
The Special Number Field Sieve in Fpn

Application to Pairing-Friendly Constructions

Antoine Joux1,2,3 and Cécile Pierrot2,4

1CryptoExperts
2Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM,

45 avenue des États-Unis, F-78035 Versailles Cedex, France

3Antoine.Joux@m4x.org
4Cecile.Pierrot@prism.uvsq.fr

September 9, 2013

Abstract In this paper, we study the discrete logarithm problem in finite fields
related to pairing-based curves. We start with a precise analysis of the state-of-the-art
algorithms for computing discrete logarithms that are suitable for finite fields related
to pairing-friendly constructions. To improve upon these algorithms, we extend the
Special Number Field Sieve to compute discrete logarithms in Fpn , where p has an
adequate sparse representation. Our improved algorithm works for the whole range of
applicability of the Number Field Sieve.

1 Introduction
Since its introduction, pairing-based cryptography has permitted the development of many
cryptographic schemes, including identity-based cryptographic primitives [BF03, SK03,
CC03, Pat02], short signature schemes [BLS04], or one-round three-way key exchange [Jou04].
Some of these schemes have already been deployed in the marketplace.

One very important challenge necessary for practical pairing-based cryptography is to
construct pairing-friendly curves suitable for efficient asymmetric schemes offering a high
security level and to estimate precisely their concrete security. This is not a simple task,
since it requires to construct a pairing-based curve, while balancing the complexities of the
various discrete logarithm algorithms that can be used. This challenge has been studied in
many articles such as [BLS03, KM05]. To evaluate the security of a given construction, the
traditional approach is to balance the complexity of square-root algorithms for computing
discrete logarithms in the relevant subgroup of the elliptic curve and an estimate of the
complexity of the Number Field Sieve (NFS) algorithm in the finite field where the pairing
takes its values. The complexity of solving the discrete logarithm problem in the finite
field in this context is usually estimated by using keysize tables such as [Nat03, LV01].

1

This approach makes an implicit assumption, namely it considers that the complexity of
NFS in the finite field is close to the complexity of factoring an integer of the same size. As
far as we know, this implicit assumption has not been checked in the relevant literature.

Our goals in this paper is twofold. First, we show that for current parameters of high-
security pairing-based cryptography, the implicit assumption is incorrect and that the
state-of-the-art algorithm for discrete logarithms in this case is the High-Degree variant
of the Number Field Sieve introduced in [JLSV06], whose complexity is higher than the
complexity of factoring. Second, we revisit discrete logarithm algorithms and show that,
thanks to the specific form of the characteristic of the field of definition of pairing-friendly
curves that appears with classical constructions, such as Barreto-Naehrig [BN05], it is
possible to devise improved algorithms by generalizing the Special Number Field Sieve
(SNFS) [Gor93, Sch08]. In truth, we go beyond this goal and present SNFS variations for
the whole range of finite fields covered by the NFS, assuming that the characteristic of the
field admits an adequate sparse representation.

This paper is organized as follows: in Sections 2 and 3 we make a short refresher on tools
and on the Number Field Sieve used in the medium prime case. We explain in Section 4
the state-of-the-art algorithm for discrete logarithms for pairing-based cryptography. In
Section 5 we develop our variation on the special index calculus algorithm for Fpn involved
in pairing-friendly constructions. The Section 6 gives finally a precise heuristic analysis of
the algorithm.

2 Tools and Notations
When dealing with index calculus algorithms, the complexity are usually expressed using
the following notation:

Lq(α, c) = exp
(
(c+ o(1))(log q)α(log log q)1−α

)
where α and c are constants such that 0 < α < 1 and c > 0 and log denotes natural
logarithm. The notation Lq(α) is also used when the constant c is not explicitly specified.
These functions arise from the probability for values to be smooth. More precisely, it
comes from the well-known theorem of Canfield, Erdös and Pomerance. Let us introduce
the quantity ψ(x, y) to denote the number of positive numbers up to x which are y-smooth.
Then log(ψ(x, y)/x) is close to:

− log x
log y

(
log

(log x
log y

))
.

In particular, when both x and y are given as Lq expressions, we have the following
theorem.

Theorem 2.1 (Canfield, Erdös, Pomerance). Let C ⊂ R4 be a compact set such that for
all (r, s, γ, δ) ∈ C one has γ > 0, δ > 0 and 0 < s < r < 1. Let P denote the probability
that a random positive integer below Lq(r, γ) splits into primes lower than Lq(s, δ). Then
we have:

P = Lq(r − s,−γ(r − s)/δ + o(1))

for q →∞, uniformly for (r, s, γ, δ) in C.

