice.rwth-aachen.de

Abstract. RC4 has remained the most popular software stream cipher since the last two
decades. In parallel to cryptanalytic attempts, researchers have come up with many variants
of RC4, some targeted to more security, some towards more throughput. We observe that the
design of RC4 has been changed a lot in most of the variants. Since the RC4 structure is quite
secure if the cipher is used with proper precautions, an arbitrary change in the design may
lead to potential vulnerabilities, such as the distinguishing attack (Tsunoo et al., 2007) on
the word-oriented variant GGHN (Gong et al., 2005). Some variants keep the RC4 structure
(Maitra et al., 2008), but is byte-oriented and hence is an overkill for modern wide-word
processors. In this paper, we try to combine the best of both the worlds. We keep the basic
RC4 structure which guarantees reasonable security (if properly used) and we combine 4 RC4
states tacitly to design a high throughput stream cipher called Quad-RC4 that produces 32-
bit output at every round. The storage requirement for the internal state is only 1024 bits.
In terms of speed, this cipher performs much faster than normal RC4 and is comparable with
HC-128, the fastest software stream cipher amongst the eSTREAM finalists. We also discuss
the issue of generalizing the structure of Quad-RC4 to higher word-width variants.
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1 Introduction

Ron’s Code 4 or RC4, designed by Ron Rivest, is one of the most popular stream
ciphers in symmetric key cryptography. Despite its overwhelmingly simple structure
and repeated attempts to cryptanalyze the cipher from cryptologists around the world
over more than two decades, the cipher is not yet completely broken. With certain pre-
cautions, RC4 can be used safely in any application requiring cryptographic security.
Probably this is the reason for wide commercial deployment of RC4 in applications
like SSL, TLS, WEP, WPA etc.

Like all stream ciphers, RC4 works in two phases. The Key Scheduling Algorithm
(KSA) turns the identity permutation over ZN (N is typically 256) into a random-
looking permutation with the help of the secret key. The Pseudo Random Generation
Algorithm (PRGA) generates a sequence of pseudo-random bytes. This sequence,
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known as the keystream, is bitwise XOR-ed with the plaintext during encryption and
with the ciphertext during decryption.

The permutation, which is the main component of the internal state of the cipher,
is denoted by an array S[0 . . . N − 1]. To access the array elements, two indices i and
j are used, of which the first one is deterministic and public and the second one is
pseudo-random and secret. An array K[0 . . . N − 1], which is of the same size as the
permutation, holds the secret key k[0 . . . l − 1], by repeating it as follows.
K[y] = k[y mod l], for 0 ≤ y ≤ N − 1.

Algorithm RC4 KSA
Initializing the State:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;

Scrambling the State:
For i = 0, . . . , N − 1

j = (j + S[i] +K[i]);
Swap(S[i], S[j]);

Algorithm RC4 PRGA
Initializing the Indices :

i = j = 0;

Generating Keystream Bytes
(Loop as many plaintext bytes):

i = i+ 1; j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

1.1 Weaknesses of RC4

One important work in RC4 cryptanalysis is recovering the secret key, assuming that
the permutation at any stage after the KSA is known. The first work in this direction
appeared in [31] and later continued in [4, 2, 3]. All of these works mainly exploit the
permutation-key correlations found by [32].

Key recovery from keystream is another milestone in RC4 cryptanalysis that
mainly attacks RC4 in the WEP [11, 24, 42, 18, 38] and WPA [35] mode.

Works on state recovery [19, 26] have reduced the state space search from 21700 to
2241 and so the use of secret keys of length more than 30 bytes is not recommended
any more.

Apart from the above, many biases in RC4 keystream have also been discovered,
most of which is short term [32, 22, 34, 21], and a few long-term [13, 10, 23].

