Secure Two-Party Computation with Reusable
Bit-Commitments, via a Cut-and-Choose with
Forge-and-Lose Technique*

(Technical report — September 11, 2013)

Luis T. A. N. Brandaof

University of Lisbon Carnegie Mellon University
Faculty of Sciences / LaSIGE Electrical & Computer Engineering
Lisboa, PORTUGAL Pittsburgh, USA
Ibrandao@fc.ul.pt Ibrandao@cmu.edu

Abstract. A secure two-party computation (S2PC) protocol allows two parties
to compute over their combined private inputs, as if intermediated by a trusted
third party. In the active model, security is maintained even if one party is
malicious, deviating from the protocol specification. For example, a honest
party retains privacy of its input and is ensured a correct output. This can be
achieved with a cut-and-choose of garbled circuits (C&C-GCs), where some
GCs are verified for correctness and the remaining are evaluated to determine
the circuit output. This paper presents a new C&C-GCs-based S2PC protocol,
with significant advantages in efficiency and applicability. First, in contrast
with prior protocols that require a majority of evaluated GCs to be correct, the
new protocol only requires that at least one evaluated GC is correct. In practice
this reduces the total number of GCs to approximately one third, for the
same statistical security goal. This is accomplished by augmenting the C&C
with a new forge-and-lose technique based on bit commitments with trapdoor.
Second, the output of the new protocol includes reusable XOR-homomorphic
bit commitments of all circuit input and output bits, thereby enabling efficient
linkage of several S2PCs in a reactive manner. The protocol has additional
interesting characteristics (which may allow new comparison tradeoffs). The
number of exponentiations is only linear with the number of input and output
wires and a statistical parameter — this is an improvement over protocols whose
number of exponentiations is proportional to the number of GCs multiplied
by the number of input and output wires. It uses unconditionally hiding bit
commitments with trapdoor as the basis of oblivious transfers, with the circuit
evaluator choosing a single value and the circuit constructor receiving two (a
sort of 2-out-of-1 oblivious transfer, instead of the typical 1-out-of-2). The
verification of consistency of circuit input and output keys across different
GCs is embedded in the C&C structure.

Keywords: secure two-party computation, cut-and-choose, garbled circuits,
forge-and-lose, homomorphic bit-commitments with trapdoor.

* This is the full version. An extended abstract will appear at ASITACRYPT 2013 and be published by Springer-Verlag.

t Support for this research was provided by the Fundacdo para a Ciéncia e a Tecnologia (Portuguese Foundation for
Science and Technology) through the Carnegie Mellon Portugal Program under Grant SFRH/BD/33770/2009, and
through the Multiannual Funding Programme (LASIGE), while the author was a Ph.D. student at FCUL-DI-LaSIGE
and CMU-ECE. Alternative email contact: luis.papers@gmail.com.

Page 1/75

http://www.ul.pt
https://www.fc.ul.pt
https://lasige.di.fc.ul.pt
mailto: lbrandao@fc.ul.pt
https://www.cmu.edu
https://www.ece.cmu.edu
mailto: lbrandao@cmu.edu
https://www.fct.pt
https://www.fct.pt
http://www.cmuportugal.org
https://www.fc.ul.pt
https://www.di.fc.ul.pt
https://lasige.di.fc.ul.pt
https://www.cmu.edu
https://www.ece.cmu.edu
mailto: luis.papers@gmail.com

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Index
Abstract L 1 B.2 Connectors-in-B 25
1 Introduction 2 B.3 Connectors-out-B........... 26
1.1 Contributions 3 C Protocol specification 28
1.2 Roadmap 4 D Random BitCom permutations ... 37
2 Background.................... 5 E Optimizations and complexity 40
2.1 C&C-GCs-based S2PC 5 E.1 Random Seed Checking. 40
2.2 Bit Commitments........... 7 E.2 Shorter UH BitComs of P, .. 41
3 The BitCom approach 9 E.3 Description of optimized version 42
3.1 Cut-and-choose stages 9 E.4 Communication complexity .. 46
3.2 Connectors 9 F Zero Knowledge Proofs 49
4 The forge-and-lose technique 11 F.1 Several ZKPoKs 50
5 Protocol 1-output S2PC-with- F.2 Prove correct Blum Integer .. 56
BitComs 12 G Proof of Security 61
6 Discussion 14 G.1 Ideal functionality 61
6.1 Complexity 14 G.2 Simulators 62
6.2 Linked executions........... 16 (.2.1 With malicious P& 63
6.3 Security 16 G.2.2 With malicious P§ 65
7 Related work 17 (3.2.3 Additional remarks. 67
7.1 Two other optimal C&C-GCs. 17 G.3 Soundness against P} 69
7.2 Other related work.......... 17 G.3.1 Incorrect GCs and connectors 71
Acknowledgments 18 (G.3.2 Correct GCs and connectors . 72
References 18 (G.3.3 Decision of final output..... 73
A Soundness error probability 21 H Notation 74
B Connectors 24 List of Figures 75
B.1 Connectors-in-A 25 Listof Tables..................... 75

1 Introduction

Secure two-party computation is a general cryptographic functionality that allows two
parties to interact as if intermediated by a trusted third party |Gol04]. A canonical ex-
ample is the millionaire’s problem [Yao82|, where two parties find who is the richer of
the two, without revealing to the other any additional information about the amounts
they own. Applications of secure computation can be envisioned in many cases where
mutually distrustful parties can benefit from learning something from their combined
data, without sharing their inputs [Kol09]. For example, two parties may evaluate a data
mining algorithm over their combined databases, in a privacy-preserving manner [LP02].
On a different example, one party with a private message may obtain a respective mes-
sage authentication code calculated with a secret key from another party (i.e., a blind
MAC) [PSSWO09]. This paper considers secure two-party evaluation of Boolean circuits,
henceforth denoted “S2PC”, which can be used to solve the mentioned examples. Each
party begins the interaction with a private input encoded as a bit-string, and a public
specification of a Boolean circuit that computes an intended function. Then, the two par-
ties interact so that each party learns only the output of the respective circuit evaluated
over both private inputs. Probabilistic functionalities can be implemented by letting the
two parties hold additional random bits as part of their inputs.

Page 2/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

This paper focuses on the malicious model, where parties might maliciously deviate
from the protocol specification in a computationally bounded way. Furthermore, within
the standard model of cryptography, adopted herein, it is assumed that some problems are
computationally intractable, such as those related with inverting trapdoor permutations.
Security is defined within the ideal/real simulation paradigm [Can00|; i.e., a protocol is
said to implement S2PC if it emulates an ideal functionality where a trusted third party
mediates the communication and computation between the two parties. The trusted party
receives the private inputs from both parties, makes the intended computation locally and
then delivers the final private outputs to the respective parties.

As a starting point, this paper considers the cut-and-choose (C&C) of garbled circuits
(GCs) approach to achieve S2PC. Here, a circuit constructor party (P) builds several
GCs (cryptographic versions of the Boolean circuit that computes the intended function),
and then the other party, the circuit evaluator (Pg), verifies some GCs for correctness and
evaluates the remaining to obtain the information necessary to finally decide a correct
circuit output. Recently, this approach has had the best reported efficiency benchmark
[KSS12; FN13| for S2PC protocols with a constant number of rounds of communication.

1.1 Contributions

This paper introduces a new bit commitment (BitCom) approach and a new evaluation
technique, dubbed forge-and-lose, and blends them into a C&C approach, to achieve a
new C&C-GCs-based S2PC protocol with significant improvements in applicability and
efficiency.

Applicability. The new protocol achieves S2PC-with-BitComs, as illustrated in Fig. 1.
Specifically, both parties receive random BitComs of all circuit input and output bits,
with each party also learning the decommitments of only her respective circuit input and
output bits. This is an augmented version of secure circuit evaluation. Given the reusabil-
ity of BitComs, the protocol can be taken as a building block to achieve other goals, such
as reactive linkage of several S2PCs, efficiently and securely linking the input and output
bits of one execution with the input bits of subsequent executions. Furthermore, given
the XOR~homomorphic properties of these BitComs, a party may use efficient special-
ized zero-knowledge proofs (ZKPs) to prove that her private input bits in one execution
satisfy certain non-deterministic polynomially verifiable relations with the private input
and output bits of previous executions.! In previous C&C-GCs-based solutions, without
committed inputs and outputs with homomorphic properties, such general linkage would
be conceivable but using more expensive ZKPs of correct behavior.

The main technical description in this paper is focused on a standalone 1-output
protocol, where the two parties, Py and Pg, interact so that only Py learns a circuit
output.? In the new BitCom approach, the two possible decommitments of the BitCom
of each circuit input or output bit (independent of the number of GCs) are connected to
the two keys of the respective input or output wire of each GC, via a new construction
dubbed connector. P, commits to these connectors and then reveals them partially for
verification or evaluation. This ensures, within the C&C, the correctness of circuit input
keys and the privacy of decommitments of BitComs, without requiring additional ZKPs.

! For simplicity, “ZKPs” is used hereafter both for ZK proofs and for ZK arguments.
2 The “l-output” characterization refers to only one party learning a circuit output, though in rigor the protocol
implements a probabilistic 2-output functionality (as both parties receive random BitComs).

Page 3/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)
Legend: Pa and Pg (the

~ f the t ties);
Initial X 4 (private C 4 (public CB (public Xp (private nan;erzls do C e(tvg(e) pizvftsg’ (ii_’
tti circuit input) P circuit) circuit) P, Ceircuit input Yp BEC p P :
setting 0 A B 5 cuit input, the private cir-
— O O
3 e —

cuit output and the public
circuit specification of party

> < P,, respectively, with p be-
— S2PC with — ing A or B); { and (com-
Final y A_C A(X X B) commitments Yy B_CB(X 4o X B) mitment and decommitment,

(private circuit output)| | respectively, of the variable

inscribed inside the dashed

. . square). Colors red, blue and
decommitments) e decommitments) ol lated with P

Deh o e Tyt purple are related wit A,

(G G) Pg and both parties, respec-

(public commitments)

result] (private circuit output)

v | . -1 .
Eo b rivate b} D] (rivate

—

tively.

Fig.1: Secure Two-Party Computation with Committed Inputs and Outputs

The BitCom approach enables particularly efficient extensions of this 1-output protocol
into 2-output protocols where both parties learn a respective private circuit-output.

Efficiency. The new protocol requires only an optimal minimum number of GCs in
the C&C, for a certain soundness guarantee (i.e., for an upper bound on the probability
with which a malicious P, can make Pp accept an incorrect output). Specifically, by
only requiring that at least one evaluation GC is correct, the total number of GCs is
reduced asymptotically about 3.1 times, in comparison with the previously best known
C&C-GCs configuration [SS11]| that required a correct majority of evaluation GCs. The
significance of this improvement stems from the number of GCs being the source of
most significant cost of C&C-GCs-based S2PC protocols, for circuits of practical size.
Remark: two different techniques [Lin13; HKE13| developed in concurrent research also
just require a single evaluation GC to be correct — a brief comparison is made in §7.1,
but the remaining introductory part of this paper only discusses the typical C&C-GCs
approach that requires a correct majority of evaluation GCs.

The reduction in number of GCs is achieved via a new forge-and-lose technique, pro-
viding a path by which Py can recover the correct final output when there are inconsistent
outputs in the evaluated GCs. Assume that P, is able to forge a GC; i.e., build an incor-
rect GC that, if selected for evaluation, degarbles smoothly into an output that cannot
be perceived as incorrect. Then, Pg somehow combines the forged output with a correct
output, in a way that reveals a secret key (a trapdoor) with which the input of P, has
previously been encrypted (committed). In this way, Pa loses privacy of her input bits,
enabling Py to compute the intended circuit output in the clear.

The protocol can be easily adjusted to integrate several optimizations in communi-
cation and memory, such as random seed checking |GMS08| and pipelining [HEKM11].
Since the garbling scheme is abstracted, the protocol is also compatible with many gar-
bling optimizations, e.g., point and permute [NPS99|, XOR for free [KS08b|, garbled row
reduction [PSSW09|, dual-key cipher [BHR12).

1.2 Roadmap

The remainder of this paper is organized as follows. Section 2 reviews the basic building
blocks of the typical C&C-GCs approach and some properties of BitCom schemes. Sec-
tion 3 introduces a new BitCom approach, explaining how BitComs can be connected to

Page 4/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

circuit input and output wire keys, to ensure the consistency of the keys across different
GCs. Section 4 describes the forge-and-lose technique, achieving a major efficiency im-
provement over the typical cut-and-choose approach. Section 5 presents the new protocol
for 1-output S2PC-with-BitComs, where only one party learns a private circuit-output,
and both parties learn BitComs of the input and output bits of both parties. Section 6
comments on the complexity of the protocol and shows how the BitCom approach en-
ables efficient linkage of S2PCs. Section 7 compares some aspects of related work. The
Appendix includes a more formal description, analysis and optimization of the protocol
and a proof of security.

2 Background

This section reviews some basic notions of the C&C-GCs solution for S2PC (§2.1) and
some useful properties of certain BitCom schemes (§2.2).

2.1 C&C-GCs-based S2PC

Basic garbled-circuit approach. The theoretical feasibility of S2PC, for functions
efficiently representable by Boolean circuits, was initially shown by Yao [Yao86].° In the
semi-honest model (where parties behave correctly during the protocol) simplified to the
l-output setting, only one of the parties (Pg) intends to learn the output of an agreed
Boolean circuit that computes the desired function. The basic GC approach starts with
the other party (Pa) building a GC — a cryptographic version of the Boolean circuit,
which evaluates keys (e.g., random bit-strings) instead of clear bits. The GC is a directed
acyclic graph of garbled gates, each receiving keys as input and outputting new keys.
Each gate output key has a corresponding underlying bit (the result of applying the
Boolean gate operation to the bits underlying the corresponding input keys), but the
bit correspondence is hidden from Pg. P, sends the GC and one circuit input key per
each input wire to Pg. Then, Py obliviously evaluates the GC, learning only one key per
intermediate wire but not the respective underlying bit. Finally, each circuit output bit
is revealed by a special association with the key learned for the respective circuit output
wire. Lindell and Pinkas [LP09]| prove the security of a version of Yao’s protocol (valid
for a 2-output setting).

There are many known proposals for garbling schemes [BHR12|. This paper abstracts
from specific constructions, except for making the typical assumptions that: (i) with
two valid keys per circuit input wire (and possibly some additional randomness used
to generate the GC), Py can verify the correctness of the GC, in association with the
intended Boolean circuit, and determine the bit underlying each input and output key;
and (ii) with a single key per circuit input wire, Pg can evaluate the GC, learning the bits
corresponding to the obtained circuit output keys, but not learn additional information
about the bit underlying the single key obtained for each input wire of P, and for each
intermediate wire.

Oblivious transfer. An essential step of the basic GC-based protocol requires, for
each circuit input wire of Pg (the GC-evaluator), that P, (the GC-constructor) sends
to Pg the key corresponding to the respective input bit of Py, but without P, learning

3 See [BHR12, §1] for a brief historical account of the origin of the garbled-circuit approach, including references
to [GMWS87; BMR90; NPS99].

Page 5/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

what is the bit value. This is typically achieved with 1-out-of-2 oblivious transfers (OTs)
[Rab81; EGLS85; NP01|, where the sender (P4) selects two keys per wire, but the receiver
(Pg) only learns one of its choice, without the sender learning which one. Some protocols
use enhanced variations, e.g., committing OT [CGT95], committed OT [KS06], cut-and-
choose OT [LP11], authenticated OT [NNOB12|, string-selection OT |[KK12|. In practice,
the computational cost of OTs is often significant in the overall complexity of protocols,
though asymptotically the cost can be amortized with techniques that allow extending a
few OTs to a large number of them [Bea96; IKNP03; NNOB12|.

The new protocol presented in this paper uses OT's at the BitCom level, to coordinate
decommitments between the two parties, as follows. For each circuit input bit of Py, Py
selects a bit encoding (a decommitment) and uses it to produce the respective BitCom.
Then, PA uses a trapdoor to learn two decommitments (i.e., bit-encodings for the two
bits) for the same BitCom. These OTs are herein dubbed 2-out-of-1 OTs, since one party
chooses one value and leads the other party to learn two values. This is in contrast with
the typical 1-out-of-2 OT (commonly used directly at the level of wire keys), where Py
chooses two keys and leads Py to learn one of them.

Cut-and-choose approach. Yao’s protocol is insecure in the malicious model. For
example, a malicious Pp could construct an undetectably incorrect GC, by changing
the Boolean operations underlying the garbled gates, but maintaining the correct graph
topology of gates and wires. To solve this, Pinkas [Pin03] proposed a C&C approach,
achieving 2-output S2PC via a single-path approach where only Py evaluates GCs. A
simplified high level description follows. P constructs a set of GCs. Py cuts the set into
two complementary subsets and chooses one to verify the correctness of the respective
GCs. If no problem is found, Py evaluates the remaining GCs to obtain, from a consistent
majority, its own output bits and a masked version of the output of P5. Py sends to Py
a modified version of the masked output of P, without revealing from which GC it
was obtained. Finally, P, unmasks her final output bits. This approach has two main
inherent challenges: (1) how to ensure that input wire keys are consistent across GCs, such
that equivalent input wires receive keys associated with the same input bits (in at least
a magority of evaluated GCs); (2) how to guarantee that the modified masked-output of
Py is correct and does not leak private information of Pg. Progressive solutions proposed
across recent years have solved subtle security issues, e.g., the selective-failure-attack
[MF06; KS06|, and improved the practical efficiency of C&C-GC-based methods [LPO7;
Woo07; KS08a; NO09; PSSW09; LP11; SS11]. As a third challenge, the number of GCs
still remains a primary source of inefficiency, in these solutions that require a correct
majority of GCs selected for evaluation. For example, achieving 40 bits of statistical
security! requires at least 123 GCs (74 of which are for wverification). Asymptotically,
the optimal C&C partition (three fifths of verification GCs) leads to about 0.322 bits of
statistical security per GC [SS11].

The BitCom approach developed in this paper deals with all these challenges. First,
taking advantage of XOR-homomorphic BitComs, the verification of consistency of input
wire keys of both parties is embedded in the C&C, without an ad-hoc ZKP of consistency
of keys across different GCs. Second, Py can directly learn, from the GC evaluation, de-
commitments of BitComs of one-time-padded (i.e., masked) output bits of P, and then
simply send these decommitments to P . Privacy is preserved because the decommitments

4 The number of bits of statistical security is the additive inverse of the logarithm base 2 of the maximum error
probability, i.e., for which a malicious Ps can make Pg accept an incorrect output.

Page 6/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

do not vary with the GC index. Correctness is ensured because the decommitments are
verifiable (i.e., authenticated) against the respective BitComs. The BitCom approach
also enables achieving 2-output S2PC via a dual-path execution approach — the parties
play two l-output S2PCs, with each party playing once as GC evaluator of only her
own intended circuit, using the same BitComs of input bits in both executions.® Third,
the BitCom approach enables the forge-and-lose technique, which reduces the correct-
ness requirement to only having at least one correct evaluation GC, thus increasing the
statistical security to about 1 bit per GC (see details in §A).

2.2 Bit Commitments

The BitCom approach introduced in this paper is based on several properties of (some)
BitCom schemes, reviewed hereafter. A BitCom scheme [Blu83; BCCS8S]| is a two-party
protocol for committing and revealing individual bits. In a commit phase, it allows a
sender to commit to a bit value, by producing and sending a BitCom value to the receiver.
The BitCom binds the sender to the chosen bit and, initially, hides the bit value from
the receiver. Then, in a reveal phase, the sender discloses a private bit-encoding (the
decommitment), which allows the receiver to learn the committed bit and wverify its
correctness. A scheme is XOR-homomorphic if any pair of BitComs can be combined
(under some group operation) into a new BitCom that commits the XOR of the original
committed bits, and if the same can be done with the respective decommitments.

The following paragraphs describe several properties related with decommitments
and trapdoors of practical BitCom schemes. For simplicity, the description focuses on a
scheme based on a square operation with some useful collision-resistance (i.e., “claw-free”
[GMR84; Dam88|) properties.

Unconditionally hiding (UH). A BitCom scheme is called UH if, before the reveal
phase, a receiver with unbounded computational power cannot learn anything about
the committed bit. If there is a trapdoor (known by the receiver), then it can be used
to retrieve, from any BitCom, respective bit-encodings of both bits. Still, this does not
reveal any information about which bit the sender might have committed to. A practical
instantiation was used by Blum for coin flipping |Blu83|. There, in a multiplicative group
modulo a Blum integer with factorization unknown by the sender, bits 0 and 1 are encoded
as group-elements with Jacobi Symbol 1 or —1, respectively.® The commitment of a bit is
achieved by sending the square of a random encoding of the bit. The revealing is achieved
by sending the known square-root.

Henceforth, a XOR-homomorphic UH BitCom scheme is suggestively dubbed a 2-to-1
square scheme if it also has the following three useful properties:

— Proper square-roots. Any BitCom (dubbed square) has exactly two decommitments
(dubbed proper square-roots), encoding different bits. In the Blum integer example,

5 This is a concrete C&C-GC-based dual-path solution to 2-output S2PC, where the circuits evaluated by each
party only compute her respective output. [Kir08, §6.6] and [SS11, §1.2] conceptualized dual-path approaches
in high level, but did not explain how to ensure the same input across the two executions. Other dual-path
approaches have been proposed using a single GC per party (i.e., not C&C-based), but with potential leakage
of one bit of information [MF06; HKE12]. A recent method [HKE13| (see comparison in §7) devised a C&C-
based dual-path approach but requiring both parties to evaluate GCs with the same underlying Boolean circuit
(for some 2-output functionalities this implies that GCs have the double of the size).

6 A Blum integer is the product of two prime powers, where each prime is congruent with 3 modulo 4, and each
power has an odd exponent. For a fixed Blum integer, the Jacobi Symbol is a completely multiplicative function
that maps any group element into 1 or —1 (more detailed theory can be found, for example, in [NZM91]).

Page 7/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

each square has four square-roots, two per bit, but it is possible to define a single
proper square-root per bit (e.g., the square-root whose least significant bit is equal
to the encoded bit). The multiplicative group (set of residues and respective multipli-
cation operation) can be easily adjusted to consider only proper square-roots, since
the additive inverse of a non-proper square root is a proper square-root encoding the
same bit.

— From trapdoor to decommitments. There is a trapdoor whose knowledge allows
extracting a pair of proper square-roots (the two decommitments) from any square (the
BitCom). Such pair is dubbed a non-trivially correlated pair, in the sense that the two
proper square-roots are related but cannot be simultaneously found (except with the
help of a trapdoor). This property allows a 2-out-of-1 OT: Py selects a proper square-
root and sends its square to P, who then uses the trapdoor to obtain the two proper
square-roots. In the Blum integer example, the trapdoor is its factorization.

— From decommitments to trapdoor. Any non-trivially correlated pair is a trapdoor.
This is useful for the forge-and-lose technique, as the discovery (by Pg) of such a pair
(a trapdoor of P,), in case P, acted maliciously, is the condition that allows Pg to
decrypt the input bits of P,. In the Blum integer example, its factorization can be
found from any pair of proper square-roots of the same square.

Unconditionally binding (UB). A BitCom scheme is called UB if a sender with
unbounded computational power cannot make the receiver accept an incorrect bit value
in the reveal phase. If there is a trapdoor known by some party, then the party can
use it to efficiently retrieve (i.e., decrypt) the committed bit from any BitCom value. A
practical instantiation is the Goldwasser-Micali probabilistic encryption scheme [GM84],
assuming that modulo a Blum integer it is intractable for the receiver to decide quadratic
residuosity (of residues with Jacobi Symbol 1). A bit 1 or 0 is committed by selecting
a random group element and sending its square, or sending the additive inverse of its
square, respectively.” To decommit 1 or 0, the sender reveals the bit and the respective
random group element, letting the receiver verify that its square or additive-inverse of the
square, respectively, is equal to the BitCom value. The factorization of the Blum integer
is a trapdoor that enables efficient decision of quadratic residuosity.

Remark. The basis of the forge-and-lose technique (§4) is a combination of UB and UH
BitCom schemes, with the sender in the UB scheme being the receiver in the UH scheme,
and knowing a common trapdoor for both schemes. For the Blum integer examples, and
assuming intractability of deciding quadratic residuosity (without a trapdoor), this would
mean using the same Blum integer in both schemes, with its factorization as trapdoor.
There are known protocols to prove correctness of a Blum integer (e.g., [vdGP88]).

The two exemplified schemes are XOR-homomorphic under modular multiplication.
For the purpose of the new S2PC-with-BitComs protocol (§5), this homomorphism is
useful in enabling efficient ZKPs of knowledge (ZKPoKs) related with committed bits,
and efficient negotiation of random bit-encodings and respective BitComs (emulating an
ideal functionality where the trusted third party would select the BitComs randomly).
The property is also useful for linking several S2PC executions, via ZKPs about rela-
tions between the input bits of one execution and the input and output bits of previous
executions (§6).

" The additive inverse of a square is necessarily a non-quadratic residue with Jacobi Symbol 1, modulo a Blum
integer, because —1 has the same property.

Page 8/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

3 The BitCom approach

This section introduces a BitCom approach that combines a BitCom setting (where there
is a BitCom for each circuit input and output bit) and a C&C structure (where there
are several GCs, each with two keys for each input and output wire). In this approach,
based on the XOR-homomorphism of UH BitComs, the consistency of input and output
wire keys across different GCs is statistically ensured within the C&C, rather than using
a ZKP of consistency.®

3.1 Cut-and-choose stages

The S2PC-with-BitComs protocol to be defined in this paper is built on top of a C&C ap-
proach with a COMMIT-CHALLENGE-RESPOND-VERIFY-EVALUATE structure. In a COM-
MIT stage, P builds and sends several GCs, as well as complementary elements (dubbed
connectors) related with BitComs and with the circuit input and output wire keys of GCs.
At this stage, P, does not yet reveal the circuit input keys that allow the evaluation of
each GC. Then, in the CHALLENGE stage, Po and Pg jointly decide a random partition of
the set of GCs into two subsets, one for verification and the other for evaluation. Possibly,
the subsets may be conditioned to a predefined restriction about their sizes (e.g., a fixed
proportion of verification vs. evaluation GCs, or simply not letting the number of eval-
uation GCs exceed some value). In the subsequent RESPOND stage, P sends to Py the
elements that allow Py to fully verify the correctness of the GCs selected for verification,
to partially verify the connectors of all the GCs (in different ways, depending on whether
they are associated with verification or evaluation challenges), and to evaluate the GCs
(and respective connectors) selected for evaluation. In the VERIFY stage, if any verifi-
cation step fails, then Py aborts the protocol execution; otherwise, Py establishes that
there is an overwhelming probability that at least one GC (and respective connectors)
selected for evaluation is correct. Py finally proceeds to an EVALUATE stage, evaluating
the evaluation GCs and respective connectors, and using their results to determine the
final circuit output bits and respective decommitments of output BitComs. Notice that
between the VERIFY and EVALUATE stages there is no response stage that could let Py
misbehave.

3.2 Connectors

This section develops the idea of connectors — structures used to sustain the integration
between BitComs and the C&C structure. They are built on top of a setup where one
initial UH-BitCom has been defined for each input and output wire of each party, in-
dependently of the number of GCs. Then, for each input and output wire in each GC,
a connector is built to provide a (statistically verifiable) connection between the two
BitCom decommitments and the respective pair of wire keys. The functionality of con-
nectors varies with the type of wire they refer to (input of P,, input of Pg, output of
Pg), as illustrated in high level in Fig. 2.

Connectors are used in a type of commitment scheme (i.e., with commit and reveal
phases) that takes advantage of the C&C substrate. First, each connector is committed in
the C&C CoMMIT stage, hiding the respective two wire keys, but binding P to them and
to their relation with BitCom decommitments. Then, each connector is partially revealed

8 The protocol still includes several efficient ZKPs related with BitComs, but they are not about the consistency
of wire keys across different GCs.

Page 9/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Independeilt of # GCs Per GC Independeilt of # GCs
[Permuted position | |
Per P, selects one encoding (e.g., 7=1) L]
input i RS
wire u > S~ Iv:'l'; 'e“
of P i
A — =+ > | key[1-7] . of Py
Pt L P, selects a pair
bit of Py r) T ! of non-trivially
Two bit encodings. Two keys per wire. correlated encodings
P, knows one P, knows both. Garbled B
(e.g., for bit 1) Py learns one (Jy) m
Py could extract both. or two (Jg). 31 3 UH
s ; Circuit BitCom | 7] Per
Per P, selects one encoding Same position Connector |_output
input P i wire
wire u UH > |key[0] ~ | Iput Output | > key[0] [-f-------- of Py
of P BitCom wire wire
"]t > keylt] =7 [orpy orpy | fkeyitl] |-F-------- —[s]
bit of Py p—) - v i) Output
Two bit encodings. Two keys per wire. Two keys per wire. Two bit encodings bit of Py
P, extracts both. P, knows both P, knows both. P, knows both, _J

Py knows one Py learns one (Ji) Py learns one (Ji) Py obtains one (Ji)
(e.g., for bit 0). or two (Jy). or two (Jy). or none (Jy).

Fig.2: Connectors. Legend: Pa (GC constructor); Pg (GC evaluator); Jy and Jg (subsets of verification

[l
i

and evaluation GC indices, respectively); i<i (group-element encoding bit ¢); key[c] (wire key with underlying bit c).

during the C&C RESPOND stage, in one of two possible complementary modes: a reveal
for wverification, related with werification GCs; or a reveal for evaluation, related with
evaluation GCs. All verifications associated with these two reveal modes are performed in
the C&C VERIFY stage, when Py can still, immune to selective failure attacks, complain
and abort in case it finds something wrong. P, never executes simultaneously the two
reveal modes for the same wire of the same GC, because such action would reveal the
input bits (in case of wires of P,) or both BitCom decommitments (i.e., the trapdoor of
Pa, in case of wires of Pg). Nonetheless, since the commitment to the connector binds
Pa to the answers that it can give in each type of reveal phase, an incorrect connector
can pass undetectably at most through one type of reveal mode. Thus, within the C&C
approach, there is a negligible probability that P, manages to build incorrect connectors
for all evaluation indices and go by undetected. The specific constructions follow:

For each input wire of P4:

— Commit. P, selects a random permutation bit and a respective random encoding
(a group-element dubbed multiplier) using the same 2-to-1 square scheme used to
commit the input bits of Po. Po uses the homomorphic group operation to obtain
a new encoding (dubbed inner encoding) that encodes the permuted version of her
input bit, and sends its square (a new inner UH BitCom) to Pg. P, then builds
a commitment of each of the two wire input keys (using some other commitment
scheme), one for bit 0 and the other for bit 1, and sends them to Py in the form of a
pair with the respective permuted order.

— Reveal for verification. P, decommits the two wire input keys (using the reveal
phase of the respective commitment scheme), and decommits the permutation bit (by
revealing the multiplier). Py uses the two wire input keys (obtained for all input wires)
to verify the correctness of the GC and simultaneously obtain the underlying bit of
each input key. Then, Py verifies that the ordering of the bits underlying the pair of
revealed input keys is consistent with the decommitted permutation bit.

