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Abstract. In 2009, Abdalla et al. proposed a reasonably practical password-authenticated key exchange (PAKE)
secure against adaptive adversaries in the universal composability (UC) framework. It exploited the Canetti-Fischlin
methodology for commitments and the Cramer-Shoup smooth projective hash functions (SPHFs), following the
Gennaro-Lindell approach for PAKE. In this paper, we revisit the notion of non-interactive commitments, with a
new formalism that implies UC security. In addition, we provide a quite efficient instantiation. We then extend
our formalism to SPHF-friendly commitments. We thereafter show that it allows a blackbox application to one-
round PAKE and oblivious transfer (OT), still secure in the UC framework against adaptive adversaries, assuming
reliable erasures and a single global common reference string, even for multiple sessions. Our instantiations are
more efficient than the Abdalla et al. PAKE in Crypto 2009 and the recent OT protocol proposed by Choi et al. in
PKC 2013. Furthermore, the new PAKE instantiation is the first one-round scheme achieving UC security against
adaptive adversaries.

1 Introduction

Commitment schemes are one of the most fundamental primitives in cryptography, serving as a building
block for many cryptographic applications such as zero-knowledge proofs [GMW91] and secure multi-party
computation [GMW87]. In a typical commitment scheme, there are two main phases. In a commit phase, the
committer computes a commitment C for some message x and sends it to the receiver. Then, in an opening
phase, the committer releases some information δ to the receiver which allows the latter to verify that C
was indeed a commitment of x. To be useful in practice, a commitment scheme should satisfy two basic
security properties. The first one is hiding, which informally guarantees that no information about x is leaked
through the commitment C. The second one is binding, which guarantees that the committer cannot generate
a commitment C that can be successfully opened to two different messages.
Smooth Projective Hash Functions (SPHFs) were introduced by Cramer and Shoup [CS02] as a means
to design chosen-ciphertext-secure public-key encryption schemes. In addition to providing a more intuitive
abstraction for their original public-key encryption scheme in [CS98], the notion of SPHF also enabled new
efficient instantiations of their scheme under different complexity assumptions, such as quadratic residu-
osity. Due to its usefulness, the notion of SPHF was later extended to several other contexts, such as
password-authenticated key exchange (PAKE) [GL03], oblivious transfer (OT) [Kal05,CKWZ13], and blind
signatures [BPV12,BBC+13].
Password-Authenticated Key Exchange (PAKE) protocols were proposed in 1992 by Bellovin and Mer-
ritt [BM92] where authentication is done using a simple password, possibly drawn from a small space subject
to exhaustive search. Since then, many schemes have been proposed and studied. SPHFs have been extensively
used, starting with the work of Gennaro and Lindell [GL03] which generalized an earlier construction by Katz,
Ostrovsky, and Yung (KOY) [KOY01], and followed by several other works [CHK+05,ACP09]. More recently,
a variant of SPHFs proposed by Katz and Vaikuntanathan even allowed the construction of one-round PAKE
schemes [KV11,BBC+13].

The first ideal functionality for PAKE protocols in the UC framework [Can01,CK02] was proposed by
Canetti et al. [CHK+05], who showed how a simple variant of the Gennaro-Lindell methodology [GL03] could
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lead to a secure protocol. Though quite efficient, their protocol was not known to be secure against adaptive
adversaries, that are capable of corrupting players at any time, and learn their internal states. The first ones to
propose an adaptively secure PAKE in the UC framework were Barak et al. [BCL+05] using general techniques
from multi-party computation (MPC). Though conceptually simple, their solution results in quite inefficient
schemes.

The first reasonably practical adaptively secure PAKE was proposed by Abdalla et al. [ACP09], following
the Gennaro-Lindell methodology with the Canetti-Fischlin commitment [CF01]. They had to build a complex
SPHF to handle the verification of such a commitment. Thus, the communication complexity was high and
the protocol required four rounds. No better adaptively secure scheme has been proposed so far.
Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver to get
exactly one out of k messages sent by another party, the sender. In these schemes, the receiver should be
oblivious to the other values, and the sender should be oblivious to which value was received. Since then,
several instantiations and optimizations of such protocols have appeared in the literature, including proposals
in the UC framework [NP01,CLOS02].

More recently, new instantiations have been proposed, trying to reach round-optimality [HK07], or low
communication costs [PVW08]. The 1-out-of-2 OT scheme by Choi et al. [CKWZ13] based on the DDH
assumption seems to be the most efficient one among those that are secure against adaptive corruptions in
the CRS model with erasures. But it does not scale to 1-out-of-k OT, for k > 2.

1.1 Properties of Commitment Schemes

Basic Properties. In addition to the binding and hiding properties, certain applications may require addi-
tional properties from a commitment scheme. One such property is equivocability [Bea96], which guarantees
that a commitment C can be opened in more than a single way when in possession of a certain trapdoor infor-
mation. Another one is extractability, which allows the computation of the message x committed in C when in
possession of a certain trapdoor information. Yet another property that may also be useful for cryptographic
applications is non-malleability [DDN00], which ensures that the receiver of a unopened commitment C for a
message x cannot generate a commitment for a message that is related to x.

Though commitment schemes satisfying stronger properties such as non-malleability, equivocability, and
extractability may be useful for solving specific problems, they usually stop short of guaranteeing security
when composed with arbitrary protocols. To address this problem, Canetti and Fischlin [CF01] proposed an
ideal functionality for commitment schemes in the universal composability (UC) framework [Can01] which
guarantees all these properties simultaneously and remain secure even under concurrent compositions with
arbitrary protocols. Unfortunately, they also showed that such commitment schemes can only be realized if
one makes additional setup assumptions, such as the existence of a common reference string (CRS) [CF01],
random oracles [HMQ04], or secure hardware tokens [Kat07].
Equivocable and Extractable Commitments. As the work of Canetti and Fischlin [CF01], this work
also aims to build non-interactive commitment schemes which can simultaneously guarantee non-malleability,
equivocability, and extractability properties. To this end, we first define a new notion of commitment scheme,
called E2-commitments, for which there exists an alternative setup algorithm, whose output is computationally
indistinguishable from that of a normal setup algorithm and which outputs a common trapdoor that allows
for both equivocability and extractability: this trapdoor not only allows for the extraction of a committed
message, but it can also be used to create simulated commitments which can be opened to any message.

To define the security of E2-schemes, we first extend the security notions of standard equivocable commit-
ments and extractable commitments to the E2-commitment setting: Since the use of a common trapdoor for
equivocability and extractability could potentially be exploited by an adversary to break the extractability
or equivocability properties of an E2-commitment scheme, we define stronger versions of these notions, which
account for the fact that the same trapdoor is used for both extractability or equivocability. In particular,
in these stronger notions, the adversary is given oracle access to the simulated commitment and extractor
algorithms.
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Finally, after defining the security of E2-schemes, we further show that these schemes remain secure
even under arbitrary composition with other cryptographic protocols. More precisely, we show that any E2–
commitment scheme which meets the strong versions of the equivocability or extraction notions is a non-
interactive UC-secure (multiple) commitment scheme in the presence of adaptive adversaries, assuming reliable
erasures and a single global CRS.
SPHF-Friendly Commitments. In this work, we are interested in building non-interactive E2-commitments,
to which smooth projective hash functions can be efficiently associated. Unfortunately, achieving this goal is
not so easy due to the equivocability property of E2-commitments. To understand why, let X be the domain
of an SPHF function and let L be some underlying NP language such that it is computationally hard to
distinguish a random element in L from a random element in X \L. A key property of these SPHF functions
that makes them so useful for applications such as PAKE and OT is that, for words C in L, their values
can be computed using either a secret hashing key hk or a public projected key hp together a witness w to
the fact that C is indeed in L. A typical example of a language in which we are interested is the language
Lx corresponding to the set of elements {C} such that C is a valid commitment of x. Unfortunately, when
commitments are equivocable, the language Lx containing the set of valid commitments of x may not be well
defined since a commitment C could potentially be opened to any x. To get around this problem and be
able to use SPHFs with E2-commitments, we show that it suffices for an E2-commitment scheme to satisfy two
properties. The first one is the stronger version of the equivocability notion, which guarantees that equivocable
commitments are computationally indistinguishable from normal commitments, even when given oracle access
to the simulated commitment and extractor algorithms. The second one, which is called robustness, is new and
guarantees that commitments generated by polynomially-bounded adversaries are perfectly binding. Finally,
we say that a commitment scheme is SPHF-friendly if it satisfies both properties and if it admits an SPHF on
the languages Lx.

1.2 Contributions

A new SPHF-friendly E2-commitment construction. First, we define the notion of SPHF-friendly E2-
commitment together with an instantiation. The new construction, which is called E2C and described in
Section 4, is inspired by the commitment schemes in [CF01,CLOS02,ACP09]. Like the construction in [ACP09],
it combines a variant of the Cramer-Shoup encryption scheme (as an extractable commitment scheme) and an
equivocable commitment scheme to be able to simultaneously achieve both equivocability and extractability.
However, unlike the construction in [ACP09], we rely on Haralambiev’s perfectly hiding commitment [Har11,
Section 4.1.4], instead of the Pedersen commitment [Ped92].

Since the opening value of Haralambiev’s scheme is a group element that can be encrypted in one ElGamal-
like ciphertext to allow extractability, this globally leads to a better communication and computational com-
plexity for the commitment. The former is linear in m · K, where m is the bit-length of the committed value
and K, the security parameter. This is significantly better than the extractable commitment construction
in [ACP09] which was linear in m · K2, but asymptotically worse than the two proposals in [FLM11] that
are linear in K, and thus independent of m. However, we point out the latter proposals in [FLM11] are not
SPHF-friendly since they are not robust.

We then show in Theorem 4 that a labeled E2-commitment satisfying stronger notions of equivocability
and extractability is a non-interactive UC-secure commitment scheme in the presence of adaptive adversaries,
assuming reliable erasures and a single global CRS, and we apply this result to our new construction.
One-round adaptively secure PAKE. Second, we provide a generic construction of a one-round UC-secure
PAKE from any SPHF-friendly commitment, verifying an additional property called strong pseudo-randomness.
The UC-security holds against adaptive adversaries, assuming reliable erasures and a single global CRS, as
shown in Section 6. In addition to being the first one-round adaptively secure PAKE, our new scheme also
enjoys a much better communication complexity than previous adaptively secure PAKE schemes. For instance,
in comparison to the PAKE in [ACP09], which is currently the most efficient adaptively secure PAKE, the new
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Exphid-bA (K)

ρ
$← SetupCom(1K)

(`, x0, x1, state)
$← A(ρ)

(C, δ)
$← Com`(xb)

return A(state, C)

ExpbindA (K)

ρ
$← SetupCom(1K)

(C, `, x0, δ0, x1, δ1)
$← A(ρ)

if ¬VerCom`(C, x0, δ0) then return 0

if ¬VerCom`(C, x1, δ1) then return 0
return x0 6= x1

Fig. 1. Hiding and Binding Properties

scheme gains a factor of K in the overall communication complexity, where K is the security parameter.
However, unlike their scheme, our new construction requires pairing-friendly groups.
Three-round adaptively secure 1-out-of-k OT. Third, we provide a generic construction of a three-
round UC-secure 1-out-of-k OT from any SPHF-friendly commitment. The UC-security holds against adaptive
adversaries, assuming reliable erasures and a single global CRS, as shown in Section 7. Besides decreasing the
total number of rounds with respect to existing OT schemes with similar security levels, our resulting protocol
also has a better communication complexity than the best known solution so far [CKWZ13]. Moreover, our
construction is more general and provides a solution for 1-out-of-k OT schemes while the solution in [CKWZ13]
only works for k = 2.

Due to space restrictions, complete proofs and some details were postponed to the Appendix.

2 Basic Notions for Commitments

We first review the basic definitions of non-interactive commitments, with some examples. Then, we consider
the classical additional notions of equivocability and extractability. In this paper, the qualities of adversaries
will be measured by their successes and advantages in certain experiments Expsec or Expsec-b (between the
cases b = 0 and b = 1), denoted Succsec(A,K) and Advsec(A,K) respectively, while the security of a primitive
will be measured by the maximal successes or advantages of any adversary running within a time bounded by
some t in the appropriate experiments, denoted Succsec(t) and Advsec(t) respectively. Adversaries can keep
state during the different phases. We denote $← the outcome of a probabilistic algorithm or the sampling from
a uniform distribution. See Appendix A.1 for more details.

2.1 Non-Interactive Labeled Commitments

A non-interactive labeled commitment scheme C is defined by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global parameters, passed through
the CRS ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C is the commitment
of x for the label `, and δ is the corresponding opening data (a.k.a. decommitment information). This is
a probabilistic algorithm;

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening data δ and
outputs 1 (true) if δ is a valid opening data for C, x and `. It always outputs 0 (false) on x = ⊥.

Using the experiments ExphidA (K) and ExpbindA (K) defined in Figure 1, one can state the basic properties:

– Correctness: for all correctly generated CRS ρ, all commitments and opening data honestly generated
pass the verification VerCom test: for all `, x, if (C, δ) $← Com`(x), then VerCom`(C, x, δ) = 1;

– Hiding Property : the commitment does not leak any information about the committed value. C is said
(t, ε)-hiding if AdvhidC (t) ≤ ε.

– Binding Property : no adversary can open a commitment in two different ways. C is said (t, ε)-binding if
SuccbindC (t) ≤ ε.
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Correctness is always perfectly required, and one can also require either the binding or the hiding property to
be perfect.

The reader can remark that labels are actually useless in the hiding and the binding properties. But they
will become useful in E2-commitment schemes introduced in the next section. This is somehow similar to
encryption scheme: labels are useless with encryption schemes which are just IND-CPA, but are very useful
with IND-CCA encryption schemes.