1.2 Existing RC4 Variants

Several variants of RC4 exist in the literature. Two variants of RC4 were proposed in
FSE 2004. One of them is VMPC [45] and the other one is RC4A [30]. The design of
VMPC is based on multilevel nested permutation access, and the structure looks like
P [Pk[Pk−1[. . . [P1[P [x]]] . . .]]], 0 ≤ x ≤ N − 1, where Pi[x] = (P [x] + i) mod N . RC4A
uses two different secret keys and two permutation arrays. After these permutations
are scrambled with their respective keys, pairs of elements of one permutation is used
as index to pick an output byte from the other permutation.



Some works focus on lifting RC4 from its byte-oriented structure to higher word
extensions. The NGG [29] cipher expanded to 32/64 bits with a state size much smaller
than 232 or 264. Subsequently, an updated version of this cipher called GGHN [14]
appeared. Py (pronounced Roo) [6] is an RC4-like stream cipher that was submitted
to the eSTREAM project [5]. It uses rolling arrays and produces two 32-bit words as
output at every step. After some weaknesses were discovered, a series of improvements
followed, with the names Pypy [7] and TPypy [8].

In all the variants above, the design is modified to a great extent relative to RC4.
In [20], a new variant called RC4+ was presented that keeps the original RC4 structure
and adds a few more operations to improve the security of the cipher.

1.3 Motivation for yet another RC4 Variant

RC4 was designed as a byte-oriented software stream cipher. On the other hand, the
typical word length of modern processors is mostly 32 bits. For optimal utilization of
the resources, a software cipher running on a w-bit machine should ideally produce w
bits in every round of keystream generation. Thus, though no attack has been reported
on the byte-oriented RC4-like design RC4+ [20], it is not suitable for modern-day
processors in terms of resource utilization.

A straight-forward generalization of w-bit RC4 would require a storage of 2w size
permutation over Z2w . For w = 32, storing such a permutation requires 32× 232 bits,
i.e., 128 Giga bits. Thus, storing the internal state of such a simple extension of RC4
becomes practically infeasible.

The authors of the GGHN stream cipher [14] noticed this gap between the proces-
sor word size and RC4 output and proposed a scheme for RC4(n,m) where N = 2n

is the size of the array S in words, m is the word size in bits, n ≤ m and M = 2m.
However, there are several shortcomings in the design of [14].

1. The basic design of RC4 has been changed to a great extent. We call it a short-
coming, since the time-tested security of RC4 no longer carries forward.

2. The work [41] built a distinguisher on GGHN based on a bias in the first two
words of the keystream, associated with approximately 230 samples.

3. In the performance evaluation, they claim that RC4(8, 32) is approximately 3.1
times faster than the original 8-bit RC4 on a 32-bit machine and RC4(8, 64) is
6.2 times faster than RC4 on a 64-bit machine. However no rigorous performance
evaluation and comparison with benchmark implementation was not reported.

We focus on building a 32-bit RC4 for a 32-word machine, but we use the basic
8-bit RC4 as a building block. it output at every round of keystream generation. We
take a single l-byte key (16 ≤ l ≤ 30) and use it to drive 4 different key schedulings
in parallel to obtain 4 different permutations over Z256. We argue that our scheme is
more secure than that of basic RC4. We perform extensive performance evaluation and
compare with the faster software stream cipher HC-128 in the eSTREAM portfolio.



2 Key Scheduling

We use the key scheduling of RC4+ [20] (for reasons discussed in Section 4), called
KSA+, as a building block of our key scheduling scheme. We run four KSA+ on four
identity permutations to generate four scrambled permutations over Z256.

Before discussing about multiple RC4 states, let us briefly summarize the KSA+

algorithm. It is executed in three layers, followed by the initialization. The initializa-
tion and basic scrambling in the first layer are the same as the original RC4 KSA.