— Reveal for evaluation. P, decommits the input key that corresponds to her input
bit, and decommits the permuted input bit (by revealing the inner encoding), thus
allowing Py to verify that it is consistent with the position of the opened key commit-
ment. As the value of the permuted bit is independent of the real input bit, nothing
is revealed about the bit underlying the opened key. If P, would instead reveal the

Page 10/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

other key, Pg would detect the cheating in a time when it is still safe to abort the
execution and complain.

For each input wire of Pg:

— Commit. P, selects a pair of random encodings of bit 0 (dubbed multipliers) and
composes them homomorphically with the two known decommitments of the original
input BitCom of Py (which P, has extracted using the trapdoor), thus obtaining two
new independent encodings (dubbed inner encodings, one for bit 0 and one for bit 1).
P then sends to Pg the respective squares (dubbed inner squares). For simplicity, it
is assumed here that the inner encodings can be directly used as input wire keys of
the GC (§B.2 shows how to relax this assumption).

— Reveal for verification. P, reveals the two inner encodings. Py verifies that they
are the proper square-roots of the received inner squares, and that they encode bits 0
and 1, respectively. Then, P, uses them as the circuit input keys in the GC verification
procedure, verifying their correctness. A crucial point is that the two inner encodings
are proper square-roots of independent BitComs and thus do not constitute a trapdoor.

— Reveal for evaluation. P, reveals the two multipliers. Py verifies that both encode
bit 0, and homomorphically verifies that they are correct (their squares lead the orig-
inal BitCom into the two received inner squares). Since Py knows one (and only one)
decommitment of the input BitCom, it can multiply it with the respective multiplier
to learn the respective inner encoding and use it as an input wire key. This proce-
dure is resilient to selective failure attack, because both multipliers are verified for
correctness, and because the two inner encodings (of which Pg only learns one) are
statistically correct input keys (i.e., they would be detected as incorrect if they had
been associated with a verification GC).

For each output wire of Pg: The construction is essentially symmetric to the
case of input wires of Pg. Again for simplicity, it is assumed here that the output keys
can directly be group-elements (dubbed inner encodings) that are proper square-roots of
independent squares. The underlying bit of each output key is thus the bit encoded by it
(in the role of inner encoding). P, commits by initially sending the two inner squares to
Pg. Then, for verification challenges, from the GC verification procedure Py learns 2 keys
and respective underlying bits. Pg can verify that they are respective proper square-roots
of the inner squares and that they encode the respective bits. For evaluation challenges,
P A sends only the two multipliers, and Pg verifies homomorphically that they are correct.
Then, Py learns one output key from the GC evaluation procedure, which is an inner
encoding, and uses the respective multiplier to obtain the respective decommitment of
the output BitCom.

The overall construction requires a number of group elements (multipliers and inner
encodings) proportional to the number of input and output wires, but independent of the
number of intermediate wires in the circuit.

4 The forge-and-lose technique

This section introduces a new technique, dubbed forge-and-lose, to improve the typical
C&C-GCs-based approach, by using the BitCom approach to provide a new path for
successful computation of final circuit output. More precisely, if in the EVALUATE stage
there is at least one GC and respective connectors leading to a correct output (i.e.,
decommitments of the UH BitComs, for the correct circuit output bits), and if a malicious

Page 11/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

P\ successfully forges some other output, then P} loses the privacy of her input bits to
Pg, allowing Py to directly use a Boolean circuit to compute the intended output. This
loss of privacy is not a violation of security, but rather a disincentive against malicious
behavior by P} .

The forge-and-lose path significantly reduces the probabilistic gap available for mali-
cious behavior by P, that might lead Py to accept an incorrect output. The technique
provides up to 1 bit of statistical security per GC, which constitutes an improvement
factor of about 3.1 (either in reduction of number of GCs or in increase of number of bits
of statistical security) in comparison with C&C-GCs that require a majority of correct
evaluation GCs. As noted by Lindell [Lin13], in this setting the optimal C&C partition
corresponds to an independent selection of verification and evaluation challenges. Still,
for some efficiency tradeoffs it may be preferable to impose some restrictions on the num-
ber of verification and evaluation challenges (e.g., ensure that there are more verification
than evaluation challenges). Appendix A shows the error probabilities associated with
different C&C partition methods.

The forge-and-lose technique is illustrated in high level in Fig. 3. It can be merged
into the C&C and BitCom approach as follows:

— Encryption scheme. P, encrypts her own input bits using as key the trapdoor
(known by P4) of the UH-BitCom scheme used (by Pa) to produce BitComs of the
output bits of Pg. Then, P, gives a ZKP that her encrypted input is the same as that
used in the S2PC protocol, i.e., the one committed by P, with an UH-BitCom scheme
with trapdoor known by Pg. If both schemes are XOR-homomorphic (see practical
example in §2.2), the ZKP can be achieved efficiently with standard techniques, namely
with a statistical combination across input wires, requiring communication linear with
the statistical security parameter.

— Forge-and-lose evaluation. In the EVALUATE stage, if a connector leads an output
key to an invalid decommitment, then the respective GC is ignored altogether. If for
the remaining GCs all connectors lead to consistent decommitments across all GCs,
i.e., if for each output wire index the same valid bit-encoding (proper square-root of
the output BitCom) is obtained, then Py accepts them as correct. However, if P acted
maliciously, there may be a forged GC and connector leading to a valid (verifiable)
decommitment that is different from the decommitment obtained from another correct
GC and connector, for the same output wire index. If Pg obtains any such pair of
decommitments, i.e., a non-trivially correlated pair of square-roots of the same square,
then Py gets the trapdoor with which P encrypted her input, and follows to decrypt
the input bits of P, and use them directly to compute the correct final circuit output
in the clear.

5 Protocol for 1-output S2PC-with-BitComs

This section describes the new C&C-GCs-based protocol for 1-output S2PC-with-BitComs,
enhanced with a forge-and-lose technique. The BitComs are XOR-homomorphic, so the
mentioned ZKPoKs are efficient using standard techniques.

0. SETUP. The parties agree on the protocol goal, namely on a specification of a Boolean
circuit whose evaluation result is to be learned privately by Py, on the necessary secu-
rity parameters, on a C&C partitioning method, and on the necessary sub-protocols.

Page 12/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Detectabl, . Input bit;
GC output ¢_ > % (unsuccessful evaluations “%ufpl S Evaluate
T wirei are simply ignored) 3 A
R~ o,

Boolean
: Input bits . .
—J.: Decrypt of P, circuit
tput L [
w GC] o;l:)eu' wire key Encoding of bit 1, for

e for bit 1 UH BitCom of wire i
—:‘ Trapdoor
— of P,

Successfully output W [wirekey | Encoding of bit 0 for N
FORGED)~ Ooc. GCJ wire i for bit 0 " UH BitCom of wire i Encrypted Output bits

S Qemmmmm input bits of P, of Py

_

Fig. 3: Forge-and-lose. Evaluation path followed by Py, the evaluator of garbled circuits (GCs), if different
GCs built by a malicious Ps and selected for evaluation (e.g., with indices j’, j”) lead to valid but different

decommitments of the same unconditionally hiding (UH) BitCom (e.g., with index 7).

Each party selects a 2-to-1 square scheme, and proposes it to the other party, without
revealing the trapdoor but giving a respective ZKPoK that proves the correctness of
the public parameters.

1. PRODUCE INITIAL BITCOMS.

(a) UH ComwmiT INPUT BITS. Each party selects an initial UH BitCom for each of
its own circuit input bits, using the 2-to-1 square scheme with trapdoor known
by the other party, and sends it to the other party. Py gives a ZKPoK of a valid
decommitment of the respective BitComs.

(b) UB ComMmIT INPUT BITS OF P 5. PA commits again to each of her input bits, now
using an UB-BitCom scheme with trapdoor equal to the trapdoor (known by Py)
of the UH-BitCom scheme used by Py to commit the input bits of Pg. Py gives
a ZKPoK of equivalent decommitments between the UH BitComs of the input of
Pa (with trapdoor known by Pg) and the UB BitComs of the input of P, (with
trapdoor known by Py), i.e., a proof that the known decommitments encode the
same bits.

(¢) UH CommIiT OuTPUT BITS OF Pg. For each output wire index of Py, P, selects
a random encoding of bit 0 (using the UH BitCom scheme with trapdoor known
by Pa) and sends its square to Pg. (Pg will find a respective decommitment only
later, in the EVALUATE stage.)

2. COMMIT. P uses her trapdoor to extract a non-trivially correlated pair of proper
square-roots from each UH BitCom of the input bits (this is the so called 2-out-of-
1 OT, which replaces the typical 1-out-of-2 OT used in other S2PC protocols) and
output bits of Pg. Then, P builds several GCs (in number consistent with the agreed
parameters) and respective connectors to each input and output wire, and sends the
GCs and commitments to the connectors (as specified in §3.2) to Pg.

3. CHALLENGE. The two parties use a coin-tossing sub-protocol to determine a ran-
dom challenge bit for each GC, conditioned to the agreed C&C method (e.g., same
number of challenges of each type, or more verification than evaluation challenges, or
independent selection).”

4. DECIDE UH-BiTCoOM PERMUTATIONS. In order to emulate a trusted third party
deciding the UH BitCom of each circuit input and output bit, both parties interact
in a fully-simulatable coin-tossing sub-protocol to decide a random encoding of bit 0

9 The standalone coin-tossing (see an instantiation in Fig. 7, §C) does not need to be fully simulatable, but
the proof of security takes advantage of the ability of the simulated Pa (with rewinding access to a possibly
malicious Pg) to decide the outcome of the coin-toss. Subtle alternatives would be possible, depending on
some changes related with the remaining stages.

Page 13/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

for each wire index.!" Later, each party will locally use these encodings to permute
the encodings of her respective private bits, and use the square of the encodings to
permute the respective UH BitComs of both parties. Given the XOR-homomorphism,
the initial and the final UH BitComs commit to the same bits.

5. RESPOND. For each C&C challenge bit, P, makes either the reveal for verification or
the reveal for evaluation of the connectors, as specified in §3.2.

6. VERIFY. For verification indices, Py obtains two keys per input wire, verifies the cor-
rectness of the GC and makes the respective partial verification of connectors (without
learning the decommitments of the BitComs of output bits of Pg). For evaluation in-
dices, Pg makes the respective partial verification of the connectors and obtains one
key per input wire. If something is found wrong, Pg aborts and outputs FAIL.

7. EVALUATE. For each evaluation index, Py uses the one key per input wire to evaluate
the GC, obtain one key per output wire and use the respective revealed part of the
connector (namely, one of the two received multipliers) to obtain a decommitment (bit
encoding) of the respective output BitCom. There is an overwhelming probability that
there is at least one evaluation GC whose connectors lead to valid decommitments in
all output wires. If all obtained valid decommitments are consistent across different
GCs, then Py accepts them as correct. Otherwise, Pg proceeds into the forge-and-lose
path as follows. It finds a non-trivially correlated pair of square-roots and uses it as
a trapdoor to decrypt the input bits of P, from the respective UB BitComs. In pos-
session of the input bits of both parties, Py directly evaluates the final circuit output.
Then, from within the decommitments already obtained from the evaluation connec-
tors, Py finds the output bit encodings that are consistent with the circuit output
bits, and accepts them as the correct ones. This marks the end of the forge-and-lose
path.

8. AprpLy BiTCoM PERMUTATIONS. Each party applies the previously decided random
permutations to the encodings of the respective circuit input and output bits, and
applies the square of the random encodings as permutations to the UH BitComs of
the circuit input and output bits of both parties.

9. FINAL OuTpPUT. Each party privately outputs her circuit input and output bits and
the respective final encodings, and also outputs the (commonly known) final UH
BitComs of the circuit input and output bits of both parties. P, outputs even if
Pg aborts at any time after the ApPLY BITCOM PERMUTATIONS stage.

Remark. When using the 1l-output protocol within larger protocols, care needs to be
taken so that P, cannot distinguish between Py having learned his output via the normal
evaluation path vs. via the forge-and-lose path.

6 Discussion

6.1 Complexity

Besides the computation and communication related with (the reduced number of) GCs,
the new S2PC-with-BitComs protocol requires instantiating the connectors (which brings
a cost proportional to the number of input and output wires, multiplied by the number of

10 To achieve simulability of the overall protocol under each possible malicious party (P and Pg), the simulator
of this coin-tossing needs to be able to induce the final BitComs in the real world to be equal to those decided
by the trusted third party in the ideal world, and at the same time deal with a probabilistic possibility of
abort dependent on those final BitCom values (e.g., see [Lin03]).

Page 14/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

GCs), performing ZKPoKs related with BitComs and to prove correctness of the BitCom
scheme parameters, and performing secure two-party coin-tossing (which is significant for
the decision of random BitComs values). Based on the XOR-homomorphism, the ZKPoKs
related with input wires can be parallelized efficiently with standard techniques, with a
communication cost linear in a statistical parameter but independent of the number of
input wires, though with computational cost proportional to the product of the statistical
parameter and the number of input wires.

With an instantiation based on Blum integers, the inversion of an UH BitCom using
the trapdoor (i.e., computing a modular square-root) is approximately computationally
equivalent to one exponentiation modulo each prime factor. Thus, besides proving cor-
rectness of the Blum integer (which can be achieved with a number of exponentiations
that is linear in the statistical parameter), and performing a fully-simulatable coin-tossing
sub-protocol to decide random BitCom permutations (which can be instantiated with a
number of exponentiations that is linear in the number of input and output wires, and
performed in a group of smaller order), the 1-output S2PC-with-BitComs protocol only
requires a number of exponentiations that is linear in the number of input wires of Pg,
and only computed by P 4. This is in contrast with other protocols whose required number
of exponentiations by both parties is proportional to the number of GCs multiplied by
the number of input wires (e.g., [LP11]), though in compensation those exponentiations
are supported in groups with smaller moduli length and sub-groups of smaller order.

The protocol can be optimized in several ways (see §E). For example, with a random
seed checking (RSC) technique [GMS08| the communication of elements (including GCs
and connectors) associated with verification challenges can be replaced by the sending and
verification of small random seeds (used to pseudo-randomly generate the elements) and a
commitment (to the elements). The technique can be applied independently to GCs and
connectors, and can also be used to reduce some of the communication corresponding
to connectors associated with evaluation challenges. As another example, some group
elements used in connectors of P, can be reduced in size, since their binding properties
only need to hold during the execution of the protocol.

Concrete results. An analytic estimation of communication complexity is made in
§E (ignoring overheads due to communication protocols), for two different circuits: an
AES-128 circuit with 6,800 multiplicative gates [Bril3] and 128 wires for the input of
each party and for the output of Pg; and a SHA-256 circuit with 90,825 multiplicative
gates |Bril3] and 256 wires for the input of each party and output of Pg.

An interesting metric is the proportional overhead of communicated elements beyond
GCs (i.e., connectors, BitComs and associated proofs) in comparison with the size occu-
pied only by the GCs. For 128 bits of cryptographic security, instantiated with 3,072-bit
Blum integers [BBBT12|, and 40 bits of statistical security achieved using 41 GCs of
which at most 20 are for evaluation (see §A), the estimated overhead is about 55% and
8%, for the AES-128 and SHA-256 circuits, respectively, without the RSC technique ap-
plied to the GCs. This metric gives an intuition about the communication cost inherent
to the BitCom approach, but is not good enough on its own. For example, when applying
the RSC technique also at the level of GCs, the overall communication is reduced signifi-
cantly, but (because the size corresponding to GCs is reduced) the proportional overhead
increases to 158% and 23%, respectively. Nonetheless, even these overheads are low when
compared to the cost associated with the additional GCs needed in a C&C that requires
a majority of correct evaluation GCs (i.e., on its own an overhead of about 200%, and
asymptotically up to about 210%). Clearly, the proportional overhead decreases with the

Page 15/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

ratio given by the number of input and output wires divided the number of multiplicative
gates.

There are other optimizations and C&C configurations that reduce the communication
even more, with tradeoffs with computational complexity. For example, by restricting the
number of evaluation GCs to be at most 8, but increasing the overall number of GCs to
123 (this was the minimal number of GCs required by the typical C&C to achieve 40 bits
of statistical security), the estimated communication complexity is approximately of the
order of 62 million bits and 418 million bits, respectively for the exemplified circuits. A
pipelining technique [HEKM11] could also be considered, such that the garbled-gates are
not all stored in memory at the same time. This would increase the computation by Py,
but not affect the amount of communicated elements.

6.2 Linked executions

A simple example of linked executions is the mentioned dual-path execution approach,
where each party reuses the same input bits (and BitComs) in two different executions.
Furthermore, it may be useful to achieve more general linkage, such as proving that
the private input bits of a S2PC satisfy certain non-deterministic polynomial verifiable
relations with the private input and output bits of previous S2PCs. Based on the XOR-
homomorphism of BitComs, this can be proven with efficient ZKPs. For example, proving
that a certain BitCom commits to the NAND of the bits committed by two other BitComs
can be reduced to a simple ZKP that there are at least two 1’s committed in a triplet
of BitComs, with the triplet being built from a XOR-homomorphic combination of the
original three BitComs.!

For example, since Boolean circuits can be implemented with NAND gates alone, it
is possible to prove, outside of the GCs, those transformations and relations that involve
only the bits of one party. For example, for protocols defined as a recursion of small
GC-based S2PC sub-protocols in the semi-honest model (e.g., [LP02]), security can be
enhanced to resist also the malicious model, by simply (1) replacing each GC with a
C&C-GCs with BitComs, and (2) by naturally using the input and output of previous
executions (or transformations thereof) as the input of the subsequent executions.

6.3 Security

The protocol can be proven secure in the plain model (i.e., without hybrid access to ideal
functionalities), assuming the simulator has black-box access with rewindable capability
to a real adversary (§G). The simulator is able to extract the input of the malicious
party in the real world from the respective ZKPoKs of decommitments, and thus hand
it over to the trusted third party in the ideal world. The two-party coin tossing used to
select random permutations of group-elements needs to be fully-simulatable, because the
final BitComs and decommitments are also part of the final output of honest parties.
Subtle changes are needed to the ideal functionality when the protocol is adjusted to the
2-output case where each party learns a private circuit output. Achieving security in the
universal composability model [CLOS02] is left for future work.

11 The first bit is the NAND of the two last if and only if there are at least two 1’s in the triplet composed of

the first bit and of the XOR of the first bit with each of the other two bits [Bra06]. See details in Fig. 16 in
appendix.A different method can be found in [BDPOO].

Page 16/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

7 Related work

The paragraphs below compare some aspects of related work.

7.1 Two other optimal C&C-GCs

Two recently proposed C&C-GCs-based protocols [Lin13; HKE13] also minimize the num-
ber of GCs, requiring only that at least one evaluation GC is correct.

Lindell [Lin13| enhances a typical C&C-GCs-based protocol by introducing a second
C&C-GCs, dubbed secure-evaluation-of-cheating (SEOC), where Py recovers the input
of P in case Py can provide two different garbled output values from the first C&C-GCs.
The concept of input-recovery resembles the forge-and-lose technique, but the methods
are quite different. For example, the SEOC phase requires interaction between the parties
after the first GC evaluation phase, whereas in the forge-and-lose the input-recovery
occurs offline.

Huang, Katz and Evans [HKE13] propose a method that combines the C&C-GCs
approach with a verifiable secret sharing scheme (VSSS). The parties play different roles
in two symmetric C&C-GCs, and then securely compare their outputs. This requires
the double of GCs, but in parallel across the two parties. By requiring a predetermined
number of verification challenges, the necessary number of GCs is only logarithmically
higher than the optimal that is achieved with an independent selection of challenges. In
their method, the deterrent against optimal malicious GCs construction does not involve
the GC constructor party having her input revealed to the GC evaluator.

In the SEOC and VSSS descriptions, the method of ensuring input consistency across
different GCs is supported on discrete-log based intractability assumptions. The descrip-
tions do not consider general linkage of S2PC executions related with output bits, but
their input bits are also committed using XOR-~-homomorphic BitComs. In contrast, the
S2PC-with-BitComs described in this paper, with an instantiation based on Blum in-
tegers, is based on intractability of deciding quadratic residuosity and requires a lower
number of exponentiations, though with each exponentiation being more expensive due
to the larger size of group elements and group order, for the same cryptographic security
parameter. Future work may better clarify the tradeoffs between the three techniques.

7.2 Other related work

Jarecki and Shmatikov [JSO07] described a S2PC protocol with committed inputs,
using a single verifiably-correct GC, but with the required number of exponentiations
being linear in the number of gates. In comparison, the protocol in this paper allows
garbling schemes to be based on symmetric primitives (e.g., block-ciphers, whose greater
efficiency over-compensates the cost of multiple GCs in the C&C), and the required
number of exponentiations to be linear in the number of circuit input and output bits
and in the statistical parameter.

Nielsen and Orlandi proposed LEGO [NOO09|, and more recently Frederiksen et al.
proposed Mini-Lego [FIJNT13|, a fault-tolerant circuit design that computes correctly
even if some garbled gates are incorrect. Their protocol, which uses a cut-and-choose
at the garbled-gate level (instead of at the GC level) to ensure that most garbled gates
used for evaluation are correct, requires a single GC but of larger dimension. It would
be interesting to explore, in future work, how to integrate a forge-and-lose technique into
their cut-and-chose at the gate level.

Page 17/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Kolesnikov and Kumaresan [KK12| described a S2PC slice-evaluation protocol, based
on information theoretic GCs, allowing the input of one GC to directly use the output
of a previous GC. Their improvements are valid if the linked GCs are shallow, and if
one party is semi-honest and the other is covert. In contrast, the S2PC-with-BitComs
protocol in this paper allows any circuit depth and any party being malicious.

Nielsen et al. [NNOB12| proposed an OT-based approach for S2PC, potentially more
efficient than a C&C-GCs if network latency is not an issue. However, the number of
communication rounds of their protocol is linear in the depth of the circuit, thus being
outside of the scope of this paper (restricted to C&C-GCs-based protocols with a constant
number of communication rounds).

Acknowledgments. The author thanks: his Ph.D. co-advisor Alysson Bessani, for the
valuable discussions and suggestions that contributed to improve the presentation of
an earlier version of this paper; another reviewer, who wished to remain anonymous,
for valuable suggestions that also contributed to improve the presentation of an earlier
version of this paper; the anonymous reviewers of CRYPTO 2013 and ASTACRYPT 2013
conferences, for their useful comments.

References

[BBBT12] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for Key Management —
Part 1: General (Revision 3) — NIST Special Publication 800-57. U.S. Department of Commerce,
NIST-ITL-CSD, July 2012. 15, 47

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. J. Comput.
Syst. Sci., 37(2):156-189, 1988. 7
[BDPO0O] J. Boyar, I. Damgard, and R. Peralta. Short Non-Interactive Cryptographic Proofs. J. Cryptology,
13:449-472, 2000. 16
[Bea96] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In Proc.
STOC 96, pages 479-488. ACM, New York, 1996. 6
[BHR12| M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In Proc. CCS ’12, pages
784-796. ACM, New York, 2012. See also Cryptology ePrint Archive, Report 2012/265. 4, 5
[Blu83] M. Blum. Coin flipping by telephone a protocol for solving impossible problems. SIGACT News,
15:23-27, January 1983. 7
[BMRO0] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proc. STOC
’90, pages 503-513. ACM, New York, 1990. 5
[Bra06] L. T. A.N. Brandao. A Framework for Interactive Argument Systems using Quasigroupic Homorphic
Commitment. Cryptology ePrint Archive, Report 2006,/472, 2006. 16
[Bril3] Bristol Cryptography Group. Circuits of Basic Functions Suitable For MPC and FHE. http:
//www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/, Accessed June 2013. 15, 46
[Can00] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. J. Cryptology, 13:143—
202, 2000. See also Cryptology ePrint Archive, Report 1998/018. 3, 61
[CGT95] C. Crépeau, J. v. d. Graaf, and A. Tapp. Committed Oblivious Transfer and Private Multi-Party
Computation. In D. Coppersmith, editor, CRYPTO ’95, vol. 963 of LNCS, pages 110-123. Springer-
Verlag, 1995. 6

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-
party secure computation. In Proc. STOC 02, pages 494-503. ACM, New York, 2002. See also
Cryptology ePrint Archive, Report 2002/140. 16

[CP93] D. Chaum and T. Pedersen. Wallet Databases with Observers. In E. Brickell, editor, CRYPTO 92,

vol. 740 of LNCS, pages 89-105. Springer-Verlag, 1993. 38

[Dam88| I. B. Damgard. The application of claw free functions in cryptography. PhD thesis, Aarhus University,
Mathematical Institute, 1988. 7

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Commun. ACM,
28:637-647, June 1985. 6

[EIG85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
In G. Blakley and D. Chaum, editors, Advances in Cryptology, vol. 196 of LNCS, pages 10-18.
Springer-Verlag, 1985. 38

Page 18/75

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf?
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf?
http://dx.doi.org/10.1016/0022-0000(88)90005-0
http://dx.doi.org/10.1007/s001450010011
http://dx.doi.org/10.1145/237814.237996
http://dx.doi.org/10.1145/2382196.2382279
https://eprint.iacr.org/2012/265
http://dx.doi.org/10.1145/1008908.1008911
http://dx.doi.org/10.1145/100216.100287
https://eprint.iacr.org/2006/472
https://eprint.iacr.org/2006/472
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://dx.doi.org/10.1007/s001459910006
https://eprint.iacr.org/1998/018
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1145/509907.509980
http://dx.doi.org/10.1145/509907.509980
https://eprint.iacr.org/2002/140
http://dx.doi.org/10.1007/3-540-48071-4_7
http://www.ist-palcom.org/publications/PB/269/PB-269.pdf
http://dx.doi.org/10.1145/3812.3818
http://dx.doi.org/10.1007/3-540-39568-7_2

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

[FFS88]

[FINT13]

[FN13]

[GK96]
[GM84]

[GMPYO06]

[GMRS84]

[GMS08]

[GMW8T]
[Gol04]
[HEKM11]
[HKE12]

[HKE13]

[HL10]
[IKNPO3]
[JS07]

[KAFT10]

[Kir08]

[KK12]

[Kol09]
[KS06]
[KS08a]

[KSO8b]

[KSS12]

[Lin03]

[Lin13]

U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1(2):77-94, 1988.
52

T. Frederiksen, T. Jakobsen, J. Nielsen, P. Nordholt, and C. Orlandi. MiniLEGO: Efficient Secure
Two-Party Computation from General Assumptions. In T. Johansson and P. Nguyen, editors, EU-
ROCRYPT ’13, vol. 7881 of LNCS, pages 537-556. Springer-Verlag, 2013. See also Cryptology ePrint
Archive, Report 2013/155. 17

T. Frederiksen and J. B. Nielsen. Fast and Maliciously Secure Two-Party Computation Using the
GPU. In M. Jacobson, M. Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS ’18, vol. 7954
of LNCS, pages 339-356. Springer-Verlag, 2013. 3

O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for
NP. J. Cryptology, 9(3):167-189, 1996. 63

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270-299, 1984. 8

J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource Fairness and Composability of
Cryptographic Protocols. In T'CC' ’06, vol. 3876 of LNCS, pages 404—428. Springer-Verlag, 2006. See
also Cryptology ePrint Archive, Report 2005/370. 69

S. Goldwasser, S. Micali, and R. L. Rivest. A “Paradoxical” Solution To The Signature Problem. In
Proc. FOCS 84, pages 441-448. IEEE Computer Society, 1984. 7

V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and Multi Party Computation Against
Covert Adversaries. In N. Smart, editor, EUROCRYPT ’08, vol. 4965 of LNCS, pages 289-306.
Springer-Verlag, 2008. 4, 15, 24, 40

O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In Proc. STOC 87,
pages 218-229. ACM, New York, 1987. 5

O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, chapter 7 edition, 2004. 2

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation Using Garbled
Circuits. In Proc. SEC ’11. USENIX Association, 2011. 4, 16, 49

Y. Huang, J. Katz, and D. Evans. Quid-Pro-Quo-tocols: Strengthening Semi-Honest Protocols with
Dual Execution. In Proc. S&P ’12, may 2012. 7

Y. Huang, J. Katz, and D. Evans. Efficient Secure Two-Party Computation Using Symmetric Cut-
and-Choose. In R. Canetti and J. Garay, editors, CRYPTO ’13, vol. 8043 of LNCS, pages 18-35.
Springer-Verlag, 2013. See also Cryptology ePrint Archive, Report 2013/081. 4, 7, 17

C. Hazay and Y. Lindell. Efficient Protocols for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. J. Cryptology, 23(3):422-456, 2010. 38

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending Oblivious Transfers Efficiently. In D. Boneh,
editor, CRYPTO 03, vol. 2729 of LNCS, pages 145-161. Springer-Verlag, 2003. 6

S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Committed Inputs. In
M. Naor, editor, EUROCRYPT 07, vol. 4515 of LNCS, pages 97-114. Springer-Verlag, 2007. 17

T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Mont-
gomery, D. Osvik, H. Riele, A. Timofeev, and P. Zimmermann. Factorization of a 768-Bit RSA
Modulus. In T. Rabin, editor, CRYPTO ’10, vol. 6223 of LNCS, pages 333—-350. Springer-Verlag,
2010. See also Cryptology ePrint Archive, Report 2010/006. 42

M. S. Kiraz. Secure and Fair Two-Party Computation. Phd thesis, Technische Universiteit Eindhoven,
Netherlands, 2008 2008. 7

V. Kolesnikov and R. Kumaresan. Improved Secure Two-Party Computation via Information-
Theoretic Garbled Circuits. In I. Visconti and R. De Prisco, editors, SCN ’12, vol. 7485 of LNCS,
pages 205-221. Springer-Verlag, 2012. 6, 18

V. Kolesnikov. Advances and impact of secure function evaluation. Bell Labs Technical Journal,
14(3):187-192, 2009. 2

M. S. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of Yao’s garbled circuit
construction. In Proc. 27th Symp. Information Theory in the Beneluz, pages 283-290, 2006. 6, 70
M. S. Kiraz and B. Schoenmakers. An Efficient Protocol for Fair Secure Two-Party Computation.
In T. Malkin, editor, CT-RSA 08, vol. 4964 of LNCS, pages 88—105. Springer-Verlag, 2008. 6

V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applications. In
L. Aceto, I. Damgérd, L. Goldberg, M. Halldérsson, A. Ingolfsdottir, and I. Walukiewicz, editors,
ICALP 08, vol. 5126 of LNCS, pages 486-498. Springer-Verlag, 2008. 4

B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with malicious adversaries.
In Proc. Security 12, pages 285-300. USENIX Association, 2012. See also Cryptology ePrint Archive,
Report 2012/179. 3, 42, 49

Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. J. Cryptology,
16(3):143-184, 2003. See also Cryptology ePrint Archive, Report 2001/107. 14, 38, 39

Y. Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries. In R. Canetti
and J. Garay, editors, CRYPTO ’13, vol. 8043 of LNCS, pages 1-17. Springer-Verlag, 2013. See also
Cryptology ePrint Archive, Report 2013/079. 4, 12, 17, 23, 48