2.2 Perfectly Binding Commitments: Public-Key Encryption

To get perfectly binding commitments, classical instantiations are public-key encryption schemes, which ad-
ditionally provide extractability (see below). The encryption algorithm is indeed the commitment algorithm,
and the random coins become the opening data that allow to check the correct procedure of the commit phase.
The hiding property relies on the indistinguishability (IND-CPA), which is computationally achieved, whereas
the binding property relies on the correctness of the encryption scheme and is perfect.

Let us define the ElGamal-based commitment scheme:

– SetupCom(1K) chooses a cyclic group G of prime order p, g a generator for this group and a random scalar
z

$← Zp. It sets the CRS ρ = (G, g, h = gz);
– Com(M), for M ∈ G, chooses a random element r $← Zp and outputs the pair (C = (u = gr, e =
hr ·M), δ = r);

– VerCom(C = (u, e),M, δ = r) checks whether C = (u = gr, e = hr ·M).

This commitment scheme is hiding under the DDH assumption and perfectly binding. It is even extractable
using the decryption key z:M = e/uz. However, it is not labeled. The Cramer-Shoup encryption scheme [CS98]
admits labels and is extractable and non-malleable, thanks to the IND-CCA security level. It is reviewed
in Appendix B, with some extensions, since we will use it later in our applications.

2.3 Perfectly Hiding Commitments

The Pedersen scheme [Ped92] is the most famous perfectly hiding commitment: Com(m) = gmhr for a random
scalar r $← Zp and a fixed basis h ∈ G. The binding property relies on the DL assumption. Unfortunately, the
opening value is the scalar r, which makes it hard to encrypt/decrypt efficiently, as required in our construction
below. Haralambiev [Har11, Section 4.1.4] recently proposed a new commitment scheme, called TC4 (without
label), with a group element as opening value:

– SetupCom(1K) chooses an asymmetric pairing-friendly setting (G1, g1,G2, g2,GT , p, e), with an additional
independent generator T ∈ G2. It sets the CRS ρ = (G1, g1,G2, g2, T,GT , p, e);

– Com(x), for x ∈ Zp, chooses a random element r $← Zp and outputs the pair (C = gr2T
x, δ = gr1);

– VerCom(C, x, δ) checks whether e(g1, C/T x) = e(δ, g2).

This commitment scheme is clearly perfectly hiding, since the groups are cyclic, and for any C ∈ G2, x ∈ Zp,
there exists δ ∈ G1 that satisfies e(g1, C/T x) = e(δ, g2). More precisely, if C = gu2 and T = gt2, then δ = gu−tx1

opens C to any x. The binding property holds under the DDH assumption in G2, as proven in [Har11,
Section 4.1.4].

2.4 Equivocable Commitments

An equivocable commitment scheme C extends on the previous definition, with SetupCom, Com, VerCom, and
a second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C is a
commitment and eqk an equivocation key;
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Expsim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com`(x)

else (C, δ)
$← SCom`(τ, x)

return ASCom·(τ,·)(state, C, δ)

Expbind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← AExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if x′ = x then return 0
else return VerCom`(C, x, δ)

Fig. 2. Simulation Indistinguishability and Binding Extractability

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, and an equivocation
key eqk for this commitment, and outputs an opening data δ for C and ` on x.

Let us denote SCom the algorithm that takes as input the trapdoor τ , a label ` and a message x and which
outputs (C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and δ ← OpenCom`(eqk, C, x). Three

additional properties are then associated: a correctness property, and two indistinguishability properties,
which all together imply the hiding property.

– Trapdoor Correctness: all simulated commitments can be opened on any message: for all `, x, if (C, eqk) $←
SimCom`(τ) and δ ← OpenCom`(eqk, C, x), then VerCom`(C, x, δ) = 1;

– Setup Indistinguishability : one cannot distinguish the CRS ρ generated by SetupCom from the one gen-
erated by SetupComT. C is said (t, ε)-setup-indistinguishable if the two distributions for ρ are (t, ε)-
computationally indistinguishable. We denote Advsetup-indC (t) the distance between the two distributions.

– Simulation Indistinguishability : one cannot distinguish a real commitment (generated by Com) from a
fake commitment (generated by SCom), even with oracle access to fake commitments. C is said (t, ε)-
simulation-indistinguishable if Advsim-indC (t) ≤ ε (see the experiments Expsim-ind-bA (K) in Figure 2).

More precisely, when the trapdoor correctness is satisfied, since commitments generated by SimCom are
perfectly hiding (they can be opened in any way using OpenCom), AdvhidC (t) ≤ Advsetup-indC (t)+Advsim-indC (t).

Definition 1 (Equivocable Commitment). A commitment scheme C is said (t, ε)-equivocable if, first,
the basic commitment scheme satisfies the correctness property and is both (t, ε)-binding and (t, ε)-hiding,
and, secondly, the additional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-
indistinguishable and (t, ε)-simulation-indistinguishable.
One denotes AdvequivC (t) the maximum of SuccbindC (t), Advsetup-indC (t), and Advsim-indC (t); it should be upper-
bounded by ε.

2.5 Extractable Commitments

An extractable commitment scheme C also extends on the initial definition, with SetupCom, Com, VerCom, as
well as the second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and outputs the
committed message x, or ⊥ if the commitment is invalid.

As above, three additional properties are then associated: a correctness property, and the setup indistin-
guishability, but also an extractability property, which implies, together with the setup indistinguishability,
the binding property:

– Trapdoor Correctness: all commitments honestly generated can be correctly extracted: for all `, x, if
(C, δ)

$← Com`(x) then ExtCom`(C, τ) = x;
– Setup Indistinguishability : as above;
– Binding Extractability : one cannot fool the extractor, i.e., produce a commitment and a valid opening

data to an input x while the commitment does not extract to x. C is said (t, ε)-binding-extractable if
Succbind-extC (t) ≤ ε (see the experiment Expbind-extA (K) in Figure 2).
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More precisely, when one breaks the binding property with (C, `, x0, δ0, x1, δ1), if the extraction oracle outputs
x′ = x0, then one can output (C, `, x1, δ1), otherwise one can output (C, `, x0, δ0). In both cases, this breaks
the binding-extractability: AdvbindC (t) ≤ Advsetup-indC (t) + Succbind-extC (t).

Definition 2 (Extractable Commitment). A commitment scheme C is said (t, ε)-extractable if, first,
the basic commitment scheme satisfies the correctness property and is both (t, ε)-binding and (t, ε)-hiding,
and, secondly, the additional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-
indistinguishable and (t, ε)-binding-extractable.
One denotes AdvextC (t) the maximum of AdvhidC (t), Advsetup-indC (t), and Succbind-extC (t); it should be upper-
bounded by ε.

3 Equivocable and Extractable Commitments

3.1 E2-Commitments: Equivocable and Extractable

Public-key encryption schemes are perfectly binding commitments that are additionally extractable. The
Pedersen and Haralambiev commitments are perfectly hiding commitments that are additionally equivocable.
But none of them have the two properties at the same time. This is now our goal.

Definition 3 (E2-Commitment). A commitment scheme C is said (t, ε)-E2(equivocable and extractable) if
the indistinguishable setup algorithm outputs a common trapdoor that allows both equivocability and extractabil-
ity. If one denotes Adve

2

C (t) the maximum of Advsetup-indC (t), Advsim-indC (t), and Succbind-extC (t), then it should
be upper-bounded by ε.

But with such a common trapdoor, the adversary could exploit the equivocation queries to break extractability
and extraction queries to break equivocability. Stronger notions can thus be defined, using the experiments
Exps-sim-ind-bA (K) and Exps-bind-extA (K) in Figure 3, in which SCom is supposed to store each query/answer
(`, x, C) in a list Λ and ExtCom-queries on such an SCom-output (`, C) are answered by x (as it would be
when using Com instead of SCom).

– Strong Simulation Indistinguishability : one cannot distinguish a real commitment (generated by Com) from
a fake commitment (generated by SCom), even with oracle access to the extraction oracle (ExtCom) and to
fake commitments (using SCom). C is said (t, ε)-strongly-simulation-indistinguishable if Advs-sim-indC (t) ≤
ε;

– Strong Binding Extractability (informally introduced in [CLOS02] as “simulation extractability”): one
cannot fool the extractor, i.e., produce a commitment and a valid opening data (not given by SCom)
to an input x while the commitment does not extract to x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom). C is said (t, ε)-strongly-binding-extractable if
Succs-bind-extC (t) ≤ ε.

They both imply the respective weaker notions since they just differ by giving access to the ExtCom-oracle in
the former game, and to the SCom oracle in the latter. We insist that ExtCom-queries on SCom-outputs are
answered by the related SCom-inputs. Otherwise, the former game would be void. In addition, VerCom always
rejects inputs with x = ⊥, which is useful in the latter game.

3.2 UC-Secure Commitments

The security definition for commitment schemes in the UC framework was presented by Canetti and Fis-
chlin [CF01], refined by Canetti [Can05]. The ideal functionality is presented in Figure 4, where a public
delayed output is an output first sent to the adversary S that eventually decides if and when the message is
actually delivered to the recipient. In case of corruption of the committer, if this is before the Receipt-message
for the receiver, the adversary chooses the committed value, otherwise it is provided by the ideal functionality,
according to the Commit-message. Note this is actually the multiple-commitment functionality that allows
multiple executions of the commitment protocol (multiple ssid’s) for the same functionality instance (one
sid). This avoids the use of joint-state UC [CR03].
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Exps-sim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K);

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com`(x)

else (C, δ)
$← SCom`(τ, x)

return ASCom·(τ,·),ExtCom·(τ,·)(state, C, δ)

Exps-bind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if (`, x′, C) ∈ Λ then return 0

if x′ = x then return 0
else return VerCom`(C, x, δ)

Fig. 3. Strong Simulation Indistinguishability and Strong Binding Extractability

The functionality Fcom is parametrized by a security parameter k. It interacts with an adversary S and a set of parties
P1,. . . ,Pn via the following queries:
Commit phase: Upon receiving a query (Commit, sid, ssid, Pi, Pj, x) from party Pi: record the tuple
(sid, ssid, Pi, Pj , x) and generate a public delayed output (Receipt, sid, ssid, Pi, Pj) to Pj . Ignore further Commit-message
with the same ssid from Pi.
Decommit phase. Upon receiving a query (Reveal, sid, ssid, Pi, Pj) from party Pi: ignore the message if
(sid, ssid, Pi, Pj , x) is not recorded; otherwise mark the record (sid, ssid, Pi, Pj) as revealed and generate a public delayed
output (Revealed, sid, ssid, Pi, Pj , x) to Pj . Ignore further Reveal-message with the same ssid from Pi.

Fig. 4. Ideal Functionality for Commitment Scheme Fcom

Theorem 4. A labeled E2-commitment scheme C, that is in addition strongly-simulation-indistinguishable or
strongly-binding-extractable, is a non-interactive UC-secure commitment scheme in the presence of adaptive
adversaries, assuming reliable erasures and authenticated channels.
More precisely, for any environment, its advantage in distinguishing the ideal world (with the ideal functionality
from Figure 4) and the real world (with the commitment scheme C) is bounded by both Advsetup-indC (t) + qs ·
Advsim-indC (t) + Succs-bind-extC (t) and Advsetup-indC (t) + qs · Advs-sim-indC (t) + Succbind-extC (t), where qs is the
number of concurrent sessions and t its running time.

Proof. The full proof with the cost of the reduction are given in Appendix D, but let us provide here the
simulator:

– when receiving a commitment C from the adversary, and thus either freshly generated by the adversary
or a replay of a commitment C generated by the simulator in another session (with a different label), the
simulator extracts the committed value x, and uses it to send a Commit message to the ideal functionality.
A dummy value is used in case of bad extraction;

– when receiving a Receipt-message, which means that an honest player has committed a value, the sim-
ulator generates (C, eqk) $← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the commit phase
of the honest player;

– when receiving (x, δ), if the verification succeeds, the simulator asks for a Reveal query to the ideal
functionality;

– when receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to actually open
the commitment.

Any corruption just reveals x earlier, which allows a correct simulation of the opening. ut

4 A Construction of Labeled E2-Commitment Scheme

4.1 Labeled Cramer-Shoup Encryption on Vectors

For our construction we use a variant of the Cramer-Shoup encryption scheme for vectors of messages. Let G
be a cyclic group of order p, with two independent generators g and h. The secret decryption key is a random
vector sk = (x1, x2, y1, y2, z)

$← Z5
p and the public encryption key is pk = (g, h, c = gx1hx2 , d = gy1hy2 , f =

gz, H), where H is randomly chosen in a collision-resistant hash function family H (actually, second-preimage
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resistance is enough). For a message-vector M = (Mi)i=1,...,m ∈ Gm, the multi-Cramer-Shoup encryption is
defined as m-MCS`pk(M ; (ri)i) = (CS`pk(Mi, θ; ri) = (ui = gri , vi = hri , ei = f ri ·Mi, wi = (cdθ)ri))i, where
θ = H(`, (ui, vi, ei)i) is the same for all the wi’s to ensure non-malleability contrary to what we would have if we
had just concatenated Cramer-Shoup ciphertexts of theMi’s. Such a ciphertext C = (ui, vi, ei, wi)i is decrypted
by Mi = ei/u

z
i , after having checked the validity of the ciphertext, wi ?= ux1+θy1i vx2+θy2i , for i = 1, . . . ,m.

This multi-Cramer-Shoup encryption scheme, denoted MCS, is IND-CCA under the DDH assumption. It even
verifies a stronger property VIND-PO-CCA (for Vector-Indistinguishability with Partial Opening under Chosen-
Ciphertext Attacks), where the random coins ri, of the common coordinates in the two challenge vectors,
are published with the challenge ciphertext (partial-opening of the random coins, see Appendix B for more
details). This will be useful for the security proof of our commitment E2C (see below):

Advvind-po-ccaMCS (m, qd, γ, t) ≤ 2γ · AdvddhG (t) + SucccollH (t) +
m(γ + 1)qd

p
, (1)

where m is the length of the encrypted vectors, qd is the maximal number of decryption queries, and γ the
bound on the number of distinct components in the two challenge vectors; and where AdvddhG and SucccollH (t) are
respectively the maximum advantage of an adversary against the DDH problem and the maximum probability
for an adversary to find a collision for H $← H, in time t.