As often the case in articles studying index calculus algorithms, we also use the heuristic
generalization of Theorem 2.1 to the probability of smoothness of integers which are not
selected uniformly and to pairs of integers which are not independent.

2

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X ← θ1

X ← θ2

Figure 1: Commutative diagram for the algorithm of [JLSV06]

3 A Short Refresher on Discrete Logarithms in the Medium
Prime Case

Thoughout the rest of the paper, Q denotes the size of the finite field being considered,
i.e. Q = pn.

3.1 The p = LQ(lp, cp) Case, with 1/3 6 lp < 2/3
We first recall the Number Field Sieve variant proposed in [JLSV06] in the case where p =
LQ(lp, cp), with 1/3 < lp < 2/3. We extend afterwards the algorithm to the configuration
p = LQ(1/3, cp).

3.1.1 The lp 6= 1/3 Case

Setup

General setting. In order to compute discrete logarithms in Fpn , a degree n extension of
the base field Fp, we start by choosing two polynomials f1 and f2 in Z [X] with a common
root in Fpn . In other words, we choose f1 and f2 such that the greatest common divisor
of these two polynomials has an irreducible factor of degree n in Fp. As a consequence,
we can draw the commutative diagram in Figure 1.

Let Q [θ1] denote Q [X] /(f1(X)) and Q [θ2] denote Q [X] /(f2(X)), the two number
fields defined by f1 and f2, i.e. θ1 and θ2 are roots of these polynomials in C.

Choice of polynomials. In [JLSV06], f1 is chosen as a degree n polynomial, with small
coefficients and irreducible over Fp, while f2 is defined as the polynomial f1+p. To balance
the size of the norms computed during the algorithm, another approach is also mentioned.
This variant uses continued fractions and involves changing the polynomial selection such
that the coefficients of both polynomials are of the same size. One possibility is to choose
f1 such that at least one of its coefficients, let us say c, is of the order of√p. More precisely,
such that f1 = g+c ·h where g and h are polynomials with small coefficients. Since we can
write c ≡ a/b (mod p) with a and b also of the order of √p, we define f2 ≡ bf1 (mod p).
The coefficients of f2 are O(√p) instead of O(p). The key contribution of our variation of
the SNFS in Section 5 is to reduce the size of the coefficients that appear in f1 and f2.

3

Sieving

We then denote by t − 1 the degree1 of the polynomials which we are going to sieve on
and the two following bounds: A a sieve limit and B a smoothness bound. We consider
all t-uples of the form (a0, · · · , at−1) such that the norms of the a0 + · · · + at−1θ

t−1
1 and

a0 + · · ·+at−1θ
t−1
2 are both B-smooth. After some post-processing described in [JLSV06],

each such t-uple yields a linear equation between “logarithms of ideals” coming from both
number fields and belonging to the smoothness basis.

Linear Algebra

Once the sieving phase is complete, we solve the resulting sparse system of equations mod-
ulo pn−1, the cardinality of F∗pn , and recover logarithms of ideals in the smoothness basis.
To be more precise, the linear algebra is done modulo a large factor of this cardinality,
while small prime factors are considered separately, using a combination of Pollard’s rho
and Pohlig-Hellman algorithm.

Individual Discrete Logarithms

Once the sieving and the linear algebra phases have been performed, we know the log-
arithms of all the ideals in the smoothness basis. The important phase that remains is
the individual discrete logarithms phase which allows to compute the discrete logarithm
of an arbitrary element in the finite field. The approach proposed in [JLSV06] is based
on a “special-q” descent. In a nutshell, in order to compute the discrete logarithm of an
arbitrary element y of Fpn , represented as Fp [X] /(f1(X)), we search for a multiplicative
relation of the form z = yiXj for some i, j ∈ N. We expect z to satisfy the two properties:
if B′ = LQ(2/3, 1/31/3) and z̄ denotes the lift of z to the number field Q [θ1], the norm of
z̄ should be B′-smooth and squarefree. The second condition implies that only degree one
prime ideals will appear in the factorization of (z̄). This is required since only logarithms
of such ideals are computed during the sieving and linear algebra phases. After finding
such a z, we factor the principal ideal generated by z̄ into degree one prime ideals of small
norm. Some of them are not in the factor base (those whose norm is smaller than B′

but bigger than B). To compute the logarithm of such an ideal q we start a “special-q”
descent, progressively lowering the bound B′ until it reaches B. We finally backtrack to
recover the logarithm of z̄ and consequently the logarithm of y.