Page 19/75

http://dx.doi.org/10.1007/BF02351717
http://dx.doi.org/10.1007/978-3-642-38348-9_32
http://dx.doi.org/10.1007/978-3-642-38348-9_32
https://eprint.iacr.org/2013/155
http://dx.doi.org/10.1007/978-3-642-38980-1_21
http://dx.doi.org/10.1007/978-3-642-38980-1_21
http://dx.doi.org/10.1007/BF00208001
http://dx.doi.org/10.1007/BF00208001
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.1007/11681878_21
http://dx.doi.org/10.1007/11681878_21
https://eprint.iacr.org/2005/370
http://dx.doi.org/10.1109/SFCS.1984.715946
http://dx.doi.org/10.1007/978-3-540-78967-3_17
http://dx.doi.org/10.1007/978-3-540-78967-3_17
http://dx.doi.org/10.1145/28395.28420
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://dl.acm.org/citation.cfm?id=2028067.2028102
http://dl.acm.org/citation.cfm?id=2028067.2028102
http://www.cs.virginia.edu/evans/pubs/oakland2012/quidproquotocols.pdf
http://www.cs.virginia.edu/evans/pubs/oakland2012/quidproquotocols.pdf
http://dx.doi.org/10.1007/978-3-642-40084-1_2
http://dx.doi.org/10.1007/978-3-642-40084-1_2
https://eprint.iacr.org/2013/081
http://dx.doi.org/10.1007/s00145-008-9034-x
http://dx.doi.org/10.1007/s00145-008-9034-x
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-540-72540-4_6ses
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-642-14623-7_18
https://eprint.iacr.org/2010/006
http://alexandria.tue.nl/extra2/200811317.pdf
http://dx.doi.org/10.1007/978-3-642-32928-9_12
http://dx.doi.org/10.1007/978-3-642-32928-9_12
http://dx.doi.org/10.1002/bltj.20396
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.2627
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.2627
http://dx.doi.org/10.1007/978-3-540-79263-5_6
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dl.acm.org/citation.cfm?id=2362793.2362807
https://eprint.iacr.org/2012/179
http://dx.doi.org/10.1007/s00145-002-0143-7
https://eprint.iacr.org/2001/107
http://dx.doi.org/10.1007/978-3-642-40084-1_1
https://eprint.iacr.org/2013/079

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

[LP02]

[LPO7]

[LP09]

[LP11]

[LPS08]

[MF06]

[NNOB12]

[NO09]

[NPOI]
[NPS99]
[NZM91]
[Pin03]

[PSSWO09)

[Rab81]

[Sch91]
[SS11]

[TLLO3]

[vdGPsS]

[Woo07]

[Yao82]

[Yao86]

Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. J. Cryptology, 15(3):177-206, 2002. 2,
16

Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the Presence
of Malicious Adversaries. In M. Naor, editor, EUROCRYPT 07, vol. 4515 of LNCS, pages 52-78.
Springer-Verlag, 2007. See also Cryptology ePrint Archive, Report 2008/049. 6

Y. Lindell and B. Pinkas. A Proof of Security of Yao’s Protocol for Two-Party Computation. J.
Cryptology, 22(2):161-188, 2009. 5, 67

Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In
Y. Ishai, editor, TCC ’11, vol. 6597 of LNCS, pages 329-346. Springer-Verlag, 2011. See also Cryp-
tology ePrint Archive, Report 2010/284. 6, 15, 39, 40

Y. Lindell, B. Pinkas, and N. Smart. Implementing Two-Party Computation Efficiently with Security
Against Malicious Adversaries. In R. Ostrovsky, R. De Prisco, and I. Visconti, editors, SCN 08, vol.
5229 of LNCS, pages 2-20. Springer-Verlag, 2008. 38, 39

P. Mohassel and M. Franklin. Efficiency Tradeoffs for Malicious Two-Party Computation. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC ’06, vol. 3958 of LNCS, pages 458-473. Springer-
Verlag, 2006. 6, 7, 70

J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A New Approach to Practical Active-
Secure Two-Party Computation. In R. Safavi-Naini and R. Canetti, editors, CRYPTO ’12, vol.
7417 of LNCS, pages 681-700. Springer-Verlag, 2012. See also Cryptology ePrint Archive, Report
2011/091. 6, 18

J. B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In O. Reingold, editor, TCC
’09, vol. 5444 of LNCS, pages 368-386. Springer-Verlag, 2009. See also Cryptology ePrint Archive,
Report 2008/427. 6, 17

M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA 01, pages 448-457. STAM,
Philadelphia, 2001. 6

M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proc.
EC 99, pages 129-139. ACM, New York, 1999. 4, 5

I. M. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to the theory of numbers.
Wiley, fifth edition, 1991. 7, 56

B. Pinkas. Fair Secure Two-Party Computation. In E. Biham, editor, EUROCRYPT 03, vol. 2656
of LNCS, pages 647—-647. Springer-Verlag, 2003. 6

B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure Two-Party Computation Is Practical. In
M. Matsui, editor, ASTACRYPT 09, vol. 5912 of LNCS, pages 250-267. Springer-Verlag, 2009. See
also Cryptology ePrint Archive, Report 2009/314. 2, 4, 6, 47

M. O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81, Harvard
University, Aiken Computation Lab, Cambridge, MA, 1981. See typesetted version in Cryptology
ePrint Archive, Report 2005/187. 6

C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161-174, 1991. 38

A. Shelat and C.-h. Shen. Two-Output Secure Computation with Malicious Adversaries. In K. Pa-
terson, editor, EUROCRYPT ’11, vol. 6632 of LNCS, pages 386-405. Springer-Verlag, 2011. See also
Cryptology ePrint Archive, Report 2011/533. 4, 6, 7, 22

C. Tang, Z. Liu, and J. Liu. The Statistical Zero-knowledge Proof for Blum Integer Based on Discrete
Logarithm. Cryptology ePrint Archive, Report 2003/232, 2003. 60

J. van de Graaf and R. Peralta. A Simple and Secure Way to Show the Validity of Your Public Key.
In C. Pomerance, editor, CRYPTO ’87, vol. 293 of LNCS, pages 128-134. Springer-Verlag, 1988. 8,
58

D. P. Woodruff. Revisiting the Efficiency of Malicious Two-Party Computation. In M. Naor, editor,
EUROCRYPT ’07, vol. 4515 of LNCS, pages 79-96. Springer-Verlag, 2007. See also Cryptology
ePrint Archive, Report 2006/397. 6

A. C. Yao. Protocols for secure computations. In Proc. FOCS 82, pages 160-164. IEEE Computer
Society, 1982. 2

A. C.-C. Yao. How to generate and exchange secrets. FOCS ’86, 0:162—-167, 1986. 5

Page 20/75

http://dx.doi.org/10.1007/s00145-001-0019-2
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
https://eprint.iacr.org/2008/049
http://dx.doi.org/10.1007/s00145-008-9036-8
http://dx.doi.org/10.1007/978-3-642-19571-6_20
https://eprint.iacr.org/2010/284
http://dx.doi.org/10.1007/978-3-540-85855-3_2
http://dx.doi.org/10.1007/978-3-540-85855-3_2
http://dx.doi.org/10.1007/11745853_30
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2011/091
http://dx.doi.org/10.1007/978-3-642-00457-5_22
https://eprint.iacr.org/2008/427
http://dl.acm.org/citation.cfm?id=365502
http://dx.doi.org/10.1145/336992.337028
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471625469.html
http://dx.doi.org/10.1007/3-540-39200-9_6
http://dx.doi.org/10.1007/978-3-642-10366-7_15
https://eprint.iacr.org/2009/314
http://ce.sharif.edu/~dousti/home/papers/rabin_OT.pdf
https://eprint.iacr.org/2005/187.pdf
https://eprint.iacr.org/2005/187.pdf
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/978-3-642-20465-4_22
https://eprint.iacr.org/2011/533
https://eprint.iacr.org/2003/232
https://eprint.iacr.org/2003/232
http://dx.doi.org/10.1007/3-540-48184-2_9
http://dx.doi.org/10.1007/978-3-540-72540-4_5
https://eprint.iacr.org/2006/397
http://dx.doi.org/10.1109/SFCS.1982.88
http://doi.ieeecomputersociety.org/10.1109/SFCS.1986.25

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Appendix

This appendix includes formal details related with claims mentioned along the main text.
Section A compares the error probability related with a C&C-with-forge-and-lose vs. that
of a C&C requiring a majority of correct evaluation GCs, and analyzes different C&C con-
figurations. Section B specifies the connectors that sustain the BitCom approach, based
on XOR-homomorphic properties. Section C specifies with better detail the 1-output
S2PC-with-BitComs protocol. Section D looks into a fully-simulatable coin-tossing sub-
protocol that can be used to obtain random BitCom permutations. Section E discusses
several optimizations and estimates the respective communication complexity of the pro-
tocol. Section F describes how to accomplish the ZKPoKs related with 2-to-1 square
schemes. Section G gives the proof of security. Section H provides an index of notation.
The last page also of this document contains the list of Figures and the list of Tables.

A Soundness error probability

This section relates the number of GCs with the number of bits of statistical security of
different C&C partition methods. By definition, the number of bits of statistical security
is the additive inverse of the logarithm base 2 of the maximum error probability, i.e.,
for which a malicious PA can make PB accept an incorrect output. It is assumed that
a malicious P}, uses the optimal strategy to lead Py to accept an incorrect output. The
calculated probabilities are valid for C&C protocols where a bad index (i.e., one in which
Pa has cheated in the COMMIT stage) is detected if selected for verification, as is the case
of the protocol defined in this paper. Table 1 shows values or error probabilities; Table 2
shows the number of GCs necessary to achieve certain values of statistical security.

For soundness to be broken, all the committed elements associated with the v indices
selected for verification must be good (i.e., correctly constructed) — otherwise, Py safely
aborts the execution upon detection of a bad element. Furthermore, within the remaining
e indices selected for evaluation, the number b of bad indices must be enough to lead
Py to an incorrect result. The optimal strategy of a malicious P}, to succeed in breaking
soundness depends on the C&C partitioning method (e.g., fixed vs. variable number of
verification indices) and the requirements for soundness (e.g., the required number of good
evaluation indices: a majority vs. at least one).

The formula for error probability follows from a simple counting argument. The total
number of possible C&C choices is equal to the number of possible sets of verification
indices that can be selected from the set of all indices. Of these, the choices that lead
to error are those for which all the bad elements are not selected for verification (and
assuming that there are enough bad indices to induce error). The number of these choices
is equal to the number of possible sets of verification indices that can be selected from
the set of good indices. The error probability is given by the quotient of the later quantity
over the former quantity. Table 1 shows the error probabilities associated with different
C&C methods, namely methods where the number of verification and evaluation indices
are pre-determined, and methods where the number of challenges of each type is variable.

Methods requiring a majority of correct evaluation indices. In C&C methods
where the final output is determined as the majority output of the e evaluated GCs, a
fixed partition size is preferable to a variable one, because it yields a lower probability of
error (1). In these cases, the optimal adversarial approach by P (the GC constructor)

Page 21/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Table 1: Soundness error probability

. . C&C partition method b Error probability (Pr) Bits of statistical Eq
orrectness T ity (—log, P :
requirement od Restriction .(#.bad et Stirling’s security (og,Pr) 4
ode estrictio indices) Xac approximation (approximate)
Bin(s—b,v) __ (s—b)!le!
A majority {v,€) fejq) [BnCmel — (e=bii (
of evaluation ' v A s)2 (fixed) ~ % 9—(143s)/2 3(2+3s)/4 0.311s — 0.292 (
indices is good| Fixed xe TSETEEY
v~ 3s/5 o UIE O 198/2 5712 (5/4) 77| 03225 - 0339 |(
(v, €) = (as, Bs) e elv!/s! V2raBs(a®BP) | ers — (logy 8)/2 — co |(
(fixed) —s
At loast one v=s/2] [s/2]![s/2]!/s! 2 wes/2 s — (logy s)/2 —0.326 (
evaluation D<e<e:
index is good pr < 277461 z A€’ (6)
~ e
Variable iabl
D<e<v<s | Aable) <12~ 1) a2 GD 2s—1 (7)
0<v<s 1/(2° —1) = 27° s (8)

Legend: # (number of), s (# challenge indices), v (# indices selected for verification), e (# indices selected for
evaluation), b (# bad indices); ¢’ (auxiliary parameter defining a statistical security goal). By definition, s = v+e
and o+ = 1, with a, 8 > 0. Bin(, -) denotes the binomial coefficient, with Bin(n, m) = n!/(m!(n—m)!). Stirling’s
first order approximation establishes n! ~ v/2wn(n/E)"™, as n approaches infinite, where E ~ 2.7828 is Euler’s
constant (the basis of the natural logarithm), and m = 3.1416 is the quotient between the circumference and
the diameter of a circle ®. ¢; = logy(a™*B77); co = (logy(27aB))/2. Remark: In (5), using v = |s/2] would
lead to the same error probability as using v = [s/2]. However, in (2), when s is odd there is a difference in
probability when comparing the case v = [s/2] with the case v = |s/2], depending on the value s(mod 4). When
s(mod 4) = 3 then v = [s/2] is better by 1 bit of statistical security, i.e., it yields half the probability. When
s(mod 4) =1 then v = |s/2] can be better up to about 0.5 bits of statistical security.

is to forge elements in the minimal number of indices that might prevent a majority of
evaluation indices from being correct. In other words, the number of bad indices must
be the lowest number that constitutes at least half of the number of evaluation indices,
thus minimizing the probability of being detected in the VERIFY stage. A common C&C
partition method is to split the challenges in about half for verification and half for
evaluation, which yields an error probability corresponding to about 0.31 bits of statistical
security per GC (2). However, the optimal proportion is achieved [SS11]| with about three
fifths of indices selected for verification and two fifths for evaluation (3), improving the
statistical security up to about 0.32 bits per GC.

Methods requiring at least one correct evaluation index. With the forge-and-
lose technique, a successful attack by Pa requires cheating in exactly as many indices
as those that will be selected for evaluation. Furthermore, soundness is broken only if
Pa guesses the exact partition configuration in advance. The error probability obtained
when selecting fixed proportions of challenge types (4) is better (i.e., lower) than when
using the same proportions in a technique that requires a majority of good evaluation
indices (compare with (1)). In both cases the soundness error probability is negligible
in s, but the methods that just require at least one good evaluation index are clearly
better. The optimal fixed proportion is half of indices for evaluation and the remaining
half for verification, because this is the number that maximizes the number of possible
partitions (out of which a malicious P’ has to guess one) (5). The respective probability
corresponds to about 1 bit of statistical security per GC, except for a reduction by an
(additive) logarithmic factor. Table 2 shows the minimum numbers of GCs that achieve
certain values of statistical security. For example, to achieve 128 bits of security, the forge-

Page 22/75

S2PC with Reusable BitComs, via a C&C with FEL technique

(Technical report 2013-09-11)

Table 2: Number of GCs to achieve statistical security

Correctness C&C partition method Probability 940 980 9128
requirement More Restriction goal
v=s/2] (s,v,e) (129, 64, 65)|(257, 128, 129)|(410, 205, 205)
MajoritY of (half-half) Bits security 40.54 80.39 128.12
evaluation
indices are good Fixed (v~ 3s/5) (s,v,e) (123, 74, 49)| (247, 150, 97) | (396, 239, 157)
ixe .
(fixed optimal) Bits security 40.26 80.17 128.15
(v =Ts/2]) (s,0,€) | (44, 22, 22) | (84, 42, 42) | (132, 66, 66)
(half-half)
(fixed optimal) Bits security 40.94 80.47 128.15
(e<e :Prx 2*46') (s,v,€) (76, 66, 10) | (142, 122, 20) | (220, 188, 32)
At l?aSi one (low e) Bits security| 40.02 80.15 128.19
evaluation
index is good Variabl [s/2] <v<s (s,v,e€) (41,7, 7) (81,7, 7) (129, 7, 7)
ariable
(more v than e) Bits security 40.32 80.23 128.19
’Eﬁjl; (s,v,e) (407 ?7 ?) (807 ?7 7) (1287 77 ?)
independent) Bits security 40 80 128

Legend: # (number of), s (# challenge indices), v (# indices selected for verification), e (# indices selected for
evaluation), ? (a variable number between 1 and s).

and-lose technique with the optimal fixed proportions (half-half) only requires 132 GCs,
instead of the 396 required by typical C&Cs-GC techniques with the respective optimal
fixed proportions (3-fifths-2-fifths).

Independent selection of challenges. For a fixed number of GCs, the error prob-
ability can be slightly improved by not pre-determining the number of evaluation chal-
lenges. In particular, by allowing any possible C&C configuration, the probability that
Pa guesses the exact configuration corresponds to exactly 1 bit of statistical security per
GC (as noticed in [Lin13]). As a result, for the same error probability threshold there is a
logarithmic (additive) reduction in number of GCs (compare (5) with (8)). For example,
to achieve 128 bits of statistical security, the optimal fixed C&C proportion requires 132
GCs, while the independent selection only requires 128 GCs; i.e., a reduction of about
3.0% in number of GCs.'? The reduction is of 7.5% if considering a statistical security
goal of 37 bits (40 vs. 37 GCs).

Fixed vs. variable C€C partition sizes. The S2PC-with-BitComs protocol defined
in this paper accepts C&C methods for both fixed and variable partition sizes. The proof
of security remains essentially the same — the error probabilities vary slightly but re-
main negligible in the number of GCs. Even though an independent selection of challenge
types allows a lower number of GCs for the same error probability, some tradeoffs may
make it preferable to have some control over the possible numbers of each type of chal-
lenge, namely considering that verification and evaluation challenges may have associated
different communication and computation costs.

2 Tn Table 1, method (8) actually requires that at least one index is selected for evaluation — this means that
when both parties are honest the protocol always leads the parties to obtain the intended S2PC output (i.e.,
perfect completeness). In rigor, the error probability associated with an independent selection of challenges
subject to this restriction corresponds to a value of statistical security that is negligibly lower than the assumed
number of bits of statistical security, but to simplify the discussion this negligible difference is overlooked. The
same observation applies to methods (6) and (7).

Page 23/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

For example, if applying a random seed checking (RSC) type of technique [GMS08]
(see details in §E), the communication cost associated with verification challenges is ir-
relevant, while the cost associated with evaluation challenges remains the same. Thus,
if it is a priority to reduce the communication cost, then it may be preferable to reduce
the number of evaluation challenges, at the expense of increasing the number of veri-
fication challenges (which may increase the computational cost of Pg). Conversely, the
computation necessary to evaluate a GC is typically lower than that required to verify the
correctness of a GC. Thus, if communication is cheap and the computational capabilities
of Py are very reduced, then it might be preferable to ensure that there are more evalu-
ation than verification challenges. It may also simply be considered a benefit to know in
advance the exact amount of computation and communication that will take place, or at
least be able to place some bounds. The above arguments show that it may be useful, in
alternative to a (fully) independent selection of challenges (which is optimal in minimiz-
ing the number of GCs), to impose some restrictions on the number of verification and
evaluation challenges.

Table 1 and Table 2 show some examples in more detail. For example, if it is simply
preferable to ensure that the number of evaluation challenges is not more than half of
the total challenges, then the challenge selection may remain independent except for that
restriction (see (7)). For the same soundness error probability, this only requires one more
GC in comparison with the full independent case (see Table 2). If it is useful to limit the
number of evaluation challenges to a further lower number (e.g., to reduce communication
cost), then a tradeoff can be made with the total number of GCs. For example, one may
require that the number of evaluated GCs is at most one forth of the number of bits of
statistical security, i.e., that each evaluation challenge provides at least 4 bits of security
(6). As the “low €” row in Table 2 shows, the number of evaluation challenges can be
ensured as intended, at the expense of increasing the number of GCs.

B Connectors

This section complements the explanation of how to implement the connectors that con-
nect the decommitments of BitComs (of input and output bits) to the respective input
and output wire keys of the GCs. It is worth emphasizing that connectors are only needed
for the input and output wires of the circuit. Thus, the overhead brought by them does
not depend on the number of intermediate circuit wires or gates in the circuit.

The connectors are used within the C&C approach, in a context somewhat similar
to a commitment scheme that has a commit and a reveal phases. First, for each type of
connector, the setup condition assumes that a BitCom has already been selected for the
bit of the respective input or output wire, independently of the number of GCs. Then, in
the commit phase, performed by P during the C&C COMMIT stage, Pa becomes bound
to a connection between the BitCom decommitments and the respective wire keys. Then,
in the RESPOND stage, P has to provide responses to either a reveal for verification or
a reveal for evaluation mode. In the overall S2PC-with-BitComs protocol, Py proceeds
to the C&C EVALUATE stage only if all connectors have been it successfully verified, for
the respectively selected reveal mode, and if the GCs selected for verification have also
been successfully verified. It is worth noticing that connectors are related with the initial
BitComs selected by the parties in the PRODUCE INITIAL BITCOMS stage, but not with
the final BitComs obtained in the ApPPLY BITCOM PERMUTATIONS stage (after applying
random permutations).

Page 24/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Independent of # GCs Per GC ()
{ Outer \ { Inner \
Input encodings encoding Input keys
Per bit © Multiplier 0] | .
input Hi >|| £ = kLo npu
i . [UH ' ; Defines position Js i T~ wire i
wire (i) BitCom 0 c S of the key thatis N g i
of Py — - [—— Encodes the gisclosed for k;? =k, of P,
Known — Encodes a permuted bit evaluation
by P, Two bit encodings. random (e.g., b®m;=0). I E—
% P, kn9\\'s one permutation P, knows it. PPAl knows h0t2~ GCJ
(e.g., for b=1). pit (e.g., z~1) Pycould find the s learns one (Ji)
— P could extract both. ’ encodings of both bits. or two (Jy).

Fig.4: Scheme for input wires of PA. Legend: GC (garbled circuit); Pa (GC constructor); Pp
(GC evaluator); i (input wire index); j (GC index); class of a group-element (bit that is encoded by the group-
element); (o) (indication that a certain group element - is in class ¢); u (outer encoding — encoding that decommits
the private circuit input or output bit of a party, from a respective UH BitCom); « (multiplier — encoding of a
permutation bit 7, used only to permute a respective input bit of Pa); v (inner encoding — encoding of permuted
input bit of Pa); Jv and Jg (verification and evaluation subsets of challenge-indices); *, (XOR-homomorphic
group-multiplication in the group that supports the BitComs whose trapdoor is known by P,, for p € {A, B});
k!l (wire key with underlying bit ¢); k(" (wire key in position ¢ within a pair of ordered wire keys).

B.1 Connectors for input of Py

The setup condition is that P, produces an UH BitCom of her own input bit, with
trapdoor known by Pg. This is done with P, selecting one encoding for her input bit and
then sending the respective square to Pg. The input bit encoding is also denoted as outer
encoding, in the sense that it stands outside of the connector, and in contrast with the
inner encoding that is part of each connector and has some relation with the input keys of
the GCs. Then, for each input wire of P, in each GC, P decides two keys. For evaluation
GCs, the main challenge is to ensure that, for each input wire, the bit underlying the key
revealed by P, is hidden from Py and at the same time that the underlying bit is equal
to the committed input bit. This is achieved with one connector for each input wire of
P in each GC, connecting the (outer) encoding of the input bit of P, with an (inner)
encoding of the respective permuted bit. This connection is made via a multiplier that
is itself an encoding of the respective permutation bit. The connector also includes the
a respectively permuted pair of the two commitments of the two respective wire keys.
In verification challenges, P, decommits the permutation bit and reveals the two keys,
allowing Pg to verify that the keys were consistently permuted. In evaluation challenges,
Pp decommits the permuted bit and the key in the respective position. Some elements
of the connector construction are depicted in Fig. 4, to ease the understanding of the
description given in §3.2, and the more formal description in §C.

B.2 Connectors for input of Py

For evaluation GCs, the challenge is that Pg must only learn one key per input wire,
and P4 should not know which one was learned. Also, P, should not be able to perform
a selective failure attack (e.g., producing elements for which the evaluation by Pg is
successful if a certain bit of Py is 0, but unsuccessful if the bit is 1). The bit underlying
each respective input key does not need to be hidden, both in the VERIFY and EVALUATE
stages, because Pg knows his own input bit. Thus, the random bit permutation considered
for input wires of P, does not need to be considered for the input wires of Pg.

The setup condition is that Py selects one encoding for his input bit, and sends the
respective square (i.e., the UH BitCom) to P5. P knows the trapdoor of this 2-to-1

Page 25/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Independent of # GCs Per (iC (@)
{ Outer \ { Independent Inner \
Input encodings multipliers encodings Widgets Input keys

Per bit ©) (x 50 0 5 5 Input

e A UH H H* 4P| Vi Wiio kj‘.) =k wire i

wire (i) BitCom ,u‘.(l) (encodings of bit 0) V/(-131 Wit k<.]? = k[.]l] — of Py
of Py 7| P, chooses both — L L

‘—r.—’ (lead from S G C
(Encodings of encodings P, knows both. j

Py learns none (Jy)

Known —
by Py Two bit encodings or two (Jg) 0 and 1, res
p-)
P, extra'cts both, P, know’ s both, ke Pe lz: :Ivlvsoo(ge)(JE)
_ Py decndes.one Py learns one (J;) v
(e.g., for bit 0) or two (Jy)

Fig. 5: Scheme for input wires of PB. Legend: W (widget, converting group-elements into wire
keys (for input wires of Pg), or converting wire keys into group elements (for output wires of Pg)); 8 (multiplier
class 0, for input and output wires of Pgp); see remaining items in the legend of Fig. 4.

square scheme and uses it to extract the two possible encodings from the BitCom value.
Again, these bit encodings are dubbed outer encodings, to distinguish them from the
inner encdings that will be made part of the connectors. Since the two decommitments
of the BitCom are the trapdoor of P4, they cannot be used directly as input keys, or
otherwise P would learn the trapdoor once learning all the keys for verification GCs.
The high level idea of the connector is to split the two non-trivially correlated (outer)
encodings (the two possible decommitments of the input BitCom) into two independent
(inner) encodings, so that Pg may learn one decommitment from each of them, instead of
two from the original BitCom. Some elements of the connector construction are depicted
in Fig. 5, to ease the understanding of the description given in §3.2, and the more formal
description in §C.

Widgets — from inner encodings to input keys. In the initial description of the
connectors for input wires of Pg (in §3.2), it was assumed that the inner encodings could
be used as the keys of the respective input wire of the GC. If the garbling scheme allows
deciding the input keys before generating the GC (i.e., give them as input to the garbling
building mechanism), then the keys can be simply determined by applying a suitable
transformation to the bit-encodings. For example, if input keys can be pseudo random
bit-strings, then each key can be obtained as a suitable (pseudo-random) compressive
commitment of the respective bit encoding. Nonetheless, it is possible to abstract more
the garbling scheme. Specifically, it is possible to conceive garbling schemes where the
input wire keys are part of the output of the GC generation and cannot be preset in
advance. In such circumstance, P, can still build a connector, by also sending to Py the
ciphertext resulting from encrypting the circuit input wire key, using the respective inner
encoding as encryption key. In this scenario, whenever Py learns one inner encoding for
an input wire of Py, it uses it as key to decrypt the ciphertext and obtain the respective
circuit input key. The term widget is used to denote whatever construct is necessary to
implement this conversion between inner encodings and wire keys, or vice-versa in the
case of output wires.

B.3 Connectors for output of Py

The connection between output wire keys and decommitments of output BitComs is
similar to the case of input wires of Pg, except that it is made in the reverse order. For
each output wire of Pg:

Page 26/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Per (iC () Independent of # GCs
[Inner Independent | [Outer |
Output keys Widgets encodings multipliers encodings —
Per
0 0 (0)
Output |__o &) = k1) | =4 0Wuad—{[v 1), * B output
wire 1 .
P ~—— kj.l,? = k,[]l] o) (encodings of bit 0) wire (i)
B - - Sl P, chooses both __of Py
e S (lead from ' Py learns none (Jy)
y Encodings of —
GC . P, knows both. keys to or two (Jp) . .
. 0 and 1, resp.) E Two bit encodings
J Py learns one (Jy) encodings) i
or two (Jy). P, knows both. P, decides both. —
v Py knows one (Jg) Py learns one (Ji), Output bit

or two (Jy). or none (Jy). learned by Py, —

Fig. 6: Scheme for output wires of Pg. See legend items in the legends of Fig. 4 and Fig. 5.

— Setup. The initial BitCom is decided by P4, even without any party yet knowing the
respective circuit output bit. P simply selects a random pair of non-trivially corre-
lated square-roots (decommitments, dubbed outer encodings) and sends the respective
square (the UH BitCom) to Pg.

— Commit. Since the C&C VERIFY stage allows Py to learn the two keys per out-
put wire, the pair of outer encodings cannot directly be used as the circuit output
keys — otherwise Py would learn the trapdoor of P5. P, produces an ordered pair
of independent bit encodings, dubbed inner encodings, encoding bits 0 and 1, respec-
tively. P sends the pair of respective squares (dubbed inner squares) to Pg, serving
as commitments, in a one-way sense, of the pair of inner encodings. For simplicity of
description, it is assumed here that the inner encodings can be used directly as circuit
output wire keys (this assumption can be relaxed using widgets).

— Reveal for verification. From the verification procedure of the GC, Py simply
obtains, for each output wire of Py, the two output wire keys and respective underlying
bits. Py can verify that the two keys are proper square-roots of the previously received
pair of inner squares and that they encode the proper bits; i.e., that (as group-elements,
inner encodings) the bit they encode is equal to the bit that is underlying them
(as wire-keys of the verified GC). Pg learns nothing about the bit encodings of the
BitComs of the output bit, because the BitCom is independent.

— Reveal for evaluation. P, reveals the two multipliers (encodings of bit 0) that
lead the inner encodings into the respective outer encodings. Pg can verify that both
multipliers are correct, by verifying that they both encode bit 0 and (due to the
homomorphic properties) that their squares leads the two inner squares into the output
BitCom. If something is found wrong here, then Py can safely abort and complain,
without jeopardizing its own privacy. If every verification is successful, Py evaluates
the GC (using the input keys obtained from the other types of connectors) in order to
obtain one key per output wire. Finally, Py verifies that the obtained output key is a
proper square-root, of one of the two inner squares and that it encodes the respective
bit. This verification may fail, if P, acted maliciously and was lucky that this GC
was selected for evaluation and thus its connectors did not undergo the reveal for
verification mode. In such case, Py ignores all output associated with the GC, but
does not complain (otherwise it would be vulnerable to a selective failure attack).
Otherwise, if across all output wires the obtained output key is found valid (as inner
encoding), then Pg combines it with the respective revealed multiplier to obtain the
respective outer encoding, whih is a decommitment of the original output BitCom.

Page 27/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Widgets — from output keys to inner encodings. The assumption that the keys of
output wires of GCs can be chosen group elements (inner encodings) was made to simplify
the description. Nonetheless, the assumption can be relaxed with the use of widgets,
symmetric in comparison with the widgets described for input wires of Pg. Essentially,
the connection between each output wire key and the respective inner encoding can be
made by means of a ciphertext resulting from encrypting the inner encoding, using the
respective output wire key as encryption key. A possible communication waste of this
construction occurs whenever the size of group elements is significantly bigger than the
size of wire keys (e.g., 3,072 bits for a Blum integer vs. 128 bits for a symmetric key). This
can be improved by having the inner encodings (group elements) be obtained directly from
the wire keys, using some pseudo-random generation procedure. In this case, it is assumed
that each output key discloses the underlying bit, so that the pseudo-random-generation
is able to generate a group element encoding the correct bit.