4.2 Construction

In this section, we provide a concrete construction E2C, inspired from [CF01,CLOS02,ACP09], with the above
multi-Cramer-Shoup encryption (as an extractable commitment scheme) and the TC4 Haralambiev’s equiv-
ocable commitment scheme [Har11, Section 4.1.4]. The latter will allow equivocability while the former will
provide extractability:

– SetupComT(1K) generates a pairing-friendly setting (G1, g1,G2, g2,GT , p, e), with another independent
generator h1 of G1. It then generates the parameters of a Cramer-Shoup-based commitment in G1:
x1, x2, y1, y2, z

$← Zp and H
$← H, and sets pk = (g1, h1, c = gx11 h

x2
1 , d = gy11 h

y2
1 , f1 = gz1 , H). It then

chooses a random scalar t $← Zp, and sets T = gt2. The CRS ρ is set as (pk, T ) and the trapdoor τ
is the decryption key (x1, x2, y1, y2, z) (a.k.a. extraction trapdoor) together with t (a.k.a. equivocation
trapdoor). For SetupCom(1K), the CRS is generated the same way, but forgetting the scalars, and thus
without any trapdoor;

– Com`(M), for M = (Mi)i ∈ {0, 1}m and a label `, works as follows:
• For i = 1, . . . ,m, it chooses a random scalar ri,Mi

$← Zp, sets ri,1−Mi = 0, and commits to Mi, using
the TC4 commitment scheme with ri,Mi as randomness: ai = g

ri,Mi
2 TMi , and sets di,j = g

ri,j
1 for

j = 0, 1, which makes di,Mi the opening value for ai to Mi; Let us also write a = (a1, . . . , am), the
tuple of commitments.
• For i = 1, . . . ,m and j = 0, 1, it gets b = (bi,j)i,j = 2m-MCS`

′
pk(d; s), that is (ui,j , vi,j , ei,j , wi,j)i,j ,

where d = (di,j)i,j computed above, s = (si,j)i,j
$← Z2m

p , and `′ = (`,a).
The commitment is C = (a, b), and the opening information is the m-tuple δ = (s1,M1 , . . . , sm,Mm).

– VerCom`(C,M , δ) checks the validity of the ciphertexts bi,Mi with si,Mi and θ computed on the full
ciphertext C, extracts di,Mi from bi,Mi and si,Mi , and checks whether e(g1, ai/TMi) = e(di,Mi , g2), for
i = 1, . . . ,m.

– SimCom`(τ) takes as input the equivocation trapdoor, namely t, and outputs C = (a, b) and eqk = s,
where
• For i = 1, . . . ,m, it chooses a random scalar ri,0

$← Zp, sets ri,1 = ri,0− t, and commits to both 0 and
1, using the TC4 commitment scheme with ri,0 and ri,1 as respective randomness: ai = g

ri,0
2 = g

ri,1
2 T ,

and di,j = g
ri,j
1 for j = 0, 1, which makes di,j the opening value for ai to the value j ∈ {0, 1}. This

leads to a;
• b is built as above: b = (bi,j)i,j = 2m-MCS`

′
pk(d; s), with random scalars (si,j)i,j .
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– OpenCom`(eqk, C,M) simply extracts the useful values from eqk = s to make the opening value δ =
(s1,M1 , . . . , sm,Mm) in order to open to M = (Mi)i.

– ExtCom`(τ, C) takes as input the extraction trapdoor, namely the Cramer-Shoup decryption key. Given
b, it can decrypt all the bi,j into di,j and check whether e(g1, ai/T j) = e(di,j , g2) or not. If, for each i,
exactly one j = Mi satisfies the equality, then the extraction algorithm outputs (Mi)i, otherwise (no
correct decryption or ambiguity with several possibilities) it outputs ⊥.

4.3 Security Properties

The above commitment scheme E2C is a labeled E2-commitment, with both strong-simulation-indistinguishab-
ility and strong-binding-extractability, under the DDH assumptions in both G1 and G2. It is thus a UC-secure
commitment scheme. The stronger VIND-PO-CCA security notion for the encryption scheme is required because
the SCom/Com oracle does not only output the commitment (and thus the ciphertexts) but also the opening
values which include the random coins of the encryption, but just for the plaintext components that are the
same in the two vectors, since the two vectors only differ for unnecessary data (namely the di,1−Mi ’s) in the
security proof. More details can be found in the full proof, in Appendix D, which leads to Advsetup-indE2C (t) = 0,
Advs-sim-indE2C (t) ≤ Advvind-po-ccaMCS (2m, qd,m, t), and Succs-bind-extE2C (t) ≤ qc · Advs-sim-indE2C (t) + AdvddhG2

(t), where qc
is the number of SCom-queries and qd the number of ExtCom-queries.

5 SPHF-Friendly Commitments

5.1 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [CS02], but we here use the
definitions of Gennaro and Lindell [GL03], provided to build secure password-based authenticated key exchange
protocols, together with non-malleable commitments.

Let X be the domain of these functions and let L be a certain subset of this domain (a language). A key
property of these functions is that, for words C in L, their values can be computed by using either a secret
hashing key hk or a public projection key hp but with a witness w of the fact that C is indeed in L:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, on any word C ∈ X;
– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and the witness w, for C ∈ L.

The set of hash values is called the range of the SPHF and is denoted Π. The correctness of the SPHF assures
that if C ∈ L with w a witness of this fact, then Hash(hk, L, C) = ProjHash(hp, L, C,w). On the other hand,
the security is defined through the smoothness, which guarantees that, if C 6∈ L, Hash(hk, L, C) is statistically
indistinguishable from a random element, even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (a superset L′) and not at all on C: we
then note HashKG(L′) and ProjKG(hk, L′,⊥) (see [BBC+13] for more details on GL-SPHF and KV-SPHF and
language definitions).

5.2 Robust Commitments

For a long time, SPHFs have been used to implicitly check some statements, on language membership,
such as “C indeed encrypts x”. This easily extends to perfectly binding commitments with labels: Lx =
{(`, C)| ∃δ, VerCom`(C, x, δ) = 1}. But when commitments are equivocable, this intuitively means that a
commitment C with the label ` contains any x and is thus in all the languages Lx. In order to be able to
use SPHFs with E2-commitments, we want the commitments generated by polynomially-bounded adversaries
to be perfectly binding, and thus to belong to at most one language Lx. We thus need a robust verification
property for such E2-commitments.
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ExprobustA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if (`, x′, C) ∈ Λ then return 0

if ∃x 6= x′, ∃δ, VerCom`(C, x, δ) then return 1
else return 0

Fig. 5. Robustness

Definition 5 (Robustness). One cannot produce a commitment and a label that extracts to x′ (possibly
x′ = ⊥) such that there exists a valid opening data to a different input x, even with oracle access to the
extraction oracle (ExtCom) and to fake commitments (using SCom). C is said (t, ε)-robust if SuccrobustC (t) ≤ ε,
according to the experiment ExprobustA (K) in Figure 5.

It is important to note that the latter experiment ExprobustA (K) may not be run in polynomial time. Robustness
implies strong-binding-extractability.

5.3 Properties of SPHF-Friendly Commitments

We are now ready to define SPHF-friendly commitments, which admit an SPHF on the languages Lx =
{(`, C)| ∃δ, VerCom`(C, x, δ) = 1}, and to discuss about them:

Definition 6 (SPHF-Friendly Commitments). An SPHF-friendly commitment is an E2-commitment that
admits an SPHF on the languages Lx, and that is both strongly-simulation-indistinguishable and robust.

Let us consider such a family F of SPHFs on languages Lx for x ∈ X, with X a non trivial set (with at
least two elements), with hash values in the set G. From the smoothness of the SPHF on Lx, one can derive
the two following properties on SPHF-friendly commitments, modeled by the experiments in Figure 6. The
first notion of smoothness deals with adversary-generated commitments, that are likely perfectly binding from
the robustness, while the second notion of pseudo-randomness deals with simulated commitments, that are
perfectly hiding. They are inspired by the security games from [GL03].

In both security games, note that when hk and hp do not depend on x nor on C, and when the smoothness
holds even if the adversary can choose C after having seen hp (i.e., the SPHF is actually a KV-SPHF [BBC+13]),
they can be generated from the beginning of the games, with hp given to the adversary much earlier.

Smoothness of SPHF-Friendly Commitments. If the adversary A, with access to the oracles SCom
and ExtCom, outputs a fresh commitment (`, C) that extracts to x′ ← ExtCom`(τ, C), then the robustness
guarantees that for any x 6= x′, (`, C) 6∈ Lx (excepted with small probability), and thus the distribution
of the hash value is statistically indistinguishable from the random distribution, even when knowing hp. In
the experiment Expc-smoothA (K), we let the adversary choose x, and we have: Advc-smoothC,F (t) ≤ SuccrobustC (t) +

AdvsmoothF .

Pseudo-Randomness of SPHF on Robust Commitments. If the adversary A is given a commitment
C by SimCom with label `, adversary-chosen, even with access to the oracles SCom and ExtCom, then for
any x, it cannot distinguish the hash value of (`, C) on language Lx from a random value, even being given
hp, since C could have been generated as Com`(x′′) for some x′′ 6= x, which excludes it to belong to Lx,
under the robustness. In the experiment Exp

c-ps-rand
A (K), we let the adversary choose (`, x), and we have:

Advc-ps-randC,F (t) ≤ Advs-sim-indC (t) + SuccrobustC (t) + AdvsmoothF .
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Expc-smooth-bA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); x′ ← ExtCom`(τ, C)

if (`, x′, C) ∈ Λ then return 0

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

if b = 0 ∨ x′ = x then H ← Hash(hk, Lx, (`, C))

else H $← Π
return ASCom·(τ,·),ExtCom·(τ,·)(state, hp, H)

Expc-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

if b = 0 then H ← Hash(hk, Lx, (`, C))

else H $← Π
return ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)

Expc-s-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx,⊥)

if b = 0 then H ← Hash(hk, Lx, (`, C))

else H $← Π
(`′, C′, state)

$← ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)
if (`′, ?, C′) ∈ Λ then H ′ ←⊥
else H ′ ← Hash(hk, Lx, (`

′, C′)

return ASCom·(τ,·),ExtCom·(τ,·)(H ′)

Fig. 6. Smoothness, Pseudo-Randomness and Strong Pseudo-Randomness

Strong Pseudo-Randomness. Besides these two properties which hold for any SPHF-friendly commitment,
we need a third property for our one-round PAKE protocol. This property, called strong pseudo-randomness,
is defined by the experiment Exp

c-s-ps-rand
A (K) depicted in Figure 6. It is a strong version of the pseudo-

randomness where the adversary is also given the hash value of a commitment of its choice (obviously not
generated by SCom or SimCom though, hence the test with Λ which also contains (C, `, x)). This property
only makes sense when the projection key does not depend on the word C to be hashed. It thus applies to
KV-SPHF only.

5.4 Our Commitment Scheme E2C is SPHF-Friendly

In order to be SPHF-friendly, the commitment first needs to be strongly-simulation-indistinguishable and ro-
bust. We have already shown the former property, and the latter is also proven in Appendix D. One addition-
ally needs an SPHF able to check the verification equation: using the notations from Section 4.2, C = (a, b)
is a commitment of M = (Mi)i, if there exist δ = (s1,M1 , . . . , sm,Mm) and (d1,M1 , . . . , dm,Mm) such that
bi,Mi = (ui,Mi , vi,Mi , ei,Mi , wi,Mi) = CS`

′
pk(di,Mi , θ; si,Mi) (with a particular θ) and e(g1, ai/TMi) = e(di,Mi , g2),

for i = 1, . . . ,m. Since e is non-degenerated, we can eliminate the need of di,Mi , by lifting everything in GT ,
and checking that, first, the ciphertexts are all valid:

e(ui,Mi , g2) = e(g
si,Mi
1 , g2) e(vi,Mi , g2) = e(h

si,Mi
1 , g2) e(wi,Mi , g2) = e((cdθ)si,Mi , g2)

and, second, the plaintexts satisfy the appropriate relations:

e(ei,Mi , g2) = e(f
si,Mi
1 , g2) · e(g1, ai/TMi).
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Table 1. Comparison with existing non-interactive UC-secure commitments with a single global CRS (m = bit-length of the
committed value, K = security parameter)

SPHF-Friendly Commitment C Decommitment δ Assumption

[ACP09]a yes (m+ 16mK)×G 2mK× Zp DDH
[FLM11], 1 no 5×G 16×G DLIN
[FLM11], 2 no 37×G 3×G DLIN
this paper yes 8m×G1 + m×G2 m× Zp SXDH
a slight variant without one-time signature but using labels for the IND-CCA security of the
multi-Cramer-Shoup ciphertexts, as in our new scheme, and supposing that an element
in the cyclic group G has size 2K, to withstand generic attacks.

From these expressions we derive several constructions of such SPHFs in Appendix C, and focus here on the
most interesting ones for the following applications:

– First, when C is sent in advance (known when generating hp), as in the OT protocol described in Section 7,
for hk = (η, α, β, µ, ε)

$← Z5
p, and hp = (ε, hp1 = gη1h

α
1 f

β
1 (cd

θ)µ) ∈ Zp ×G1:

H = Hash(hk,M , C)

def=
∏
i

(
e(uηi,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i hp

si,Miε
i−1

1 , g2)
def= ProjHash(hp,M , C, δ) = H ′.