Initialization
For i = 0, . . . , N − 1

S[i] = i;
j = 0;

Layer 1: Basic Scrambling
For i = 0, . . . , N − 1

j = (j + S[i] +K[i]);
Swap(S[i], S[j]);

In the second layer, the permutation is scrambled using IV’s. The deterministic
index i moves first from the middle down to the left end and then from the middle up
to the right end. An l-byte IV, denoted by an array iv[0, . . . , l−1], is used from index
N
2
− 1 down to N

2
− l during the left-ward movement and the same IV is repeated

from index N
2

up to N
2

+ l − 1 during the right-ward movement. Here, N is assumed
to be even, which is usually the case in standard RC4. For ease of description, we use
an array IV of length N with IV [y] = 0 for those indices which are not used with
IV’s.

Layer 2: Scrambling with IV
For i = N

2
− 1 down to 0

j = (j + S[i])⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

For i = N
2
, . . . , N − 1

j = (j + S[i])⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

Layer 3: Zigzag Scrambling
For y = 0, . . . , N − 1

If y ≡ 0 mod 2 then i = y
2
;

Else i = N − y+1
2

;
j = (j + S[i] +K[i]);
Swap(S[i], S[j]);

In the third and final layer, a zig-zag scrambling is performed, where the deter-
ministic index i takes values in the following order: 0, 255, 1, 254, 2, 253, . . ., 125,
130, 126, 129, 127, 128. In general, if y varies from 0 to N−1 in steps of 1, then i = y

2

or N − y+1
2

depending on y is even or odd respectively.
In order to run four KSA+ on four identity permutations, we need to expand the

l-byte secret key into four l-byte subkeys. We assume l to be even, i.e., l = 2n for
some integer n. Then the four sub-keys are formed as follows. The first subkey is the
key as it is, i.e.,

(k[0], . . . , k[n− 1], k[n], . . . , k[2n− 1]).

The second subkey is just the reverse of this one. The third subkey is formed as

(k[n− 1], . . . , k[0], k[2n− 1], . . . , k[n]).



The fourth subkey is again the reverse of the third subkey. We also mandate a 4l-byte
IV, divided into 4 different l-byte sub-IV’s to be used with the individual KSA+.

Note that the above scheme of key scheduling of the proposed cipher is slower
than RC4. But it does not matter since the key scheduling would be run only once
and our goal is to design a software stream cipher for encrypting long stream of data.

3 Combining Four RC4 States and Keystream Generation

After the end of the key scheduling, we have 4 pseudo-random permutations over Z256.
Let us denote the permutations by S1, . . . , S4. They are merged into a single array S
of size 256, where the i-th entry of S is an 32-bit number, formed by concatenating
the 4 bytes S1[i], . . . , S4[i]. Thus, one can visualize S as a two-dimensional structure,
where each column is a word of S and each row is a permutation. We use two variables
i and j to access a word of S or a byte of the individual permutations.

Input: 1. 4 pseudo-random permutations over Z256.
2. No. of rounds R.

Output: 32R pseudo-random keystream bits.

Initializing the Indices:
1 i = j = 0;

Merge Four Permutations in a Single Array
2 for i = 0, . . . , 255 do
3 S[i] = (S1[i]� 24) | (S2[i]� 16) | (S3[i]� 8) | S4[i];

end

Generating Keystream Words
4 for r = 1, . . . , R do
5 i = (i + 1) mod 256;
6 j = (j + S4[i]) mod 256;
7 Swap(S[i], S[j];
8 t = (S[i] + S[j]) mod 256;
9 t1 = t & 0xFF;

10 t2 = (t� 8) & 0xFF;
11 t3 = (t� 16) & 0xFF;
12 t4 = (t� 24) & 0xFF;
13 Output z = S[t1]⊕ S[t2]⊕ S[t3]⊕ S[t4];
14 {a, b} = Next pair of permutations in turn;
15 Swap(Sa[i], Sa[ta]);
16 Swap(Sb[i], Sb[tb]);

end

Algorithm 1: Quad-RC4 PRGA

Like normal RC4, the index i is incremented by 1 modulo 256 and j is incremented
pseudo-randomly using only one particular permutation, say S4.