C Protocol specification

This section provides a more concrete specification of the new 1l-output S2PC-with-
BitComs protocol. The “l-output” characterization refers only to the goal of only one
party (Pg) learning a circuit output. In rigor, the protocol implements a probabilistic
2-output functionality, in the sense that the two parties receive random BitComs.

For a single page overview, the protocol is described in Fig. 8 using succinct notation
(see notation in §H), making references to other sub-protocols, such as deciding the
random C&C partition challenge (Fig. 7), deciding random BitCom permutations via
a fully-simulatable two-party coin-tossing (§D, Fig. 9), and performing several ZKPoKs
(§F, Figs. 13, 15, 17). A textual description is given below, to help interpret Fig. 8.

For simplicity, some aspects related with obvious syntactic or semantic verifications are
left implicit; e.g., that received elements are within the expected domains, that mentioned
square-roots in the context of an UH-BitCom scheme are meant to be proper square-roots,
and that group operations undergo the respective necessary adjustments.

0. SETUP
In a setup phase, both parties agree on the goal of the protocol, namely what circuit

(C) to securely evaluate and the roles of the two parties (who is the GC constructor

(Pa); and who is the GC evaluator (Pg) that will learn the circuit output). The indices

of positions of circuit input and output wires of both parties is also defined (43).

The parties also agree on security parameters and instantiation of sub-protocols
needed for the execution of the protocol (44):

— A cryptographic security parameter x and a statistical security parameter s’, with
which the protocol execution must conform.

— A C&C partitioning method and respective parameters, consistent with the statis-
tical security parameter. For example, the parties may want to define in advance
the amount v of challenges that will be selected for wverification, and the amount
e of challenges that will be selected for evaluation (though not yet deciding which
indices will be attributed which challenge type). In this case, the amounts must be
selected in a way that the respective error probability of the protocol satisfies the
number of intended bits of statistical security (see (4)). As another example, the
parties may decide that there must be at least as many verification as evaluation
challenges, and at least 1 evaluation challenge. In this case, the total number s of

Page 28/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

challenges is defined as the smallest integer larger than the number s’ of desired bits
of statistical security (see (7)), and the values v and e remain undetermined until
becoming defined in a coin-tossing in the later CHALLENGE stage of the protocol.

— The suite (ALGS) of necessary sub-protocols and algorithms:

e The 2-to-1-square UH-BitCom scheme, the related UB-BitCom scheme, and
respective parameters. The selection of parameters of BitCom schemes is left
implicit — for example, for the instantiation based on Blum integers this would
require each party to privately sample 2 primes, which can be done in advance
and without interaction and re-used in different S2PC protocol executions with
the same security parameter x. Conversely, the ZKP of correctness of the pa-
rameters is considered explicitly — for example, for the instantiation based on
Blum integers this can be achieved with a ZKPoK of Blum integer trapdoor of
each 2-to-1 square scheme ((45), (46)).

e Several ZKPoKs (see §F) related with BitComs.

e The garbling scheme, containing functionalities to generate GCs (GCpyiq), ver-
ify their correctness (GCyerify) When in possession of enough information, and
evaluate them (GCpgy,) when in possession of one input key per input wire.

e A commitment scheme %, defining the respective functionalities for commit-
ment (Gcommit) and verification (Gverity). The notation is adapted to a proba-
bilistic scheme (which may be instantiated by an unconditionally binding, or
unconditionally hiding, or computationally hiding and binding scheme). For
instantiations using deterministic schemes, the random components (produced
by Gcommit and used by Gyeriry) may simply be disregard.

1. PRODUCE INITIAL BiTrCowMms

(a)

UH CowmmiT INPUT BITS. For each input wire, each party selects a random bit-
encoding of her input bit (47), from the group for which the other party knows the
trapdoor, and sends the respective square to the other party (48). This bit encoding
is also denoted as outer encoding. Py then gives a ZKPoK of decommitments of
his UH BitComs, i.e., of square-roots of the squares related with his bits (49).
Pa does not give the same ZKPoK, because it will do it ahead when considering
also some UB BitComs. P4 uses her trapdoor to extract two bit encodings (outer
encoding) from each UH BitCom of input bits of P ((50) and (51)). In this process,
exponentiations are needed only for the extraction of square-roots. The complexity
of other operations is dominated by modular multiplications. In particular, the
ZKPoK of decommitments (ie., of square-roots) can be combined in parallel across
all input wires of Py (see Fig. 13), such that the number of communicated group-
elements is linear in the statistical parameter.

UB ComMIT INPUT BITS OF PA. Pj commits (encrypts) her own input bits with
the UB-BitCom scheme whose trapdoor is the same as the one of the UH-BitCom
scheme used by Py to commit his own bits. Specifically, for each input bit of Py,
Py selects a random group element (52) and then computes the encryption of the
bit as the respective square or additive inverse of the square of the random group
element, respective with the bit being a 0 or a 1 (53). Then, P, gives a ZKPoK
of equivalent decommitments of the UB and UH BitComs, i.e., proving that the
known decommitments of the UB BitComs refer to the same bits as the (outer
encodings) known decommitments of the UH BitComs (54) (see Fig. 15).

UH ComwMmiT OuTpPUT BITS OF Pp. Within the 2-to-1 square scheme used for
committing bits of Py, P4 selects a random outer encoding of bit 0 for each output

Page 29/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

bit index of Py (55) and then obtains the respective outer encoding for bit 1 by
a simple multiplication with the non-trivial square-root of the group identity (i.e.,
the square-root in class 1 — for the instantiation based on Blum integers this is the
square-root of 1 with Jacobi Symbol —1). Then, P, sends the respective (outer)
squares to Pp (these are the initial UH BitComs of the output bits of Py, even
though the respective bits have not yet been computed) (56).

2. CoOMMIT

Pa sends the GCs and respective connectors to Pg, as follows. For each of the s GC

indices:

— GCs. Py uses the garbling GCgyjq probabilistic functionality to produce a GC
and respective input and output wire keys (57), along with any extra randomness
that might be needed to later verify the correctness of the GC. As input, P, uses
the Boolean circuit specification (C') and the cryptographic security parameter (k).
Pa keeps the input and output wire keys secret, as well as the extra randomness,
but sends the GC to Py (58).

— Connectors input Pa. P, commits to the connector of each of her input wires
as follows. It selects a random bit permutation and a respective encoding (dubbed
multiplier) (59) within the 2-to-1-square scheme with trapdoor known by Pg. Then
it computes the homomorphic composition of the outer encoding (the decommit-
ment of the input BitCom) with the multiplier, thus obtaining an inner encoding
that encodes the permuted version of her input bit (60). P5 sends the square of
the inner encoding to Py, as an UH BitCom of the permuted version of her input
bit (61). P then produces a commitment of each of the two circuit input wire
keys, along with the randomness needed to verify them (62).'* Then, P, joins
the two commitments into a pair permuted by the previously decided random
bit-permutation ((63) and (64)), and sends the permuted pair to Pg.

— Connectors input+output Pg.

e For each input wire of Py, and for each possible bit value, P, selects a
random bit-encoding of 0 (dubbed multiplier) and composes it with the outer
encoding (the decommitment that encodes the respective bit value), to obtain a
new inner encoding. In this way, Po obtains two independent inner encodings,
one for bit 0 and the other for bit 1, for each input wire of Py (65). If widgets
are necessary, to connect these inner encodings to the respective input wire
keys, P sends them to Py (66).

e For each output wire of Pg, and for each possible bit value, P, selects a
random bit-encoding of 0 (dubbed inverse multiplier) and composes it with
the outer encoding (the BitCom decommitment that encodes the respective
bit value), to obtain a new inner encoding (67). The notation was changed
from multiplier to inverse multiplier, so that the direction of the multipliers is
indeed symmetric between the input and output wires of Pg (compare Fig. 5
with Fig. 6). More specifically, later in the EVALUATE stage, the multiplicative
inverse of the inverse multiplier, which will be simply dubbed as multiplier,
will be used to lead the inner encodings into the outer encodings. If widgets are
necessary, to connect the output wire-keys to the respective new bit-encodings,
PA sends them to Py (68).

13 For generality, the commitment is assumed here be hiding and binding. In practice, if the garbling scheme
security is maintained as long as Py cannot recover input keys, even if it recovers a few bits of the keys, then
the commitment can be simply based on a suitable one-way and collision resistant hash function.

Page 30/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

e For each input and output wire of Pg, P, sends the square of each of the
two inner encodings to Pg (69), serving as commitments (in a one-way sense)

of the respective inner encodings.
— Note on widgets: The description based on widgets is presented for the sake

of generality, but there are efficient garbling schemes that allow avoiding them.
This is the case if the mechanism to build GCs (GCpyjq) accepts a pre-definition
of circuit input keys and circuit output keys. In such case, the widgets can be a
simple specification of pseudo-random generation procedures (thus defined directly
in the SETUP stage), adapted to output either wire keys or group elements of a
certain class, respectively for input and output wires of Pg.
3. CHALLENGE
Pa and Py engage in a sub-protocol to decide a random vector of challenge bits (70),
conditioned to the method agreed in the SETUP stage. Once the vector is decided,
the positions with bit 1 represent verification challenges, and the remaining positions
represent evaluation challenges. Within the overall protocol, this coin-tossing needs
to allow a simulated P4, with rewindable access to a possibly malicious Pj, to decide
the outcome of the coin-tossing whenever Py does not abort.

As an example, the selection of challenges may be conditioned in the number

of verification challenges. The exemplified sub-protocol do decide the random C&C
partition, described using succinct notation in Fig. 7, considers two possible modes:
a FIXED mode, where the number of verification challenges is pre-determined; and
a VARIABLE mode, where the number of verification challenges is conditioned to be
in a certain interval. Other than these restrictions, the C&C vector is obtained uni-
formly from the set of admissible vectors, which means that the number of verification
challenges is not uniformly distributed over the possible values (the most likely val-
ues are those closer to half the number of challenges). A textual description of the
sub-protocol follows:

— Goal and common input. The high level goal of this sub-protocol is to decide a
predetermined number of random challenge bits (9), which will determine the C&C
partition. These bits will form a vector of bit challenges, with the positions of bit
0 denoting werification challenges, and the positions of bit 1 denoting evaluation
challenges. The input of the protocol contains a pair of integers (10) defining the
interval of possible numbers of verification challenges. If the interval contains only
one possible value (11), then the C&C mode is defined as FIXED, and naturally
the number of verification challenges becomes fixed (12). If the interval contains
different numbers, then the mode is defined as VARIABLE (13). If in this VARIABLE
mode, the parties count the number of possible partitions (14) and then define the
number of temporary bits that need to be coin-tossed so that it is possible (with
overwhelming probability in the statistical security parameter) to select a random
partition uniformly (15). For clarity, in the following explanation these bits will be
referred as part of a bit-string, whereas the bit challenges will be referred as being
part of a vector of challenges. The protocol also requires usage of a commitment
scheme that is at least computationally hiding and biding (16).

— Commit contribution of Pg.

e If in the FIXED mode. Py starts by selecting a random vector as intended for
the outcome of the protocol, i.e., with as much bits as the number of challenges,
and conditioned to the fixed number of verification challenges (i.e., with exactly
a certain number of 0’s) (17). Py defines this vector as his contribution that
needs to be committed (18).

Page 31/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

e If in the VARIABLE mode. Py selects a random bit-string (19) with the
length previously determined (see (15)) and also a random permutation of the
positions of the final vector of bit challenges that will be determined (20). Py
pairs these two values into his contribution that needs to be committed (21).

Pg computes a commitment to his contribution (22) and sends the respective public
part to Py 23.

— Contribution of P,. P, selects a random permutation of the positions of the
challenge vector (still to be determined) and sends it to Pg (24). Then, if in the
VARIABLE mode, P, also selects a random bit-string with the predetermined num-
ber of bits and sends it to Py (25).

Setup — common input. P, Pg : Reveal contribution of Pg.
s (# of GCs, i.e., # of bit-challenges to decide) 9) Pg — Pa : (0,0) (decommitment) (26)
V€ {(Uoﬂfl) 20 ”.75}2 0< vy <wv < 5} (10) Parse decommitted value.
Pa : If “Gerity (€, 0,0,0), then Abort 27
(defines method for selection of challenges) A Verlfy?(8,9) (B)en o 27)
Pa : If mode ="F : =0 2
If vo =" vy, then mode=FIxED (11) A fode XED o (28)
”
v = vg (fixed partition sizes) (12) P : If mode =" VARIABLE : <‘7(B)7 P(B>> =0 (29)
else mode=VARIABLE (variable partition sizes) (13) Verifications.
t= Zi:vo UlBin(S»i)§ [t| = Mogo(t — 1) (14) Pg : If p() ¢ Perm((1,...,s)), then Abort (30)
m = |t| + s’ (size of bit-string to generate) (15) If mode =" Fixep : (31)
¢ (at least computationally hiding and binding) (16) Pa : If oB) ¢ {0,1}° V#(: g](,B> =0) # v, then Abor
Commit contribution of Pg. Py : If mode —7 VARIABLE :
? .
If mode =" Fixep : Pa :1f oB) ¢ {0,1}™, then Abort (32)
(B) , 8 [/ s, Sy
ot ot e {011 s #({j: 0’y = 0) = v} (A7) Pa : If pB) ¢ Perm((1, ..., s)), then Abort (33)
— o(B)
O=0 (18) Pp It o™ ¢ {0,1}™, then Abort (34)
?
If mode =" VARIABLE : Decide final C&C challenge partition. P, Pgp :
oB) % {0,1}™ (size of bit-string to generate) (19) If mode =7 FIXED :
pB) 3 Perms((1, ..., s)) (permutation) (20) x = p) (oA (35)
0= (o, pB)) (21) Jy={ixj=0},Je={i:x; =1} (36)
? .
Pg <Q, §> o8 %[0] (22) If mode =° VARIABLE :
A _ A B _ (A
Pg — P4 : 0 (commitment) (23) o=0Mao® p=pNopB) (37)
Contribution of P 4. r = GetInt< (o) (random int < t) (38)
Pr — P ;p(A) 8 Perm((1, ..., s)) (24) v = min {u =vg,..,v1 17 < Z” Bin(s,z‘)} (39)
, i=vq
If mode =" VARIABLE : Jv={piii=1,..,0} (40)
then Py — Pp : o) % {0, 1}™ (25) Jg={pi i=v+1,.,s} (41)
Pa,Pp l{(Jv,JE) (output) (42)

t

Fig. 7: Protocol — decide random cut-and-choose partition. This protocol is not fully-
simulatable — for the purpose of the S2PC protocol, it is only required that the simulator (impersonating Pa)
with rewindable black-box access to Pf is capable of leading the coin-tossing to the intended value, whenever Pg
does not abort. The simulator proceeds until the step where P reveals his contribution, and then verifies that
the decommitment is correct (26). Then, the simulator rewinds and changes the contribution of P4 to the value
necessary to lead the final outcome to be the intended value. Within the overall S2PC protocol, an abort action
by a malicious Pg in this coin-tossing sub-protocol is not a problem, because the simulator only needs to lead
the outcome to be a certain value after Pg has already shown some willingness in allowing such value (i.e., if at
least once the protocol has previously resulted in such value). Thus, at most the simulator might need to rewind
further back, allowing Pp to commit again to some (possibly other) contribution, and restart the procedure.

Page 32/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

— Reveal contribution of Pg. Pp decommits his contribution (26), and P, ver-
ifies that the decommitment is consistent with the respective commitment (27).
Pa parses the contribution according to the mode of operation. Specifically, if
in the FIXED mode, then it expects to obtain a vector of challenges (28). If in
the VARIABLE mode, then it expects to obtains a bit-string of the predetermined
length and also permutation of the vector of challenges (29).

— Verifications. P, and Py make the necessary verifications to the contributions
received from the other party (see (30), (31), (32), (33), (34)).

— Decide final C&C challenge partition. Finally, each party computes locally
the C&C partition, based on the contributions from both parties.

e If in the FIXED mode. The vector of challenges is obtained by applying
the permutation contributed by P to the vector contributed by Py (35). As
mentioned, the subsets of verification and evaluation challenges consist on the
positions for which the final (permuted) vector has 0’s and 1’s, respectively
(36).

e If in the VARIABLE mode. The parties compute the XOR of the bit-strings
contributed by both parties, to obtain a random string of the same length.
The parties combine the permutations contributed by both parties to obtain
a random permutation of the length of the vector of challenges (37). From
the bit-string, the parties retrieve a random positive integer lower then the
number of possible C&C configurations (38). From this integer, the parties
decode the final number of verification challenges (39). Finally, the subset of
indices of verification challenges is defined as the values in the left positions of
the random permutation (40), up to the amount of verification challenges, and
the subset of indices of evaluation challenges is defined as the remaining values
in the right positions of the random permutation (41).'* Both parties decide
the two subsets as the output of the sub-protocol (42).

4. DECIDE UH-BITCOM PERMUTATIONS
P and Pg engage in a sub-protocol to decide random permutations (encodings of
0 in the respective groups) for all input and output wires (71), with P, being the
first one to learn the outcome of the coin-tossing (this priority by P, can change,
according to the ideal functionality defined in §G.1). §D explains the requirements of
this sub-protocol, namely about full-simulability.

5. RESPOND

— Verification indices. P, proceeds with the reveal for verification phase of the
connectors associated with GCs selected for verification. For each challenge index:

e P, reveals the extra randomness needed to verify the correctness of the GC
(72).

e For input wires of P, Py reveals the multiplier (the bit encoding of the permu-
tation bit) and decommits the two circuit input keys in non-permuted order, by
revealing the keys and extra randomness that might be needed to verify them
(73).

e For input wires of Pg, Py decommits the two independent inner encodings (the
first being of bit 0 and the second being of bit 1) that are square-roots of the
two inner squares (74).

14 Actually, a random C&C vector could be directly obtained from the random bit-string, but the description
based on an additional permutation of vector positions might be more intuitive for the reader.

Page 33/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

— Evaluation indices. P, proceeds with the reveal for evaluation phase of the
connectors associated with GCs selected for verification.

e For input wires of Po: P, decommits the permuted bit, by revealing the inner
encoding (i.e., the encoding of the permuted bit) (75); P also decommits the
circuit input key in the respective permuted position (i.e., with the underlying
bit being the input bit of PA), by revealing the key and extra randomness
that might be needed to verify it (76). Since Pg does not know the respective
underlying bit, at this point the key is called a tentative (evaluation) key, as a
way to avoiding referring which of the two keys it should be.

e For input wires of Py, P, reveals the two multipliers, both encoding bit 0
(77). These multipliers connect the two outer encodings (non-trivially correlated
encodings of the initial BitComs, of which Py only knows one) to the two inner
encodings. It is worth noticing that the direction of the connection is opposite in
the case of output wires. Specifically, for output wires the respective multipliers

lead from inner to outer encodings (of output bits).
6. VERIFY

Using the obtained responses, Py verifies the GCs and connectors, as follows.
— For each verification index:

e Connectors input Pa. Pp checks that the square of the revealed multiplier
leads the input BitCom into the inner square (78) that was received earlier
as BitCom of the permuted bit (61), and determines the encoded bit of the
multiplier as being the permutation bit (79). For each input key assumed to
have a certain underlying bit, Py verifies it against the key-commitment in the
respective permuted position (80).

e Connectors input Pg. Py checks that the two received inner encodings indeed
encode bits 0 and 1, respectively, and that their squares are consistent with the
inner squares (81) that were received earlier (69). Py then uses the widgets to
obtain the circuit input keys from the respective inner encodings (82).

e GCs. In possession of all input wires keys of the GC selected for verification
(83), and the extra randomness necessary to verify the GC, Py uses the garbling
verification procedure (GCye) to verify that the GC is indeed correct (84). In
particular, the verification is successful if and only if the GC is consistent with
the intended Boolean circuit and the circuit input keys are correct.

e Connectors output Pg. Since Py has all input keys, it uses them to obtain
all output keys and respective underlying bits from the GC (85). Then, from
each output key (with known underlying bit), Py uses the respective widget to
obtain the respective inner encoding (86). Finally, Pg verifies that the obtained
inner encodings are encodings of the expected bits and are valid square-roots
of the inner squares (87) that were received earlier (69).

— For each evaluation index:'?
Even for evaluation indices, Py still makes verifications related with the reveal for

evaluation phase of the connectors.
e For input wires of Pa: Py computes the bit encoded by revealed inner

encoding (which P, claims to encode the permuted input bit of P,), and verifies
that the inner encoding is indeed a proper square-root of the inner square (88)
that was received earlier (61). P also verifies the decommitted (tentative) input
key against the respective key-commitment in the permuted position (89).

!5 Even though these verifications are related with evaluation indices (i.e., indices that contain the GCs that will
be evaluated), they do not depend on the input bits of Pg and thus do not allow a selective failure attack.

Page 34/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

e For input wires of Pg: Py verifies that the two received multipliers encode
0, and that their squares lead the initial BitCom of the input bit into the two
inner squares (90) that were received earlier (69).

e For output wires of Pg: Py verifies that the two received multipliers encode
0, and that their squares lead the 2 inner squares (that were received earlier
(69)) into the initial BitCom of the output bit (91).

If any verification above has failed, then Py aborts, outputting FAIL.
7. EVALUATE
Pp initializes an an empty list, dubbed IGNORE list (92).

— Evaluate GCs. For each evaluation index: for each input wire index of Py, Py
multiplies the known outer encoding (the BitCom decommitment that encodes the
private input bit of Pg) with the respective received multiplier (93), thus obtaining
a respective inner encoding; then, Py applies the respective widget to obtain the
respective (tentative) input wire key (94); in this way, P learns one tentative key
per circuit input wire of P, and Pg (95); Pa uses the keys obtained across all input
wires to evaluate the GC and thus obtain one tentative key per circuit output wire
(96).

— Get output bit encodings. For simplicity of description, it is assumed here
that each output key reveals the respective underlying bit, e.g., its least significant
bit (e(+)).'® For each output wire index, in each GC: Pg applies the respective
output widget to the obtained output key, in order to obtain a tentative inner
encoding (97). Py then verifies that the inner encoding encodes the expected bit
and that its square coincides with the respective inner square (98) that was received
earlier (69). If this is the case, Pg computes the outer encoding (decommitment of
the respective output BitCom) (99), by multiplying the inner encoding with the
respective multiplier that was received earlier (77) and verified for correctness (90).
Otherwise, if the tentative inner encoding is not valid, then Py adds the index to
the IGNORE list, and ignores this index henceforth (100).'7

— Check for inconsistencies. For each output wire index, Pg gathers all valid pairs
of bit and respective encoding received across the several evaluation GCs (101).
If for every output wire index there are no inconsistencies across different GCs
(i.e., if for each wire index all pairs are the same) (102), then Pg simply accepts
these bits and respective bit encodings as correct (103). If P finds instead that
for some output wire there is more than one outer encoding (i.e., decommitment)
found for the respective BitCom, then Py activates the forge-and-lose path (104)
to recover the final outputs. Within this path, Py extracts the trapdoor of P, as
a non-trivially-correlated pair of proper square-roots (105), uses it to obtain the
input of P, from the respective UB BitComs (106), then computes in the clear the
circuit output bits (107) and finally chooses the decommitments that encode the
correct output bits (108).'®

16 The simplification is in allowing Pg to directly know which widget to use, but the assumption is not essential.
If the garbling scheme does not allow it, then the information can be, for example, embedded in the widgets.

17 Actually, the index is ignored in terms of its contribution for the values determined in the remainder of the
procedure, but in practice the index may have to be accounted in counter-measures put in place to avoid side
channel attacks. For example, a malicious Ps must not be able to find whether or not there are indices which
were ignored.

8 The encodings could instead be extracted with the trapdoor, but that would require more exponentiations.

Page 35/75

S2PC with Reusable BitComs, via a C&C with FEL technique

(Technical report 2013-09-11)

0. SETUP. PA <> P : (C=Cp,(Ia, 15,04 =0,08)) (43

)
Pa & Pg : ((1%, 15’) (5,0, €) ,ALGS) (44)
Pa(ta) < Pp : ZKPoKBItrap(Ga) (see Fig. 17) (45)

)

PB (tB) <~ PA : ZKPOKBI»trap(GB) (see Fig. 17) (46

. Propuck iNiTiAL BirCowms.
UH Comwmit InpPuT BITs.

Ppipi=p" < hol(b) i€l pe{A B} (47)
P, = Ppopf=(u"))2:iel, :pe{A B} (48
PB(MIB) < Pa 1 ZKPoKsqris (117 ,,) (see Fig. 13) (49)
)
)

Pa:p® =SQRT[tA]Y () i€ Ip (50
Pacpt? =5 %4 NTSQRT1, @i € I (51
UB Cowmwmit InPUT BITS OF PaA.
Pa:U; «5Gaiicly (52)
Pa—=Pp: U = (1) %y (U4 iy (53)
Pa(pr,,Ur,) < P :
ZKPOKEquiv(y}A,U'IA) (see Fig. 15) (54)

UH CommiT Output Bits oF Pg. Fori € Op :
Pa: pl? 8 1310); 8 = u{% 50 NTSQRT1, (55)

Pr = Pp:p = (u§°>)A (56)

. Comwmirt. For j € {1,...,s}:
GCs. P, : (GC, rj) «* GCpunalC,k] (57)

i, 10keys;,
(IOkeys; = <(z c, k] Z) i€ I4,BUO0B,ce€ {0, 1}>)

PA — PB : GC]' (58)
Connectors input Pa. For i € I :

Pa i P {0,1}; oy <8 h;l(ﬂ'j’i) (59)
Paviid = p" g ag, (60)
Pa = Pp:v/ji = (v0)p (61)
Pa (k[plvkﬁ) «* Coommit [kﬂ] cce{0,1} (62)
Pa:{e) = [c®) (63)
Py —Pp: (E;?i>vkj<',li>> (64)

Connectors input Pg. Fori € Ig and ¢ € {0,1} :
Pa: Bjie <> 0y 0), v o =mTxaBiie (65)
Pa = Pg: Wjie = Winast [0 — kil| (66)

Connectors output Pg. For i € Op and ¢ € {0,1} :

A Biie) TSR0, v o= T (Biie) Tt (67)

PAo —Pp: Wj,i,c = WIDGET [k:][?l — Vj,i,c} (68)
Squares of Pg. For i € IOp and c € {0,1}

Pa > Pp vV jic=(Vjic) (69)
. CHALLENGE.
Pp <> P : decide (Jy,Jg) (see Fig. 7) (70)

. DecipE UH-BrrCom PermuTaTIONS. For p € {A, B} :

Pa ¢ Pp i <% h51(0) 13 € 10, (see §D) (71)
. REsponD. Pp — Pp:
Verification indices. For j € Jy :

r; (extra randomness needed to verify GC) (72)

(0] ,[0] e R0 L
agir (K5 EED) (REL)Y vie 1a (73)

() 1 .

(V][z]oyy[z]1> vi€lp (74)

Evaluation indices. For j € Jg :
POET) Z P g g ie I (75)

b ®7j i b ®mj ;i .

<fj,i»§jﬂ.> = <1€J<7, ! >,E§7i ’ >> ciely (76)
(By,i,05 Bj,4,1) 13 € I0p (77)

6. VERIFY. Pp :
Verification indices. For j € Jy :
Input of Pa. Fori € Iy :

wiip () =" v, (78)

75 = hp () (79)

Gvenity (KT KT E)) e e 0,1y (30)
Input of Pg. Fori € Ig and c€ {0,1} :

ha < [C],c> =T e A Wiie)d =" Ve (81)

R =Wy (V) (82)

GCs. For j € Jy :
InKeys|?) = <(z o klf 1) ci€lap,ce {0,1}> (83)
GClerify (G’C’j, InKeys§. >7 r;, C, n) (84)
Output of Pg. For i€ Op and c € {0,1}:
OutKeys§-) = GCger. OutKeys (GCJJHKQYS()) (85)

(OutKeys(-Q) = <(z ¢, kl°]) 11 € Op,c €0, 1}>)

tl] 7
Pgp: VJZC_WJ z(k) (86)
ha(Vjic) =" cA (Vj,z‘,c)A =" (87)
Evaluation indices. For j € Jg :

cji =hp(i); (vj)p="Vj;i€la (88)

%Verify <§],17§J i]<ij >> 11 € IA (89)
Fori € Ig and c € {0,1}:
R

wika (Biie)a =" Ve Aha(Bjie) =0 (90)
For i € Op and c € {0,1} :
.

Viie*a (Bjic)a =" i Aha(Bjic)="0 (91)

7. EVALUATE. Pg : (let Jignore = @) (92)
Evaluate GCs. For j € Jg :
J[l:l,]b = “Eb *A Bjip, 21 € 1B (93)
& = kle W, (J[bz]b) eIy (04)
InKeys;.) = ((4,&5,0) i € Ia,B) (95)

((3,€,0) + 1 € Op) = GCpyar (GCy, nKeys) (96)
Get output encodings. For j € Jg and i € Op :

cji=e(€5,1)5 vii = Wiie; . (65,4) (97)
If (v;,)% =" Viie; ; Nha(v) =" ¢ (98)
then u;; = vj; *a 5j,i,c_7;7; (99)

else Jignore = Jignore U {j} (100)
Forie€ Op:z = UjieTm\Jignore (¢j,isuj,i) (101)
If max {#(z;) :4 € Og} =" 1: (102)
then (bl, (bs >) 2z :i€0p (103)
else enter Forge-and-Lose path: (104)
ta = Getrrapdoor(20g) (105)

b; = Getpig[ta](Uf) : i € Ia (106)
((i,b;) :i € O) = C(((4,b:) s i € Ta,)) (107)

(u; : h(ui) =b;) <2, :1€ Op (108)

8. ArpLy BirCom PermMmuTATIONS. For p € {A, B} :

Py : Uz(bi) = lébi) #p i i1 € IpUOp (109)
PA,Pg o} =pf*p (vi)a:i €1, U0, (110)

9. FinaL OutpuT.
Pa ¢:<<bi,0§bi),ag> :iGIA>,<a£:i€IOB> (111)
(Pa outputs even if Pg has aborted after step (71))
Pg |: <U§:i€IA>,<(bi,o,Ebi),aé) :iGIOB> (112)

Fig.8: Protocol — 1-output S2PC-with-BitComs

Page 36/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

8. AppLy BiITCOM PERMUTATIONS
Both parties apply the previously decided random permutations directly to the (ini-
tial) outer encodings (the decommitments related with their own input bits) (109),
and apply the square of the permutations as permutations to the respective (initial)
input and output BitComs of both parties (110). The resulting permuted values are
dubbed final encodings and final UH-BitComs, respectively.

9. FINAL OUTPUT
Each party outputs locally the final acpBC of the bits of the other party, and the
bits, the final bit encodings and respective final BitComs of their own bits ((111) and
(112)). If, as part of a larger protocol, Py needs to interact with P, after learning the
private input, then Py takes measures (e.g., a time delay) to ensure that P, does not
find the path via which the output of Py was obtained (normal vs. forge-and-lose).