– Then, when C is not necessarily known for computing hp, as in the one-round PAKE, described in Section 6,
for hk = (ηi,1, ηi,2, αi, βi, µi)i

$← Z5m
p , and hp = (hpi,1 = g

ηi,1
1 hαi1 f

βi
1 c

µi , hpi,2 = g
ηi,2
1 dµi)i ∈ G2m

1 :

H = Hash(hk,M , C)
def=
∏
i

(
e(u

(ηi,1+θηi,2)
i,Mi

· vαii,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))βi · e(wµii,Mi
, g2)

)
= e(

∏
i(hpi,1hp

θ
i,2)

si,Mi , g2)
def= ProjHash(hp,M , C, δ) = H ′.

This SPHF verifies the strong pseudo-randomness property, as shown in Appendix D.2. More precisely,
we have: Succc-s-ps-randE2C,F (t) ≤ 2 · SuccrobustE2C (t) + 2 · Succs-bind-extE2C (t) + 2 · AdvsmoothF .

5.5 Complexity and Comparisons

As summarized in Table 1, the communication complexity is linear in m · K (where m is the bit-length of
the committed value and K is the security parameter), which is much better than [ACP09] that was linear in
m ·K2, but asymptotically worse than the two proposals in [FLM11] that are linear in K, and thus independent
of m (as long as m = O(K)).

Basically, the first scheme in [FLM11] consists of a Cramer-Shoup-like encryption C of the message x,
and a perfectly-sound Groth-Sahai [GS08] NIZK π that C contains x. The actual commitment is C and the
opening value on x is δ = π. The trapdoor-setup provides the Cramer-Shoup decryption key and changes
the Groth-Sahai setup to the perfectly-hiding setting. The indistinguishable setups of the Groth-Sahai mixed
commitments ensure the setup-indistinguishability. The extraction algorithm uses the Cramer-Shoup decryp-
tion algorithm, while the equivocation uses the simulator of the NIZK. The IND-CCA security notion for C and
the computational soundness of π make it strongly-binding-extractable, the IND-CCA security notion and the
zero-knowledge property of the NIZK provide the strong-simulation-indistinguishability. It is thus UC-secure.
However, the verification is not robust: because of the perfectly-hiding setting of Groth-Sahai proofs, for any
ciphertext C and for any message x, there exists a proof π that makes the verification of C on x. As a con-
sequence, it is not SPHF-friendly. The second construction is in the same vein: they cannot be used in the
following applications.
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Table 2. Comparison with existing UC-secure PAKE schemes

Adaptive One-round Communication complexity Assumption

[ACP09]a yes no 2× (2m+ 22mK)×G + OTSb DDH
[KV11] no yes ≈ 2× 70×G DLIN
[BBC+13] no yes 2× 6×G1 + 2× 5×G2 SXDH
this paper yes yes 2× 10m×G1 + 2×m×G2 SXDH
a with the commitment variant of note “a” of Table 1.
b OTS: one-time signature (public key size and signature size) to link the flows in the

PAKE protocol.

6 Password-Authenticated Key Exchange

6.1 A Generic Construction

The ideal functionality of a Password-Authenticated Key Exchange (PAKE) is depicted in Appendix A.3.
It has been proposed in [CHK+05]. In Figure 7, we describe a one-round PAKE that is UC-secure against
adaptive adversaries, assuming erasures. It can be built from any SPHF-friendly commitment scheme (that
is E2, strongly-simulation-indistinguishable, and robust as described in Section 5), if the SPHF is actually a
KV-SPHF [BBC+13] and the algorithms HashKG and ProjKG do not need to know the committed value π (nor
the word (`, C) itself), for which the SPHF verifies the strong pseudo-randomness property. We thus denote Lπ
the language of the pairs (`, C), where C is a commitment that opens to π under the label `, and L the union
of all the Lπ (L does not depend on π). The proof of the following theorem, with the cost of the reduction,
are given in Appendix D.

Theorem 7. The Password-Authenticated Key-Exchange described on Figure 7 is UC-secure in the presence
of adaptive adversaries, assuming erasures, as soon as the commitment scheme is SPHF-friendly with a KV-
SPHF.

6.2 Concrete Instantiation

Using our commitment E2C introduced Section 4 together with the second SPHF described Section 5 (which
satisfies the above requirements for HashKG and ProjKG), one gets a quite efficient protocol, described in Ap-
pendix E. More precisely, for m-bit passwords, each player has to send hp ∈ G2m

1 and C ∈ G8m
1 ×Gm

2 , which
means 10m elements from G1 and m elements from G2. In Table 2, we compare our new scheme with some
previous UC-secure PAKE.

CRS: ρ $← SetupCom(1K).
Protocol execution by Pi with πi:
1. Pi generates hki $← HashKG(L), hpi ← ProjKG(hki, L,⊥)

and erases any random coins used for the generation
2. Pi computes (Ci, δi) $← Com`i(πi) with `i = (sid, ssid, Pi, Pj , hpi)
3. Pi stores δi, completely erases random coins used by Com

and sends hpi, Ci to Pj

Key computation: Upon receiving hpj , Cj from Pj
1. Pi computes H ′i ← ProjHash(hpj , Lπi , (`i, Ci), δi)

and Hj ← Hash(hki, Lπi , (`j , Cj)) with `j = (sid, ssid, Pj , Pi, hpj)
2. Pi computes ski = H ′i ·Hj and erases everything else, except πi.

Fig. 7. UC-Secure PAKE from an SPHF-Friendly Commitment
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7 Oblivious Transfer

7.1 A Generic Construction

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Appendix A.3. It is inspired
from [CKWZ13]. In Figure 8, we describe a 3-round OT that is UC-secure against adaptive adversaries, and
a 2-round variant which is UC-secure against static adversaries. They can be built from any SPHF-friendly
commitment scheme, where Lt is the language of the commitments that open to t under the associated label
`, and from any IND-CPA encryption scheme E = (Setup,KeyGen,Encrypt,Decrypt) with plaintext size at least
K, and from any Pseudo-Random Generator (PRG) F with input size equal to plaintext size, and output size
equal to the size of the messages in the database. Details on encryption schemes and PRGs can be found in
Appendix A.2. Notice the adaptive version can be seen as a variant of the static version where the last flow is
sent over a somewhat secure channel, as in [CKWZ13]; and the preflow and pk and c are used to create this
somewhat secure channel.

The proof of the following theorem, with the cost of the reduction, are given in Appendix D.

CRS: ρ $← SetupCom(1K), param $← Setup(1K).
Pre-flow (for adaptive security only):
1. Pi generates a key pair (pk, sk) $← KeyGen(param) for E
2. Pi stores sk, completely erase random coins used by KeyGen, and sends pk to Pi

Index query on s:
1. Pj chooses a random value S, computes R ← F (S) and encrypts S under pk: c $← Encrypt(pk, S) (for adaptive security

only; for static security: c =⊥, R = 0)
2. Pj computes (C, δ) $← Com`(s) with ` = (sid, ssid, Pi, Pj)
3. Pj stores δ, completely erases S and random coins used by Com and Encrypt, and sends C and c to Pi

Database input (m1, . . . ,mk):
1. Pi decrypts S ← Decrypt(sk, c) and gets R← F (S) (for static security: R = 0)
2. Pi computes hkt $← HashKG(Lt), hpt ← ProjKG(hkt, Lt, (`, C)),

Kt ← Hash(hkt, Lt, (`, C)), and Mt ← R⊕Kt ⊕mt, for t = 1, . . . , k
3. Pi erases everything except (hpt,Mt)t=1,...,k and sends (hpt,Mt)t to Pj

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, Ls, (`, C), δ) and gets ms ← R⊕Ks ⊕Ms.
Then Pj erases everything except ms and s

Fig. 8. UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment (for Adaptive and Static Security)

Theorem 8. The two Oblivous Transfer schemes described in Figure 8 are UC-secure in the presence of
adaptive adversaries and static adversaries respectively, assuming reliable erasures and authenticated channels,
as soon as the commitment scheme is SPHF-friendly.

7.2 Concrete Instantiation and Comparison

Using our commitment E2C introduced Section 4 together with the first SPHF described Section 5, one gets
the protocol described in Appendix E, where the number of bits of the commited value is m = dlog ke. For
the statically secure version, the communication cost is, in addition to the database m that is sent in M in
a masked way, 1 element of Zp and k elements of G1 (for hp, by using the same scalar ε for all hpt’s) for the
sender, while the receiver sends dlog ke elements of G2 (for a) and d8 log ke elements of G1 (for b), in only
two rounds. In the particular case of k = 2, the scalar can be avoided since the message consists of 1 bit,
so our construction just requires: 2 elements from G1 for the sender, and 1 from G2 and 8 from G1 for the
receiver, in two rounds. For the same security level (static corruptions in the CRS, with erasures), the best
known solution from [CKWZ13] required to send at least 23 group elements and 7 scalars, in 4 rounds. If
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adaptive security is required, our construction requires 3 additional elements in G1 and 1 additional round,
which gives a total of 13 elements in G1, in 3 rounds. This is also more efficient then the best known solution
from [CKWZ13], which requires 26 group elements and 7 scalars, in 4 rounds.
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A Notations

We first recall the classical definitions on distances of distribution, and the notions of success and advantage.
We then review the basic cryptographic tools, with the corresponding security notions.

A.1 Distances, Advantage and Success

Statistical Distance. Let D0 and D1 be two probability distributions over a finite set S and let X0 and X1

be two random variables with these two respective distributions. The statistical distance between D0 and D1

is also the statistical distance between X0 and X1:

Dist(D0,D1) = Dist(X0, X1) =
∑
x∈S
|Pr [X0 = x ]− Pr [X1 = x ]| .

If the statistical distance between D0 and D1 is less than or equal to ε, we say that D0 and D1 are ε-close
or are ε-statistically indistinguishable. If the D0 and D1 are 0-close, we say that D0 and D1 are perfectly
indistinguishable.

Success/Advantage. When one considers an experiment ExpsecA (K) in which an adversary A plays a secu-
rity game SEC, we denote Succsec(A,K) = Pr [ExpsecA (K) = 1 ] the success probability of this adversary. We
additionally denote Succsec(t) = maxA≤t{Succsec(A,K)}, the maximal success any adversary running within
time t can get.

When one considers a pair of experiments Expsec-bA (K), for b = 0, 1, in which an adversary A plays a
security game SEC, we denote Advsec(A,K) = Pr

[
Expsec−0A (K) = 1

]
− Pr

[
Expsec−1A (K) = 1

]
the advantage

of this adversary. We additionally denote Advsec(t) = maxA≤t{Advsec(A,K)}, the maximal advantage any
adversary running within time t can get.

Computational Distance. Let D0 and D1 be two probability distributions over a finite set S and let X0

and X1 be two random variables with these two respective distributions. The computational distance between
D0 and D1 is the best advantage an adversary can get in distinguishing X0 from X1: AdvD0,D1(A,K) =
Pr [A(X0) = 1 ]− Pr [A(X1) = 1 ], and thus AdvD0,D1(t) = maxA≤t{AdvD0,D1(A,K)}. When AdvD0,D1(t) ≤ ε,
we say that D0 and D1 are (t, ε)-computationally indistinguishable.

We can note that for two distributions D0 and D1 that are ε-close, for any t and ε, D0 and D1 are
(t, ε)-computationally indistinguishable.

A.2 Formal Definitions of the Basic Primitives

Hash Function Family. A hash function family H is a family of functions Hk from {0, 1}∗ to a fixed-length
output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any adversary A on a random
function H $← H, it is hard to find a collision. More precisely, we denote

SucccollH (A,K) = Pr
[
H

$← H, (m0,m1)← A(H) : H(m0) = H(m1)
]
.

Labeled Encryption Scheme. A labeled public-key encryption scheme E is defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the public encryption key pk and the private decryption key sk;
– Encrypt`(pk,m; r) produces a ciphertext c on the input message m ∈M under the label ` and encryption

key pk, using the random coins r;
– Decrypt`(sk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for an invalid ciphertext.

An encryption scheme E should satisfy the following properties
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– Correctness: for all key pair (pk, sk), any label `, all random coins r and all messages m,

Decrypt`(sk,Encrypt`(pk,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks: this se-
curity notion IND-CCA can be formalized by the following
experiments Expind-cca-bA (K), where the adversary A trans-
fers some internal state state between the various calls FIND
and GUESS, and makes use of the oracle ODecrypt:

• ODecrypt`(c): This oracle outputs the decryption of c
under the label ` and the challenge decryption key sk.
The input queries (`, c) are added to the list CTXT.

Expind-cca-bA (K)

param $← Setup(1K)
(pk, sk)

$← KeyGen(param)
(`∗,m0,m1, state)← AODecrypt·(·)(FIND : pk)
c∗ ← Encrypt`

∗
(pk,mb)

b′ ← AODecrypt·(·)(state, GUESS : c∗)
if (`∗, c∗) ∈ CTXT then return 0
else return b′

According to the previous section, these experiments implicitly define the advantages Advind-ccaE (A,K)
and Advind-ccaE (t). One sometimes use Advind-ccaE (qd, t) to bound the number of decryption queries.

Pseudo-Random Generators (PRGs). A pseudo-random generator (PRG) is a function F so that for a randomly
chosen seed S $← {0, 1}K outputs a random-looking value in {0, 1}`, for some ` > K.

The quality of a PRG is measured by the computational distance AdvprgF (t) between the distributions of
the outputs on random inputs from random values in {0, 1}`.

A.3 Ideal Functionalities

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT) protocol is depicted
in Figure 9. It is inspired from [CKWZ13].

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi, with mi ∈
{0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid, Pi, Pj) to the
adversary S. Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj, with s ∈ {1, . . . , k}:
record the tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj) to the adversary S. Ignore
further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message with the same ssid from the adver-
sary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-message with the same ssid from
the adversary.

Fig. 9. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

UC-Secure Password-Authenticated Key Exchange. We present the PAKE ideal functionality FpwKE
on Figure 10). It was described in [CHK+05]. The main idea behind this functionality is as follows: If neither
party is corrupted and the adversary does not attempt any password guess, then the two players both end up
with either the same uniformly-distributed session key if the passwords are the same, or uniformly-distributed
independent session keys if the passwords are distinct. In addition, the adversary does not know whether this
is a success or not. However, if one party is corrupted, or if the adversary successfully guessed the player’s
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The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, π) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second
NewSession query and there is a record (sid, ssid, Pj , Pi, π

′), then record (sid, ssid, Pi, Pj , π) and
mark this record fresh.