3.1.2 The p = LQ(1/3, cp) Case

Again, we sieve on polynomials of degree t − 1 and follow the phases described above.
However, the analysis of [JLSV06] no longer applies directly and we need to refine the
bound on norms to extend the analysis to this case.

A short analysis of the extended NFS

Let us recall that the parameters of the algorithm taking part in the analysis are the
extension degree n, the smoothness bound B, the degree t − 1 of the elements we are
sieving over and the bound A on the coefficients of these elements. We assume that we

1While this notation might seems awkward, it is in fact quite convenient, because a polynomial of degree
t − 1 gives dimension t to the sieving space.

4

can write:

n = 1
cp

(logQ
log logQ

)2/3
, t = ct

cp

(logQ
log logQ

)1/3
, At = LQ(1/3, cact), B = LQ(1/3, cb)

where ca, cb and ct will be determined later on.
The difference between the case p = LQ(1/3, cp) and the case p = LQ(lp, cp) with

1/3 < lp < 2/3 appears when computing the bound on the norms of polynomials. More
precisely, for each polynomial involved in the sieving, the two norms are easily bounded by
nttnAn and nttnAnpt respectively on the Q [θ1] and on the Q [θ2] side. When lp > 1/3, the
nttn term is negligible compared to An and pt and vanishes from the complexity analysis.
However, due to the size of t and n in the lp = 1/3 case, the tn term is no longer negligible.
This leads to an extra term in the product of the norms and yields a LQ(1/3) complexity
with a constant higher than (128/9)1/3.

We now improve the bound on these two norms in order to restore a complexity of
LQ(1/3, (128/9)1/3) in this extended case of NFS.

First, each norm can be expressed as the determinant of the Sylvester matrix M(fi, h)
of fi and h, with i = 1 or i = 2. Let mj,k represents the coefficient at the j-th row and
k-th column of M(fi, h). Using the formula:

detM(fi, h) =
∑

σj∈Sn+t

sign(σj)
n+t∏
k=1

mk,σj(k), (1)

we remark that the two norms are bounded by ΘAn and ΘAnpt respectively on the Q [θ1]
and on the Q [θ2] side, where Θ is the number of permutations of Sn+t leading to a non
zero product in (1). Kalkbrener gives a majoration of Θ in the second theorem of [Kal97].
With our notations this bound becomes: Θ 6

(n+t
n

)
·
(n+t−1

t

)
. Because of the following

inequalities:

(n+t
n

)
·
(n+t−1

t

)
= n

n+ t

((n+ t)!
n!t!

)2

≤ n

n+ t

((n+ 1) · · · (n+ t)
t!

)2

≤ n

n+ t

(
t∏
i=1

(n+ i)
i

)2

≤ n

n+ t

t∏
i=1

(
n

i
+ 1

)2

we obtain that Θ 6 (n + 1)2t. Hence the two norms are bounded by (n + 1)2tAn and
(n + 1)2tAnpt respectively. Due to the size of n and t in this case, we have (n + 1)2t ≈
LQ(1/3, 4ct/3cp) and thus the coefficient (n+ 1)2t is negligible (when Q tends to infinity)
compared to the LQ(2/3) contribution of An and pt. As a consequence, we recover the
two usual bounds so this allows us to continue with the same analysis of NFS as before.
We conclude that the asymptotic complexity of the extended NFS when lp = 1/3 is, also:

LQ(1/3, (128/9)1/3).

Yet the p = LQ(1/3, cp) case remains particular because we have to consider both
the extended version of the NFS algorithm and the Function Field Sieve algorithm (FFS)
from [JL06]. It is not our main point here to develop the analysis of this boundary

5

case in the FFS part but we need to know which algorithm gives the best asymptotic
complexity depending on the constant cp. The Figure 2 addresses this need by showing
how complexities vary with cp in this case. The intersection between the FFS and the
NFS approach is at cp = κ with κ = (16/9)1/3. It is also indicated which algorithm has
to be chosen in each case: the FFS algorithm when cp is smaller than κ, and the NFS
algorithm when cp is higher. This figure is the juxtaposition of two analyses: the NFS
analysis performed above and the FFS analysis from [JL06].

Figure 2: Asymptotic complexities at the p = LQ(1/3, cp) boundary case. The graph
represents the second constant c of the complexity LQ(1/3, c) as a function of cp.