D Random BitCom permutations

In the early PRODUCE INITIAL BITCOMS stage of the overall S2PC-with-BitComs proto-
col, both parties decide (initial) BitCom values related with the circuit input and output
bits. In particular, P, decides initial UH BitComs for her own input bits and for the
output bits of Pg, while Py decides initial UH BitComs for his own input bits. However,
in order to emulate what a trusted third party would choose, the protocol needs to ensure
that the final UH BitCom values of the protocol are random. This is achieved by applying
a random permutation that leads the initial values (possibly non-random) into the final
values (random for sure). In practice, this can be achieved with the parties performing a
coin-tossing to decide, for each input and output wire, a random encoding of bit 0 (within
the respective 2-to-1 square scheme). By means of group multiplication, this random en-
coding permutes the decommitments (themselves being bit encodings), and its square
permutes the respective UH BitCom (squares of the respective bit encodings). Given the
XOR-homomorphic properties, the final committed bit in each wire is preserved (it is
the result of summing 0 to the initial bit), and the known decommitment and respective
BitCom remain consistent among themselves (i.e., the former is a proper square-root of
the later, encoding the correct bit). Overall, one group element needs to be decided per
input and output bit of each party, independently of the number of GCs.

Combining two contributions. In order to withstand a possibly malicious party, each
random group element being coin-tossed needs to be decided as a combination of two
contributions, one from each party, so that if at least one contribution is uniformly ran-
dom (from a honest party) then the final combined value is uniformly random for sure.
If each party proposes her contribution as a group element, if the two contributions are
independent, and if at least one of the contributions is randomly uniform from the group
set, then the combination of contributions by means of the group operation yields a uni-
formly random group-element. This is a good approach for the purpose of the intended
coin-tossing, because the group elements in class 0 form a group under the multiplication
operation of the 2-to-1 square scheme. Furthermore, since the intended coin-tossing re-
quires deciding several group elements from two groups, each party can instead propose
its contribution as a vector of group elements in the respective groups (since the direct
product of groups is itself a group, the coin tossing can be described as if it were to decide
a single group element).

Page 37/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Full simulability. Some sophistication is needed to ensure that the overall S2PC-with-
BitComs protocol is secure within the real /ideal simulation paradigm. Specifically, since
the final permuted UH-BitCom values are explicit part of the output of the overall proto-
col, this coin-tossing of permutations needs to be fully-simulatable. First, the probability
of abort needs to be identical (or indistinguishable) in the real and ideal worlds. Second,
a simulator with black-box rewindable access to any real malicious party should be able
to lead the final outcome to be whatever the trusted party in the ideal world has decided,
with the probabilistic exception of abort. It is worth emphasizing that full-simulability is
a requirement stronger than needed in the coin-tossings used to decide the C&C challenge
configuration and in the ZKPoKs.

A fully-simulatable coin-tossing protocol. In order to have the ability, in the proof
of security, to refer to some intermediate stages of the coin-tossing (as a sub-protocol),
this paragraph describes a specific fully-simulatable coin-tossing protocol, namely a par-
allel coin-tossing'® protocol proposed by Lindell [Lin03] (with some slight adjustments,
to consider coin-tossing of a group element instead of a bit-string). Figure 9 gives a de-
scription, using succinct notation. The two parties are named P; and P, respectively
being the first and second party to learn the outcome of the coin-tossing (assuming there
is no abort). The goal is for the parties to decide a uniformly random element from a
group set, assuming the respective group operation is efficient to compute (113). The
parties agree on a probabilistic UB commitment scheme specification (114) that allows
efficient ZKPs as needed in the remainder of the protocol. The coin-tossing starts with
P; selecting her contribution as a random group element (115), committing to it using
the UB commitment scheme (116 and 117) and giving a ZKA of knowledge (ZKAoK)
of the respective decommitment to Py (118). Py then selects his own contribution as a
random group element and sends it in the clear to Py (119). P; then computes the final
permutation as the group multiplication of the two group elements and sends the result
to Py (120). At this point, Py still needs to get some assurance that the outcome is cor-
rect, namely that there exists a contribution (from P;) that is consistent with the initial
commitment (121) and would lead to the final outcome (122). Py gives a zero-knowledge
argument (ZKA) of such predicate (123).

Note: in the proof of security, simulation requires using the rewinding capability to
convince a malicious Py of an incorrect statement, namely that the committed contribu-
tion is consistent with the final result (when in fact the simulator manipulates the final
result independently of the initially committed contribution).

An instantiation. The protocol can be instantiated based on El-Gamal encryption
[EIG85| and the decision Diffie-Hellman assumption (suggestion from [HL10]). The UB
commitment of the contribution of Py is made by means of an El-Gamal encryption. The
ZKAoK consists on proving knowledge of a discrete-log (the secret encryption key), e.g.,
based on a ZK adaptation of Schnorr’s protocol [Sch91, § 2]. The last ZKA corresponds to
proving that some tuples of four elements are Diffie-Hellman tuples, i.e., that two group-
elements have the same discrete-log base two respective generators. A ZK adaptation of
the Chaum-Pedersen proof of knowledge of the common discrete log underlying a Diffie-
Hellman tuple can be used [CP93, § 3.2]). A ZK adaptation of both sub-protocols can be
found in [LPS08, appendix A], using notation related to elliptic curve cryptography.

19 The adjective parallel refers to the element being decided having up to a polynomial number of bits, even
though the description that follows focuses on a single group element.

Page 38/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Common input of P; and Ps: Py — Py 'y(2) %G (119)
(G, *) (group set and group operation) (113) Reveal final random group element.
%up (specification of UB commitment scheme) (114) Py = Pyiy =M xy3 (120)
Commit contribution by P;. ZK argument. P; <> Ps :
S 3
Priy/ <76 (115) Pred = (El’y(l),lu) : Pred; A Predg)
P1: (4D 5N 8 Gpy™M 116 -
<* > bl (116) Pred; = Gverity (%UB,W(UQ(D,’Y(I)) (121)
Py — Py 5 117
Ly (117) Preds = v =7 71 x~ (2 (122)
ZK argument of knowledge. P <> P3 : 0 O)
1 1 . ~(1 2) o
P1(7(1)77(1)) &Py ZKAOK%—l(W(l),%UB) (118) Py ('7 Y) > P2 : ZKApreq (71’7 5y Y)%UB;))
- 123

(P1 as prover (P); P as verifier (V))

Contribution by P. (P1 as prover (P); P2 as verifier (V))

Fig.9: Protocol — fully simulatable coin tossing of a group element. The protocol is
adapted from [Lin03], by replacing bit-strings and @ with a generic group elements and a respective group opera-
tion, and simplified by not considering (in (120)) a function applied to the combination of the two contributions,
and further simplified by leaving implicit the output and the actions in case of abort. Legend: v (contribution
by Pp); 7 (commitment of contribution); v (private value required for decommitment of contribution).

Partitioning the commitments. The size of group elements associated with the El-
Gamal scheme needs to be at least as high as the number of bits being committed.
However, the overall S2PC-with-BitComs protocol requires the decision of many bits,
namely in quantity sufficient to encode several group elements (from within the 2-to-1
square scheme), each of them of a possibly large size. Thus, the commitment can be
partitioned into a tuple of smaller commitments, such that the El-Gamal parameters can
be small. For example, a choice of 3,072-bit Blum integers for the UH BitComs of the
global S2PC-with-BitComs protocol would correspond to a size 12 times higher than the
256-bit group-elements (based on elliptic curve cryptography) that could be used for the
El-Gamal scheme. In such case, the number of commitments needs to be approximately
(slightly larger than) 12 times the overall number of input and output wires, in order to
obtain enough random bits.

Complexity. The cost of the protocol, in terms of number of communicated group
elements and exponentiations (using the El-Gamal parameters) is now summarized (upon
inspection of [LPS08, appendix A| and [LP11, app. B.1]).

The cost of a ZKAoK of discrete log is 7 communicated group elements and 4 exponen-
tiations by P; and 5 exponentiations by Ps. By using the same El-Gamal encryption key
across the different commitments, the ZKAoK of discrete log only needs to be performed
once, thus having its cost amortized. The main cost of the coin-tossing comes from the
ZKA of Diffie-Hellman tuple and the exchange of commitments and group elements.

— Number of communicated group elements: 8 for the ZKAoK of Diffie-Hellman
tuple; and 4 for the committing, revealing and sending of the contributions. The
communication of one group element (the second generator used by P, to make an UH
commitment of the challenge) in each ZKA of Diffie-Hellman tuple can be eliminated
by using the element selected by P; in the initial ZKAoK of discrete log. Thus, the
overall communication complexity requires about 11 group elements per coin-tossing.
For a conservative measure, 12 group elements can be still considered as an upper
bound (e.g., accounting with the amortized cost from the ZKAoK of DL).

Page 39/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

— Number of exponentiations: 5 by P; and 7 by P, for the ZKA of Diffie-Hellman; 2
by Py, for the commitment. Some double exponentiations can be optimized to require

less computation than two individual exponentiations (observation from [LP11, app.
B.1]).

E Optimizations and complexity

This section considers some optimizations and analyzes the communication complexity
of the S2PC-with-BitComs protocol. §E.1 describes how to apply a random seed checking
technique |[GMSO08|, such that the communication of some GCs and connectors can be
replaced by the communication of only a few short commitments and random seeds. §E.2
describes an optimization whereby the multipliers and inner encodings used for connectors
of P can be shortened in size, taking advantage of the unconditional hiding property of
the respective 2-to-1 square scheme. §E.3 gives a detailed description of the optimized
protocol. §E.4 makes a concrete analysis of the communication complexity of different
components of the protocol (Table 3), comparing the effect of different optimizations,
and comparing two concrete examples of (1-output) secure evaluation of circuits with
different proportions of number of input and output wires vs. number of multiplicative
gates, and comparing the effect of different C&C methods and specific instantiations of
security parameters (Tables 4 and 5).

E.1 Random Seed Checking

As pointed out by Goyal et al. [GMS08], the communication complexity associated with
the transmission of GCs within a C&C approach can be significantly improved by imple-
menting a random seed checking (RSC) technique. The technique can be derived from two
simple observations. First, the sending of GCs in the COMMIT stage can be deferred to
the RESPOND stage, as long as P, commits to them during the COMMIT stage. Second, in
a typical C&C, the VERIFY stage only requires Py to know elements that do not depend
on the private inputs of P, and Py, and so can be generated from a short random seed
and other public information. Based on these observations, the technique is implemented
as follows. In the COMMIT stage, for each challenge index, P, generates the necessary
elements based on a small random seed and then sends only a short (compressive) com-
mitment (at least computationally biding) of the generated elements. Henceforth, these
are denoted as RSC commitments, as differentiation from other commitments used within
the protocol. Then, in the RESPOND stage: for each verification challenge, P only sends
the respective small random seed, thus allowing Pg to make all respective verifications; for
each evaluation challenge, P simply sends the generated elements (but not the random
seed) and the respective responses for evaluation. The optimization in communication is
clear: ignoring the size of the short RSC commitments and random seeds, the commu-
nication associated with verification challenges is eliminated,?” while the one associated
with evaluation challenges remains the same.

The RSC technique can also be integrated into the new S2PC-with-BitComs proto-
col. Furthermore, the technique can be adapted to also encompass the communication of
connectors. For verification challenges it is possible to completely eliminate the communi-
cation of group elements. For evaluation challenges it is possible to reduce the communi-
cation of group elements, by avoiding those which are still related with the VERIFY stage.

20 The RSC commitments could be replaced by a single one, but the respective gain would be irrelevant.

Page 40/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

The detailed description is given in §E.3 and Fig. 10. The following paragraph gives a
rough sketch description, in order to convey some initial intuition (assuming familiarity
with the non-optimized protocol description).

— Input wires of Pj4.

e COMMIT stage: the permutation bit and respective encoding (the multiplier) are
pseudo-randomly generated, but the RSC commitment is only based on the square
of the inner encoding (i.e., the square of the encoding of the permuted bit).

e Verification challenges: Py regenerates the multiplier and then uses the homomor-
phic property to obtain the square of the inner encoding, which is then used to
verify consistency against the RSC commitment.

e Fvaluation challenges: Py reveals the inner encoding, the respective circuit input
key and the commitment of the complementary key. These elements also allow Py
to confirm consistency against the RSC commitment, but without P, having to
reveal the known permutation bit, the respective encoding (ie., the multiplier), or
the key corresponding to the complementary bit.

e Number of group-elements: for each evaluation challenge, only 1 group element
(the inner encoding) needs to be sent for each input wire of Py, along with the
revealing of an input key and one commitment of an input key.

— Input wires of Pg.

e COMMIT stage: the inner encodings (of 0 and 1) are pseudo-randomly generated,
and the RSC commitment is based on their squares.

e Verification challenges: Py regenerates the inner encodings and their squares and
verifies consistency against the RSC commitment.

e Fuvaluation challenges: Py reveals the two multipliers that lead the outer encoding
(the decommitment of the input BitCom) into the respective inner encodings; even
though Py only knows one outer encoding, it can use the homomorphic properties
to obtain, from the two multipliers and from the outer square (the input UH
BitCom), the two inner squares, and thus verify that they are consistent with the
RSC commitment.

e Number of group-elements: for each evaluation challenge, only two group elements
(the multipliers) need to be sent for each input wire of Pg.

— Output wires of Pg. The procedure is symmetric to the case of input wires of Py,
with only two multipliers being sent for each output wire of Py, for each evaluation
challenge.

E.2 Shorter UH BitComs of input bits of Py

In the context of reusability of BitComs, it is important that parties remain bound to
the respective UH BitComs in the long term; i.e., that even in the long term they do not
become able to decommit a value different from the one that had been initially committed.
This is specially relevant if the circuit input or output bits are supposed to be linked to
other executions in the future. However, some security properties of other components of
the protocol only need to hold during the protocol execution.

Following the above observation, the protocol can be optimized in communication
complexity by reducing the size of some group elements associated with connectors asso-
ciated with input wires of P,. For these wires, the BitCom of a permuted bit (i.e., the
square of an inner encoding), which varies with the wire and with the GC, is used only
to bind P4 to the circuit input key that needs to be disclosed in an evaluation challenge,

Page 41/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

or to the multiplier that needs to disclosed in a verification challenge. However, the pair
of circuit input keys are independent of the values of the group elements, i.e., the group
elements do not reveal any information about the pair of circuit input keys. This means
that the binding property of the UH BitComs associated with these elements only needs
to hold during the execution of the protocol. Thus, an optimization is possible by having
Pa copying her input bits from the initial (long) UH BitComs into new (shorter) UH
BitComs, and then using the shorter BitComs to substantiate the connectors. This copy-
ing operation can be achieved with a standard and efficient ZKP and then the remaining
protocol proceeds seamlessly, as if using the original BitCom scheme.

For example, if it is adequate to define a time-out duration of 1 minute for an obliv-
ious AES-128 evaluation (e.g., see some benchmarks taking about 1 second to execute
[KSS12]), then it is valid to use shorter Blum integers assumed not to be factorable in
such amount of time. For example, one could propose to use original (long) BitComs with
3,072 bits in size for BitComs of the input bits, and new (short) BitComs with 1024 bits
for use for the connectors of P,.?! In this case, the communication related with a ZKP of
equivalence between short and long BitComs is approximately 67% of the communication
of the ZKPoK of equivalence between UB and UH Bitcoms — this is somewhat irrelevant
in the overall protocol, because it does not depend on the number of GCs. On the other
hand, the size of exchanged group elements related with connectors of input of Py is
reduced to about 33% — this is relevant in the overall size occupied by the connectors.

The technique as described cannot be applied to connectors of Py, because the re-
spective group elements (namely the inner encodings) actually determine the circuit-input
keys (possibly with the help of widgets). In particular, if after the protocol Pg would break
the commitment of the inner encodings (i.e., find square-roots of the inner squares), then
it would be able to find all the circuit input keys of Py for the evaluation GCs. This
would constitute a privacy breach.

E.3 Description of optimized version

The optimized version of the protocol is described in Fig. 10 using succinct notation. For
simplicity and optimization (avoiding widgets), the garbling scheme is assumed to allow
the circuit input and output keys to be specified prior to the construction of GCs (this
is consistent with standard garbling scheme proposals).

0. SETup. This stage follows (124) as in the unoptimized case, and additionally it
contains the agreement of an additional (shorter) security parameter related with the
“short UH-BitComs of P,” optimization (125).

1. PRODUCE INITIAL BiTCowms. The stage begins by executing the full stage of the
non-optimized protocol (126), except for not doing the ZKPoK of equivalent decom-
mitments between the (long) UH-BitCom scheme and the UB-BitCom scheme used
by Pa to commit her input bits. Then, the stage continues with Pp generating a
shorter 2-to-1 square scheme (127), sending its public part to P (128), and giving
a ZKP of correctness that also includes a ZKPoK of trapdoor (for simplicity the
succinct notation is based on the instantiation of Blum integers) (129).%> Then, Py
produces respective short encodings to her input bits (130) and sends the respective

21 This paragraph merely intends to exemplify the effects that a smaller modulus for the connectors of Pa may
have in the communication complexity of the protocol, but not to discuss what are the shorter adequate sizes.
(See [KAFT10] for a report on the factorization of a RSA integer with 768 bits.)

22 It is important that this scheme is new to Pa, so that P cannot try to break it prior to the protocol execution.

Page 42/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

short BitComs (i.e., squares) to Py (131). Finally, P gives a ZKPoK of equivalent
decommitments between the three commitment schemes with which the input bits
have been commited, namely the long UH-BitCom scheme, the short UH-BitCom
scheme, and the (also long) UB-BitCom scheme (132). This can be performed with
the efficient ZKPoK of equivalent decommitments described in Fig. 15. For simplicity
of description, henceforth the variable names are swapped between the long and the
short UH-BitComs schemes (133), so that the continuing description is aligned with
the variable names used in the non-optimized protocol.

2. ComMIT. For each of the s challenge indices, P, selects a random seed (134) and
uses it as input in a secure pseudo-random generator that determines all probabilistic
choices necessary in the procedure that follows.

— For each input wire of P5: Pa generates a pseudo-random permutation bit (135),
and a respective pseduo-random encoding (a group element, dubbed multiplier)
(136); then, P multiplies the initial BitCom and the square of the multiplier,
in order to obtain a square (dubbed inner square) that serves as BitCom of the
permuted bit (137); P4 also generates two pseudo-random circuit input keys (138),
and two pseudo-random elements necessary to generate the two commitments of
the respective circuit input keys (139); then, P deterministically computes the
respective two key commitments (140); finally, Py determines a permutation of
the pair of commitments, according to the permutation bit (141 and 142).

— For each input wire of Pg: P, generates two pseudo-random independent group
elements, dubbed inner encodings, respectively encoding bits 0 and 1 (143); from
each inner encoding alone (i.e., not depending explicitly on the original random
seed), P uses a deterministic procedure to decide a respective circuit input key
(e.g., extracting the key from a pseudo-random generator that uses the inner en-
coding as seed) (144); P also computes the square of the inner encodings (145).

— Pa combines a sequence of all generated circuit input keys (146) and uses them
to generate a GC which accepts those keys in the respective input wires (147). As
part of building the GC, P, also obtains the respective output keys (148).

— For each circuit output wire of the GC, P, uses a pseudo-random generation
procedure to produce, from each output key alone, one respective inner encoding
(group element encoding the bit underlying the respective output key) (149). In
this optimized version it is assumed that widgets are not necessary. Then, P, also
sompute the respective inner squares (150).

— PA aggregates all the information that would have been sent in the unoptimized
version of the protocol. Specifically, P, aggregates the permuted pairs of com-
mitments of circuit input keys of P (151), the inner squares related with input
wires of P, (152), the inner squares related with input and output wires of Py
(153), and the GC into a tuple of information (154). This tuple congregates all
information that needs to be committed for this challenge index. Since it does not
depend on any private information of P, other than the random seed, it can be
fully regenerated by Py once Py receives the random seed.

— Finally, Po computes a compressive short commitment of the tuple, dubbed RSC
commitment (155), and sends it to Py (156).%

23 The compressiveness of the overall RSC commitment is necessary to make worth the RSC technique altogether.
For example, a practical size of output may be 256 bits, in order to have 128 bits of security under birthday
attacks. The extra randomness needed to verify the commitment is avoidable in practical commitment schemes,
because in this case the value being committed already has enough unpredictability, but was left in the succinct
notation for the sake of generality.

Page 43/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

b

It is worth noticing that, in comparison with the unoptimized protocol (§C), the gen-
eration of connectors of input and output wires of Py is different: the inner encodings
are generated first, and then the multipliers are determined from them.
CHALLENGE. This stage follows (157) as in the unoptimized case.

DeciDE UH-BiTCoM PERMUTATIONS. This stage follows (158) as in the unopti-
mized case.

5. RESPOND.

— For each verification index, P, simply reveals the respective random RSC seed
(159) and (if necessary) the randomness required to verify the respective RSC
commitment (160).

— For each evaluation index, P, sends the randomness required to verify the respec-
tive RSC commitment (161), and, instead of also sending the RSC seed, sends the
GC (162) and the following elements:

e for each input wire of PA: the permuted bit (163); the respective inner encod-

ing (164); the circuit input key corresponding to the input bit of P, and the
randomness used to generate the respective key commitment (165); and the
commitment of the circuit input key corresponding to the complementary bit

(166);

e for each input wire of Pg: the multipliers that lead the outer encodings (the

decommitments of the input UH-BitComs) into the inner encodings (167).

e for each input wire of Pg: the multipliers that lead the inner encodings into the

outer encodings (the decommitments of the output UH-BitComs) (168).

6. VERIFY.

— For each verification index, Py uses the respective RSC seed to recompute locally
all the elements that were used to prepare the RSC commitment (see steps (135)
through (154)) (169). Specifically, Py builds the GC, the permuted pairs of com-
mitments of input keys of P, the inner squares for wires of P, and Pg, then
combines them into a tuple and combines them into a tuple. Pg then verifies that
the obtained tuple is consistent with the respective RSC commitment (170).
For each evaluation index, Py also needs to regenerate the RSC commitment, but
now without using the random RSC seed. Instead, Po uses the other elements
received from Py, as follows, for each evaluation index:

e Congregate input keys of P4. For each input wire of P,, Pg computes

the commitment of the received input key (also using the received associated
randomness) (171). Then, Pp congregates the commitments of all the input
keys (the ones just computed, and the complementary ones directly received
(166)) (172).

Congregate input inner squares of P,. Pg computes the square of the
received inner encodings (of the permuted bit) (173) and congregates them all
(174);

Congregate input and outut inner squares of Pg. For each input wire of
Py, Py computes the squares of the inner encodings, by multiplying the input
BitComs with the squares of the received multipliers (175); For each output
wire of Pg, Pg computes the squares of the inner encodings, by multiplying
the output BitComs with the squares of the inverse of the received multipliers
(176); Then, Py aggregates them all (177).

Py combines a tuple of aggregates, as a honest P, would (178), and then verifies
that it is consistent with the received RSC commitment and respective verifying
randomness (179).

Page 44/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

— Finally, Py also verifies that the multipliers received for input and output wires
of Pp are encodings of 0 (180) (without this verification, P could easily cheat by
sending non-trivially correlated elements; i.e., proper square-roots encoding 1).

0. SeTuP.Steps (44)-(46) (see Fig. 8). (124) By = ((he,vj,;):i€IpuUOp,ce{0,1}) (153)

Par < Pp: 1K’ Kk < K (shorter security parameter) (125) Aj — (GC]',IHKeyS%)j,N/A i» N/B j) (154)

1. Probpuc AL B
ROPUCE INITIAL BITCOMS Finalize RSC Commitment.

Same as in Fig. 8, except ZKPOKEquiv(MIIA, ’IA) (126)

= $ o .
A (A, A) < %c it (A;) (compressive) (155)
(steps (47)-(56), except (54)) 4; J,) o
. . Pa — Pg : A; (RSC commitment) (156)
Transfer bits of Pp to short UH BitComs. .
s , 3. CHALLENGE (same as in Fig. 8) (157)
B (Gpr hptpr) < Gen(x) 127 4. Decipe UH-BirCoMm PERMUTATIONS. (as in Fig. 8) (158)

Pp = Pa: <GB’7hB’>

(127)
(128) 5. REspPoND.
Pp < Pa(tp/) : ZKPoKBrtrap (Gp/) (Fig. 17) (129)
(130)
(131)

Verification indices. For j € Jy :

(bi)

Paimi=m) S higl(b) i€ la 130 Pa — Pp: A; (RSC seed) (159)

Pa:ni=m)% :i€1a 131 Pa — Pp : A; (randomness for verification) (160)

Pa(ury,nr,,Ur,) <> P Evaluation indices. For j € Jg :
ZKPoKEquiv(M}A,%A,U}A) (see Fig. 15) (132) Pa — Pp : A; (randomness for verification) (161)

Swap variable names: PA — Pp: GCj (162)
“Gpg,hg, i) < “(Ggr,hgr,n)"” (133) Input of Pao. Fori € Ix :

2. Commit. Py : Forj € {1,...,s}: Pa—=Pp:icji=b®m, (163)
Select seeds. \; «* SEEDS, (RSC seed) (134) Pa = Pp vy = v 7V =ul wp oy, (164)
Connectors input Pa. For ¢ € I : (es.4) {es4)

P Pp: (&4,)= S 1
75s = Gengie [] (135) s (g0g,,) = (B k2) ae
0z = ol = Gengpeoding Dy 1G5, 7)) (136) Pa - Py R = g2 (166)
V=1 xp (aj)% (137) Input of Pg. P — Pg:Foric Ip:
kY = Genruey P i,] s ¢ € {0, 1) (138) Bjie =B = (/i) xa i) s ce 0,1} (167)
EEC]Z GenRandForCommit [)‘jviv C] (139) OutPUt of PB Py = Pp:Forie OB :

() ().
Rk = Coommulk] (K1) s c € (0,1} (140) Biie = Bite = 120 wan ree (0,1} (168)
(&) = [e@®mj:ce (0,1} (141) 6. VERIFY. Pp :
Verification indices. For j € Jy :
TnReysi) = (KRS) (142)
Y RN AR Recompute steps (135)-(154) to obtain A; (169)
Connectors input Pg. For i € Ig and ¢ € {0,1} : Cerity (Aj7A]'Zj) (170)
V][.?l’c = u](.yci)’c = Gengncoding[Vj, (G 4, ¢) (143) Evaluation indices. For j € Jg :
k) = Gennkey 17| (144) B9 = Coommis (0:8,,) i€ ln (171)
2
Viie=Vjic)a (145) ImKeysy), : ((166), (171)) — (142) — (151) (172)
GCs. Vii=)b i€ ls (173)
InKeys§2> = <(z c, kg]) i € 1a,B,c € {0, 1}> (146) N’ 45 ((173)) = (152) (174)
2
<GCj, OutKeys§2>> = Gengc [A\] (C, InKeysg.Q)) (147) Vi =i *a (Bji)a -17' €Ip,ce{0,1} (175)
V=l)24 i€ 0g,ce{0,1 176
OutKeys; = <(z ¢, kg 1) 11 € O, c €0, 1}> (148) f’l i xa (8504704 " .13 4
N’ : ((175), (176)) — (153) (177)
Connectors output Pg. For i € Op and c € {0,1}: A; - ((162), (172), (174), (177)) — (154) (178)
Vjic = ;cz)c - GenEncoding [k[]} (GA)C) (149) (gVerify (A]7A]ZJ) (179)
Viie= Wjic)a (150) ha(Bjic)="0:ieIpUOg,ce{0,1} (180)
Prepare RSC Commitment. 7. EVALUATE. (same as in Fig. 8)) (181)
W(Ag)_ _ <(z InKeys(A)J 1) e IA> (151) 8. AppLy BrrCom PErRMUTATIONS. (as in Fig. 8) (182)
7 9. FinaL OutpuT. (same as in Fig. 8) (183)
N' a5 ={((,v};):i€Ia) (152)

Fig. 10: Protocol — 1-output S2PC-with-BitComs (optimized).

Page 45/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Remark. The number of multipliers whose class needs to be verified is equal
to twice the number of input and output wires of Py multiplied by the number
of GCs. A trivial verification method (180) is to individually determine the class
of each multiplier. However, if group multiplication is, in terms of computation,
significantly less expensive than class determination (e.g., modular multiplication
being less expensive than computation of a Jacobi Symbol), then the verification
task can be optimized be means of a parallel statistical verification of classes. The
key observation is that if there is at least one multiplier encoding bit 1, then there
is a 50% probability that the product of a random subset of these multipliers
will also encode bit 1. Actually, if the empty subset is excluded, the probability
is larger than 50% by a positive negligible amount. Conversely, if all multipliers
encode bit 0, then the product of any subset of these multipliers will also encode
bit 0. Thus, if the subset verification succeeds for a number of times equal to the
statistical parameter (using a different non-empty random subset every time), then
Py establishes that there is an overwhelming probability that all multipliers encode
bit 0. Note: this type of parallel statistical verification could also be applied to the
protocol without the RSC technique, though in that case the verifications of classes
of group elements associates with input wires of P, would have to be separated
from the verifications associated with input and output wires of Pg.

If throughout this VERIFY stage any verification has failed, then Py aborts, outputting
FAIL.

7,8,9. EVALUATE, ArpPLY BITCOM PERMUTATIONS, FINAL OUTPUT. The protocol con-
tinues as in the unoptimized case ((181), (182), (183)).

E.4 Communication complexity

Table 3 analyzes the communication complexity of different components of the protocol
(along different rows) and under different levels of optimization (along different columns).
From left to right, first the unoptimized case (Simple) is analyzed, then the result of ap-
plying the random seed checking technique (RSC), and finally the result of adding the op-
timization related with shorter BitComs in the connectors of Py (BCgyort). For simplicity,
the contribution from small components is neglected, such as the communication asso-
ciated with the coin-tossings necessary to decide the C&C challenges and the challenges
in ZKPoKs. Clearly, besides GCs, most of the communication cost is due to connectors,
which are in number linear with the number of GCs multiplied by the number of input
and output wires. In contrast, the cost of ZKPoKs and random BitCom permutations is
small, because it is either linear in the statistical parameter or in the number of input
and output wires, respectively, but not to their product.

Tables 4 and 5 exemplify a more concrete analysis, estimating the communication
associated with the secure evaluation of two different circuits. Table 4 considers a circuit
that evaluates the AES-128 function, using 6, 800 multiplicative gates (from [Bril3|), with
128 bits of input for each party, and 128 bits of output of Pg to hold the enciphering of
the input of Py using as key the input of P,. Table 5 considers a circuit that evaluates
the SHA-256 function, with 90, 825 multiplicative gates (from [Bril3|), with 256-bits of
private input for each party, and 256-bits of output of Py to hold the (SHA-256) hash of
the concatenated inputs.