– Upon receiving a query (TestPwd, sid, ssid, Pi, π
′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If π 6= π′, mark the record interrupted and
reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , π), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to

player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and a key sk′ was sent
to Pj , and (Pj , Pi, π) was fresh at the time, then output (sid, ssid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′) to Pi.
Either way, mark the record (sid, ssid, Pi, Pj , π) as completed.

Fig. 10. Ideal Functionality for PAKE FpwKE

password (the session is then marked as compromised), the adversary is granted the right to fully determine
its session key. There is in fact nothing lost by allowing it to determine the key. In case of wrong guess (the
session is then marked as interrupted), the two players are given independently-chosen random keys. A
session that is nor compromised nor interrupted is called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the password(s) to the participants. The
passwords are chosen by the environment which then hands them to the parties as inputs. This guarantees
security even in the case where two honest players execute the protocol with two different passwords: This
models, for instance, the case where a user mistypes its password. It also implies that the security is preserved
for all password distributions (not necessarily the uniform one) and in all situations where the password,
are related passwords, are used in different protocols. Also note that allowing the environment to choose the
passwords guarantees forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the NewKey-query,
it additionally learns the session key.

B Cramer-Shoup Encryption on Vectors

B.1 The Computational Assumption

Definition 9 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assumption says that,
in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b

$← Zp, it is hard to decide whether
c = ab mod p (a DH tuple) or c $← Zp (a random tuple).

We denote by AdvddhG (t) the best advantage an adversary can have in distinguishing a DH tuple from a random
tuple in the group G within time t.

B.2 Description of the Cramer Shoup Encryption on Vectors

Labeled Cramer-Shoup Encryption. The labeled Cramer-Shoup encryption scheme works in a cyclic group
G of prime order p, with two independent generators g and h. For random scalars x1, x2, y1, y2, z

$← Zp, we
set sk = (x1, x2, y1, y2, z) to be the private decryption key and pk = (g, h, c = gx1hx2 , d = gy1hy2 , f = gz, H)
to be the public encryption key, where H is a random collision-resistant hash function from H (actually,
second-preimage resistance is enough).
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If M ∈ G, the Cramer-Shoup encryption is defined as CS`pk(M ; r) = (u = gr, v = hr, e = f r ·M,w =

(cdθ)r), where θ = H(`, u, v, e). Such a ciphertext C = (u, v, e, w) is decrypted by M = e/uz, after having
checked the validity of the ciphertext: w ?= ux1+θy1vx2+θy2 .

This encryption scheme is well-known to be IND-CCA under the DDH assumption.
Labeled Cramer-Shoup Encryption on Vectors. The above scheme can be extended to encrypt vectors
of group elements M = (M1, . . . ,Mm) ∈ Gm: m-MCS`pk(M ; r) = (CS`pk(Mi; ri))i = (ui = gri , vi = hri , ei =

f ri · Mi, wi = (cdθ)ri)i, where θ = H(`, (ui, vi, ei)i), with indices range in {1, . . . ,m}. Such a ciphertext
C = (ui, vi, ei, wi)i with label ` is decrypted byMi = ei/u

z
i , after having checked the validity of the ciphertext:

wi
?= ux1+θy1i vx2+θy2i for i = 1, . . . ,m.
This encryption scheme MCS is also IND-CCA under the DDH assumption. More precisely, if qd is the

number of decryption queries,

Advind-ccaMCS (m, qd, t) ≤ 2m× AdvddhG (t) + SucccollH (t) +
m(m+ 1)qd

p
.

Proof. Let us be given a tuple (g, h, u, v) ∈ G4. We choose random scalars x1, x2, y1, y2, z
$← Zp, and set

sk = (x1, x2, y1, y2, z) and pk = (g, h, c = gx1hx2 , d = gy1hy2 , f = gz, H), where H is a random collision-
resistant hash function from H. We now consider an IND-CCA adversary on m-element vectors.

Game G0: With the above setup, we play the IND-CCA game where the challenge ciphertext is on M , that
is chosen at random among the two vectors outputted by the adversary in the FIND stage.

Game G1: In this game, instead of setting f = gz, one sets f = gz1hz2 , which essentially means that
z = z1+sz2, where h = gs. Then, the decryption works as follows:Mi = ei/(u

z1
i v

z2
i ), after having checked

the validity of the ciphertext: wi ?= ux1+θy1i vx2+θy2i for i = 1, . . . ,m, relatively to the label `.
One can note that the decryption algorithm yields the same result for correct ciphertexts (i.e., ciphertexts
such that, for i = 1, . . . ,m, ui = gri and vi = hri for some ri): uz1i v

z2
i = (gri)z1(hri)z2 = (gri)z1+sz2 = uzi .

Let us show that any adversary (even unbounded) cannot generate an incorrect ciphertext which passes
the validity test wi ?= ux1+θy1i vx2+θy2i , for all i, with non-negligible probability. Let us indeed consider such
incorrect ciphertext. For some index i, wi = ux1+θy1i vx2+θy2i , but ui = gri and vi = hr

′
i with ri 6= r′i. By

taking the discrete logarithm in base g, and by setting δi = r′i − ri, we get:

log c = x1 + sx2 log d = y1 + sy2
logwi = ri(x1 + θy1) + sr′i(x2 + θy2) = ri(log c+ θ log d) + sδi(x2 + θy2).

Since c and d do not reveal any information about x2 and y2, sδi(x2 + θy2) is unpredictable and thus the
correct value for wi is unpredicatble too. An incorrect ciphertext is declared valid with probability less
than m/p, and thus the distance between the two games is bounded by mqd/p, where qd is the number
of decryption queries.

Game G2: In this game the challenge ciphertext is generated following the new decryption approach: C∗ =
(u∗i , v

∗
i , e
∗
i = u∗i

z1v∗i
z2 ·Mi, w

∗
i = u∗i

x1+θ∗y1v∗i
x2+θ∗y2)i, where θ∗ = H(`∗, (u∗i , v

∗
i , e
∗
i )i), with all the tuples

(g, h, u∗i , v
∗
i ) being DH tuples. As already shown above, since truly DH tuples are used, this makes no

difference.
Game G3: In this game, the challenge ciphertext C∗ = (u∗i , v

∗
i , e
∗
i , w

∗
i )i, uses tuples (u

∗
i , v
∗
i , e
∗
i , w

∗
i ) randomly

and independently chosen in G4.
In order to bound the distance between the two games, we use a sequence of hybrid games: in Gj , for i ≤ j,
(g, h, u∗i , v

∗
i ) are DH tuples and e∗i = u∗i

z1v∗i
z2 ·Mi, w∗i = u∗i

x1+θ∗y1v∗i
x2+θ∗y2 , where θ∗ = H(`, (u∗i , v

∗
i , e
∗
i )i),

while for i > j, tuples (u∗i , v
∗
i , e
∗
i , w

∗
i ) are randomly and independently chosen in G4. One can note that

G0 is exactly G3, while Gm is G2.
Let us modify a little bit Gj into G′j , in which (g, h, u, v) is a DH tuple and u∗j = u, v∗j = v, e∗j =

u∗j
z1v∗j

z2 ·Mj , w∗j = u∗j
x1+θ∗y1v∗j

x2+θ∗y2 . This does not change anything. We now alter it into G′′j , where
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(g, h, u, v) is a random tuple. In such a case, e∗j = uz1vz2 ·Mj = uzhδz2 ·Mj , where δ = r′− r, with u = gr

and v = hr
′ , and thus δ 6= 0 with overwhelming probability, as well as z2 6= 0. In addition, z2 is totally

unpredictable, unless some incorrect ciphertexts are decrypted.
As a conclusion, unless some incorrect ciphertexts are decrypted, e∗j is totally unpredictable. But an
incorrect ciphertext C = (ui, vi, ei, wi)i is decrypted if for some i

log c = x1 + sx2 log d = y1 + sy2
logw∗j = r(x1 + θ∗y1) + sr′(x2 + θ∗y2)

logwi = ri(x1 + θy1) + sr′i(x2 + θy2)

whereas δi = r′i− ri 6= 0. The determinant of the system is s2δδi(θ∗− θ), which is non-zero, unless θ∗ = θ.
But two cases only are possible:
– if (`, (ui, vi, ei)i) 6= (`∗, (u∗i , v

∗
i , e
∗
i )i), θ

∗ = θ leads to a collision for H;
– if (`, (ui, vi, ei)i) = (`∗, (u∗i , v

∗
i , e
∗
i )i), then the query is not allowed.

Therefore, the determinant being non-zero, wi is unpredictable and thus the probability that at least one
incorrect ciphertext is declared valid is bounded by mqd/p.
In addition, w∗j is also unpredictable. This means that G′′j is exactly Gj−1. but the distance between
the two games is bounded by mqd/p + 2AdvddhG (t), assuming no collision for H. Eventually, the distance
between G2 and G3 is bounded by m2qd/p+ 2mAdvddhG (t) + SucccollH (t).

This concludes the proof since in the last game, the values e∗i are independent of the message, and thus of
the bit involved in the security game: the advantage of the adversary is 0. ut

We now provide a stronger security notion for encryption of vectors, which is useful for our application to
E2-commitments.

B.3 Vector-Indistinguishability with Partial Opening, under Chosen-Ciphertext Attacks

New Security Notion. In our applications, when encrypting vectors, the adversary will get some of the
random coins used for encryption. We thus define a stronger security notion:

Vector-indistinguishability with partial opening, un-
der chosen-ciphertext attacks: this security notion
VIND-PO-CCA can be formalized by the following ex-
periments Exp

vind-po-cca-b
A (K), where the adversary A

keeps some internal state between the various calls FIND
and GUESS, and makes use of the above ODecrypt oracle.
However, Encrypt∗ has an additional input ∆, that consists
of the common values in M0 and M1, and ⊥ at the
places of distinct values. It also outputs the values r that
allow to check that C∗ actually encrypts a vector M
that corresponds to ∆ (i.e., that is equal to ∆ for places
different than ⊥). The exact definition of these values r
depend on the actual encryption scheme.

Expvind-po-cca-bA (K)

param $← Setup(1K)
(pk, sk)

$← KeyGen(param)
(`∗,M0,M1, state)

$← AODecrypt·(·)(FIND : pk)
∆ =M0 ∩M1

(C∗, r)
$← Encrypt∗`

∗
(pk,∆,M b)

b′
$← AODecrypt·(·)(state, GUESS : C∗, r)

if (`∗, C∗) ∈ CTXT then return 0
else return b′

This models the fact that when distinct random coins are used for each components of the vector, the random
coins of the common components can be revealed, it should not help to distinguish which vector has been
encrypted.

These experiments Expvind-po-cca-bA (K) define the advantages Advvind-po-ccaE (A,K) and Advvind-po-ccaE (t). As
above, we will use Advvind-po-ccaE (m, qd, γ, t) to make precise the length m of the vectors, and to bound by qd
the number of decryption queries and by γ the number of distinct values in the pairs of vectors.
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Labeled Cramer-Shoup Encryption on Vectors. For the Cramer-Shoup encryption on vectors MCS, the
values r output by Encrypt∗ are the random coins ri corresponding to to the common components ofM0 and
M1 (i.e., for i such that M0,i = M1,i = ∆i). These values are sufficient to check that C∗ actually encrypts a
vector corresponding to ∆.

We can prove that MCS is VIND-PO-CCA using a slight variant of the IND-CCA proofs given in Section B.2.
More precisely, we use the same games except that for i such that M0,i = M1,i, in Games G2 and G3, we
compute u∗i and v∗i as in Game G1: u∗i = gri and v∗i = hri for a random scalar ri. The hybrid technique to
prove the indistinguishability of G2 and G3 uses γ steps only (instead of m steps), with γ the number of
distinct components. Finally, we get:

Advvind-po-ccaMCS (m, qd, γ, t) ≤ 2γ × AdvddhG (t) + SucccollH (t) +
m(γ + 1)qd

p
.

C Useful SPHFs

In this appendix, we show three constructions of SPHF for E2C and summarize their costs. We use the
framework from [BBC+13].

C.1 Construction of the SPHFs

The language we are interested in is the language of valid commitments C = (a, b) ∈ Gm
2 ×G8m

1 under label
` of some fixed vector M , where the witness is the decommitment information δ = s = (si,Mi)i ∈ Zmp . More
precisely, a word C is in the language if and only if there exists δ and d = (di,Mi)i ∈ Gm

1 such that, for all
i = 1, . . . ,m:

bi,Mi = CS`
′
pk(di,Mi , θ; si,Mi) and e(g1, ai/T

Mi) = e(di,Mi , g2),

with `′ = (`,a) and θ = H(`′, (ui,j , vi,j , ei,j)i,j). If we set bi,j = (ui,j , vi,j , ei,j , wi,j)i,j , we can write the previous
conjunction as: for all i = 1, . . . ,m,

(ui,Mi , vi,Mi , ei,Mi , wi,Mi) = (g
si,Mi
1 , h

si,Mi
1 , f

si,Mi
1 · di,Mi , (cd

θ)si,Mi ) and e(g1, ai/T
Mi) = e(di,Mi , g2).

Since e is non-degenerated, we finally remark that we can eliminate the need of di,Mi , by lifting everything in
GT , and checking that, first, the ciphertexts are all valid and, second, the plaintexts satisfy the appropriate
relations:

(e(ui,Mi , g2), e(vi,Mi , g2), e(wi,Mi , g2)) = (e(g
si,Mi
1 , g2), e(h

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))

e(ei,Mi , g2) = e(f
si,Mi
1 , g2) · e(g1, ai/TMi).

From these expressions we can derive three SPHFs.