3.2 The p = LQ(lp, cp) Case with 2/3 6 lp 6 1
In this case, we modify both settings and sieving phase. First, the choice of the polynomials
has to be changed, since the size of the coefficients of f2 is too high when f2 is defined as
f1 +p. In [JLSV06] the authors propose to select the polynomial f2 using lattice reduction.
We do not give details on this method since it does not affect our new algorithm developed
further. Besides, we also consider another sieving space. Indeed, we can collect enough
relations with a smaller sieving space than the one involved above. Setting t = 2 is
sufficient, thus we only sieve on linear polynomials. The linear algebra and the individual
discrete logarithms phases are left unchanged.

6

4 Applicable Discrete Logarithms for Pairing-Based Cryp-
tography

Constructing pairing-based elliptic curves with a high security level implies taking into
account the complexities of the various discrete logarithm algorithms that can be used.
The traditional approach is to balance the complexity of a generic algorithm for computing
discrete logarithms in the relevant subgroup of the elliptic curve and an estimate of the
complexity of the NFS algorithm in the finite field where the pairing takes its values. This
requires that √p = LQ(1/3, c), for some constant c. Equivalently, we have:

p = LQ(1/3, 2c). (2)

It is relevant to notice that this constraint imposed on curves give an indication on the
form of the characteristic p, and that this explicit form permits conversely to estimate
the actual complexity of computing discrete logarithms in the finite field considered. As
a consequence of (2), we consider the case discussed in section 3.1.2. To determine which
algorithm is applicable for computing discrete logarithms in FQ with p = LQ(1/3, 2c),
we have to evaluate the constant 2c. As said in the introduction, we notice that current
constructions select keys implicitly as if the complexity in the finite field was LQ(1/3, c)
with a constant c = (64/9)1/3. This leads to 2c ≈ 3.845998854, which is clearly higher than
the boundary point κ. This points out that the extended NFS is the algorithm applicable
here.

As a consequence, the actual choice of parameters and, in particular, the usual implicit
assumption that c = (64/9)1/3 are too pessimistic compared with the state-of-the-art. In
fact, the analysis of section 3.1.2 shows that, using the best currently known variant of the
Number Field Sieve algorithm, we have to choose c = (128/9)1/3. We still have 2c > κ.

5 SNFS Polynomials for Pairing-Based Finite Fields

5.1 Pairing-Based Finite Fields

Instead of proceeding as in Section 3 in the case of finite fields of general form we consider
now the specificity of finite fields obtained with some particular curves. In practice, pair-
ings require elliptic curves to be computationally very simple to use, and, often, not too
difficult to generate. With this aim, families of such curves are frequently characterized
by three simple polynomials, including P which defines after evaluation the characteristic
of Fpn where ϕ : E × E → Fpn is the pairing considered, E a particular curve in the
family and n its embedding degree. Several families have been proposed [FST10] and
most of them have in common to set P as a polynomial of small degree and with constant
coefficients. Until now, we consider the case of a particular family of curves where p the
characteristic of Fpn is given by the evaluation of such a polynomial. In other words, we
consider a family where p can be written as:

p = P (u),

with P a polynomial of small degree λ and small coefficients and u small compared to p.
We want to underline that λ is fixed beforehand and only depends on the family considered.
Thus λ does not depend on p. In the following subsection 5.2, we explain how to use this
sparse representation of p to lower the asymptotic heuristic complexity for the whole range
of finite fields covered by the NFS – see the complete analysis in Section 6.

7

5.2 Choice of Polynomials for the SNFS Algorithm

We explain now how to use the specific structure of the polynomials characterizing pairing-
friendly curves. Only a slight change has to be made in the algorithm described above:
it concerns the choice of the two polynomials f1 and f2. We choose f1 as an irreducible
polynomial over Fp, with degree equals to n, such as:

f1(X) = Xn +R(X)− u

with R(X) a polynomial of small degree and with coefficients 0, 1 or −1. Since we have
P (u) = p, the size of the coefficients of f1 is bounded by p1/λ. Let us be more precise about
the degree dR of R. f1 is a polynomial of degree n and has consequently approximatively
one chance over n to be irreducible over the finite field: thus we need to keep enough
degree of freedom concerning the choice of the coefficients of f1. Hence we assume that
the degree dR is such as dR = O(logn/ log 3). Since 3logn/ log 3 = n, this permits us to
have enough choices for R, thus for f1, and finally to obtain an irreducible polynomial 2.

Moreover, the second polynomial is chosen as follows:

f2(X) = P (Xn +R(X)).