The following parameters are assumed: a security goal of 128 bits of cryptographic
security, instantiated by Blum integers with 3,072 bits (i.e., comparable to AES-128

Page 46/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Table 3: Communication complexity (analytic)

c Method Unoptimized RSC RSC + BCshort Related
omponent Metho (see §C) (see §E.1 and §E.1)|(see §E.2 and §E.1) || descriptions
GCs (v+e) x|C| x|g| e x |C| x |g| ==
BitComs (L+1la)xn == == §C

La(v+e)(2n)+

J4 J4 1 .
Input of Pa La(0)2(|Ce] + |€o|)+ ale)nt ale+ Dnat §B.1,

6. + 1%, £+ 1%, E.1, §E.2
Connectors 04(e) (2%, + %)) La(e)(|Ce| + |%5]) | La(e)(|%e| + |%ol) § §
Input of Pg Lp(4v + 4de)n lp(2e)n == §B.2, §E.1
Output of Pg 5(2v + 4e)n l5(2e)n == §B.3, §E.1
Blum integer|of Pa s'(9n/2) == — §F.2
ZKPoKs trapdoor | p p s'(3n) == s'(3n + 3n2) §F.2, §E.2

Equivalent decom-

! I ’ .
mitments of Pa s'(4n) == s'(4n + 2ny) Fig. 15, §E.2
Decommitments of
UH BitComs of Pg s'(2n) == == Fig. 13
Coin-tossing to decide
random BitCom permutations £(12n) == == §D

Legend: # (number of), v (# of verification indices), e (# of evaluation indices), |C| (# multiplicative gates),
|€c| (# bits of a commitment), |6o| (# bits to open a decommit), |g| (# bits in a garbled gate), £4 (# input
wires of Pa), £p (# input wires of Pg), £3 (# output wires of Pg), £ (= £a+ £p+ L), n (# bits in normal group-
elements), no (# bits in short group-elements), s’ (statistical parameter used in ZKPoKs), == (value equal to
the left cell). For simplicity, some small contributions are ignored, namely: the communication of the coin-tossing
sub-protocols used to decide challenges for the C&C and for the ZKPoKs, each of which requires only committing
a single short value and revealing two short values; and the communication of random seeds and commitments
used in the RSC technique. The contribution of £4 X na bits, from the new UH BitComs present in the BCgport
optimization, is included in the “Connectors — Input of Pao” row. The contribution from the UB BitComs of input
wires of Pa is included in the “BitComs” row (even though they are not part of the final output).

according to the current NIST “comparable strengths” table [BBB*12|); when applying
the optimization with shorter BitComs for connectors of P4, a secondary cryptographic
security parameter of 80 bits, instantiated with a Blum integer with 1024 bits (which only
needs to remain unfactorable during the protocol execution); each garbled gate occupying
384 bits (corresponding to a list of 3 AES ciphertexts each, upon using a garbled-row
reduction technique [PSSW09]); a commitment scheme for circuit input keys of P, (for
connectors-in-A) using 256 bits per commitment value, and 384 bits per opening (i.e., in
the reveal phase).?*

The focus of the analysis considers a statistical security goal of 40 bits, which is a
common benchmark. From a communication complexity perspective, the “total size” row
in Tables 4 and 5 has the most important measure. Clearly, the RSC and the BCgort
optimizations bring benefits. Furthermore, when applying the RSC technique, lowering
the number of evaluation challenges at the expense of over-increasing the number of
verification challenges also brings a benefit in communication. For example, to securely
evaluate the exemplified AES 128 circuit, with 128 bits of cryptographic security, 40

24 956 bits per commitment of each 128-bit key, in order to have collision resistance up to 128 bits of security
under birthday attacks. For a commitment with 256 bits, 384 bits of opening allows a commitment scheme
to be unconditionally hiding if the elements being committed have 128 bits. For a computationally hiding
scheme, the opening can conceivably be reduced to only 256 bits.

Page 47/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

— RSC (optimization random seed checking tech- — s (number of challenge indices, i.e., of GCs built by
nique, either applied only to the connectors, or Pa, satisfying s = v +e)
applied simultaneously to the connectors and the — (emin, €min) (interval of variation of number of eval-
GCs) uation challenges)

— BCshort (optimization using shorter BitComs for ~ — (Umin,Umin) (interval of possible variation of num-
the connectors of Pa) ber of verification challenges)

— Mb (millions of bits, rounded to the closest deci- — s’ (statistical security parameter, sucth that
ma’l) PrError é 2_3/)

— |C| (number of garbled gates in the garbled circuit, = — k (cryptographic security parameter)
i.e., # multiplicative gates in logic circuit) — n (number of bits per group-element in BitComs)

— La, £, {5 (number of input wires of P, number — ng (number of bits per group-element in connectors
of input wires of Py, number of output wires of Pg, of P4, if using the BCghort optimization)
respectively) — |%c| (number of bits per (symmetric) commitment)

— ¢ (total number of input and output wires per cir- — |%o| (number of bits to open a commitment)
cuit, i.e., £4 +£p + {5) — |gg| (number of bits per garbled gate)

Note (7): For the RSC and BCgport optimizations, the sizes presented for GCs and connectors are maximal —
the variable number of evaluation challenges may lead to a lower communication complexity. The respective
“(not GCs)/GCs” overhead proportion is minimal, as the size of GCs reduces more than the size of connectors.
In other words, whenever the “total size” is better (lower) than shown, the respective overhead propoertion is
higher. For the unoptimized case with v < s the size of GCs is constant, but the size of connectors also varies
with e and v. In that case, the “(not GCs)/GCs” values are the most likely (which happens for e = v = 5/2).
Note (f): The contribution of the coin-tossing sub-protocols used in the ZKPoKs and to decide the C&C
partition is ignored.

Fig.11: Common legend for Tables 4 and 5

bits of statistical security and using 76 GCs out of which at most 10 are evaluated, the
protocol requires about 62 million bits, i.e., about 8 Mega Bytes. The corresponding
communication for the SHA-256 circuit is about 52 Mega Bytes.

It is also interesting to look at the proportional overhead brought by the elements
that are not GCs. For example, in the column reporting results under the RSC (applied
to connectors and GCs) and BCqyey optimizations, for 128 of cryptographic security, 40
bits of statistical security, and using 41 GCs, the overhead proportions for the AES-128
and SHA-256 circuits considered are, respectively, 103% and 15%. Clearly, the overhead
proportion decreases with the ratio between number of input and output wires and the
number of multiplicative gates, which for the two circuits is, respectively, 5.9% and 0.8%.

Even though the overheads from non-GC elements may seem somewhat large, any
overhead below 200% represents less space than what would be required by the additional
GCs in C&C protocols that require a majority of evaluated GCs to be correct (because
these protocols require about 3 times more GCs). Furthermore, other protocols usually
also have an overhead related with ensuring the consistency of input and output across
different GCs.

If parties are not willing to apply the RSC technique to the GCs, e.g., not to increase
the computation related with GCs, then the estimate for the AES-128 circuit is about
165 Mega bits (see Table 4). The comparable reported overhead for the SEOC method is
177,725,440 bits [Linl3|, which is of the same order of magnitude.

Future optimizations in the way connectors are committed and verified might allow
further reduction of the overhead, by reducing the number or size of group elements that
need to be communicated.

In the two rightmost columns, for the purpose of comparison, different instantiations of
security parameters are also considered. The before-last column uses Blum integers with
1024 bits (for 80 bits of cryptographic security), which allows a further improvement in
communication but is not recommendable for long term privacy. It may (with caution)

Page 48/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Table 4: Communication in S2PC of AES-128

Circuit AES-128 (|C) = 6,800, £y ={lp =l =128, ¢/|C| =5.9%)
Optimization RSC No ‘Yes @ Connectors Yes @ GCs + Connectors
Optimization BCshort No ‘ Yes No ‘ Yes No
C&C restriction v<s ‘ [s/2] <v<s ‘e € [s'/4] e € [s'/5]
Security params. (k,s’) (128,40) (80, 40) |(128,128)
GCs (s) 40 41 76 123 365
(Vmin, Umax) (0,39) (21,39) (66,75) [|(115,122)[(340, 364)
(Emin, Emax) (1,40) (1,20) (1,10) || (1,8) | (1,25)
Group-clements (n,n2) | (3072, -) [(3072, 1024)|(3072, -)| (3072, 1024) | (1024, -) | (3072, -)
Size symmetric primitives |€c| = 256, |6o| = 384, |gg| = 384
fGCs (Mb) 104.4 ‘ 107.1 ‘ 52.2 ‘ 26.1 20.9 65.3
BitComs (Mb) 1.6 0.5 1.6
fConnectors (Mb) 147.1 ‘ 41.0 35.5 41.0 | 35.8 ‘ 18.0 5.9 44.8
ZKPoKs (Mb) 1.8 2.2 1.8 2.2 0.6 7.0
BitCom perms (Mb) 14.2 4.7 14.2
Total size (Mb) 269.1 [165.3] 160.6 1104 |105.7| 62.0 32.6 132.8
PE(not GCs) / GCs || 158% | 55% 50% 112% [103%| 138% 56% 103%

(See legend in Fig. 11)

be for an application where the binding to the BitComs and the privacy of the input of
Pa only needs to hold in the short term. In contrast, the last column shows an example
with 128 bits of statistical security, which may be too high for practical purposes.

Pipelining. 1f the parties pipeline computation and communication, namely the gener-
ation and sending of garbled gates (Pa), or the receiving and evaluation of garbled gates
(Pg), the memory required by each party can be lower than the communication performed
[HEKM11]. When generating a GC, P, discards each garbled gate as soon as it uses it
in the computation of the (compressive) RSC commitment (in the COMMIT stage), or as
soon as it sends it to Py (in the RESPOND stage, for evaluation GCs), and discards the
keys of each intermediate wire as soon as all related garbled-gates have been generated.
For each evaluation GC, Py discards each garbled gate as soon as it obtains its output
wire key, and discards each (intermediate) wire key as soon as all respective garbled-gates
have been evaluated. For each verification GC, Py simply generates the GC, from the
respective random seed, as described for P . This technique allows a significant reduction
in memory (i.e., the amount of information that needs to be stored simultaneously). As
noted in [KSS12|, a down-side of implementing pipelining in a C&C protocol is that Py
needs to generate twice each evaluation GC (assuming it does indeed discard the GCs
from memory).

F Zero Knowledge Proofs

The described S2PC-with-BitComs protocols use several ZKPoKs related with the 2-to-1
square schemes. §F.1 describes these ZKPoKs, and also a ZKP that can be useful to link

Page 49/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Table 5: Communication in S2PC of SHA-256

Circuit AES-256 (|C| = 90,825, L4 = {5 = Uy = 256, £/|C| = 0.8%)
Optimization RSC No ‘ Yes @ Connectors Yes @ GCs + Connectors
Optimization BCgshort No ‘ Yes No ‘ Yes No
C&C restriction v<s ‘ [s/2] <v<s ‘e € [s'/4] e € [s'/5]
Security params. (k,s’) (128,40) (80, 40) |(128,128)
GCs (s) 40 41 76 123 365
(Vanins Umax) (0, 39) (21,39) (66,75) ||(115,122)|(340, 364)
(Emin, €max) (1,40) (1,20) (1,10) || (1,8) | (1,25)
Group-clements (n,n) | (3072,-) |(3072, 1024)[(3072,)| (3072, 1024) || (1024, -) | (3072, -)
Size symmetric primitives |€c| = 256, |6o| = 384, |gg| = 384
fGCs (Mb) 1,395.1\ 1429.9 \ 697.5 \ 348.8 || 279.0 | 871.9
BitComs (Mb) 3.1 1.0 3.1
fConnectors (Mb) 204.3 \ 81.9 717 81.9 | 717 \ 36.0 11.8 89.6
ZKPoKs (Mb) 1.8 2.2 1.8 2.2 0.6 7.0
BitCom perms (Mb) 28.3 9.4 28.3
#Total size (Mb) 1,722.6|1,545.2| 1,535.3 812.8 [802.9| 418.4 301.9 999.9
t¥(not GCs) / GCs 23% | 8% 7% 17% | 15% | 20% 8% 15%

(See legend in Fig. 11)

executions, assuming that the specification of the 2-to-1 square scheme is correct. Then,
§F.2 considers a proof of correctness of a Blum integer (which is also a ZKPoK of its
prime factors) which can be used as proof of correctness of the specification of a 2-to-1
square-scheme based on properties of Blum integers.

F.1 Several ZKPoKs

Each ZKPoK is described as a parallelization of several rounds of a typical X-protocol
structure (commit-challenge-respond), in order to achieve a number of bits of statistical
security equal to the number of rounds. The vector of challenges is decided via a coin-
tossing sub-protocol, which does not need to be fully simulatable (as is required for the
sub-protocol that decides the random BitCom permutations, described in §D), though it
needs only to enable some properties to the ZKPoK:

1. When making a simulation with rewinding capable access to a black-box malicious
verifier (V*), the simulator must be able to impersonate a honest prover (i.e., one that
would possess the knowledge being proven). In other words, a malicious V* cannot
distinguish the simulator from a honest prover. This is allowed by a coin-tossing
sub-protocol where a simulator is able, with noticeable probability (larger than the
inverse of a positive polynomial, though possibly lower than 1), to determine on its
own a random vector of challenges that it wants as outcome of the coin-tossing (and
assuming that there is a noticeable probability that V* does not abort the coin-tossing
execution). In the commit stage of the ZKPoK, the simulator first decides a random
vector of challenges and prepares itself to be able, later in the response stage, to

Page 50/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

give a successfully verifiable response. Then, the simulator leads the outcome of the
coin-tossing to be exactly such vector of challenges.

2. When making a simulation with rewinding capable access to a black-box malicious
prover (P*) that has a noticeable probability of making a honest verifier (V) accept, the
simulator (mpersonating a honest verifier) must be able to extract the elements whose
knowledge is being proven. This is achieved by taking advantage of the property that
the underlying private knowledge of the prover can be extracted from valid responses
to several different challenges (two, in some protocols), if they are related with the
same value committed by the prover in the commit stage. Thus, withing the coin-
tossing sub-protocol, the simulator must be able to lead the outcome of the challenge
phase to different vectors of challenges, without changing the value committed by P*,
and being able to receive the respective valid responses.

A possible coin-tossing protocol for determining the challenges in parallel is the same
as suggested for the decision of challenges of the C&C partition (see Fig. 7), though with
the following semantic adjustments:

— replacing the number of bits that need to be decided (9), either to be the number of
challenges (if challenges are binary), or to be the number of challenges multiplied by
the vector length of each challenge (if a challenge itself is defined as a vector of bits).

— choosing the VARIABLE mode, with any possible number of verification challenges
(10), so that the final bit-string encoding the challenges is uniformly random.

— replacing P, and Py by Prover (P) and Verifier (V), respectively.

Since the commitment scheme can be compressive, the protocol is efficient in terms of
communication even when the challenges are not binary, but rather vectors of bits, as is
the case in some ZKPoK protocols. For simplicity of description, the following explana-
tions leave implicit that there are several Y-iterations in parallel, and that the BitComs
are always XOR-homomorphic with trapdoor.

ZKPoK of non-trivial square-root of 1 (see Fig. 12).

— Setup. As private input, P knows the trapdoor of the implicit 2-to-1 square scheme.
It is assumed that this trapdoor is represented as a non-trivial square-root of 1 (i.e.,
an encoding that is in class 1 and is a square-root of 1) (184).

— Procedure. For each challenge index, P selects a random group element of class 0
(185) and sends its square to V (186). As each challenge, the parties decide a random
bit (187). As response, P sends to V a square-root encoding the challenged bit (if 0,
it sends the previously selected group element; if 1 it sends the result of multiplying
it by the non-trivial square-root of 1) (188) . V verifies that the square-root is correct
and encodes the challenged bit (189). V accepts the proof if all responses are correctly
verified (190).

— Remark. The described protocol requires communication of 2 group elements per
round, and no modular exponentiation. The protocol can be easily adapted with a
random seed checking technique to reduce the number of communicated group ele-
ments to just those responded for bit-challenges with value 1. In the commit stage, P
would generate each square-root from a short random seed, then locally compute all
squares, and then send to P only a short commitment of all squares. In the respond
stage: for class 0 challenges, P just sends the random seed; for class 1 challenges, P
sends only the respective square-root class 1. Finally, in the verify stage, V is able

Page 51/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

to reconstruct all the squares and verify that they are consistent with the RSC com-
mitment. Thus, overall this optimization reduces the communication to an expected
half of a group element per round, beside the communication associated with short
random seeds and with the coin tossing of challenges and opening one of commitment.

Private input of P: NTSQRT; (the trapdoor) (184) Respond. For j € [s'] :

Commit. For j € [¢] : P —V:r; =X« (NTSQRT,)% (188)
P +3% h=1(0) (encoding of bit 0) (185) (square-root encoding bit ¢;)
P = V:)N, = (A)? (square) (186) Verify. For j € [¢'] :

Challenge. V :If (r;)® # Xj V h(r;) # c;, then REsEcT (189)
P Vie+?® {0,1}° (coin-toss s’ bits) (187) Vi Accerr (190)

Fig. 12: ZKPoK of non-trivial square-root of 1 (ZKPoKnTsqrT1)- Legend: NTSQRT;

(non-trivial square-root of group-identity, encoding bit 1).

ZKPoK of vector of square-roots (see Fig. 13).

— Setup. As common input, the parties know a vector of squares (191). As private
input, P knows a respective vector of square roots (192).

— Procedure. For each challenge index, P selects a random group element (dubbed
mask) (193) and commits by sending its square to V (194). As each challenge, the
parties decide a random subset of the squares (encoded as a vector of bits, with the
positions with value 1 representing the selected squares) (195). As response, P sends
to V a square root of the masked version (i.e., multiplied by the mask) of the product
of the respective subset of squares (196). V verifies that the square-root is correct
(197). V accepts the proof if all responses are correctly verified (198).

— Remarks. Since the mask encodes a random bit in each challenge, V does not learn
the XOR of the bits encoded by the square-roots associated with the selected subset
of indices. This is essentially the Feige-Fiat-Shamir ZKPoK of a vector of square-roots
[FFS88|, enhanced only with a coin tossing protocol to decide the challenges (instead
of being just selected by V).

Common input of P and V : Challenge. P < V :

(zf = ()24 € [m]) (m squares) (191) e (o, 1}m)s/ (coin-toss s’ m-bit vectors) (195)
Private input of P : Respond. For j € [s] :

(z; i € [m]) (m square-roots) (192) P =V iry=wj* (ke[(@:)97) (196)
Commit. For j € [s'] Verify. For j € [¢'] :

P:wj +% G (mask) (193) VL IE ()% # w % (#;e[m) (€7)%%), then REJECT (197)

P =V = (w;)? (194) v . Accepr (198)

Fig.13: ZKPoK of vector of square-roots.

Page 52/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

ZKPoK of vector of square-roots consistent with vector of classes (see Fig. 14).

— Setup. As common input, the parties know a vector of bits (199) and a vector of
squares (200). As private input, P knows a respective vector of square roots whose
classes are consistent with the vector of bits (201).

— Procedure. For each challenge index, P selects as mask a random encoding of bit
0 (202) and commits to it by sending its square to V (203). As each challenge, the
parties decide a random subset of the squares (encoded as a vector of bits, with the
positions with value 1 representing the selected squares) (204). As response, P sends
to V a square root of the masked version of the product of the respective subset of
squares (205). V verifies that the square-root is correct (206) and that it encodes the
XOR of the bits whose positions were selected for verification (207). V accepts the
proof if all responses are correctly verified (208).

— Remarks. Compared with the previous ZKPoK of square-roots, the essential differ-
ence now is that P does not intend to hide the classes of the known square-roots. As
will be shown ahead, in §F.2, this ZKPoK may be useful even if P knows the trapdoor
and thus can use it to extract all the square-roots known by V.

Common input of P and V : PV w;= (w;)? (203)
(di € {0,1} : i € [m]) (m classes) (199) Challenge. P <V :
<J3; = (mz(‘di))2 S [m}> (m squares) (200) c 8 (o, l}m)sl (coin-toss s’ m-bit vectors) (204)
Private input of P : Respond. For j € [s'] :
(2™ h(wi) = dii € [m]) o1y P Vims = wi Gepm (@)) (205)

Verify. For j € [¢'] :
Vi If (ry)? # W) * (xiepm) (x})%1), then REJECT (206)
VI h(rj) = @iepm)(ci - di) (207)
V : AccepT (208)

(m square-roots with consistent classes)
Commit. For j € [s/} :
P:w; +% h=1(0) (mask class 0) (202)

Fig. 14: ZKPoK of vector of square-roots consistent with vector of classes.

ZKPoK of equivalent decommitments of UB and UH BitComs (see Fig. 15).

— Setup. Both parties know the public parameters of a XOR-homomorphic UH-BitCom
scheme (209) and of a XOR-homomorphic UB-BitCom scheme (210). As common
input, the parties also know a vector of UH-BitComs (211) and a vector of UB-
BitComs (212), both with the same length. As private input, P knows a respective
vector of bits (213) and respective vectors of decommitments (encodings) of the UH
BitComs (214) and UB BitComs (215). The group-operations do not mix elements
from different schemes, because it is assumed that the groups underlying each type of
BitCom scheme are different.

— Procedure. For each challenge index, P selects a random bit-mask (216) and then
uses the two BitCom schemes to commit to the bit mask, namely with an UH-BitCom
(217) (218) and an UB-BitCom (219) (220). As each challenge, the parties decide a
random subset of the positions inside the vector (the subset is encoded as a vector
of bits, with the positions with value 1 representing the selected positions) (221). As
response, P sends to V the masked XOR of the bits in the selected positions (222), and
sends the masked product of the respective subset of decommitments for each BitCom

Page 53/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

scheme (223) (224). V verifies that the decommitments are valid and consistent with
the disclosed masked XOR of bits (225) (226). V accepts the proof if all responses are
correctly verified (227).

— Remark. The protocol can be trivially extended to prove consistency across more
than two BitCom schemes, independently of them being UB or UH (for example, this is
useful when considering the optimization described in §E.2). For each challenge index:
in the commit stage, P would commit the random bit-mask by sending one BitCom per
respective BitCom scheme; in the respond stage, P would send the result of XORing
the bit-mask and of all bits in the selected positions, and it would also send the
decommitments, within the several respective BitCom schemes, of the homomorphic
combination of BitCom in the challenged subset of positions; in the verify stage, V
would verify that they all were valid decommitments of the same bit.

Common input of P and V. PV w;= (w;)% (UH BitCom of d;) (218)
Public parameters of BitCom schemes. Pz 8 Ggl(O) (encoding for UB BitCom) (219)
(Gp,ha) (for UH-BitComs) 209 P—V:z;=(-1)%(2;)% (UB BitCom of d;) (220)
(Ga) (for UB-BitComs) 210
Challenge.

(209)
(210)
(zf = (x)% i€ [m]) (UH BitComs) (211) ,
(212) ¢ +3% ({0,1}™)* (coin-toss s" m-bit vectors) (221)

(vi= (D% W% i € [m]) (UB BitComs) (212 Respond. For j € [+/]:

Private input of P. P Viej=dj ®icor bi- cjs (222)
(b; € {0,1} : i € [m]) (bits) (213) P Voiry =wjp (+picpe (@) (223)
(z; € h1(b;) : i € [m]) (square-roots) (214) PV oty =25 %4 (saiepe (0)5) (224)
(yi € G4 :1 € [m]) ((pseudo-)square-roots) (215)

Verify. For j € [s'] :
Commit. For j € [s/} :

7 / ?

s Vi(r))g =" wj* (vies; i) Aej =" hp(r)) (225)

P :d; <° {0,1} (bit-mask) (216) €2 7 g ,
V(D4) = 25 % (vies; ui) (226)

$;-1 . . A\"J/B J €559

P :wj <" hiz (dj;) (encoding for UH BitCom) (217) . .
V . If all verifications OK, then AccepT, else REJECT

(227)

Fig.15: ZKPoK of equivalent decommitments of different BitComs schemes.
The protocol is exemplified for one UH-BitCom scheme and one UB-BitCom scheme, but the protocol could be
trivially adjusted to any combination of BitCom schemes (with XOR-homomorphic properties), just adapting
the formalism to the respective sampling, committing and decommitment procedures. It is also trivial to adjust
the protocol to proving equivalence between more than 2 BitCom schemes.

ZKP of n-out-of-m square-roots encoding bit 0 (see Fig. 16).

— Setup. As common input, the parties know a vector of UH-BitComs (squares) (228).
As private input, P knows a subset of vector positions (229) for which it knows de-
commitments of bit 0 (i.e., square-roots in class 0) (230). The goal of the ZKPoK is for
P to knowledge of decommitments to 0 in at least a certain number of positions, but
without revealing anything about the subset of positions or anything else about the
number of positions for which it knows a decommitment of 0. It is worth noticing that
this setting does not prevent P from knowing decommitments of more UH-BitComs,
for bits 0 or 1.

— Procedure. For each challenge index, P produces a permuted tuple of masked
BitComs, as follows: it selects a random permutation of the positions of the vector
(231); then permutes the vector of squares accordingly (232); then selects masks for
all positions, as random encodings of bit 0 (233); then squares the masks (234); then

Page 54/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Common input: If ¢, = 0 (reveal permutation and masks) :
PV X = (2} = @)?:j € m]) (228) P = Vi I, (237)
.0
Private input of P: PV Zpjd € [m] (238)
P:JC[m]:#J)=n (229) If ¢ =" 1 (reveal square-roots of n committed squares) :
P:XJ:<ZL'§-O> :j€J> (230) P—V:Lg=I(J) (239)
P—=V:irg = ZI(@(,)Z) xxp, L€ [n] (240)

(satisfying h(xg»o)) =0:5€J)
Verify. For k € [s/} :
Commit. For k € [s/} : "
If ¢, =" 0 (verify permutation and masks) :

P : My +° Perm((1, ..., m) (281) Vi Iy € Perm((1,...,m)) (241)
. Ay FIRXS]
P:yp; =) J € Im] (232) 70
© 5. ' V:ih(zg;)="0:5¢€[m] (242)
P % h=(0) : j € [m] (233) V(22 4 o 7 243
Pz =25 ¢ m] (234) el e = s e o
PPy T Beg) ra e m If ¢y =" 1 (verify square-roots) :
P Cwh =2 kyh] 2
= Viwg ;=2 %y, ;17 € [m] (235) VL, C’ [m] A #(Ly) ="n (244)
Chall .
allenge . / V i h(rg,;) ="0:j€ [n] (245)
. s i 7.
P+ V:c+®{0,1}° (coin-toss s’ bits) (236) V()2 =" w/Lk(l) 21 € [n] (246)

Respond. For k € [s'} :

V . If all verifications OK, then Acceprt, else REJECT
va

(247)

Fig. 16: ZKP of n-out-of-m square-roots class 0. The protocol can be easily adapted with a
random seed checking technique to reduce the number of communicated group-elements to just those responded
for bit-challenges with value 1, i.e., to an expected number n - s’ /2.

multiplies the vector of squared masks with the permuted vector of original squares
and sends the result to V (235). As each challenge, the parties decide a random bit
(236). If the challenge is 0, then P shows that the permutation was well constructed,
by revealing the permutation (237) and all the masks encoding bit 0 (238). If the
challenge is 1, P reveals a permuted subset (of size consistent with the goal of the
proof) of positions for which it knows decommitment of bit 0 (239), and reveals the
respective square-roots encoding bit 0 (240). V verifies the responses given by P. If
challenge is 0, V verifies that the committed vector was well constructed, by verifying:
that the revealed permutation is valid (241), that the revealed group elements are
encodings of bit 0 (242), and that they are indeed the masks that lead the permuted
vector of squares to the committed vector of squares (243). If challenge is 1, V verifies
that P knows the correct amount of square-roots encoding bit 0, by verifying: that
the revealed subset with of positions is valid (244), that the revealed group-elements
encode bit 0 (245), and that they are indeed square-roots of the committed squares
in the respective positions (246). V accepts the proof if all responses are correctly
verified (247).
— Remarks.

e RSC. A type of random seed checking (RSC) technique can be implemented inside
this protocol. The committed permuted masked squares can be generated based
on small random seeds and the common input. In the commit stage, P only needs
to send short RSC commitments of the generated elements. Then, the responses
associated with challenge 0 are simply replaced by the respective seeds, whose
communication cost can be neglected. Finally, for each challenge with value 1,
the number of group elements is equal to the vector length (square-roots for the
positions of the selected subset, squares for the remaining positions).

¢ Proving bit-wise relations. An example of application of the described ZKPoK
is proving that three committed bits satisfy a bit-wise AND relation. This is possi-

Page 55/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

ble because such relation can be represented as the existence of 2-out-of-3 bits with
value 0 in a certain triplet that can be generated, from the original 3 BitComs,
using only the available XOR-~-homomorphism (see (248)). The application can be
extended to prove a NAND relation, by homomorphically XOR’ing the bit 1 (i.e.,
negating) to all the initial BitComs (249). Furthermore, the ZKPoK can also be
trivially adapted to prove conditions expressible as at least a certain number of
bits with a certain value. For that purpose, the logic of permutation and masking
is maintained, changing only the bit values that P reveals in the respond stage.
This allows a direct proof of the condition mentioned in §6.2, for proving a NAND
relation, formally expressed in (250).

by = AND(by, by) < 0 €2 (by @ bz, by @ bs, bs) (248)
by = NAND(bl, bQ) &0 62 <b1 @ b3 D 1, by @ bs B 1, bs @]_> (249)
bs = NAND(by, by) < 1 €2 (by @ bs, by @ bs, bs) (250)

F.2 Prove correct Blum Integer

Before making use of the UH and UB BitCom schemes required in the S2PC-with-
BitComs protocol, both parties need to be assured that they are correctly parametrized.
The following paragraphs look into the particular case of proving that a certain number
is a Blum integer, as this type of integers can be used to instantiate the BitCom schemes.
First, some basic properties of Blum integers are reviewed; then, some problems of over-
looking a proof of their correctness are identified; finally, two efficient ways of achieving
such a proof are described (the second is new).

Properties of Blum integers. A Blum integer is defined as a positive integer composed
only of the product of powers of two primes, where each prime is congruent with 3
modulo 4 and each power has an odd exponent. A more specialized definition could
be just the integers composed as the simple product of two primes congruent with 3
modulo 4, but, as shown ahead, for the security of the S2PC-with-BitComs it is enough
to consider the general definition. Properties of Blum integers can be found in many
textbooks of introduction to number theory (e.g., [NZM91]). The respective multiplicative
group is defined as a group set endowed with a group operation, with the former being
the set of non-negative integers which are co-prime to and lower than the Blum integer,
and the later being multiplication modulo the Blum integer (henceforth simply denoted
multiplication). Group elements (also denoted as residues) referring to them as residues,
any group element out-of-bounds is to be considered modulo the Blum integer.

Blum integers have interesting properties that distinguish them from other integers. In
particular, they are the only moduli that simultaneously satisfy the following 2 properties:

— Fach quadratic residue has exactly 4 distinct square-roots, two of which for each pos-
sible Jacobi Symbol (—1 and 1). Since the Jacobi Symbol is multiplicative, it is easier
to consider the class of each square-root as the respective homomorphism to XOR,
i.e., class 0 means Jacobi Symbol 1, and class 1 means Jacobi Symbol —1.

— The residue —1 is non-quadratic and has Jacobi Symbol 1 (i.e., class 0). This means
that the additive inverse of a group element is a different group element with the same
square and the same class. The two elements trivially correlated in this manner have
different least significant bit (i.e., one is even and the other is odd) when represented as

Page 56/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

a non-negative integer lower than the modulus. Thus, for example, it may be assumed
that the proper element is the one whose least significant bit is equal to its class
(when dealing with square-roots it is important to define a proper square root, out of
the two possible with the same square and same class). It is trivial to adjust group
multiplication to only operate on proper elements.