KV-SPHF. A KV-SPHF is a SPHF for which hp does not depend on C and the smoothness holds even if
the adversary can see hp before choosing C (see [BBC+13] for a precise definition). Let us first show how to
construct a KV-SPHF checking the previous condition for only a fixed index i. For this purpose, we use the
following matrices (for the framework of [BBC+13]:

Γ =

(
g1 0 h1 f1 c
0 g1 0 0 d

)
(2)

λi = (g
si,Mi
2 , g

si,Miθ

2 )

λi · Γ = (e(g
si,Mi
1 , g2), e(g

si,Miθ

1 , g2), e(h
si,Mi
1 , g2), e(f

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))

Θi(C) = (e(ui,Mi , g2), e(u
θ
i,Mi

, g2), e(vi,Mi , g2), e(ei,Mi , g2)/e(g1, ai/T
Mi), e(wi,Mi , g2))
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With hk = (η1, η2, α, β, µ)
$← Z5

p, we get hp = (hp1 = gη11 h
α
1 f

β
1 c

µ, hp2 = gη21 d
µ) ∈ G2

1.
Eventually, to check that C actually commits to M = (Mi)i, we can define a KV-SPHF, as follows:

hk = (ηi,1, ηi,2, αi, βi, µi)i
$← Z5m

p hp = (hpi,1 = g
ηi,1
1 hαi1 f

βi
1 c

µi , hpi,2 = g
ηi,2
1 dµi)i ∈ G2m

1 ,

H = Hash(hk,M , C) def=
∏
i

(
e(u

(ηi,1+θηi,2)
i,Mi

· vαii,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))βi · e(wµii,Mi
, g2)

)
= e(

∏
i(hpi,1hp

θ
i,2)

si,Mi , g2)
def= ProjHash(hp,M , C, (si,Mi)i) = H ′.

Since δ = (si,Mi)i, this will allow the one-round PAKE, described in Section 6.

CS-SPHF. When C is sent before hp, we can use a CS-SPHF instead of a KV-SPHF (for which the smoothness
holds only when the adversary cannot see hp before choosing C). Here is a more efficient CS-SPHF, with a
common projection key for all the components, but an additional random ε1:

Γ =

(
g1 0 h1 f1 c
0 g1 0 0 d

)
λ =

(∏
i g
si,Miε

i−1

2 , g
si,Miθε

i−1

2

)
λ · Γ =

(
e(
∏
i g
si,Miε

i−1

1 , g2), e(
∏
i g
si,Miθε

i−1

1 , g2), e(
∏
i h

si,Miε
i−1

1 , g2),

e(
∏
i f

si,Miε
i−1

1 , g2), e(
∏
i(cd

θ)si,Miε
i−1
, g2)

)
Θ(C) =

(∏
i e(u

εi−1

i,Mi
, g2), e(

∏
i u

θεi−1

i,Mi
, g2), e(

∏
i v
εi−1

i,Mi
, g2),∏

i(e(ei,Mi , g2)/e(g1, ai/T
Mi))ε

i−1
, e(

∏
iw

εi−1

i,Mi
, g2)

)
,

which leads to

hk = (η1, η2, α, β, µ, ε)
$← Z6

p hp = (ε, hp1 = gη11 h
α
1 f

β
1 c

µ, hp2 = gη21 d
µ) ∈ Zp ×G2

1,

H = Hash(hk,M , C) def=
∏
i

(
e(u

(η1+θη2)
i,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i(hp1hp

θ
2)
si,Miε

i−1
, g2)

def= ProjHash(hp,M , C, (si,Mi)i) = H ′.

More precisely, following the framework from [BBC+13], since hp is not known at the time C is generated,
to prove that the resulting CS-SPHF is smooth, we just need to prove that for any invalid C (not in the
language), the probability that Θ(C) is not a linear combination of the rows of Γ (C) is overwhelming, over
the random choice of ε. Indeed, if Θ(C) is independent of rows of Γ (C), H is completely unpredictable even
given hp.

Let us indeed consider an invalid commitment C, and let us write bi,Mi = (ui,Mi , vi,Mi , ei,Mi , wi,Mi)i =

(gsi1 , h
ti
1 , f

s′i
1 · di,j , (cdθ)s

′′
i )i, with di,Mi such that e(di,Mi , g2) = e(g1, ai/T

Mi), which is always possible if we
suppose g1, h1, f1 and cdθ are all generators2. Then, since C is invalid, there exists some i∗, such that either
ti∗ 6= si∗ or s′i∗ 6= si∗ or s′′i∗ 6= si∗ . Let us suppose ti∗ 6= si∗ . The other cases are similar. Then we remark
that for Θ(C) to be linearly dependent of rows of Γ , it is necessary that e(

∏
i v
εi−1

i,Mi
, g2) = e(h

si
∑
i ε
i−1

1 , g2),

since the first coefficient of the linear combination is necessary λ1 = g
∑
i siε

i−1

2 =
∏
i g
siε

i−1

2 . This implies that:∑
i tiε

i−1 =
∑

i siε
i−1, by looking at the discrete logarithm in base e(g1, g2). In other words ε has to be a

root of the m-degree polynomial
∑

i(ti − si)Xi, which is not null because ti? 6= si? . This polynomial has at
most m roots, and so at most m distinct ε (among the p possible ε in Zp) lead to a Θ(C) linearly dependent
of rows of Γ . Finally, we conclude that, with probablity at least 1−m/p, Θ(C) is independent of rows of Γ .
This proves the smoothness of the SPHF.

1 Actually, it is possible to choose ε $← {0, 1}K.
2 It is easy to extend to the case where some of them are not generators (i.e., are equal to 1).
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GL-SPHF. When C is sent in advance, and thus known when generating hp, as in the Oblivious Transfer
protocol described in Section 7, we can use a more efficient GL-SPHF instead of a CS-SPHF:

Γ (C) =
(
g1 h1 f1 (cd

θ)
)

λi = g
si,Mi
2

λi · Γ (C) = (e(g
si,Mi
1 , g2), e(h

si,Mi
1 , g2), e(f

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))
Θi(C) = (e(ui,Mi , g2), e(vi,Mi , g2), e(ei,Mi , g2)/e(g1, ai/T

Mi), e(wi,Mi , g2))

and:

hk = (η, α, β, µ, ε)
$← Z5

p hp = (ε, hp1 = gη1h
α
1 f

β
1 (cd

θ)µ) ∈ Zp ×G1,

H = Hash(hk,M,C) def=
∏
i

(
e(uηi,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i hp

si,Miε
i−1

1 , g2)
def= ProjHash(hp,M,C, (si,Mi)i) = H ′.

C.2 Complexity

In Table 3, we summarize the cost of the various SPHFs. We remark that in the CS-SPHF and GL-SPHF, if
m = 1, we do not need ε. That is why this case is handled separately. In all cases, the hash value consists of
1 group element in GT . In practice we use an entropy extractor on this hash value.

Table 3. Cost of the three SPHFs for E2C

hk hp

KV-SPHF 5m× Zp 2m×G1

CS-SPHF (for m = 1) 5× Zp 2×G1

CS-SPHF (for m ≥ 2) 6× Zp 2×G1 + 1× Zp
GL-SPHF (for m = 1) 4× Zp 1×G1

GL-SPHF (for m ≥ 2) 5× Zp 1×G1 + 1× Zp

D Security Proofs

Each flow in the concrete protocols should include the tuple (sid, ssid, Pi, Pj), but we omit it for the sake
of simplicity. This tuple is needed for the queries the simulator to asks to the ideal functionality (in the
description of the ideal games at the end of each sequence of games below).

D.1 Proof of Theorem 4 (UC-Secure Commitment from a Labeled E2-Commitment)

We first prove this theorem in the case the labeled E2-commitment scheme C is additionally strongly-binding-
extractable, and explain the difference with strong-simulation-indistinguishability afterwards.
With Strong-Binding-Extractability. We thus exhibit a sequence of games. The sequence starts from the
real game, where the adversary A interacts with real players and ends with the ideal game, where we have
built a simulator S that makes the interface between the ideal functionality F and the adversary A.

Essentially, one first makes the setup algorithm additionally output the trapdoor (setup-indistinguishab-
ility); one can then replace all the commitment queries by simulated (fake) commitments (simulation-indis-
tinguishability). Eventually, when simulating the receiver, the simulator extracts the committed value x (using
ExtCom), which should be the same as the one that will be open later (strong-binding-extractability). One
can then split the simulation, to open it when required only with the appropriate information: the committed
value sent be the environment is not required anymore. More details follow:

Game G0: This is the real game.
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Game G1: In this game, the simulator generates correctly every flows from the honest players, as they would
do themselves, knowing the inputs x sent by the environment to the senders. In case of corruption, the
simulator can give the internal data generated on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm SetupCom by SetupComT that additionally
outputs the trapdoor (ρ, τ) $← SetupComT(1K), but nothing else changes, which does not alter much the
view of the environment under setup indistinguishability. Corruptions are handled the same way.

Game G3: We first deal with honest senders: we replace all the commitments (C, δ)
$← Com`(x) with

` = (sid, ssid, Pi, Pj) in Step 1. of the commit phase of honest players by simulated commitments (C, δ) $←
SCom`(τ, x), which means (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x). We then store (`, x, C)
in Λ.
With an hybrid proof, applying the Expsim-ind security game for each step, in which SCom is used as
an atomic operation in which the simulator does not see the intermediate values, and in particular the
equivocation key, one can show the indistinguishability of the two games.
In case of corruption of the sender, one learns the already known value x.

Game G4: We now deal with honest receivers: when receiving a fresh commitment C from the adversary
or a replay from another session (and thus under a different label), the simulator extracts the committed
value x. If the adversary later opens to a different value at the decommit phase, the simulator rejects it.
If it was accepted in the previous game, then one breaks the strong-binding-extractability.
More generally, the trapdoor correctness ensures that valid decommitments (accepted in the previous
game) will be accepted in this game too, which makes almost no difference between the two games, but
with probability bounded by Succs-bind-extC (t). Note that in the experiment Exps-bind-ext, the adversary
has access to both the fake commitment oracle (SCom) and the extraction oracle (ExtCom), which are
indeed required here.

Game G5: We do not use anymore the knowledge of x: the simulator knows the trapdoor τ and generates
(C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the commit phase of honest players.
When receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to actually open the
commitment. We essentially break the atomic SCom in the two separated processes SimCom and OpenCom.
This does not change anything from the previous game except that Λ is first filled with (`,⊥, C) at the
commit time and then updated to (`, x, C) at the opening time. In case of corruption of the sender, one
learns the committed value that is thereafter used at the decommit phase for x.

Game G6: We can now make use of the functionality, which leads to the following simulator:
– when receiving a commitment C from the adversary, and thus either freshly generated by the adversary

or a replay of a commitment C generated by the simulator in another session (with a different label),
the simulator extracts the committed value x, and uses it to send a Commit message to the ideal
functionality. A dummy value is used in case of bad extraction;

– when receiving a Receipt-message, which means that an honest player has committed a value, the
simulator generates (C, eqk) $← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the commit
phase of the honest player;

– when receiving (x, δ), if the verification succeeds, the simulator asks for a Reveal query to the ideal
functionality;

– when receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to actually open
the commitment.

Any corruption just reveals x earlier, which allows a correct simulation of the opening.

With Strong-Simulation-Indistinguishability. In the other case, where the labeled E2-commitment is
additionally strongly-simulation-indistinguishable, we can just first simulate the receiver before modifying the
simulation of the sender with fake commitments: one will first apply extractability and then strong-simulation-
indistinguishability. This concretely means that we swap G3 and G4. This leads to the same simulator in G6.
Cost of the Reductions. More precisely, for any environment, its advantage in distinguishing the ideal
world (with the ideal functionality from Figure 4) and the real world (with the commitment scheme C) is
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bounded by both Advsetup-indC (t)+qs ·Advsim-indC (t)+Succs-bind-extC (t) and Advsetup-indC (t)+qs ·Advs-sim-indC (t)+
Succbind-extC (t), where qs is the number of concurrent sessions and t its running time.

D.2 Proofs for Sections 4.3 and 5.4 (Security Properties of our E2C Commitment)

Setup-indistinguishability. this is trivially satisfied since the two setup algorithms are exactly the same
but just output the trapdoor or not, and thus Advsetup-indE2C (t) = 0 for any t.
(t, ε)-strong-simulation-indistinguishability. Let us build a sequence of games from the security experi-
ment with b = 1 to the experiment with b = 0. We stress that SCom does not only output C = (a, b), but
also δ = ((di,Mi , si,Mi)i), where the si,j ’s are the random coins in the multi-Cramer-Shoup encryption.

1. We first start with the real game with b = 1 (use of SCom for the challenge commitment), with all the
trapdoors to emulate the oracles;

2. the simulator now knows the equivocation trapdoor to emulate the SCom-oracle, but has just access to
the decryption oracle to emulate the ExtCom-oracle;

3. for the challenge oracle on x = (xi)i, the simulator uses ri,1−xi = 0, which leads to the plaintexts di,1−xi = 1
that are thereafter encrypted under the Cramer-Shoup encryption scheme. Applying the VIND-PO-CCA
security of the MCS encryption scheme, in which the m components of the vector that correspond to the
committed vector x are the same in the two 2m-long vectors, one can note that the bias is upper-bounded
by Advvind-po-ccaMCS (2m, qd,m, t), where qd the number of extraction queries. The two vectors submitted to
the encryption oracle Encrypt∗ in the security game VIND-PO-CCA are (d1,0, d1,1, . . . , dm,0, dm,1), where the
di,xi ’s keep the same in the two games, but the di,1−xi ’s are all replaced by 1 in the second game. Then,
the Encrypt∗ oracle additionally outputs the si,xi ’s (that correspond to the common components), which
allows to output δ.

4. giving back all the trapdoors to the simulator, we are in the real game with b = 0 (use of Com for the
challenge commitment).