Indeed, f2 has degree λn and the size of its coefficients is bounded by O(log(n)λ). This
comes from the R(X)λ term that appears in the decomposition of f2, which provides the
highest coefficients of f2. Its coefficients are in fact bounded by (dR + 1)λ = O(log(n)λ).
Furthermore, we have:

f2(X) = P (f1(X) + u) ≡ P (u) = p,

where ≡ denotes equivalence modf1(X).

Thus there exists a polynomial h such that f2(X)− p = h(X)f1(X), and this implies
that f2(X) is a multiple of f1(X) modulo p. Due to the fact that the gcd(f1(X), f2(X))
is irreducible with degree n, they correctly define the commutative diagram previously
drawn. The main interest of this choice is to keep small degrees while forcing a very small
product of the two size of coefficients: the polynomials have respectively (n, p1/λ) and
(λn,O(log(n)λ)) as degree and size of coefficients.

6 Asymptotic Heuristic Complexity
In order to analyze the asymptotic heuristic complexity of the algorithm described above,
we first write the relations between n, p and Q = pn in the following form:

p = exp
(
cp(logQ)lp(log logQ)1−lp

)
, n = 1

cp

(logQ
log logQ

)1−lp
.

The parameters of the algorithm that appear in the analysis are the smoothness bound B,
the degree of the elements in the sieving space t− 1 and the bound A on the coefficients
of these elements. We recall that we note λ the degree of the polynomial P mentioned in
Section 5.

2Other possibilities are available for the polynomial R, all without any influence over the final asymptotic
complexities. In the opposite way of our choice (small degree and constant coefficients), we could take R
of constant degree dR and with coefficients bounded by O(n1/(dr+1)). An interesting configuration is to
consider the intermediate case and to balance the degree of R with the size of its coefficients. If we
force the coefficients to be bounded by dr, the irreducibility of f1 leads to the condition ddr

r ≈ n and
finally to take dr = O(log n/ log log n). This impacts on the coefficients of f2 which become bounded by
O((log n/ log log n)λ) instead of O(log(n)λ).

8

6.1 The p = LQ(lp, cp) Case with 1/3 6 lp < 2/3
We assume that we can express t, A and B as

t = ct
cp

(logQ
log logQ

)2/3−lp
, At = LQ(1/3, cact), B = LQ(1/3, cb)

where ca, cb and ct will be determined later on.
In order to minimize the total runtime of the algorithm, we want to balance the com-

plexities of the sieving phase and of the linear algebra phase. Since the total sieving space
contains At elements, and the linear algebra phase costs approximately B2 operations, we
require that t, A and B satisfy At = B2. This leads to the first condition:

cb = cact
2 . (3)

Since we need to have enough good relations after sieving, we also require that AtP ≈ B,
where P denotes the probability that an element of the sieving space yields a good relation,
i.e. the probability that its norms (in each of the two number fields) split into primes
number smaller than B. Put together with the previous remark, this means:

B ≈ 1/P. (4)

Let us note Ni the norm coming from the polynomial h = at−1X
t−1 + · · · + a0 in

Q [X] /(fi(X)) (for i = 1 and i = 2 to account for both sides). We can bound the
two norms as follows. Keeping the notations of Section 3.1.2, N1 is smaller than ΘAnpt/λ,
because f1 is of degree n and its coefficients are bounded by p1/λ and h is of degree t− 1
and its coefficients are bounded by A. Similarly we have N2 smaller than ΘAλn log(n)λt.
Thus, P is the probability that Θ2 log(n)λtA(λ+1)npt/λ splits into primes lower than B.
Besides, the calculus of A(λ+1)npt/λ gives LQ(2/3, (λ+ 1)ca + ct/λ). We remark that both
Θ2 and log(n)λt are negligible in this case: in fact, both terms are smaller than (n+ 1)4λt

and (n+ 1)4λt ≈ LQ(2/3− lp). We now make the usual heuristic hypothesis, and assume
that P follows the theorem of Canfield, Erdös and Pomerance: a random number below
Lq(r, γ) splits into primes lower than Lq(s, δ) with probability Lq(r − s,−γ(r − s)/δ). As
a result, after plugging in our values, we find that:

P = LQ

(1
3 ,
−1
3cb

((λ+ 1)ca + ct/λ)
)
. (5)

Putting together (4) and (5), we finally obtain the second condition involving the various
constants:

3 c2
b = (λ+ 1)ca + ct/λ. (6)

We now want to minimize cb under the two conditions (3) and (6). Hence, the complexity
will be LQ(1/3, 2 cminb), where cminb is naturally the minimum we are looking for. Let us
introduce two new variables µ and x and rewrite (3):

ct = x, ca = µx, cb = µx2

2 .