At every round, we swap the i-th and the j-th word of S; in effect we swap the
corresponding entries of each permutation. S[i] and S[j] are added to generate a 32-



bit number t, ignoring the carry. Let the 4 bytes of t be denoted by t1, . . ., t4. The
output keystream word z is simply the bitwise XOR of the words S[t1], . . . , S[t4].

To break the symmetry in the swaps of the individual permutations, we introduce
some additional swaps (see Section 4 for its security implications). At every round,
we select two permutations Sa and Sb. We then swap the i-th and the ta-th bytes of
Sa and swap the i-th and the tb-th bytes of Sb. Note that ta and tb are the a-th and
the b-th bytes of t = t1|| . . . ||t4.

Two permutations out of 4 can be selected in
(
4
2

)
= 6 ways. We choose each

combination in turn and hence one particular pair of permutations is considered
again after 6 rounds. Note that the structure ensures that the individual permutations
remain permutations. The complete algorithm for keystream generation is presented
in Algorithm 1.

3.1 MAC computation

The same keystream generation algorithm along with an integrity key can be used to
compute a 32-bit MAC (Message Authentication Code) of the input plaintext. The
idea is similar to the 128-EIA3 algorithm of the ZUC stream cipher [36]. We present
the MAC computation in Algorithm 2.

Input: 1. Input message M0, . . . ,MB−1 of B bits.
2. Integrity key of l bytes.

Output: 32-bit MAC.

1 Run quad-RC4 algorithm to generate a keystream of L = dB/32e+ 2 words, denoted by
z0, z1, . . . , z32L−1, where z0 is the most significant bit of the first keystream word and z31 is
the least significant bit;

2 for i = 0, . . . , 32L− 1 do
3 Set Zi = zi|| . . . ||zi+31;

end
4 Initialize tag T = 0;
5 for i = 0, . . . , B − 1 do
6 if Mi = 1 then
7 T = T ⊕ Zi;

end
end

8 T = T ⊕ ZB ;
9 Output MAC = T ⊕ Z32(L−1);

Algorithm 2: Quad-RC4 MAC

4 Security Analysis

The security claim of a stream cipher is always a conjecture. Our design is no different.
However, in this section, we put forward several arguments in favour of the strength
of the cipher.



4.1 Resisting the Weaknesses Arising from RC4 KSA

According to the analysis presented in [20, Section 3.3], each of the four permutations
obtained after the KSA+ is uniformly random, having no bias towards the secret key
or IV or absolute values in Z256. Moreover, since the publication of [20], no attack has
been presented on the 3-layer KSA. Hence, we can conclude that when we combine
the individual permutations to form a big state array, none of the RC4 KSA related
weaknesses are carried forward.

According to [16], for stream ciphers using IV’s, if the IV is shorter than the key,
then the algorithm may be vulnerable against the Time Memory Trade-Off attack.
Hence, we choose the IV size as the same as the secret key length.

4.2 Rationale Behind the Additional Swaps

Note that S has a total of 256 words, each of size 32 bits. The indices i and j are
the same for the individual permutations. Hence, the swaps between the words S[i]
and S[j] effectively causes 4 swaps between the corresponding bytes of the individual
permutations. In other words, if we had only these types of swaps, then the relative
distances between any two individual permutations would remain invariant for ever.
This, in turn, causes the set of the words of S to remain unchanged, leading to
potential vulnerabilities. To avoid this situation, we propose the additional swaps, as
described in Section 3. One may observe that these additional swaps causes swaps
between the bytes of the individual permutations. Hence, the set of the words of S
continuously evolve and in principle, any of the 232 possible 32-bit words may become
a member of this set.

4.3 Resisting Distinguishing Attacks

The distinguishing attacks aim at identifying events that occur with probability away
from that expected in a uniformly random stream. There are several biases [32, 22, 34,
21] in the initial keystream bytes of normal RC4. Since we update the individual RC4
states 1024 more times after the KSA before they are merged, it helps in preventing
the propagation of the above biases in the keystream of our RC4 Combiner.