In conclusion, one thus gets Advs-sim-indE2C (t) ≤ Advvind-po-ccaMCS (2m, qd,m, t).
Strong binding extractability. Let us build a sequence of games from the security experiment to an attack
to the DDH in G2.

1. we first start with the real game, with all the trapdoors to emulate the oracles;
2. the simulator replaces all the SCom-oracle queries by Com-oracle queries. With an hybrid proof, where

we replace sequentially the SCom emulations by Com emulations, as above, one introduces a bias up-
perbounded by qc · Advs-sim-indE2C (t), and thus qc · Advvind-po-ccaMCS (2m, qd,m, t), where qc is the number of
SCom-queries and qd the number of extract queries;

3. the simulator does not need any more the equivocation trapdoor, but can still extract the correct di,xj ,
by decrypting the Cramer-Shoup ciphertexts, to open the commitment with e(g1, ai/T xi) = e(di,xi , g2).
When the adversary breaks the strong-binding-extractability, it provides C with a valid opening (M , δ),
whereas C extracts to M ′ 6=M (possibly ⊥).
Since opening/verification in one way is possibleM , this means that the Cramer-Shoup decryption gives
at least one valid opening for each ai. But because of the different extraction output M ′, extraction
technique is ambiguous on C: for an index i, it can provide two different opening values for ai, which
breaks the DDH assumption in G2.

In conclusion, one thus gets Succs-bind-extE2C (t) ≤ qc · Advvind-po-ccaMCS (2m, qd,m, t) + AdvddhG2
(t), where qc is the

number of SCom-queries and qd the number of extract queries.
Robustness. In the above proof of strong-binding-extractability, as soon as different opening values exist,
by decrypting the Cramer-Shoup ciphertexts, one breaks the DDH assumption in G2: SuccrobustE2C (t) ≤ qc ·
Advind-ccaMCS (t) + AdvddhG2

(t), where qc is the number of SCom-queries.
Strong pseudo-randomness. For the sake of simplicity, we write x = M and x′ = M ′. We also write:
C = (a, b) and C ′ = (a′, b′). To prove the strong pseudo-randomness, we use the following sequence of games:
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Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, before computing H ′, we computeM ′ ← ExtCom`′(τ, C ′) and we abort if for some

i, the decryptions of b′i,0 and b′i,1 give valid opening values of a′i for 0 and 1 respectively. In other words,
if C ′ is not perfectly binding, we abort.3

This game is indistinguishable from the previous one, using the proof of robustness.
Game G2: In this game, if M ′ 6=M , we replace H ′ by a random value.

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF, the fact
that M ′ 6= M and C ′ is perfectly binding (otherwise, we would have aborted), so that (`′, C ′) /∈ LM ,
and thanks to the fact that H could have been computed as follows: δ ← OpenCom`(eqk, C,M) and
H ← ProjHash(hp, LM , (`, C), δ).

Game G3: In this game, we replace (C, eqk)
$← SimCom`(τ) by C $← Com`(M ′′) for some arbitrary M ′′ 6=

M . This game is indistinguishable thanks to strong simulation indistinguishability (since eqk is not used,
SimCom could have been replaced by SCom with a M ′′ as message).

Game G4: In this game, when M ′ 6=M , we replace H by a random value.
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF, and the fact
that C is a real commitment of M ′′ 6=M and so that (`, C) /∈ LM .
Notice that we could not have done this ifM ′ =M , since, in this case, we still need to use hk to compute
the hash value H ′ of C ′. We are handling this (tricky) case in the following game.

Game G5: In this game, we replaceH by a random value, in the caseM ′ =M . So nowH will be completely
random, in all cases (since it was already the case when M ′ 6=M).
Let θ = H(`, (ui,j , vi,j , ei,j)i,j) and θ′ = H(`′, (u′i,j , v

′
i,j , e

′
i,j)i,j). Finally, we write s′i,j = log u′i,j for all i, j,

log being the discrete logarithm in base g1. There are two cases:

1. for all i, v′i,Mi
= h

s′i,Mi
1 . In this case, since C ′ extracts to M , this means that

w′i,Mi
= u′x1+θ

′y1
i,Mi

· v′x2+θ
′y′2

i,Mi
,

and so from the definition of c and d, we have that:

w′i,Mi
= (c · dθ′)s

′
i,Mi .

This means that (`′, C ′) ∈ LM , and its hash value H ′ could be computed knowing only hp and
(s′i,Mi

)i. Therefore, the hash value H of C looks random by smoothness.

2. for some i, v′i,Mi
6= h

s′i,Mi
1 . Then since vi,Mi = h

si,Mi
1 , the rows of the matrix Γ in Equation 2 (page 23)

and the two vectors Θi(C) and Θi(C ′) are linearly independent. Then, even given access to the hash
value H ′ of C ′ and the projection key hp, the hash value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but keeping H picked at random
Game G6: In this game, we now compute C as originally using SimCom. This game is indistinguishable

thanks to strong simulation indistinguishability.
Game G7: In this game, if M ′ 6=M , we compute H ′ as originally (as the hash value of C ′).

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF.
Game G8: In this game, we do not extractM ′ from C ′ nor abort when C ′ is not perfectly binding. Thanks

to the robustness, this game is indistinguishable from the previous one.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .

Finally, one thus gets Succc-s-ps-randE2C,F (t) ≤ 2 · SuccrobustE2C (t) + 2 · Succs-bind-extE2C (t) + 2 · AdvsmoothF .

3 Actually, we may abort more often than that, but at least, if the commitment C′ is honestly generated, we do not abort.
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D.3 Proof of Theorem 7 (UC-Secure PAKE from an SPHF-Friendly Commitment)

To prove this theorem, we exhibit a sequence of games. The sequence starts from the real game, where the
adversary A interacts with real players and ends with the ideal game, where we have built a simulator S that
makes the interface between the ideal functionality FpwKE and the adversary A.

For the sake of simplicity, since the protocol is fully symmetric in Pi and Pj , we describe the simulation
for player Pi in order to simplify the notations.

We say that a flow is oracle-generated if the pair (hp, C) was sent by an honest player (or the simulator)
and received without any alteration by the adversary. It is said non-oracle-generated otherwise.

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow from the honest players, as they

would do themselves, knowing the inputs πi and πj sent by the environment to the players. In case of
corruption, the simulator can give the internal data generated on behalf of the honest players.
In the following, Step 1. is always generated honestly by the simulator, since the hashing and projection
keys do not depend on any private value.

Game G2: We now replace the setup algorithm SetupCom by SetupComT that additionally outputs the
trapdoor (ρ, τ) $← SetupComT(1K), but nothing else changes, which does not alter much the view of the
environment under setup indistinguishability. Corruptions are handled the same way.

Game G3: In the next two games, we deal with the case where Pi receives a flow oracle-generated
from Pj, and they have distinct passwords. In this case, S has received the password πj of Pj at
the corruption time of Pj (πj was anyway already known), and knows the corresponding opening data
δj , generated with the commitment by the Com-call. If this password is the same, it does not change
anything. If the passwords are distinct, then S computes H ′i as before, but chooses Hj at random: this
means that we replace Hash(hki, Lπi , (`j , Cj)) by a random value, while Cj has been simulated by Com
with an opening value δj for πj 6= πi.
With an hybrid proof, applying the Expc-smooth security game, with x = πi and x′ = πj (since Cj is
generated by Com on πj , it thus extracts on x′ = πj), one proves this game is indistinguishable from the
former one.

Game G4: We conclude for this case: if the passwords are distinct, Pi chooses a random key.
Since this is a simple syntactical change from the former game, this game is perfectly indistinguishable
from it.

Game G5: In this game, we simulate the commitments sent by the honest players using the trapdoors
generated by the setup algorithm SetupComT. More precisely, we replace the commitment (Ci, δi)

$←
Com`i(πi) sent by an honest Pi with `i = (sid, Pi, Pj , hpi) in Step 2. by a simulated commitment (Ci, δi)

$←
SCom`i(τ, πi), which means (Ci, eqki)

$← SimCom`i(τ) and δi ← OpenCom`i(eqki, Ci, πi). We then store
(`i, πi, Ci, δi) in Λ.
With an hybrid proof, applying the Expsim-ind security game for each player, in which SCom is used as
an atomic operation in which the simulator does not see the intermediate values, and in particular the
equivocation key, one can show the indistinguishability of the two games.
In case of corruption of the honest player Pi, one learns the already known value πi. If the corruption occurs
before the erasures, we are able to provide the adversary with coherent values (δi has been computed using
the correct value πi). If the corruption occurs in the end, we are able to give the adversary the (honestly
computed) session key. Unless we precise it, all the corruptions are dealt with in the same way in the
following games.

Game G6: In this game, we deal with the case where Pi receives a flow oracle-generated from Pj,
and they have identical passwords. When Pi receives an oracle-generated flow from Pj , the simulator
checks whether the two passwords sent by the environment for Pi and Pj are identical. If so, S computes
both hash values using Hash and not ProjHash. More precisely, it computes H ′i = Hash(hkj , Lπj , (`i, Ci))
(with `i = (sid, Pi, Pj , hpi)). If the passwords are distinct, it does not change anything. Recall that it is
able to do so since it generated the hashing keys on their behalf.
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Thanks to the correctness of the SPHF, this game is indistinguishable from the former one.
Game G7: Still in this case, we replace H ′i (and Hi if Pj received the oracle-generated flow generated flow

sent by Pi) by a random value.
To prove this game is indistinguishable from the previous one, we consider two cases:
– Pj received the oracle-generated flow generated by Pi. In this case, hkj is only used to compute
Hi = H ′i, and since δi is no more used, we can apply the pseudo-randomness game on Ci to prove
that Hi = H ′i is indistinguishable from random;

– Pj received a non-oracle-generated flow (hp′i, C
′
i). In this case hkj is only used to compute H ′i =

Hash(hkj , Lπi , (`i, Ci)) and Hi = Hash(hkj , Lπi , (`i, C
′
i)). In this case, we can apply the strong pseudo-

randomness game to prove that H ′i still looks random.
Game G8: We conclude for this case: S sends a random key to Pi.

Since this is a simple syntactical change from the former game, this game is perfectly indistinguishable
from it.

Game G9: In the next two games, we deal with the case where Pi receives a non-oracle-generated flow
(hpj , Cj). Since this pair is fresh, either Cj is new or hpj (and thus the label) is new. In both cases, S can
extract the committed value π′j on behalf of Pj .
If this password is the same than that of Pi (which the simulator can easily check, still having access to
the private values sent by the environment), S still computes both Hj and H ′i as before.
Otherwise (or if the extraction fails), the S computes H ′i as before, but chooses Hj at random:
Under the smoothness, with an hybrid proof, applying the Expc-smooth security game for each such hash
value, one can show the indistinguishability of the two games.

Game G10: Finally, when Pi receives a non-oracle-generated flow (hpj , Cj) that extracts to a different pass-
word than that of Pi (or for which extraction fails), then S sets the session key of Pi as random.
Since this is a simple syntactical change from the former game, this game is perfectly indistinguishable
from it.

Game G11: We do not use anymore the knowledge of πi when simulating an honest player Pi.
The simulator generates (Ci, eqki)

$← SimCom`i(τ), with `i = (sid, Pi, Pj , hpi), to send Ci. It then stores
(`i,⊥, Ci, eqki) in Λ. We essentially break the atomic SCom in the two separated processes SimCom and
OpenCom. This does not change anything from the previous game since δi is never revealed. Λ is first
filled with (`i,⊥, Ci, eqki), it can be updated with correct values in case of corruption of Pi. Indeed, in
case of corruption, S recovers the password πi and computes δi ← OpenCom`i(eqki, Ci, πi), which it is
able to give to the adversary.
The private values of Pi are thus not used anymore in Step 1. and Step 2. The simulator only needs
them to choose how to set the session key of the players. In the ideal game, this will be replaced by a
NewKey-query that will automatically deal with equality or difference of the passwords, or TestPwd-query
for non-oracle-generated-flows.
This game is perfectly indistinguishable from the former one.

Game G12: This is the ideal game. Now, the simulator does not know the private values of the honest
players anymore, but can make use of the ideal functionality. We showed in Game G11 that the knowledge
of the private values is not needed anymore by the simulator, provided it can ask queries to the ideal
functionality:
Initialization: When initialized with security parameter K, the simulator first runs the commitment

setup algorithm (ρ, τ)
$← SetupComT(1K), and initializes the real-world adversary A, giving it ρ as

common reference string.
Session Initialization: When receiving a message (NewSession, sid, ssid, Pi, Pj) from FpwKE , S exe-

cutes the protocol on behalf of Pi as follows:
1. S generates honestly hki

$← HashKG(L) and hpi ← ProjKG(hki, L,⊥);
2. S computes (Ci, eqki)

$← SimCom`i(τ) with `i = (sid, Pi, Pj , hpi);
3. S sends (sid, Pi, Pj , hpi, Ci) to Pj .
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If Pi gets corrupted, S recovers the password πi and computes δi ← OpenCom`i(eqk, Ci, πi), which it
is able to give to the adversary.

Key Computation: When receiving a flow (hpj , Cj):
– if the flow (Cj , hpj) is non-oracle-generated, S extracts the password π′j (or set it as a dummy

value in case of failure of extaction). S then asked for a TestPwd-query to the functionality to
check whether π′j is the password of Pi. If this password is correct, S sets πi = π′j , computes
δi ← OpenCom`i(eqki, Ci, πi), as well as Hj and H ′i, and then ski, that is passed to the NewKey-
query (compromised case). If the password is incorrect, S asks the NewKey-query with a random
key (interrupted case).

– if the flow (Cj , hpj) is oracle-generated but the associated Pj has been corrupted, then S has
recovered its password πj and δj . It can thus compute skj , that is passed to the NewKey-query
(corrupted case).

– if the flow (Cj , hpj) is oracle-generated and the associated Pj is still uncorrupted, S asks the
NewKey-query with a random key (normal case).