Then (6) becomes:

3
(
µx2

2

)2

= (λ+ 1)µx+ x

λ
⇔ x3 = 4

3 ·
((λ+ 1)µ+ 1/λ

µ

)

9

Minimizing 2 cb = µx2 is clearly equivalent to minimizing (µx2)3, so we calculate:

(µx2)3 =
(4

3

)2
·
(

(λ+ 1)2µ2 + 1/λ2 + 2µ(λ+ 1)/λ
µ

)
.

Finally, forcing the derivate of the right member with respect to µ to vanish implies
(λ+ 1)2µ2 − 1/λ2 = 0 and at the end µ = 1/(λ(λ+ 1)). As a result, (2 cminb)3 = (µx2)3 =
(64/9) · (λ+ 1)/λ. Thus, the complexity of the algorithm in this case is:

LQ

(
1
3 ,
(64

9 ·
λ+ 1
λ

)1/3)
.

As soon as λ > 2, the complexity is clearly better than the one in the general case, which
is LQ(1/3, (128/9)1/3).

6.2 The p = LQ(2/3, cp) Case

In this case, we consider a family of algorithms indexed by the degree t − 1 of the poly-
nomials we are sieving on and we compute the asymptotic complexity of each algorithms.
Figure 3 shows which algorithm has to be chosen, depending on the constant cp, in order to
get the best asymptotic complexity. The analysis made here follows exactly the previous
one, except that the round-off error in t is no longer negligible. This explains why the
final complexity varies with cp. We continue the analysis in the general case while the two
extreme cases t→∞ and t = 2 are discussed further. When t tends to infinity, we recover
the asymptotic complexity of the p = LQ(lp, cp) case with 1/3 6 lp < 2/3. Furthermore,
the asymptotic complexity is minimal for the choice of p that are compatible with t = 2,
i.e. that allows sieving on linear polynomials. Thus we explicitly compute the complexity
in this case.

Sieving on Polynomials of Degree t− 1

We assume that we can express A and B as:

A = LQ(1/3, ca) and B = LQ(1/3, cb).

The sieving space contains in this case At elements since the polynomials involved are of
degree t − 1. Thus, balancing the size of the sieving space and the runtime of the linear
algebra we deduce ca = 2cb/t. Keeping the same notations as above and neglecting again
the Θ and log(n)λ terms, we can write the two norms N1 = Anp(t−1)/λ and N2 = Aλn. So
the product of the two norms is A(λ+1)np(t−1)/λ, which can also be written as:

N1 ·N2 = LQ

(
2
3 ,

2(λ+ 1)cb
cpt

+ (t− 1)cp
λ

)
.

In order to get enough relations we force B to be equal to the inverse of the probability
of smoothness P, i.e. B = LQ

(
1
3 ,

1
3cb

(
2(λ+1)cb

cpt
+ (t−1)cp

λ

))
. This leads to the following

equation:
3 c2

b = 2(λ+ 1)cb
cpt

+ (t− 1)cp
λ

.

Consequently, the sieving on polynomials of degree t − 1 has complexity LQ(1/3, Cλ(cp))
with:

Cλ(cp) = 2 cb = 2
3

λ+ 1
cpt

+

√√√√(λ+ 1
cpt

)2

+ 3(t− 1)cp
λ

 . (7)

10

This has to be compared with the asymptotic complexity in the General Number Field
Sieve (GNFS) for the same case which is LQ(1/3, C(cp)) with:

C(cp) = 2
3

 2
cpt

+

√√√√(2
cpt

)2

+ 3(t− 1)cp

 .

Figure 3: Asymptotic complexities LQ(1/3, C(cp)), LQ(1/3, C2(cp)) and LQ(1/3, C4(cp))
as a function of cp with p = LQ(2/3, cp). The red curve shows the variation of the
second constant of the complexity for the GNFS while the green and blue ones present the
amelioration obtained by our SNFS in two cases λ = 2 and λ = 4. The degree t− 1 of the
elements in the sieving space is also indicated for the red curve.

In Figure 3 we have plotted the constant C(cp) which determines the complexity
LQ(1/3, C(cp)) as a function of the constant cp. The red curve represents the constant
C(cp) obtained with the GNFS [JLSV06] while the other ones are obtained with our SNFS
for λ = 2 (green curve) and λ = 4 (blue curve). Those values of λ correspond respectively
to the family of MNT curves and to the family of Barreto-Naehrig elliptic curves.