So far, the best long-term distinguisher reported on RC4, which persists even after
any amount of RC4 output bytes are thrown away, is due to [23]. According to this
work, occurrence of strings of pattern ABTAB (A,B are bytes and T is a string of
bytes of small length G ≤ 16) are more frequent in RC4 keystream than in random
stream. It is proved in [23, Theorem 1] that for RC4, the probability of the above

event is 1
N2 (1 + e

−4−8G
N

N
), which is above 1

N2 (the probability of random occurrence).
The distinguisher

is constructed by considering the fact that if j − i = g, then the entries at the
locations i, i+1, i+g, i+g+1, and at the output indices t = S[i]+S[j] corresponding
to the rounds i and i+1 are not swapped in next few rounds with high probability. In



our case, the output is not selected from the index t = S[i] +S[j]. Rather t is split to
create 4 indices into the array S. Thus, for the bias of [23] to manifest, more locations
in the permutations would have to remain constant. Moreover, the additional swaps
break the symmetry in the relative gaps between the permutations, as explained in
Section 4.2, making the task of finding a distinguishing attack harder.

To evaluate the randomness of our keystream, we performed extensive experi-
mentation with the NIST test suite [28] and all our keystreams passed all the NIST
recommended tests.

4.4 Resisting State Recovery Attacks

The best known state recovery attack [26] on RC4 has complexity 2241. Corresponding
to a window of w + 1 keystream output bytes, all the j’s are assumed to be known.
Thus w many S[i] values will be available from the differences between the consecutive
values of j’s. Then w many equations of type S−1[z] = S[i] + S[j] can be formed,
where each equation involves only two unknowns. The attack proceeds rounds in a
guess and determine manner, following a chain of connected indices across different
and it involves occasional guessing of some permutation bytes.

Our design prevents the strategy of [26] to work. We do not expose the permutation
entries directly in the output. Each of the 4 words S[t1], . . . , S[t4] are composed of
bytes from the individual permutations, but when these 4 words are XOR-ed together,
no permutation byte is directly exposed in the keystream. Thus, to know the values
of the permutation entries looking at the value of z, there is no other option than to
go for all the possible choices.

5 Performance Evaluation

For experiments, we use two kinds of implementation platforms. The first one is gen-
eral purpose processor. Recognizing the increasing use of stream ciphers in embedded
platforms, different embedded processors are chosen as the second implementation
platform. The runtime for embedded processors are obtained by running the executa-
bles on native simulators. The results of individual implementation and collective
overall benchmarking are presented in the following subsections.

5.1 Experiment with Desktop Processor

We benchmark the algorithm presented in this paper on a 64-bit desktop processor
running Ubuntu 12.04 on a AMD PhenomTMII X6 1100T running at 3.3 GHz clock.
The time is measured by running the rdtsc instruction, which returns the built-in
time stamp counter. The code is compiled with standard gcc compiler, version 4.1.2.
On the C code, few optimizations (such as to perform the computation and variable
assignment simultaneously, selective loop unrolling) are implemented. For both the
optimized and unoptimized versions of each implementation, the gcc compiler is run



with and without -O3 optimization option. Among the throughput results obtained,
the best results are reported here. We report both keystream generation speed and
encryption speed separately. The results are presented in the Table 1. For comparison
with HC-128 [44], the fastest software stream cipher in the eSTREAM portfolio [5],
we downloaded the C code from [43] and then compiled on our available machine.

Table 1. Performance Benchmarking on General Purpose Processors

Algorithm
Keystream Generation Message Encryption

cycles/byte Throughput cycles/byte Throughput
(Gbps) (Gbps)

RC4 5.4 4.89 6.1 4.33
Quad-RC4 4.0 6.6 4.7 5.62
HC-128 3.9 6.77 4.5 5.87

HC-128 [44] − − 3.1 4.20
(Intel Pentium M, 1.6 GHz)

HC-128 [5] − − 2.9 6.07
(AMD Athlon 64 X2 4200+, 2.2 GHz)

It can be observed from Table 1 that the throughput increases monotonically with
increasing instances of RC4 in our combiner model.