One can remark that the NewKey-queries will send back the same kinds of session keys to the envi-
ronment as in Game G11: if a player is corrupted, the really computed key is sent back, in case of
impersonation attempt, the TestPwd-query will address the appropriate situation (correct or incorrect
guess), and if the two players are honest, the NewKey-query also addresses the appropriate situation
(same or different passwords).

More precisely, we have proven that for any environment, its advantage in distinguishing the ideal world
(with the ideal functionality from Figure 10) and the real world (with the protocol from Figure 7) is bounded
by Advsetup-indC (t) + q ×

(
2 · Advs-sim-indC (t) + 3 · AdvrobustC (t) + 2 · AdvsmoothF + Advc-s-ps-randC,F

)
, where q is the

number of activated players and t its running time.

D.4 Proof of Theorem 8 (UC-Secure OT from an SPHF-Friendly Commitment)

To prove this theorem, we exhibit a sequence of games. The sequence starts from the real game, where the
adversary A interacts with real players and ends with the ideal game, where we have built a simulator S that
makes the interface between the ideal functionality F and the adversary A. We prove the adaptive version
of the protocol. The proof of the static version can be obtained by removing the parts related to adaptive
version from the proof below.

Essentially, one first makes the setup algorithm additionally output the trapdoor (setup-indistinguish-
ability); one can then replace all the commitment queries by simulated (fake) commitments (simulation-
indistinguishability). When the sender submits the values (hpi,Mi)i the simulator can extract all the message
thanks to the trapdoor and get the witnesses for each indices. This allows to simulate the Send-query to
the ideal functionality. Eventually, when simulating the honest senders, the simulator extracts the committed
value s, to set hps and Ms consistent with ms, the other values can be random. More details follow:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow from the honest players, as they would

do themselves, knowing the inputs (m1, . . . ,mk) and s sent by the environment to the sender and the
receiver. In all the subsequent games, the players use the label ` = (sid, ssid, Pi, Pj). In case of corruption,
the simulator can give the internal data generated on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm SetupCom by SetupComT that additionally
outputs the trapdoor (ρ, τ) $← SetupComT(1K), but nothing else changes, which does not alter much the
view of the environment under setup indistinguishability. Corruptions are handled the same way.

Game G3: We first deal with honest senders Pi: when receiving a commitment C, the simulator extracts
the committed value s. Instead of computing the key Kt, for t = 1, . . . , k with the hash function, it chooses
Kt

$← G for t 6= s.
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With an hybrid proof, applying the smoothness (see Figure 6 – left), for every honest sender, on every
index t 6= s, since C is extracted to s, for any t 6= s, the hash value is indistinguishable from a random
value.
In case of corruption, everything has been erased. This game is thus indistinguishable from the previous
one under the smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator extracts the committed value
s. Instead of proceeding as the sender would do on (m1, . . . ,mk), the simulator proceeds on (m′1, . . . ,m

′
k),

with m′s = ms, but m′t = 0 for all t 6= s. Since the masks Kt, for t 6= s, are random, this game is perfectly
indistinguishable from the previous one.

Game G5: We now deal with honest receivers Pj : we replace all the commitments (C, δ) $← Com`(s) with
` = (sid, ssid, Pi, Pj) in Step 1 of the index query phase of honest receivers by simulated commitments
(C, δ)

$← SCom`(τ, s), which means (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, s). We then store
(`, s, C, δ) in Λ.
With an hybrid proof, applying the Exps-sim-ind security game for each session, in which SCom is used
as an atomic operation in which the simulator does not see the intermediate values, and in particular
the equivocation key, one can show the indistinguishability of the two games. In case of corruption of the
receiver, one learns the already known value s.

Game G6: We deal with the generation of R for honest senders Pi on honestly-generated queries
(adaptive case only): if Pi and Pj are honest at least until Pi received the second flow, the simulator
sets R = F (S′) for both Pi and Pj , with S′ a random value, instead of R = F (S).
With an hybrid proof, applying the IND-CPA property for each session, one can show the indistinguisha-
bility of this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value, instead of R = F (S′).
With an hybrid proof, applying the PRF property for each session, one can show the indistinguishability
of this game with the previous one.

Game G8: We now deal with the generation of Ks for honest senders Pi on honestly-generated
queries:
– in the static case (the pre-flow is not necessary, and thus we assume R = 0) the simulator chooses
Ks

$← G (for t 6= s, the simulator already chooses Kt
$← G), where s is the index given by the ideal

functionality to the honest receiver Pj .
With an hybrid proof, applying the pseudo-randomness (see Figure 6 – right), for every honest sender,
the hash value is indistinguishable from a random value, because the adversary does not know any
decommitments information δ for C;

– in the adaptive case, and thus with the additional random mask R, one can send a random Ms, and
Ks can be computed later (when Pj actually receives its flow).
As above, but only of Pj has not been corrupted before receiving its flow, the simulator chooses
Ks

$← G. With an hybrid proof, applying the pseudo-randomness (see Figure 6 – right), for every
honest sender, the hash value is indistinguishable from a random value, because the adversary does
not know any decommitments information δ for C. If the player Pj involved in the pseudo-randomness
game gets corrupted (but δ is unknown) we are not in this case, and we can thus abort it.
In case of corruption of Pi, everything has been erased. In case of corruption of the receiver Pj , and
thus receiving the value ms, the simulator chooses R (because it was a random value unknown to the
adversary and all the other Kt are independent random values too) such that

R⊕ ProjHash(hps, Ls, (`, C), δs)⊕Ms = ms.

This game is thus indistinguishable from the previous one under the pseudo-randomness.
Game G9: Still in this case, the simulator proceeds on (m′1, . . . ,m

′
k), with m

′
t = 0 for all i. Since the masks

Kt ⊕ R, for any t = 1, . . . , k, are independent random values (the Kt, for t 6= s are independent random
values, and Ks is also independently random in the static case, while R is independently random in the
adaptive case), this game is perfectly indistinguishable from the previous one.
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We remark that it is therefore no more necessary to know the index s given by the ideal functionality to
the honest receiver Pj , to simulate Pi (but it is still necessary to simulate Pj).

Game G10: We do not use anymore the knowledge of s when simulating an honest receiver Pj : the simulator
generates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the index query phase
of honest receivers. It then stores (`,⊥, C, eqk) in Λ. We essentially break the atomic SCom in the two
separated processes SimCom and OpenCom. This does not change anything from the previous game since
δ is never revealed. Λ is first filled with (`,⊥, C, eqk), it can be updated with correct values in case of
corruption of the receiver.
When it thereafter receives (Send, sid, ssid, Pi, Pj , (hp1,M1, . . . , hpk,Mk)) from the adversary, the sim-
ulator computes, for i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi, (`, Li), C, δi) and
mi = Ki ⊕R⊕Mi. This provides the database submitted by the sender.

Game G11: We can now make use of the functionality, which leads to the following simulator:
– when receiving a Send-message from the ideal functionnality, which means that an honest sender has

sent a pre-flow, the simulator generates a key pair (pk, sk) $← KeyGen(1K) and sends pk as pre-flow;
– after receiving a pre-flow pk (from an honest or a corrupted sender) and a Receive-message from

the ideal functionality, which means that an honest receiver has sent an index query, the simulator
generates (C, eqk) $← SimCom`(τ) and c $← Encrypt(pk, S), with ` = (sid, ssid, Pi, Pj) and R a random
value, to send C and c during the index query phase of the honest receiver;

– when receiving a commitment C and a ciphertext c, generated by the adversary (from a corrupted
receiver), the simulator extracts the committed value s, and uses it to send a Receive-message to the
ideal functionality (and also decrypts the ciphertext c as S, and computes R = F (S));

– when receiving (hp1,M1, . . . , hpk,Mk) from the adversary (a corrupted sender), the simulator com-
putes, for i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi, Li, (`, C), δi) and mi =
Ki ⊕R⊕Mi. It uses them to send a Send-message to the ideal functionality.

– when receiving a Received-message from the ideal functionality, together with ms, on behalf of a
corrupted receiver, from the extracted s, instead of proceeding as the sender would do on (m1, . . . ,mk),
the simulator proceeds on (m′1, . . . ,m

′
k), with m

′
s = ms, but m′i = 0 for all i 6= s;

– when receiving a commitment C and a ciphertext c, generated by an honest sender (i.e., by the
simulator itself), the simulator proceeds as above on (m′1, . . . ,m

′
k), with m′i = 0 for all i, but it

chooses R uniformly at random instead of choosing it as R = F (S); in case of corruption afterward,
the simulator will adapt R such that R ⊕ ProjHash(hps, Ls, (`, C), δs) ⊕Ms = ms, where ms is the
message actually received by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation of the receiver, or reveals
(m1, . . . ,mk) earlier, which allows a correct simulation of the sender. When the sender has sent his flow,
he has already erased all his random coins. However, there would have been an issue when the receiver is
corrupted after the sender has sent is flow, but before the receiver receives it, since he has kept δs: this
would enable the adversary to recover ms from Ms and hps. This is the goal of the epheremal mask R
that provides a secure channel.

As a consequence, the distance between the first and the last games is bounded by

Advsetup-indC (t) + qs

(
Advind-cpaE (t) + AdvprgF (t) + Advs-sim-indC (t) + (k − 1)Advc-smoothC,F (t) + Advc-ps-randC,F (t)

)
≤ Advsetup-indC (t) + qs ×

(
Advind-cpaE (t) + AdvprgF (t) + 2 · Advs-sim-indC (t) + k · (AdvrobustC (t) + AdvsmoothF )

)
,

where qs is the number of concurrent sessions and t the running time of the distinguisher.

E Concrete Instantiations

UC-Secure Password-Authenticated Key Exchange. A concrete instantiation of our generic PAKE con-
struction from Figure 7 is presented in Figure 11.
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CRS : (p,G1, g1,G2, g2,GT , e, h1, f1, c, d, T )
Pi(πi ∈ {0, 1}m) `i = (sid, Pi, Pj), `j = (sid, Pj , Pi) Pj(πj ∈ {0, 1}m)

hki = (ηi,t,1, ηi,t,2, αi,t, βi,t, µi,t)t
$← Z5m

p hkj = (ηj,t,1, ηj,t,2, αj,t, βj,t, µj,t)t
$← Z5m

p

hpi = (g
ηi,t,1
1 h

αi,t
1 f

βi,t
1 cµi,t , g

ηi,t,2
1 dµi,t)t ∈ G2m

1 hpj = (g
ηj,t,1
1 h

αj,t
1 f

βj,t
1 cµj,t , g

ηj,t,2
1 dµj,t)t ∈ G2m

1

πi = (πi,t)t ∈ {0, 1}m; `′i = (`i, hpi) πj = (πj,t)t ∈ {0, 1}m; `′j = (`j , hpj)

(ri,t,πi,t)t
$← Zmp ; (ri,t,1−πi,t)t = (0)t; si

$← Z2m
p (rj,t,πj,t)t

$← Zmp ; (rj,t,1−πj,t)t = (0)t; sj
$← Z2m

p

ai = (g
ri,t,πi,t
2 Tπi,t)t,di = (g

ri,t,u
1 )t,u aj = (g

rj,t,πj,t
2 Tπj,t)t,dj = (g

rj,t,u
1 )t,u

bi = 2m-MCS
`′i
pk(di; si) bj = 2m-MCS

`′j
pk(dj ; sj)

Ci = (ai, bi), δi = (si,t,πi,t)t Cj = (aj , bj), δj = (sj,t,πj,t)t
Erase everything, except δi Erase everything, except δj

Ci, hpi←−−−−−−−−−−→
Cj , hpj

H ′i ← ProjHash(hpi, Lπi , (`
′
i, Ci), δi) H ′j ← ProjHash(hpi, Lπj , (`

′
j , Cj), δj)

Hj ← Hash(hki, Lπi , (`
′
j , Cj)) Hi ← Hash(hkj , Lπj , (`

′
i, Ci))

ski ← H ′i ·Hj skj ← H ′j ·Hi
Erase everything, except πi, ski Erase everything, except πj , skj

t ranges in {1, . . . ,m}, while u ranges in {0, 1}.

Fig. 11. UC-Secure PAKE

UC-Secure Oblivious Transfert Protocol. A concrete instantiation of our generic OT constructions from
Figure 8 is presented in Figure 12. No PRG is actually required here, and we can choose S $← G1 and
R = e(S, g2). The first flow and the ciphertext c needs not to be sent if only static security is required (in this
case R = 1).
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CRS : (p,G1, g1,G2, g2,GT , e, h1, c, d, T )

Pi(m ∈ GkT ) ` = (sid, ssid, Pi, Pj) Pj

(
s ∈ {1, . . . , k}
s = (st)t ∈ {0, 1}m

)
sk = s′

$← Zp; pk = h′ = gs
′

1

pk−−−−−−−−→ (rt,st)t
$← Zmp ; (rt,1−st)t = (0)t

a = (g
rt,st
2 T st)t,d = (g

rt,u
1 )t,u;z

$← Z2m
p

b = 2m-MCS`pk(d;z);C = (a, b), δ = (zt,st)t

S
$← G1;R = e(S, g2); r

′ $← Zp
c = (c1 = gr

′
, c2 = h′r

′
· S)

ε
$← Zp

C, c←−−−−−−−− Erase everything, except δ,R
S = c2/c

s′
1 ;R = e(S, g2)

for v = 1 to k :

hkv = (ηv, αv, βv, µv)
$← Z4

p

hpv = (ε, gηv1 hαv1 fβv1 (cdθ)µv ) ∈ Zp ×G1

Mv ← R ·mv · Hash((ε, hkv), v, (`, C))

Erase everything, except M , hp
M , hp−−−−−−−−→ ms ←Ms/(R · ProjHash(hps, s, (`, C), δ))

Erase everything, except s,ms

v ranges in {1, . . . , k}, while t ranges in {1, . . . ,m}, for m = dlog ke, and u ranges in {0, 1}.

Fig. 12. UC-Secure 1-out-of-k OT Protocol
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