Two other useful properties related with finding square-roots are noticed: (i) the
knowledge of two square-roots of different class enables an efficient discovery of the prime
factorization of the Blum integer (upon a simple computation of a modular sum and the
computation of a greatest common divisor, e.g., using the Euclidean algorithm); (ii) the
knowledge of the prime factorization enables efficient discovery of all 4 square roots of any
quadratic residue. If a party knowing the factorization of a Blum integer is able to assume
that it is infeasible, for the other party, to find the factorization and to decide quadratic
residuosity of random residues, then the modulus can be used as an instantiation basis
for several components of the S2PC-with-BitComs protocol.

— UB-BitCom scheme. A square of a random residue is an UH BitCom of the class
of the residue, because each square has square-roots in both classes; computational
binding derives from the (assumed) inability of the comitter party to factor the Blum
integer (knowledge of two square-roots of different classes would enable factorization).

— UB-BitCom scheme. A random residue in class 0 is an UB BitCom of its quadratic
residuosity character (0 if quadratic residue, 1 if non-quadratic residue). To commit
to a 0 or a 1 the committer selects a random residue and then respectively sends its
square or the additive inverse of the square (both of which have class 0). The hiding
property derives from the assumed inability of the receiver (who must not know the
factorization of the Blum integer) to decide quadratic residuosity.

— 2-out-of-1 OT. Since each square has one and only one proper square root of each
class, the knowledge of the trapdoor enables extraction of exactly 2 elements, out of
which the party that generated the square (and who does not know the factorization
of the Blum integer) only knows one (the one that it used to generate the square).

— Forge-and-lose. Assuming intractability of deciding quadratic residuosity, the UH
and the UB BitCom schemes can share the same trapdoor. This means that P, can
encrypt (i.e., UB commit) her input bits with a scheme with the same trapdoor as
the scheme with which the bits of Pg are UH committed.

Note: The knowledge of the factorization of a Blum integer is computationally equiv-
alent to the knowledge of a non-trivial square-root of 1 (i.e., a square-root of 1 in class 1)
in the respective multiplicative group. Any residue multiplied by this value is converted
into a new residue with different class but same square.

Problems with non Blum integers. The S2PC-with-BitComs becomes insecure if
the suggested instantiation based on Blum integers is actually sustained on a non Blum
integer. The need to prove correctness of the proposed Blum integer is now motivated,
showing some security problems that may arise if such proof is not given.

A Blum integer is congruent with 1 modulo 4 (and this ensures that —1 has class
0). Since this can be verified non-interactively, without knowing the factorization, the
attention can be restricted to integers of this form. These are all odd integers that have an
even number of (including none) prime factors congruent with 3 modulo 4 exponentiated
to an odd exponent. In other words, —1 remains class 0 regardless of the number of prime

Page 57/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

factors that are congruent with 1 modulo 4, and of the prime powers that have an even
exponent. The use of non-Blum integers of this form would raise security problems.

For example, things could go wrong with moduli with exactly 3 prime factors, with
at least one of them being congruent with 3 modulo 4 and such that this prime’s higher
power (dividing the Blum integer) would have odd exponent. Toy examples would be
integers 105 and 1755. In the respective multiplicative groups, each quadratic residue has
exactly 8 square-roots, 4 of which in each possible class. Since the additive inverse of a
square-root is also a square-root in the same class, the 4 square-roots in a certain class
can be grouped into 2 pairs, each pair being a trivially correlated pair of square-roots.
Any 2 square-roots not in the same pair are non-trivially correlated, i.e., cannot be found
except by being able to find some non-trivial factor of the modulus. This would raise at
least two problems in the S2PC-withBitComs protocol:

— The 2-out-of-1 OT is not possible (though a 4-out-of-1 OT is), since for each square
there are now 4 possible proper square-roots, 2 for each class.

— For correctly constructed connectors of input wires of Pg, Po would, in the VERIFY
stage, respond correctly to verification challenges. However, in the later EVALUATE
stage, a malicious P, could respond to evaluation challenges by disclosing multipliers
with correct homomorphic properties that would nonetheless lead the known input
BitComs into group-elements different from those that were used to derive the circuit
input keys. The problem is that the squaring operation is no longer a permutation
from the domain of proper square-roots in a certain class onto the set of squares, but
it is rather a non-injective function.

Another problematic case is that of a moduli that once divided by the highest square
factor does not retain any prime factor that is congruent with 3 modulo 4. Toy examples
are integers 325 and 585. In the respective multiplicative groups, each quadratic residue
either has all square-roots with class 0 or all square-roots with class 1. This means that
the respective 2-to-1 square BitCom scheme would become UB, such that the receiver
of the BitComs would be able, with the trapdoor, to decrypt the underlying bits — this
would be a privacy problem.

Proving correctness of Blum integers. If the factorization of a modulus is known, it
is trivial to verify that it is a Blum integer. The challenge is in how to prove correctness
without giving away the factorization (or any other non-trivial information). Two meth-
ods are described below, whereby a prover (P), knowing the factorization of a modulus,
convinces a verifier (V), not knowing the factorization, that the proposed modulus is a
Blum integer. The protocols constitute ZKPoKs of the factorization of the Blum inte-
ger. (The informal titles below are not standard, but just intend to be suggestive of the
respective method.).

— The ask for (pseudo-)square-roots in random classes method. An efficient
method is from van de Graaf and Peralta [vdGP88|, based on the observation that
a modulus is a Blum integer if and only if it is not a square, not the power of a
prime, is congruent with 1 modulo 4, and every residue in class 0 has a square-root
or a pseudo square-root? of each class. The protocol starts with V verifying that
the proposed modulus is congruent with 1 modulo 4, is not a square and is not the
power of a prime. Then, the parties perform a two-party coin-tossing to decide (or

25 A pseudo square-root of an integer is intended to mean a square-root of the additive inverse of the integer.

Page 58/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

receive from a trusted source of randomness) a vector with random residues in class
0 (with square-root unknown by V), and a respective random vector of bits. Finally,
P computes and reveals a vector of square-roots or pseudo-square-roots with classes
consistent with the respective vector of random bits. V accepts the claim if and only
if all received elements are square roots in the expected classes (261). The number of
bits of statistical security (soundness) is equal to the vector length.

— The ask for known square-roots method. This paragraph introduces a new
method (see Fig. 17), making use of the ZKPoKs previously defined, and avoiding
the coin-tossing of group-elements (though still requiring the coin-tossings used to
decide challenges in the ZKPoKs). For a given Blum integer modulus (251) for which
P knows the trapdoor (252), V starts by verifying that the modulus is congruent with
1 modulo 4 (253). In a first phase, P gives a ZKPoK of non-trivial square-root of 1, as
described in Fig. 12 (this is done by showing ability to take square-roots of different
classes) (254). In a second phase, V sends a vector of random bits (i.e., classes) to P
(255), then selects a respective vector of random encodings (random group-elements
in the respective class) (256) and then sends the respective squares to P (257). V gives
a ZKPoK of square-roots in those classes (258), as described in Fig. 14 (notice the
exchanged roles). Finally, P computes the square-roots with respective classes and
sends them to V(259). If any square-root is different from the one (or its additive
inverse) known by V| then V rejects the claim that the modulus is a Blum integer
(260); otherwise V accepts the claim (261).

Common input of P and V : V = P:b; <% {0,1}:i € [s'] (random bits) (255)
(G=1Zy, X(modN), h) (group specification) (251) V- ugbz‘) <8 hil(bi) .4 € [§'] (random encodings)
(N =p{1p32 : p1 # p2 A p1,p2 € Primes) (256)
(a1 = az = 1(mod 2),p1 = p2 = 3(mod 4)) Vo P = ()% (mod N) :i € [¢] (257)
(Va : h(z) = (1 - ISn(2))/2) V(pgsry) ¢ P ZKPoKSqresewith-classes (b #{a)) (258)
Private input of P:) (see Fig. 14, but notice the exchanged roles)
Plf;el\;zngTlN (ice., (h(t) =1At"=1) (252) Py ul(bi) = SQRT[H]) (u}) : i € [¢'] (259)
V :If n # 1(mod 4), then REJECT (253) V:Fori€ [s]:
P(t) & V : ZKPoKxrsqrr1(N) (see Fig. 12) (254) 1f ul") 2 40 v b)) # b; then REJECT(%O)
V : AccepT (261)

Fig. 17: ZKPoK of Blum integer trapdoor (ZKPoKgy. trap)-

FEzxplanation of the ask for known square-roots method. If phase 1 is accepted
by V, then with overwhelming probability every quadratic residue has square-roots in
both classes; consequently, there is at least one prime factor congruent with 3 modulo 4
whose higher power that divides the modulus has an odd exponent. In particular, this
excludes the possibility of the modulus being a square (because there are square-roots
with Jacobi-symbol —1). Also, this excludes the possibility of the modulus being a prime:
it cannot be a prime modulus congruent with 1 modulo 4, because in that case each
square would only have square-roots in the same class; it cannot be a prime congruent
with 3 modulo 4 because it was verified that the modulus is congruent with 1 modulo

Page 59/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

4. Then, if P sends, in phase 2, all proper square-roots that V already knew, then with
overwhelming probability the modulus has exactly only two prime factors.?®

Since V discloses the class of the known square-roots and gives a respective ZKPoK,
a honest P is ensured that by revealing those square-roots it does not give away any
new information to a possibly malicious V*. Since, after a successful phase 1, V knows
that each quadratic residue has square-roots in both classes, the ZKPoK of known vector
of square-roots is indeed ZK. Specifically, even if the modulus is not a Blum integer, in
case P* is malicious, multiplication by a random square-root class 0 is a permutation
within the group of elements class 0. This means that the square-root revealed after each
challenge is uniformly distributed over all residues of the known class, and thus does
not reveal information about which proper square-root (out of possibly several proper
square-roots) V knows.

Remark. From the point of view of correctness, it does not matter which odd
exponents are applied to each of the two prime factors. Still, from the point of view of
hiding the trapdoor, it is to the best interest of the party selecting the modulus that
the Blum integer is given by the simple product of two large primes with roughly the
same size (i.e., same number of bits). This is to make more difficult the factorization of
the integer by known methods, whose complexity increases with the size of the smallest
factor. Thus, a proof for general Blum integers is sufficient and adequate, even though
there are known proofs (more costly) to show that a certain integer is a Blum integer
composed simply as the product of two primes [TLLO3|.

Complexity. Both methods require P to compute square-roots, each of which can
be obtained after one exponentiation modulo each prime factor, and then applying the
Chinese remainder theorem. In terms of communication the methods differ.

The ask for known square-roots method as described requires, per round (i.e., per com-
ponent of the vector of challenges), the communication of 6 group elements, corresponding
to 2 for the ZKPoK of trapdoor, 1 square selected by V, 2 for the ZKPoK of square-roots
with consistent classes, and 1 square-root disclosed by P. By applying a RSC technique to
the ZKPoK of trapdoor, the overall (expected) number of communicated group-elements
can be reduced to only 4.5 per round.

The ask for (pseudo-)square-roots in random classes method as described requires
performing two-party coin-tossing to obtain enough random bits to extract, for each
round, one residue class 0, and sending, for each round, one group element (the square-
root or pseudo square-root). Even though a random element is in class 0 with probability
50%, any random element with class 1 can be converted to a random element with
class 0, after a simple multiplication by a fixed residue of class 1 (e.g., defined as the
shortest residue in class 1). If the coin tossing is done without random seeds, then each
party is required to exchange the equivalent to (an expected value of) one group element
per round, which overall in the protocol sums up to 3 group elements communicated per
round. However, for the simulability of this coin-tossing sub-protocol, only the simulated P
needs to be able to enforce the outcome. Thus, even though P has to send her contribution
without compression, V can simply send a commitment to a short seed and then open
the commitment to reveal the seed (e.g., see Fig. 7 but with reversed roles). Thus, overall
the number of communicated group-elements can be lowered to 2 per round.

26 Interestingly, this method has some forge-and-lose flavor — if P tries to cheat with a modulus with more than
two prime factors, then V learns at least part of the factorization.

Page 60/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

G Proof of Security

This section proves the security of the 1-output S2PC-with-BitComs protocol, within the
ideal /real simulation paradigm [Can00] (assuming rewinding capability). §G.1 defines
the ideal functionality of 1-output S2PC with commitments, intermediated by a trusted
third party (TTP), where only one party (Pg) learns a circuit output, and both parties
obtain random commitments of the input and output of both parties, and with each
party learning the decommitment to her own respective input and output. §G.2 describes
a simulator for the case of each possible malicious party, assuming it has rewindable
access to the malicious party in the real world and has the capability to delay message
delivery and abort executions in the ideal world. When the simulator plays the role of one
malicious party in the ideal world, it induces a joint probability distribution of outputs
in the ideal world that is indistinguishable from the respective distribution in the real
world. §G.3 has a proof of soundness of the output of a honest Pp against a malicious P’} .
This soundness property is used as argument in the description of the simulator. Across
this section, p is an index that can be replaced by A or B, and the following notation is
used: 131, denotes the honest party in the ideal world, ﬁ; denotes the malicious party in
the ideal world, P, denotes the honest party in the real world, P, denotes the malicious
party in the real world, P; denotes the party that is not P,.

G.1 Ideal functionality

In the ideal functionality, a TTP intermediates the communication between the two
parties (see Fig. 18). As part of the setup, it is assumed that the two original parties
and the TTP have agreed on the Boolean circuit that needs to be evaluated and on the
parameters of the commitment schemes (262). Each of the two parties has a private input
(263) and starts the ideal protocol by sending it to the TTP (264). The ordering between
the two messages is irrelevant, i.e., it does not matter which party sends the input in
first place. Then, the TTP computes the circuit output (265) and the commitments and
respective decommitments of the circuit inputs and circuit output ((266),(267),(268)).
Finally, the TTP sends the expected output first to P, (269) and then to Py (270). In
particular, P, learns the commitments and decommitments of her own circuit input, and
the commitments of the circuit input and circuit output of Pg. Respectively, Py learns
the commitments and decommitments of his own circuit input and circuit output, and
the commitments of the circuit input of Py.

If at any point, during the protocol execution, the TTP receives an ABORT message
from one party (271), then it relays it to the other party and exits the execution (272). If
a party, before finishing its execution in the protocol, receives an ABORT message from
the TTP (273) then it exits outputting FAIL (274). Thus, in this idealized version, a
malicious P, A 1s able to ﬁrst receive the output from the TTP and then decide whether
or not to prevent the ideal PB from receiving the respectlve output from the TTP. This
ability is not symmetric, in the sense that a malicious P is not able to do the same.

Remark. A different idealized version could be defined, in order that a malicious ideal
ﬁ*B could also learn his result and only then decide whether or not to prevent a honest
ideal P A from obtaining the respective result. For example, this could be achieved with
the TTP sending the outputs concurrently (instead of first to P, and only then to Pg),

and allowing the malicious ideal PB to delay the message delivery to p A, until deciding

Page 61/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Setup. Common input: TTP : <g3,g3> - (268)
Pa,Pp, TTP: C, CEy, €t (262) Send output to parties.
Private input of l?'p TTP — Py : (xA,TA),ZB,YB (269)
Py : xp, for p € {A, B} (263) TTP — Py :J’:A,<QB,:EB),<yB,QB,gB> (270)
Send inputs to TTP.
P, = TTP: x,, for p € {A, B} (264)
Concurrent process.
TTP local computation. .
TTP : If receiving L from Py, (271)
TTP :yp =C(za,2B) (265) .
s 5 then send L to Pp and exit (272)
TTP: (24,%4) +° Cyplral (266) TTP : If receiving L from TTP, (273)
TTP: (zp,2p) «* Goulza] (267) then output FAIL and exit (274)

Fig. 18: Ideal functionality of 1-output S2PC with committed inputs and out-
puts. Legend: l?’p (party in the ideal world, with p € {A, B}); C (Boolean circuit specification, implicitly
defining the domain of circuit-inputs and circuit-outputs of both parties); €7}, (unconditionally hiding commit-
ment scheme used to commit the private input and output of P5 — the scheme is labeled with the index p, in
order to match the notation used in the S2PC-with-BitComs protocol, where the trapdoor is known by Pp); P
(random sampling from domain -); =~ (commitment of -); - (decommitment, i.e., encoding necessary to reveal -).

whether or not to drop it. This version would be less restrictive regarding the DECIDE
UH-BirCoM PERMUTATIONS stage in the real world, so it is more interesting to show
that the protocol can achieve the more difficult version where Pa receives her output
first. In particular, it needs to be ensured that P, is the first to know the result of the
BitCom permutations, in the DECIDE UH-BITCoM PERMUTATIONS stage. Nonetheless,
in the case of some 2-output extensions of the protocol, with both parties receiving a
circuit output, it is natural to change the ideal functionality, either for P, to receive first
the output from the TTP (e.g., for 2-output via single-path execution, where only Pg
evaluates GCs), of for both parties to receive the output concurrently (e.g., for 2-output
via dual-path execution).

G.2 Simulators

Henceforth, S} is used to denote a simulator with black-box rewinding capable access to
a real and possibly malicious P}, and with access to play a single instance of an ideal

protocol while impersonating an ideal malicious ﬁp, with pause-play-stop capability over
the TTP. S; will be constructed such that the joint probability of views of the output of
both parties in the ideal world is indistinguishable from the respective joint probability
distribution in the real world, with P} being malicious, and with P, P; and TTP being
honest. The relation between the two worlds is illustrated in Fig. 19, for the case of S}.

Preliminary remarks.

— In typical C&C-GCs based protocols without BitComs, it is common, in the proof of
security against a malicious P, that the simulator S} extracts the input bits of P}
from the rewinding and replaying of several C&C phases. Usually, S} discovers the
underlying bit corresponding to the input keys received in the C&C verification stage,
and then uses the rewinding capability to receive some of those keys again but for
an evaluation stage, thus learning what are the bits of P. In contrast, in the proof
that follows the simulator extracts the input bits directly from the ZKPoKs associated
with decommitments of BitComs.

Page 62/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

External interaction (ideal world)

1 1 : :
i . i
r * 1 I A, iy 1
| Real world | Pa (Real& Py (Real & | | P (Ideal & TTP (Ideal P(Ideal & !
i interaction i Malicious) ! I Malicious) & Honest) Honest) |
1 1 [. 1
1 1 1 1 w 1
R TR o
i Honest) @ ! —> L Vo 4 Y e V4 !
: / _____ A N 20 A :
1 o ‘—*' Y3
BT AL
1 T Play Pause Stop
1 ”’,—’ ®® *
3 wow| Sts,

{Real[P}(x,),Py (x,)]} | rame sop {1deal[P(x,).B,(x,)]}

Simulator

Fig. 19: Ideal/real simulation. Example of simulator S}, used to prove security against a malicious

P, . The simulator S} controls an ideal (malicious) 132 interacting with a TTP in an ideal interaction, and having
pause, play and stop capability over the TTP, but without being able to rewind it (the suggestive terms mean
that S can delay message delivery and it can stop the execution by sending an ABORT message to the TTP).
The input xp of the ideal Pg is unknown to SA. As an auxiliary computation, S} makes an internal simulation of
a honest Pp interacting with a real malicious P} . S} has rewindable black-box access to P}; i.e., SA can rewind,
pause, play and abort interactions with P (the suggestive terms mean that S can fully control the time flow of
the simulation, forward and backward, including behaving differently when playing after some rewinding action).
In the beginning of the internal simulation, S} does not know the private input x4 of P}, but it may learn it
during the simulation, namely by exercising its rewinding power. The goal of the proof of security is to show that
the joint distributions of output are indistinguishable between the real and ideal worlds.

— In the proof of security, the remarks about a party aborting an execution are meant
to encompass both the acts of proactively aborting an execution (e.g., halting an
interaction) or of taking some other action that leads the other (honest) party to
abort. For example, it is implicitly considered that sending malformed messages (that
would not be accepted by the other party and would thus lead this other party to
abort, outputting FAIL) are considered a form of abort.

G.2.1 Simulator S’ for a malicious P’

1. Extract trapdoor and circuit input of P} . S} simulates a honest Py from the
beginning of the protocol, with a random input (of adequate length), interacting in
the real world with a malicious P’. As the simulation proceeds, if P} aborts on the
first time it reaches a new step of the protocol, then S} sends ABORT to the TTP

(thus leading the ideal Py to output FAIL), and the ideal ﬁz outputs whatever P}
outputs. Otherwise, if P}, does not abort in the first simulated execution until a certain
step, there is a non-negligible probability that it will also not abort during subsequent
attempts upon rewinding and retrying the simulation until such step. Thus, S} uses
the rewinding capability to extract the trapdoor of P} from the ZKPoK of trapdoor
(45), and extract the input bits (and respective encodings) of P from the ZKPoK of
equivalent decommitments of UB and UH BitComs (54).%” S} finishes this process in
an iteration for which P} does not abort the execution until the end of the PRODUCE
INITIAL BITCOMS stage.

27 If P4 has shown some willingness to participate in the protocol, by not aborting in the first attempt, then the
rewinding process can be done in expected polynomial time. Using a technique of estimating the probability
of abort, from [GK96], it is possible to ensure that the simulator runs in expected polynomial time, even in
cases where the probability of abort is neither negligible nor noticeable. For simplicity, this detail is ignored
henceforth, assuming that the probability estimation and respective modifications to the simulator are implicit
in the rewinding process whenever necessary.

Page 63/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

2. Begin coin-tossing of random group-element permutations. S} resumes the
interaction in the real world, through the CoMMIT and CHALLENGE stages and en-
tering the DECIDE UH-BITCOM PERMUTATIONS stage (Fig. 9), passing through the
step where P}, commits to her contribution (117) and where P} gives a respective
ZKAoK of known decommitment (118), but pausing immediately before Py would
send his contribution to P} (120). If P} aborts on the first attempted execution, e.g.,
failing to give a proper ZKAoK of known decommitment, then S, sends ABORT to

the TTP (thus leading the ideal Py to output FAIL), and the ideal ﬁz outputs in the
ideal world whatever P’ outputs in the real world. Otherwise, if the execution has
not aborted, S} uses the rewinding capability to learn the contribution of P} to the
coin-tossing sub-protocol.?®

3. Interact with the TTP. S}, impersonating the ideal ﬁA, sends to the TTP the
private circuit input z 4 of P}y. The TTP, which meanwhile also accepts the input from
the ideal ?B, computes locally the circuit output yp = C(z4,) and the BitComs of
all inputs and outputs, and the respective decommitments. Then, the TTP sends to
S (impersonating the ideal ﬁ*A) the BitComs of the input and output bits of Py, and
the BitComs and decommitments of the input bits of P S pauses the interaction
of the ideal world, before the TTP sends the respective output to ﬁB.

4. Enforce the BitCom values selected by the TTP.

(a) Determine necessary outcome of the coin-tossing sub-protocol.

— For each input wire of PA. S} has received from the TTP the final UH
BitCom and the respective final encoding corresponding to the input bit of
P’,. Furthermore, S}, had already extracted the initial encoding known by P}.
Thus, S}, multiplies the final encoding with the inverse of the initial encoding,
thus determining the group element (the random permutation, encoding of 0)
that the coin-tossing sub-protocol needs to output (for this wire).

— For each input wire of Pg. S} has received from the TTP only the final UH
BitCom (square), but not the respective decommitment (proper square-root).
However, since S}, has already extracted the trapdoor of P}, it can compute
the two respective proper square-roots (one of which is the final encoding that
the ideal Py will receive in case the ideal execution ends successfully). S} had
also already selected one initial encoding (as part of playing the role of Py with
a random input (47)). S} selects as final encoding the proper square-root (of
the square received by the TTP) that has the same class as the selected initial
encoding. Then, S determines the multiplier (encoding of 0) that leads the
initial encoding into the final encoding (by multiplying the final encoding with
the multiplicative inverse of the initial encoding) — this is the permutation that
the coin-tossing sub-protocol must output (for this wire).

— For each output wire of Pg. S} has received from the TTP only the final
UH BitCom (square), but not the respective decommitment (square-root). S}
multiplies the final UH BitCom with the multiplicative inverse of the initial
UH BitCom (previously received from P} (56)), thus obtaining the square of
what must be the permutation decided by the coin-tossing sub-protocol. Using
the trapdoor of P}, S} extracts the respective proper square-root encoding bit

%8 In the exemplified coin-tossing protocol (Fig. 9) (and respective instantiation based on El-Gamal encryption):
S extracts the decommitments after several rewindings of the respective ZKAoK (118) (respectively, obtains
the El-Gamal encryption key from a ZKPoK of discrete-log and uses it to decrypt the contributions of P}
from the respective El-Gamal encryptions that are serving as UB commitments (117)).

Page 64/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

0 — this is the permutation that the coin-tossing sub-protocol must output (for
this wire) .
Since the encodings selected by the T'TP are uniformly distributed across the group
elements of a certain class, in the respective groups, the permutation that leads
each initial encoding into the respective final encoding is also uniformly distributed
(within the group elements of class 0), regardless of the initial encodings being
uniformly random or not.

(b) Determine the contribution by Pg. Since S}, already knows the contribution
that P’ selected in the initial part of the coin-tossing sub-protocol, S}, determines
what needs to be the contribution of Py, in order for the outcome of the coin-tossing
sub-protocol to be the permutations (across all input and output wires) calculated
in the previous step. Since the intended permutations are uniformly distributed,
from within the set of all possible permutations, so is the contribution determined
by Si (impersonating Pg), regardless of the distribution used by P} to select her
contribution. Assuming, as described in §D, that each contribution is a vector of
group elements of class 0 (one group element per wire, in the respective group),
and the combination of both contributions corresponds to multiplying both group
elements, for each wire, then S} computes the contribution by Pg, for each wire,
as the product between the final permutation and the inverse of the contribution
of P.

(c) Continue coin-tossing of random group-element permutations. At this
point, P} in the real world is in the equivalent step of the ideal world in which ?Z
has already received her output from the TTP, but 1313 has not yet received his
output. S} resumes the DECIDE UH-BITCOM PERMUTATIONS stage, in the role
of Py, sending to P the calculated complementary contribution of Pg (119).

5. Finalize the execution. S} continues the interaction of the DECIDE UH-BirrCom
PERMUTATIONS stage and into the RESPOND stage, receiving from P’ all information
that a real Pg would receive. If P} aborts or if any verification related with the
VERIFY stage fails, then Py in the real world would output FAIL. In this case, S}

sends ABORT to the TTP (leading Py to also output FAIL), and ﬁz in the ideal world
outputs whatever P}, outputs in the real world. Otherwise, if the VERIFY stage is
successful, then S} resumes the ideal protocol execution, letting the TTP send the
output awaited by ISB. Finally, 132 in the ideal world outputs whatever P} outputs in
the real world.

Remark. With overwhelming probability, the joint probability distribution of the
outputs of the ideal parties (S} and Pp) is indistinguishable from the joint probability
distribution of the real parties, whenever the real honest Pp has the same circuit
input as the ideal Pg. A rare exception would be if the real Py could not compute
a correct final output, after arriving to the EVALUATE stage. However, this could
only happen with probability negligible in the number of challenges (in case P} acted
maliciously), as shown in the modular proof of soundness in §G.3 (and complemented
by the probability calculation in §A). In particular, it is shown that if Py accepts
the VERIFY stage, then there is a negligible probability (denoted soundness error
probability) that Pg fails to compute the correct output.

G.2.2 Simulator S; for a malicious P}

Page 65/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

1.

4.

29

Extract trapdoor and circuit input of Pg. Ipsis verbis to the description of S},
but interchanging the indices A and B, and extracting the circuit input from the
respective ZKPoK of decommitments (step 49, detailed in Fig. 13). At this point, the
real execution is paused at the end of the PRODUCE INITIAL BiTCOMS stage.

. Begin coin-tossing of random group-element permutations. S}; resumes the

interaction in the real world, through the CoMMIT and CHALLENGE stages and enter-
ing the DECIDE UH-BITCOM PERMUTATIONS stage, until the end of the step where
P, sends his contribution to P, (119), and immediately before P reveals the random
permutations resulting from combination of the contributions of the two parties (120)
(this would reveal to P§; what was the contribution of P,). If P} aborts on the first
attempted execution, then Sj sends ABORT to the TTP (thus leading the ideal P

to output FAIL), and the ideal ?; outputs in the ideal world whatever P} outputs in
the real world. Otherwise, if the execution has not aborted, then Sj; has learned the
contribution of Py, but P still does not know the contribution of P,.?

. Interact with the TTP. S in the role of the ideal ﬁ; sends to the TTP the private

circuit input of Pj (previously extracted). The TTP then computes and sends the
outputs to the respective parties. p A receives her output in first place, consisting only
of BitComs of all input and output bits, and decommitments of the input bits of Py;
i.e., it does not contain any circuit output bits. Then, S§; (in the role of the ideal
ﬁ*B) receives from the TTP the BitComs of the circuit input bits of P, the BitComs
and decommitments of the circuit input bits of IS*B (associated with the input bits
extracted and used by the real P}), and the circuit output bits of ?; and respective

BitComs and decommitments.
Enforce the BitCom values selected by the TTP.

(a) Determine necessary outcome of the coin-tossing sub-protocol. S}, com-
putes what needs to be the outcome permutations of the coin-tossing sub-protocol,
so that the initial BitComs (and respective decommitments) are transformed into
the final BitComs (and respective decommitments) decided by the TTP in the
ideal world. This is accomplished similarly to how S} did it in the respective part
of the simulation, but making the necessary adjustments. Specifically for the input
wires of Py, Si has received from the TTP only the UH BitComs, but not the
respective encodings, so it needs to make use of the trapdoor of Pf to compute
proper square-roots. For the input and output wires of Pg the procedure is easier,
involving only computing multiplications and multiplicative inverses, because .

(b) Determine the contribution by P4. Sj; computes what needs to be the con-
tribution of P, in the real world, such that the combination with the contribution
of P}, results in the intended permutations. This is accomplished in the same way
as Sy did it in the respective part of the simulation.

(c) Continue coin-tossing of random group-element permutations. Sy then
resumes the DECIDE UH-BiTCoM PERMUTATIONS stage, taking advantage of the

This is a crucial point of the simulation. On one hand, S§ already has the capability to influence the result

of the coin tossing, because it knows the contribution of Pg and because it can use the rewinding capability
to make Pp accept any (false) final result of the coin tossing. On the other hand, S§ does not yet know what
values the TTP will choose. In this situation, it is specially delicate the fact that the TTP sends the output
first to P and only then to Pp. In particular, once S (impersonating the ideal f’*B) receives the output from
the TTP, the simulation must guarantee that Pa in the real world receives the respective output, even if P}
misbehaves. However, since Pa still has to interact with P%, it becomes defined that Pa outputs the final
BitComs even if P decides to abort the execution after this point (e.g., by ignoring the messages sent by Pa).

Page 66/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

simulability of the coin-tossing to convince P} to accept a (fake) final permutation
equal to the one selected by the TTP.*"

If P§ aborts at some point in this process, then the real P, would not abort. Instead,
a real P, would output the final encodings of his input bits, and the final UH BitComs
of the input and output bits of both parties, resulting from applying the permutations
obtained from the coin-tossing protocol (120) (and respective squares) to the initial
encodings and BitComs, respectively ((109), (110)). This is consistent with the ideal
IS*A having already received her output from the TTP. Conversely, if P§ behaved in a
valid way, then at this point a real P, would simply send more messages to Pg and
finish the interaction with a valid output, with no more room for Py to affect the
outcome of P,. However, Sy still has to rewind.