5.2 Experiment with Embedded and Customizable Processors

There has been several implementations of RC4 on embedded processors and accel-
erators [12, 15]. We select a customizable processor design framework [37] for our
experiments. Since the prominent embedded processors support up to 32-bit data-
path, RC4 and Quad-RC4 are used in these experiments.

In [12], RC4 is executed on a FPGA development board containing ARM922T
processor and a keystream generation throughput of 21.24 cycles/byte is obtained.
Depending on the CMOS technology library, different clock frequencies are recorded
for ARM microprocessors. In a prominent System-on-Chip (SoC) design [39], ARM9
series of processors and ARM Cortex-A8 processors achieve clock frequency of 300
MHz and 500 MHz respectively. On FPGA-based implementation, ARM922T is re-
ported to achieve 200 MHz clock frequency [1]. Considering the highest possible clock
frequency, keystream generation throughput of RC4 [12] is 0.19 Gbps.

Customizable application-specific processors are increasingly used in modern SoCs
for balancing performance and flexibility constraints. Synopsys Processor Designer
[37] provides several starter designs for modeling such processors. We picked up a
simple-scalar RISC processor considering the lack of instruction-level parallelism in
the RC4 algorithm. It contains 6 pipeline stages, sixteen 32-bit registers, fully by-
passed arithmetic logic unit. The instruction-set supports a wide variety of logical,
arithmetic, control and load-store instructions. Both the program memory and data



memory are accessed synchronously. The tool-suite, which can be generated from the
processor description, includes a C compiler. Synthesizable RTL code can be gener-
ated from the description, too.

For a single instance of RC4, the initial unoptimized C code resulted in a keystream
generation throughput and message encryption throughput of 36 cycles/byte (0.2
Gbps) and 44 cycles/byte (0.16 Gbps) respectively. Similar to the general purpose
processors, Quad-RC4 resulted in an improved keystream generation throughput of 32
cycles/byte (0.23 Gbps). Message encryption speed for Quad-RC4 is 36.2 cycles/byte
(0.2 Gbps).

5.3 Overall Benchmarking

The platform, AMD PhenomTMII X6 1100T, is synthesized at 45nm CMOS technol-
ogy and achieves 9.78 Gbps. This is 2 times faster than plain RC4 keystream gener-
ation throughput. It is likely that higher throughput on general purpose computing
platforms can be achieved by using more instances of RC4, if wider data-paths are
available. For embedded and customizable processors, the maximum achievable RC4
keystream generation throughput is 0.2 Gbps and that for Quad-RC4 is 0.23 Gbps,
indicating a similar trend in throughput improvement as observed in general pur-
pose processors. The throughput improvement is little restricted due to the increased
number of memory accesses. Given the a-priori knowledge of the memory distribution,
memory partitioning can be done to improve the throughput of Quad-RC4 further.

Table 2. Keystream Generation Throughput for Various Computing Platforms

RC4 Target CMOS Clock Keystream
Instances Platform Technology Frequency (Gbps)

Single AMD PhenomTMII X6 1100T 45nm 2.8 GHz 4.89
Quad AMD PhenomTMII X6 1100T 45nm 2.8 GHz 6.6
Single Custom RISC Processor [37] 65nm 906 MHz 0.2
Quad Custom RISC Processor [37] 65nm 906 MHz 0.23
Single ASIC 65nm 1.92 GHz 30.72

The fastest reported hardware implementation for RC4 in 65nm CMOS technology
achieves a throughput of 30.72 Gbps [33]. It can be noted that the throughput of
hardware implementation could be further boosted by scaling down to 45nm CMOS
technology and employing the principle of multiple RC4 instances as proposed here.
The best results for different platforms are summarized in the Table 2. With increasing
number of RC4 instances, the keystream generation throughput increases strongly.