Splicing the p = LQ(2/3, cp) Case to the p = LQ(lp, cp) Case with lp < 2/3

We consider cp as a variable and compute the value of cp which minimize the complexity
LQ(1/3, Cλ(cp)) given in the previous subsection 6.2. We note it again cminp . Cλ(cp) comes

11

to a minimum when:

λ+ 1
c2
pt

=
−2(λ+ 1)2t−2c−3

p + 3(t− 1)λ−1

2
√(

λ+1
cpt

)2
+ 3(t−1)cp

λ

⇔ 4(λ+ 1)4λ2 + 12t2(t− 1)λ(λ+ 1)2c3
p = (3(t− 1)t2c3

p − 2λ(λ+ 1))2

⇔ t2(t− 1)c3
p = (8/3)λ(λ+ 1)2.

Thus we take:

cminp =
(

8
3 ·

λ(λ+ 1)2

(t− 1)t2

)1/3

.

As a consequence, putting together with (7) we obtain:

cb = 2
(1

32 ·
t− 1
t
· λ+ 1

λ

)1/3
.

We conclude that the minimal complexity of the sieving on polynomials of degree t− 1 in
this case is:

LQ

(
1
3 ,
(64

9 ·
t− 1
t
· λ+ 1

λ

)1/3)
. (8)

If p = LQ(2/3, cp) can only be written with a constant cp close to zero, it is better in
practice to write it as p = LQ(lp, c′p) with lp < 2/3 and a constant c′p higher than cp, and
to apply afterwards the previous algorithm. Nonetheless, if we fix p = LQ(2/3, cp), when
cp tends to zero the best choice is to force t to tend to infinity (Figure 3). Theoretically,
it is interesting to see that t→∞ yields the expected limit:

LQ

(
1
3 ,
(64

9 ·
λ+ 1
λ

)1/3)

which is the asymptotic complexity of the p = LQ(lp, cp) case with 1/3 6 lp < 2/3.

Sieving on Linear Polynomials

Let us go back to the minimal complexity that appears in (8). Considering that the
asymptotic complexity in GNFS [JLSV06] for the same case is LQ(1/3, (128/9).(t−1/t)1/3),
we remark that for each algorithm our variant multiplied by a factor λ+1

2λ the cube of the
second constant of the complexity in the Lq notation. In particular, this gives an interesting
result when we are sieving on linear polynomials, i.e. when t − 1 = 1. Replacing t by 2
in (8), we find that sieving on linear polynomials leads to the following complexity:

LQ

(
1
3 ,
(32

9 ·
λ+ 1
λ

)1/3)
.

This has to be compared with the asymptotic complexity in GNFS [JLSV06] for the same
case which is LQ(1/3, (64/9)1/3). Again, as soon as λ > 2, the complexity of our SNFS is
clearly better than the one in the general case.

12

6.3 Algorithm for Larger p

The p = LQ(lp, cp) Case with 2/3 < lp < 1

We recall that sieving on linear polynomials in this case is sufficient. Let A be the bound
on the coefficients of the polynomials we are sieving over, and B the smoothness bound.
Again, balancing the size of the sieving space A2 and the runtime of the linear algebra B2

leads to A = B. We assume that we can express B as B = LQ(1/3, cb). The product of
the two norms is as usual bounded by Θ2 log(n)λB(λ+1)np1/λ. Due to the size of n in this
case, Θ2 and log(n)λ are negligible compared to B(λ+1)np1/λ. Let us develop the logarithm
of this new bound: log(B(λ+1)np1/λ) = n logB + λn logB + (1/λ) log p. First, we remark
that we have n logB = logLQ(4/3− lp) = logLQ(l) with l < 2/3. Setting besides:

λn = cl

(logQ
log logQ

)1/3
(9)

with cl to be determined later on, we obtain λn logB + (1/λ) log p = log(LQ(2/3, cbcl +
1/cl)). Thus Bn is negligible compared to Bλnp1/λ. Moreover, Bλnp1/λ comes to a mini-
mum when:

cl = 1/√cb. (10)
The product of the two norms is so bounded by LQ(2/3, 2√cb). Hence the probability
that it is B-smooth is LQ(1/3,−2/(3√cb)). As usual, we equalize B with the inverse of
the probability. This yields cb = 2√cb and then cb = (4/9)1/3. Putting this value in (10),
we get cl = (2/3)1/3. The constraint (9) over λ becomes:

λ = 1
n

(2 logQ
3 log logQ

)1/3
.

Finally, the asymptotic complexity of the algorithm for this degree λ is:

LQ(1/3, (32/9)1/3).