5. Produce new GCs. S rewinds the execution until the moment, in the ComMmIT
stage of the protocol, where the GCs and connectors are built. For the indices previ-
ously selected for evaluation (in the CHALLENGE stage), Si; builds new GCs with the
same topological position of garbled gates and wires, but with the circuit computing
the constant function that outputs the circuit output ﬁ*B received from the TTP.3!
For the remaining indices, S§ reuses the same GCs and connectors. Then, using the
rewinding capability, Sy, forces the coin-tossing that decides the C&C vector of chal-
lenges to lead to the same outcome Since the new evaluation GCs (and respective)
connectors are indistinguishable from the correct GCs, the simulator can use the
rewinding capability repeatedly until the protocol reaches again the end of the DECIDE
UH-BirCoM PERMUTATIONS stage, after having enforced the same C&C partition
as in the first execution, but now having built incorrect elements for the evaluation
challenges.

6. Finalize the execution. Subsequently, S (still impersonating P) sends to Py all
the responses of the RESPOND stage, namely with the connectors of wires of P being
related with the simulated random input (of adequate length) of P,. Finally, S; lets
13; in the ideal world output whatever Pf; outputs in the real world. In particular, if
P}, decides to do a correct evaluation of GCs and connectors, it will obtain a circuit
output consistent with the what the TTP has determined in the ideal world.

G.2.3 Additional remarks

On the hiding property of garbled gates. In the description of the simulator (Sg)
for the case of a malicious P}, it was assumed that garbled gates hide the underlying
Boolean gate. This allowed Sj (in the role of Py) to construct fake GCs that computed
a constant function, without P} being able to distinguish them from correct GCs — this
is a common proof technique for GC based protocols (e.g., see [LP09]). It is now shown
why and how the hiding assumption of the garbled gates may be relaxed.

One conceivable example of garbling scheme that does not satisfy the mentioned
assumption is one that produces GCs with verifiable correctness. This verifiable property

30 In the exemplified coin-tossing protocol (Fig. 9), S would send to P} the vector of final group elements (120),
and then, in the next step, would use the rewinding capability to make P accept the false ZKA (123) that the
revealed outcome is consistent with the contributions committed by Pa and contributions sent by Pg. In the
suggested instantiation based on El-Gamal encryption, this would correspond to use the rewinding capability
to maliciously succeed in ZKPs of Diffie-Helman tuples.

31 This is a common proof technique (e.g., see [LP09]), assuming the GC hides the underlying Boolean circuit.
As explained in §G.2.3, it is possible to prove security under a weaker assumption, namely that the learned
keys hide the underlying bits, even though each garbled gate may reveal the underlying Boolean operation.

Page 67/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

would not, on its own, resolve all security problems (e.g., selective failure attack related
with the input bits of Pg), but it could be seen as a security upgrade. For example,
it would prevent a malicious P} from making Pp accept the output of the evaluation
of a Boolean circuit different from what was agreed, despite potential problems still
related with P} giving incorrect input keys to Pg. Another conceivable example is a
GC that discloses some information about the underlying Boolean gates, but does not
guarantee their correctness. More specifically, it could be that each garbled gate could be
verified for the fact that either: it is a correct garbling of the intended Boolean gate; or
it simply cannot be degarbled (e.g., it would output an ERROR symbol if evaluated with
an incorrect ley). In this later example, the selective failure attack could be applied also
at the intermediate wire level, but P’y would still be prevented from making Py learn the
result of evaluating a different Boolean circuit.

This possibly-desirable verifiability property of GCs (i.e., that the garbled gates have
the correct underlying Boolean operation) would prevent making the assumption (in the
proof of security) of indistinguishability with GCs that compute a constant function. This
is not a problem to the S2PC-with-BitComs protocol defined in this paper, because it is
possible to relax the assumption of the hiding property of garbled gates, to assuming that
the output keys of the garbled gates (also including the circuit output keys) do not reveal
the respective underlying bits. It is worth emphasizing that now it must be assumed
that the circuit output keys do not directly reveal their output keys (in evaluation GCs),
whereas previously it could be exceptionally allowed that the circuit output keys could
reveal the underlying bit. In the new proof of security, the simulator Si simply embeds the
necessary fakeness in the output connectors, leaving all the GCs unchanged and correct.
For each output wire, the fake widgets lead both output keys into the same output bit
encoding (inner encoding). In particular, each widget can be a short ciphertext, resulting
from encrypting a short seed (using the respective circuit output key as encryption key).
By having the two widgets of each wire be a pair of two different ciphertexts encrypting
the same seed, it would be guaranteed that the two different circuit output keys would
lead into the same inner encoding (a group element resulting from a pseudo-random
expansion of the seed).

Simulators for the optimized 1-outut protocol. Simulability also holds in the de-
scribed optimized protocol. In the optimization allowing short UH BitComs of P4 (§E.2),
security derives from the properties of the added ZKPoKs and (in terms of simulability)
from the fact that the new elements related with short BitComs do not belong to the
output of a honest party. In the RSC technique (§E.1), the only significant changes of
information flow in the protocol occur in the COMMIT and RESPOND stages, but without
interfering with the logic of the explained simulators. Thus, it is possible to have a proof
of security of the optimized protocol somewhat similar to the one described for the non-
optimized protocol. Still, it is interesting to notice that a certain instantiation of the RSC
commitments allows a proof of security somewhat changed, namely with a simulator Sg
that does not need to rewind in the COMMIT stage to rebuild GCs when interacting with
a malicious Pf. First, for simplicity it is assumed that the several RSC commitments
sent in the COMMIT stage are replaced by a single short RSC UH commitment, based
on the UH-BitCom scheme with trapdoor known by Pg. For example, the commitment
functionality could first apply a collision resistant hash, and then each of the output bits
of the hash would be committed by an UH BitCom. In this case, in the COMMIT stage
the simulator S would just send random squares (one for each bit of the hash output),

Page 68/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

before even building the GCs and connectors. This vector of squares would be the RSC
commitment. Then, once the parties reach the RESPOND stage, S;; (in the role of Py)
simply sends (to Pg) random RSC seeds for verification challenges, and fake GCs and
associated connectors for evaluation challenges. Then, Si expands the RSC seeds into
verification GCs and associated connectors, joins in the elements associated with evalu-
ation challenges, computes the hash of all these elements Finally, S; uses the trapdoor
(previously extracted from Pj) to decommit this hash output from the respective RSC
commitment. Interestingly, in this case S; does not even have to be able to anticipate
the outcome of the C&C challenge vector, which means the respective coin-tossing could
also be simpler.

Simulators for 2-output extensions. This paper has not given a full description of
protocol extensions that achieve 2-circuit-output functionalities, but has hinted on how
to achieved them, via single-path and via dual-path execution approaches. There are
corresponding adjustments needed to accomplish the respective proofs of security.

— Non-fair 2-output via single-path. The ideal functionality is changed so that the
TTP sends the output first to Pg (the GC evaluator) and only then to P,. Corre-
spondingly, the role of the parties in the DECIDE UH-BITCOM PERMUTATIONS stage
is exchanged, and the stage is partitioned in two parts, such that P, only learns the
permutations after Py has learned his own S2PC protocol output (i.e., circuit output,
encodings and UH BitComs).

— Non-fair 2-output via dual-path. The ideal functionality is changed so that the
TTP sends the output concurrently to both parties.

— Fair 2-output. The ideal functionality is extended to consider the gradual release
stage (e.g., see the resource fairness of the commit-prove-fair-open functionality pro-
posed in [GMPYO06]). There are several options to consider in terms of ideal function-
ality, namely whether the fair delivery is related only with circuit outputs, or also
with their commitments and decommitments. Interestingly, the instantiation based
on Blum integers considered for the S2PC-with-BitComs protocol is naturally suited
to known protocols of gradual release. Thus, an extension for fair 2-output can be set
to correspond essentially to adding the gradual release of a single group element, for
each party.

G.3 Soundness against P

Soundness against a malicious P is only a partial aspect of security, but its isolated
proof helps focusing on specific aspects of the statistical nature of the C&C challenges.
To complete the argument given in the last step of the simulator S}, it needs to be proven
that a malicious P}, cannot make a honest Py accept an incorrect final circuit output,
unless perhaps with a negligible probability in the security parameters. If Py detects
malicious behavior from P, and aborts safely without jeopardizing its own security, then
the FAIL output of Py is considered correct. For example, Pg cannot prevent a malicious
PA from aborting the execution of the protocol, not even in the ideal functionality, so the
FAIL is not accounted as incorrect. Given that BitComs are part of the output, soundness
also requires that Py only accepts the BitComs of P, if P, indeed knows the respective
decommitments. This is verified directly from the ZKPoK of equivalent decommitments
between the UH and UB BitComs of the input bits of P, (see Fig. 15), so henceforth it
is simply assume that indeed P, commits correctly to a single sequence of input bits.

Page 69/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

Preliminary definitions

— Incorrect element. An element is said to be incorrectly generated only if it does not
satisfy the prescribed relations with other elements. Conversely, an element is said to
be correct even if its generation is deviated from the protocol specification by at most
the usage of different probability distributions for sampling of related elements, but
the sampling domains are correct and all deterministic transformations are preserved
as prescribed. For example, a BitCom value is correct if the generator of the BitCom
knows a valid decommitment, even if it was not selected uniformly at random.

— Complainable inconsistency. In a selective failure type-of-attack [MF06; KS06|, a ma-
licious P’ induces a certain error whose activation depends on the private input or
output of Py (or even of a certain bit value in an intermediate wire of the circuit).
If special caution is not taken, then either: the detection by P} of the predicate of
activation vs. non-activation may lead to a breach of privacy of Pg; or the avoidance
of complaining (to protect privacy) in case of unsuccessful evaluation may lead to a
breach of soundness. An inconsistency detected by a honest Py is said to be complain-
able if Py is able to inform (i.e., complain to) P, about the inconsistency without
jeopardizing the security of the protocol. Even though complaining has not been made
explicit in the 1-output protocol, complainability is still an important aspect to con-
sider when envisioning applications that consider linked S2PC executions.

— Forged elements. An incorrect but successfully verified element is called a forgery.
Henceforth, forgeries are distinguished in two types: (i) a response that would be
accepted by Pg in the VERIFY stage, even though it would be incorrect from the
point of view of the specification of the RESPOND stage — it is shown ahead that such
responses cannot be built, except with negligible probability in the cryptographic
security parameter; (ii) an element that would be detected as incorrect in the VERIFY
stage, but is instead selected for ewvaluation and for that reason is not detected as
incorrect during the EVALUATE stage — it is shown ahead that, even though these
elements can be built, they cannot affect the output of Py, except with negligible
probability in the statistical security parameter.

Sketch. In the S2PC-with-BitComs protocol, all inconsistencies found up to the end of
the VERIFY stage are complainable, even if referring to evaluation indices. Conversely, all
inconsistencies found in the EVALUATE stage are non-complainable, and actually at this
point there is no more interaction between the parties (except perhaps in the context of
a broader protocol, e.g, with linked executions). The proof of soundness is accomplished
in three steps:

1. First, it is shown in §G.3.1 that if the elements (GCs and connectors) sent in the
COMMIT stage are incorrect and become associated with verification challenges, then
they cannot withstand the VERIFY stage (i.e., they are detected as incorrect and Pg
safely aborts), unless P, breaks the cryptographic assumptions in the responses that
it gives in the RESPOND stage.

2. Then, it is shown in §G.3.2 that P} is not able to produce a non-complainable bad
response respective to a good GC and connectors, except again if it could break the
cryptographic assumptions. In other words, if for a certain challenge index P}, has
acted honestly in the COMMIT stage, then P} is not able to produce undetectably
incorrect responses in the revealing for evaluation of the respective connector.

Page 70/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

3. Finally, it is observed in §G.3.3 that Py is able to determine a correct output if at
least one GC and respective connectors lead Py to obtain a correct output (i.e., de-
commitments of the respective output BitComs, encoding the correct output bits)
EVALUATE stage. Thus, soundness can be broken only if P} produces incorrect ele-
ments (GCs and associated connectors) in all the indices that will be associated with
verification challenges, and correct elements for all the remaining indices. §A shows
that the probability of this event is negligible in the overall number of GCs, for several
C&C partitioning methods.

G.3.1 Incorrect GCs and connectors. A possible strategy by a mailcious P7 is to
somehow build incorrect GCs and connectors (i.e., built inconsistently with the specifica-
tion of the COMMIT stage) capable of leading to inconsistencies in the final output bits
of Pg. To cause damage in the output of Pg, the incorrect elements must necessarily be
associated with evaluation indices, as only this type of challenge contributes to the com-
putation of the final circuit-output-bits. Below, it is shown that such incorrect elements
would always be detected if they were instead associated with a verification index.

— GCs. By assumption, the garbling scheme used to produce GCs (57) allows them to
be fully verified, once two correct keys are known per circuit input wire (and possibly
some additional revealed randomness) ((83) and (84)). Thus, any incorrect GC can be
detected if selected for verification. Henceforth it is assumed that the GCs are correct.

— Connectors for input wires of Pa. (Review Fig. 4.) In the CoMMIT stage, the
elements related with each input wire of P, are: one inner square (committing a
permuted input bit) (61); and a respectively permuted pair of commitments of the
two input keys (64). In the RESPOND stage, Pa is supposed, for the revealing for
verification mode, to show the pair of circuit input keys and the multiplier (which
encodes the permutation bit) (73). First, given the assumed binding properties of
the commitment scheme used to commit input wire keys, P, cannot lie about the
pair of input keys that have been committed. Upon these keys being revealed, (along
with the others for input wires of Pg), Pg can verify that the GC was correctly
built, and determine the bits underlying each input key, thus knowing how the pair of
commitments was permuted. Second, the square of the multiplier must lead the initial
UH BitCom of input bit into the respective inner square (square of the encoding of
the permuted bit) (78). By the properties of the UH-BitCom scheme, P} could not
known another multiplier (proper square-root) encoding the other bit, or otherwise it
would have found the trapdoor of the BitCom scheme. Py verifies that the bit encoded
by the revealed multiplier is indeed the permutation bit (79) with which the pair of
key-committed was permuted. In conclusion, if the connectors of input wires of Py
were not correctly generated (e.g., the committed keys were incorrect or permuted
inconsistently with in respect to the committed permuted bit), they will not pass the
verification associated with the reveal for verification mode.

— Connectors for input wires of Pg. (Review Fig. 5.) In the CoMMIT stage, the
elements related with each input wire of Py are two independent inner squares (69)
that serve as one-way commitments of independent inner encodings of bits 0 and 1
(i.e., proper square-roots in classes 0 and 1), respectively. Possibly, there may also be
additional elements (widgets) that convert the respective (still hidden) inner encodings
into the respective (still hidden) circuit input keys (66). In the RESPOND stage, Py
is supposed, for the revealing for verification mode, to reveal an ordered pair of inner

Page 71/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

encodings of (proper square-roots in class) 0 and 1, respectively for the first and
second inner squares (74). Even though in this case Po knows the trapdoor of the
UH-BitCom scheme, the scheme is actually being used as an UB commitment scheme
to the respective inner encodings (by definition each square only has one proper square-
root in each class). Thus, P, must reply correctly, or otherwise Py will output FAIL
in the VERIFY stage, when verifying the encoded bits and the square of the encodings
(81). The circuit input keys are thus determined (eventually using widgets) by Pg.
With two keys per input wire, Pg can verify the correctness of the GC, verifying that
the keys are indeed correct and have internal bits consistent with 0 and 1 ((83), (84)).
Thus, to pass a verification associated with the reveal for verification mode, P must
have committed correctly to the connectors related with input wires of Pg.

— Connectors for output wires of Pg. (Review Fig. 6.) In the COMMIT stage, the
elements related with each output wire of Py are two independent inner squares (69),
serving as one-way commitments of independent inner encodings of bits 0 and 1,
respectively. Possibly, there might also exist widgets to help convert circuit output
keys (yet unknown by Pg) into the respective inner encodings (also yet unknown by
Pg) (68). The verification of GCs using two keys per input wire leads Py to obtain all
possible output keys and learn their respective underlying bits (85). In the RESPOND
stage, Py is supposed, for the revealing for verification mode, (Possibly using widgets,)
P, is thus able to compute the candidate pairs of inner encodings (86), which should
encode bits 0 and 1, in respective order, and whose square should be equal to the
pairs of inner squares (87). Thus, to pass a verification associated with the reveal
for verification mode, P, must have committed correctly the connectors related with
output wires of Pg.

G.3.2 Correct GCs and connectors. In the COMMIT stage, P sends one GC and
respective connectors for each C&C index. If an index is selected for evaluation, then
Pa needs to send, in the RESPOND stage, the elements that correspond to the revealing
for evaluation phase of the connectors. Even for evaluation challenges, Py performs a
verification associated with the reveal for evaluation mode of the connectors. It is now
shown that if the GCs and connectors for a particular C&C index would have been
validated by a werification challenge (i.e., if they were correct), then P’ is not capable
of forging a response for an evaluation challenge. It is not being claimed that this would
also be the case if the GC or respective connectors sent in the COMMIT stage were flawed
from the beginning in a way that would not be validated by a wverification challenge. The
properties of forgeries are now examined:

— Input wires of Pa. (Review Fig. 4.) For evaluation indices, PA reveals the inner
encoding of the permuted bit (75) and decommits the input key from the respective
position of the permuted pair of commitments (76).

e Forged permuted bit. Since it is assumed that the inner square is correct, the
only possibility left for forgery related with the permuted bit would be for P, to
reveal an inner encoding of the complementary of the permuted bit. However, since
it is being assumed that this GC and associated connectors would be validated if
selected for a wverification challenge, it must be the case that P, would already
be able to reply the inner encoding corresponding to the correct permuted bit.
Thus, to forge the output, Po would have to be able to break the binding property
of the UH-BitCom scheme, finding a pair of non-trivially correlated square-roots.
Henceforth it is assumed that P, reveals the correct inner encoding.

Page 72/75

S2PC with Reusable BitComs, via a C&C with FEL technique (Technical report 2013-09-11)

e Forged circuit input key. Since it is assumed that the connector would pass
the verification test, it follows that the key-commitments are correct. As described
above, it is now assumed also that the revealed permuted bit is correct. Thus, the
only possibility of forgery would be for P to reveal a different (incorrect) key that
verifies well against the key-commitment (89). However, this would mean breaking
the collision resistance (i.e., the binding property) of the commitment scheme.

Thus, if the GC and associated connectors would withstand a verification challenge,
P} is bound to respond correctly for the input wires of Py, or else be detected in a
complainable condition.

— Input wires of Pg. (Review Fig. 5.) In the COMMIT stage, P, has sent two indepen-
dent inner squares (in ordered position), for each input wire of Py (69) (here assumed
to be correct). In the RESPOND stage, for each possible bit value, P, is supposed to
reveal a multiplier (which encodes 0) (77) that leads the outer encoding of the bit
(i.e., the decommitment of the input UH BitCom) into the respective independent
inner encoding of the bit (a proper square-root of the respective inner square). For
each possible bit value in each input wire, there is only one multiplier (proper square-
root in the respective class), and its correctness can be homomorphically verified even
without knowing any decommitment of the input BitCom. Thus, it is not possible for
P\ to build forged multipliers for input wires of Pg. Furthermore, it is being assumed
that the elements sent in the COMMIT stage are all correct, the revealed multipliers
allow Py to obtain one correct input key per input wire of Pg.

— Output wires of Pg. (Review Fig. 6.) By assumption, the GC is correct and the
obtained circuit input keys are correct. Thus, Py is able to evaluate the GC to obtain
one correct key per circuit output wire (96). Possibly with the help of (also assumed to
be correct) widgets, Py can find one inner encoding for only one of the two independent
squares (97) (also assumed to be correct) that was sent by P, in the COMMIT stage
(69). Thus, the only possible forgery would be for P}, to reveal, in the RESPOND stage,
incorrect multipliers. However, there is only one correct multiplier per bit value per
output wire, and its correctness can be verified homomorphically, even without Py
knowing the respective inner encodings of the output wire, independent of the final
circuit output bit of Pg.

G.3.3 Decision of final output. Above, it was shown that incorrect commitments
(GCs and associated connectors produced in the COMMIT stage) are detected as incorrect
if they become associated with wverification challenges, and that correct commitments
either lead to a correct output (if the responses from the RESPOND are correct) or allow
detection of incorrect responses. Thus, to lead Pg into accepting an incorrect output,
Pg needs to produce incorrect commitments, and be lucky that none becomes associated
with a verification challenge. Then, in order for the bad indices selected for evaluation
to be validated by the reveal for evaluation mode, they need to lead Py to find one
valid decommitment of the UH BitCom of each output bit. Furthermore, by combining
an undetected incorrect output with a correct output it is always possible to obtain the
trapdoor of P} (a pair of different decommitments to the same output BitCom; i.e., a
pair of non-trivially correlated square-roots of the same square), and thus activate the
forge-and-lose evaluation path to obtain a correct final output. Thus, the only way that
Pa has to lead Py to accept an incorrect output is to guess in advance exactly what
indices will be selected for evaluation and then build incorrect elements for all these and

Page 73/75

S2PC with Reusable BitComs, via a C&C with FEL technique

(Technical report 2013-09-11)

only for these indices. As shown in §A, there is a negligible probability of such guess being
correct, for practical C&C partition methods.

H Notation

Acronyms

AES: advanced encryption standard
BitCom: bit commitment

C&C: cut-and-choose

GC: garbled circuit

JS: Jacobi symbol

NAND: (bit-wise) Negated AND operation
OT: oblivious transfer

RSC: random seed checking

S2PC: secure two-party computation
SHA: secure hash algorithm

TTP: trusted third party

UB: unconditionally binding

UH: unconditionally hiding

XOR: (bit-wise) eXclusive OR operation (i.e., sum
modulo 2)

ZK: zero-knowledge

ZKA: ZK argument

ZKP: ZK proof (or generically meaning “ZKP or
ZKA”)

ZKAoK: ZKA of knowledge

ZKPoK: ZKP of knowledge

Diverse symbols

P (party A — the GC constructor)
Pg (party B — the GC evaluator)
p (index denoting the party: p € {A, B})
zp(input of P, in the ideal functionality)
yp (output of Pp, in the ideal functionality)
b (bit value)

¢ (bit index; e.g., underlying bit of key &] bit en-
coded by group element p(®), position of COmmlt—
ment k49 in a pair, bit associated with a multiplier
5](01)6 class 0 of an input or output wire of Pg)
¢j,i (tentative output bit value in wire ¢ of GC j,
correct if Pao was honest)

€® - (the value appearing at the left of the symbol
occurs at least a times in the vector that appears
on the right side of the symbol, e.g., 0 € (0, 1,0)
and 1 €2 (1,1,0,1))
g (greater than, or approximately equal)
% (percent)

< (less than, or approximately equal)
@ (XOR operatlon)

Symbols about C€C challenges

s (total number of C&C challenges)

e,v (number of evaluation, verification challenges)
b g (number of bad, good indices)

j (index of challenge, often associated with a GC)
JE (subset of indices selected for evaluation)

Jv (subset of indices selected for verification)
Jignore (subset of indices ignored during the evalu-
ation stage of the protocol, upon being detected as
incorrect)

[s] (set {1,...,s})

@ (empty set)

Symbols about groups

G (group-set)
* (group-operation, in multiplicative notation)

("), (identification that element inside parenthesis
belongs to group Gy, i.e., for which P, knows the
respective trapdoor)

()12j (square of the element inside parenthesis, in
group Gp)

J-! (multiplicative inverse of the element inside
p
parenthesis, in group G,)

7 (permutation bit ,used to permute input bits of
Pa)

h (group homomorphism onto XOR)

h™'(b) (subset of G, containing the encodings of
bit b used as decommitments in an UH-BitCom
scheme)

U’ (UB BitCom of an input bit of Pa)
U (encoding used to generate U')

tp (trapdoor associated with G, known by party
Py)
#(-) (size of set -)

SQRT [t]g’) (z) (using trapdoor ¢ to compute a
square-root class b of z, in group G,, for p €
{A,B})

NTSQRT1, (non-trivial square-root of 1, in Gp)

Encodings in an UH-BitCom scheme.

« (multiplier in Gg, encoding of permutation
bit , used for input wires of P4)

e [(multiplier in G4, encoding of bit 0, used for
input and output wires of Pg)

e 7 (encoding of 0, used to permute another en-
coding)

e 4 (initial encoding of input or output bit, be-
fore the final random permutation)

e v (inner encoding, used in connectors)

e u,v (tentative encodings of u and v, respec-
tively, correct if Po was honest)

e o (final encoding of input or output bit, after
the final random permutation)

o B, 1, v, o' (squares of the respective encod-
ings)

Page 74/75

S2PC with Reusable BitComs, via a C&C with FEL technique

Symbols about circuits

C' (Boolean circuit specification)

GCiuild; GClval, GCverity (algorithms for building,
evaluating and verifying GCs)

¢ (commitment used to commit wire-keys)

W (widget that converts group elements into wire
keys, or vice-versa)

€(-) (function that reveals the bit underlying a cir-
cuit output wire key)

i (index of wire)

I, (set of indices of input wires of Pp)

I4,B (set of indices of input wires of Ps and Pg)
I, (set of indices of input wires of P)

InKeys (expression denoting a set of input keys)
InKeys;l), InKeys§-2> (congregations of 1 or 2, re-
spectively, input key(s) per input wire of GC})
10, (set of indices of input and output wires of P,)
IOkeys (same as InKeys, but referring to input and
output keys)

j (challenge index, often used as GC index)

k (wire key — circuit input wire or circuit output
wire)

k (commitment of a wire key)

k (randomness required to verify a decommitment
of a wire key)

ke (key associated with position ¢ in a pair of
keys)

k¥l (key with underlying bit c)

O, (set of indices of output wires of P,)

Oa,B (set of indices of output wires of Ps and Pg)
OutKeys (same as InKeys, but referring only to
output keys)

List of Figures

(Technical report 2013-09-11)

— £ (tentative value of a wire key, correct if Pao was

honest)

— r; (randomness possibly required to verify the cor-

rectness of a GC)

Symbols about protocols

ALGS (algorithms and sub-protocols implicitly de-
fined)

P, : - (Pp makes computation -)

P, — P5: - (Pp sends message - to Pj)

P, <> P5: - (Pp and P interact to obtain -)

Py(a) <> P3(b) : Prot(c) (Protocol between P, and
Pp, where P, has private input a, and P has pri-
vate input b, and ¢ is a common input. For example,
this notation is used for ZKPs, in Figs. 8, 9 and 10)
+*% . (random sampling from domain -)

(z,Z) «* €[z] (computation of a probabilistic com-
mitment of z, returning a public part & — the com-
mitment per se — and a private part — the decom-
mitment shown when revealing x)

1 (ABORT symbol)

GVerity (€y, x, x,T) (verify correctness of decommit-
ment (z, z), against the commitment Z, when using
commitment scheme €.

k (cryptographic security parameter, also expressed
as 17)

s’ (statistical security parameter, also expressed as
1)

[s'] (set {1,...,s}, used as the set of challenge in-
dices in ZKPs)

1 S2PC with committed inputs and outputs. e 4
2 CONMECEOTS .« . ettt ettt e e e e e e e e e e e e e e e 10
3 Forge-and-lose 13
4 Scheme for input wires of Pa e e 25
5 Scheme for iInput wires of PBo 26
6 Scheme for output wires of Pr 27
7 Protocol — decide random cut-and-choose partition i 32
8 Protocol — 1-output S2PC-with-BitComst e 36
9 Protocol — fully simulatable coin tossing of a group element 39
10 Protocol — 1-output S2PC-with-BitComs (optimized) 45
11 Common legend for Tables 4 and 5t e e e 48
12 ZKPoK of non-trivial square-root of 1 52
13 ZKPoK of vector of Square-rootst e 52
14 ZKPoK of vector of square-roots consistent with vector of classes 53
15 ZKPoK of equivalent decommitments of different BitComs schemes.............. 54
16 ZKP of n-out-of-m square-roots class 0t e 55
17 ZKPoK of Blum integer trapdoorttt e 59
18 Ideal functionality of 1-output S2PC-with-commitments i, 62
19 Tdeal/real SIMUIAtION ottt e e e 63
List of Tables

1 Soundness error probability e 22
2 Number of GCs to achieve statistical security i 23
3 Communication complexity (analytic)ooiouiiiii 47
4 Communication in S2PC of AES-128 e 49
5 Communication in S2PC of SHA-256t e 50

Page 75/75

	S2PC with Reusable BitComs, via a Cut-and-Choose with Forge-and-Lose technique
	Abstract
	Index
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 Background
	2.1 C&C-GCs-based S2PC
	Garbled circuit approach
	Oblivious transfer
	Cut & Choose approach

	2.2 Bit Commitments
	Unconditionally hiding
	Unconditionally binding

	3 The BitCom approach
	3.1 Cut-and-choose stages
	3.2 Connectors
	Input wires of P_A
	Input wires of P_B
	Output wires of P_B

	4 The forge-and-lose technique
	5 Protocol 1-output S2PC-with-BitComs
	Stages
	0. Setup
	1. Produce initial BitComs
	2. Commit
	3. Challenge
	4. Decide UH-BitCom permutations
	5. Respond
	6. Verify
	7. Evaluate
	8. Apply BitCom permutations
	9. Final output

	6 Discussion
	6.1 Complexity
	6.2 Linked executions
	6.3 Security

	7 Related work
	7.1 Two other optimal C&C-GCs
	7.2 Other related work

	Acknowledgments
	References
	Appendix
	A Soundness error probability
	B Connectors
	B.1 Connectors-in-A
	B.2 Connectors-in-B
	B.3 Connectors-out-B

	C Protocol specification
	Stages
	0. Setup
	1. Produce initial BitComs
	2. Commit
	3. Challenge
	4. Decide UH-BitCom permutations
	5. Respond
	6. Verify
	7. Evaluate
	8. Apply BitCom permutations
	9. Final output

	D Random BitCom permutations
	E Optimizations and complexity
	E.1 Random Seed Checking
	E.2 Shorter UH BitComs of Pᴀ
	E.3 Description of optimized version
	0. Setup
	1. Produce initial BitComs
	2. Commit
	3. Challenge
	4. Decide UH-BitCom permutations
	5. Respond
	6. Verify
	7. Evaluate
	8. Apply BitCom permutations
	9. Final output

	E.4 Communication complexity

	F Zero Knowledge Proofs
	F.1 Several ZKPoKs
	ZKPoK_NTSQRT1
	ZKPoK_sqrts
	ZKPoK_sqrts-with-classes
	ZKPoK_equiv-decommitments
	ZKPoK_n/m-sqrts-class0

	F.2 Prove correct Blum Integer
	Properties of Blum integers
	Problems with non-Blum integers
	Protocols to prove correctness
	Complexity

	G Proof of Security
	G.1 Ideal functionality
	G.2 Simulators
	G.2.1 With malicious Pᴀ*
	G.2.2 With malicious Pʙ*
	G.2.3 Additional remarks

	G.3 Soundness against Pᴀ*
	G.3.1 Incorrect GCs and connectors
	G.3.2 Correct GCs and connectors
	G.3.3 Decision of final output

	H Notation
	List of Figures
	List of Tables