6 How to Combine m RC4 States?

In this section, we propose a model of combining m RC4 states to generate 8m
keystream bits in every round. For m = 4, the generic model yields an instance of
Quad-RC4. For m = 8, the generic model yields a 64-bit variant which we refer to as
Octa-RC4.

We start with m pseudo-random permutations over Z256, each generated by m
RC4+ key schedulings. Let us denote the permutations by S1, S2, . . . , Sm. They are
merged into a single array S of size 256, where the i-th entry of S is an 8m-bit number,
formed by concatenating the m many bytes S1[i], . . . , Sm[i].

Input: 1. m pseudo-random permutations over Z256.
2. No. of rounds R.

Output: 8mR pseudo-random keystream bits.

Output: 32R pseudo-random keystream bits.

Initializing the Indices:
1 i = j = 0;

Merge m Permutations in a Single Array
2 for i = 0, . . . , 255 do
3 S[i] = (S1[i]� 8(m− 1)) | (Sm−2[i]� 16) | (Sm−1[i]� 8) | Sm[i];

end

Generating Keystream Words
4 for r = 1, . . . , R do
5 i = (i + 1) mod 256;
6 j = (j + Sm[i]) mod 256;
7 Swap(S[i], S[j];
8 t = (S[i] + S[j]) mod 256;
9 t1 = t & 0xFF, t2 = (t� 8) & 0xFF, . . . , tm = (t� 8(m− 1)) & 0xFF;

10 Output z = h(S[t], S[i], S[j], S[t1], S[t2], . . . , S[tm]);
11 {a, b} = Next pair of permutations in turn;
12 Swap(Sa[i], Sa[ta]);
13 Swap(Sb[i], Sb[tb]);

end

Algorithm 3: m-RC4: a generalized RC4 combiner

The complete algorithm for keystream generation is called m-RC4 and is presented
in Algorithm 3. Like Quad-RC4, the index i is incremented by 1 modulo 256 and
j is incremented pseudo-randomly using only one particular permutation, say Sm.
At every round, we swap the i-th and the j-th word of S; in effect we swap the
corresponding entries of each permutation. S[i] and S[j] are added to generate an
8m-bit number t, ignoring the carry. Let the m bytes of t be denoted by t1, . . . , tm.
We propose that in Step 10, the output keystream word z is generated through a
suitable function h of the quantities S[t], S[i], S[j], and S[ta] for a = 1, . . . ,m. We
have observed that if we simply extend the keystream generation logic of Quad-RC4,
i.e., if h returns bitwise XOR of S[ta]’s, a = 1, . . . ,m, then for m = 8 the keystream is



not perfectly random. How to design h to ensure good randomness properties without
compromising throughput is a challenging open problem.

To break the symmetry in the swaps of the individual permutations, we propose
to introduce some additional swaps similar to Quad-RC4. At every round, we select
two permutations Sa and Sb. We then swap the i-th and the ta-th bytes of Sa and
swap the i-th and the tb-th bytes of Sb. Note that ta and tb are the a-th and the b-th
bytes of t = t1|| . . . ||tm.

Two permutations out of m can be selected in
(
m
2

)
= m(m − 1)/2 ways. We

propose that each combination is chosen in turn and hence one particular pair of
permutations is considered again after O(m2) rounds. Note that the structure of m-
RC4, in the same way as Quad-RC4, ensures that the individual permutations remain
permutations.

6.1 How to Select the Permutation Pairs for Additional Swaps?

Note that at every round of keystream generation, one has to select two permutations
in turn and perform additional swaps. Out of m permutations, this can be done in(
m
2

)
ways. With respect to the combined array S, the choice of two permutations can

be represented by a 8m-bit mask M = b1|| . . . ||bm, each bi being a byte, where exactly
two bytes are FF and all others are 00 (in HEX notation).