This has to be compared with the complexity of GNFS in the same case, which is
LQ(1/3, (64/9)1/3).

The Boundary Case : lp = 2/3

When lp = 2/3 matters are more complicated since Bn is no more negligible. The product
of the norms is now rewritten as LQ(2/3, cb(cl + 1/cp) + 1/cl). Again, this is minimized
at cl = 1/√cb. However, it now becomes LQ(2/3, 2√cb + cb/cp) and the probability
of smoothness is LQ(1/3,−(1/3).(2/√cb) + 1/cp)). Equating the opposite of the second
constant to cb yields (3cb + 1/cp)2 = 4/cb and finally:

9c3
b −

6
cp
c2
b + 1

c2
p

cb − 4 = 0.

When cp tends to infinity, we recover the (32/9)1/3 constant in the complexity.

The p = LQ(1, cp) Case

The analysis follows exactly the previous one, except that we have a simpler expression of
the extension degree n = 1/cp. Setting again λ = cp(2 logQ)1/3(3 log logQ)−1/3, we obtain
the final asymptotic complexity LQ(1/3, (32/9)1/3). In particular, this applies on finite
fields of prime order, since n = 1 implies that p can be written as p = Lp(1, 1). We recall
that the original SNFS applies on such fields of prime order and has the same complexity
LQ(1/3, (32/9)1/3) – see [Sch06, Sch08].

13

7 Conclusion
In this paper, we adapted the Special Number Field Sieve to compute discrete logarithms
in Fpn when p is obtained by evaluation of a polynomial with small coefficients. More
precisely, for p = LQ(lp, cp) with 1/3 6 lp < 2/3 our variation yields a complexity of
LQ(1/3, [(64/9) · (λ+ 1)/λ)]1/3) where λ is the small degree of the polynomial P which
gives the characteristic p after evaluation. This should be compared with the previous
LQ(1/3, (128/9)1/3) in the General High Degree Number Field Sieve. Likewise, for p =
LQ(2/3, cp) we make the asymptotic heuristic complexity drop from LQ(1/3, (64/9)1/3)
to LQ(1/3, [(32/9) · (λ+ 1)/λ]1/3). For larger p (p = LQ(lp, cp) with 2/3 < lp < 1), it
goes down from LQ(1/3, (64/9)1/3) to LQ(1/3, (32/9)1/3) for some λ with a suitable size
compared with p.

References
[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil

pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of pairing-
friendly groups. In Selected Areas in Cryptography, pages 17–25, 2003.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. J. Cryptology, 17(4):297–319, 2004.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Selected Areas in Cryptography, pages 319–331, 2005.

[CC03] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap
Diffie-Hellman groups. In Public Key Cryptography, pages 18–30, 2003.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. J. Cryptology, 23(2):224–280, 2010.

[Gor93] Daniel M. Gordon. Discrete logarithms in gf(p) using the number field sieve.
SIAM J. Discrete Math., 6(1):124–138, 1993.

[JL06] Antoine Joux and Reynald Lercier. The function field sieve in the medium prime
case. In EUROCRYPT, pages 254–270, 2006.

[JLSV06] Antoine Joux, Reynald Lercier, Nigel P. Smart, and Frederik Vercauteren. The
number field sieve in the medium prime case. In CRYPTO, pages 326–344, 2006.

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. J. Cryptology,
17(4):263–276, 2004.

[Kal97] Michael Kalkbrener. An upper bound on the number of monomials in determi-
nants of sparse matrices with symbolic entries. In Mathematica Pannonica 8,
pages 73–82, 1997.

[KM05] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security
levels. In IMA Int. Conf., pages 13–36, 2005.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. J.
Cryptology, 14(4):255–293, 2001.

14

[Nat03] National Institute of Standards and Technology. Special publication 800-56: Rec-
ommendation on key establishment schemes, Draft 2.0, 2003.

[Pat02] Kenneth G. Paterson. Id-based signatures from pairings on elliptic curves. IACR
Cryptology ePrint Archive, 2002:4, 2002.

[Sch06] Oliver Schirokauer. The number field sieve for integers of low weight. IACR
Cryptology ePrint Archive, 2006:107, 2006.

[Sch08] Oliver Schirokauer. The impact of the number field sieve on the discrete logarithm
problem in finite fields. Algorithmic Number Theory, 44, 2008.

[SK03] Ryuichi Sakai and Masao Kasahara. Id based cryptosystems with pairing on
elliptic curve. IACR Cryptology ePrint Archive, 2003:54, 2003.

15