We can store all the
(
m
2

)
= k (say) masks in memory and keep a modulo k counter

to select each mask in turn. Alternatively, we can generate all the masks on the fly
by rotating a small number of masks, what we call generator masks. For example,
for m = 4, the

(
4
2

)
= 6 masks are FFFF0000, FF00FF00, FF0000FF, 00FFFF00,

00FF00FF, 0000FFFF. Instead of storing all of them, we can store the two generating
masks, namely 0000FFFF and 00FF00FF. Byte-rotations of these two masks can
generate all the masks.

We can formalize the above notion as follows. Consider the set of all
(
m
2

)
many

8m-bit masks to select the two permutations during the PRGA of the RC4 combiner.

Definition 1. Given a mask M , we define a rotation operation denoted by rot(M),
which rotates the mask to the left by 8 bits.

Note that left or right rotation does not matter, as long as one follows the same
convention. Next, we define a relation ρ on the set of masks.

Definition 2. Two masks M1 and M2 are ρ-related, denoted by M1ρM2, if and only
if one can be obtained from the other by a finite number of rotations.

It is easy to show that ρ is reflexive, symmetric and transitive and hence we can
state the following.

Theorem 1. The relation ρ defined on the set of masks is an equivalence relation.

Hence ρ will partition the set of masks into disjoint equivalence classes.



Definition 3. For the set of 8m-bit masks, any collection of one representative mem-
ber from each equivalence class of ρ is called a set of generator masks.

The following result gives the number of such generator masks.

Theorem 2. For the set of 8m-bit masks, where m = 2n, there are exactly m/2 =
2n−1 generator masks.

Proof. In the masks, denote ‘FF’ as 1 and ‘00’ as 0. Then the problem is equivalent
to counting the number of equivalence classes for m-length bit-strings with exactly
two 1’s, the rotations being bit-wise. Consider m locations in such a bit-string as m
points in a circle and we need to mark two points for the two 1’s. After marking one
point, the second point can be selected at a gap of 0 or 1 or 2, ..., up to (m − 1)/2.
Each of these m/2 selections correspond to one equivalence class. Hence the result
follows. ut

Thus, for Octa-RC4, we need only 4 generator masks to generate all possible(
8
2

)
= 28 masks.
The exact number of members generated by each generator mask is given by

Theorem 3 below.

Theorem 3. For the set of 8m-bit masks, there are exactly m/2−1 generator masks,
each of which can generate m masks, and there is exactly 1 generator mask which can
generate m/2 masks.

Proof. Refer to the m-point circle in the proof of Theorem 2. Whenever the gap of
two 1’s is 0 or 1 or 2, ..., or (m−1)/2−1 in a pattern, such a pattern can be rotated m
times before a repetition occurs. Hence each of the equivalence classes with the gaps
0 or 1 or 2, ..., or (m − 1)/2 − 1 has exactly m members. Whenever the gap of two
1’s is (m− 1)/2, such a pattern can be rotated m/2 times before a repetition occurs.
The equivalence class corresponding to this pattern has exactly m/2 members. Hence
the result follows. ut

According to Theorem 3, the total number of masks that can be generated by the
generator masks is (m/2−1) ·m+1 ·m/2 = m2/2−m/2 =

(
m
2

)
, as expected. The idea

of storing a small number of generator masks and simple operations like rotations to
generate the other masks can be very useful in efficient hardware implementation of
the scheme.

7 Conclusion and Future Work

We propose a generic method of combining 4 RC4 states to produce a 32-bit word-
oriented stream cipher Quad-RC4. The scheme is scalable to modern processors of
large word-width and is at least as secure as RC4. It also has comparable performance
with HC-128.



How to combine an arbitrary (say, m) number of instances of RC4 to generate
keystream with higher word-width without compromising security is an interesting
open problem. In particular, it would be interesting to explore 64-bit and 128-bit
extension of the keystream generator with respect to 64-bit desktop processors and
128-bit SSE registers and its AVX extensions in x86 architectures.

We also plan to study optimized implementation of the proposed model in wide-
word SIMD processor as in GPGPU.
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