
EyeDecrypt —
Private Interactions in Plain Sight∗

Andrea G. Forte† Juan A. Garay‡ Trevor Jim† Yevgeniy Vahlis§

Abstract

We introduce EyeDecrypt, a novel technology for privacy-preserving human-computer interaction.
EyeDecrypt allows only authorized users to decipher data shown on a display, such as an electronic
screen or plain printed material; in the former case, the authorized user can then interact with the system
(e.g., by pressing buttons on the screen), without revealing the details of the interaction to others who
may be watching or to the system itself.

The user views the decrypted data on a closely-held personal device, such as a pair of smart glasses
with a camera and heads-up display, or a smartphone. The data is displayed as an image overlay on
the personal device, which we assume cannot be viewed by the adversary. The overlay is a form of
augmented reality that not only allows the user to view the protected data, but also to securely enter
input into the system by randomizing the input interface.

EyeDecrypt consists of three main components: a visualizable encryption scheme; a dataglyph-
based visual encoding scheme for the ciphertexts generated by the encryption scheme; and a randomized
input and augmented reality scheme that protects user inputs without harming usability. We describe all
aspects of EyeDecrypt, from security definitions, constructions and analysis, to implementation details
of a prototype developed on a smartphone.

∗An abridged version of this paper appears in Proc. 9th Conference on Security and Cryptography for Networks (SCN 2014).
†AT&T Labs, {forte,trevor}@att.com.
‡Yahoo Labs, garay@yahoo-inc.com.
§Bionym, evahlis@gmail.com.



1 Introduction

Nowadays personal and sensitive information can be accessed at any time, anywhere, thanks to the widespread
adoption of smartphones and other wireless technologies such as LTE and IEEE 802.11 (i.e., WiFi). This
always-connected paradigm, however, comes at the expense of reduced privacy. Users access sensitive in-
formation on the train, on the subway and in coffee shops, and use public computers in airports, libraries
and other Internet access points. Sensitive information is at the mercy of anyone in the user’s proximity and
of any piece of malware running on trusted and untrusted devices such as a personal laptop or a computer
in a library. This applies not just to the content displayed on a monitor but also to the interaction users have
with the system (e.g., typing a password or a social security number). Someone looking at the keyboard as
one types in a password is as bad as showing the password in clear text on a login page.

We introduce EyeDecrypt, a technology aimed at protecting content displayed to the user as well as in-
teractions the user has with the system (e.g., by typing). In particular, we do not trust the user’s environment
(e.g., “shoulder surfing”), nor do we trust the device the user interacts with as it may have been compromised
(e.g., keyloggers).

In EyeDecrypt, the content provider encrypts and authenticates content and sends it to the device the user
requested the content from (e.g., laptop, cellphone, ATM). Because the content arrives already encrypted to
this untrusted device, any piece of malware running on it would not be able to learn anything meaningful
about the content being displayed to the user; the user is then able to retrieve the content through her
personal device (running the EyeDecrypt app). Similarly, the user interacts with the untrusted device using
EyeDecrypt so that only the remote content provider learns the actual inputs provided by the user during the
interaction (e.g., password or PIN code). A piece of malware such as a keylogger running on the untrusted
device would not be able to learn what the user has typed. Figure 1 presents a basic system overview; the
“untrusted device” (which we sometimes will just call the “display”) represents the device the user requests
content from and interacts with.

Let us now provide some intuition on how EyeDecrypt works at a high level. If we print a document
with extremely small fonts, this will appear as a collection of dots with no meaning. If, however, we take
a very powerful magnifying lens, we will be able to read the part of the document right underneath the
lens; further, by moving the lens around, we will be able to read the whole document. Anyone without the
magnifying lens (i.e., a shoulder-surfer) will see just dots. EyeDecrypt provides a similar experience.

In EyeDecrypt content is encrypted and visually encoded so that it appears as some pattern of dots,
lines or other shape to anyone looking at it. In order to be able to decrypt such document or parts of it,
users will have to use the EyeDecrypt app on their personal device (e.g., smartphone, Google Glass). Such
app enables users to use the camera on their personal device as the “magnifying lens” described earlier.
By leveraging the smartphone camera, for example, the EyeDecrypt app captures a part of the encrypted
content, decrypts it and overlays the decrypted content on top of the camera view on the personal device—a
form of augmented reality. By moving the smartphone around over the document, users will capture, decrypt
and display different parts of the document. One key difference with the magnifying lens example is that
the EyeDecrypt app will be able to decrypt a document only if it has the correct cryptographic keys for that
document or that content provider. Just the EyeDecrypt app by itself is not enough to decrypt content.

Importantly, EyeDecrypt also protects users’ interactions with the system. For example, in the case of
a keyboard, a randomized keyboard layout can be encrypted and displayed to the user together with other
encrypted content. The EyeDecrypt app will decrypt all content including this randomized keyboard layout
and will superimpose such layout on the camera view as an overlay on the actual physical keyboard (i.e.,
using augmented reality). In doing so, there is now a random mapping between keys of the physical keyboard
and keys of the randomized layout that the user can see. Any onlooker would see the user pressing, say, the
‘A’ key on the physical keyboard without knowing to which value it would actually map to in the randomized
layout. In particular, the random mapping between physical keyboard and virtual keyboard would be known
only to the user, the EyeDecrypt app and to the remote server that encrypted the content (see Figure 1).

1



Untrusted	  Device	  Remote	  Trusted	  Server	   Personal	  Device	  	  
	  (EyeDecrypt	  App)	  

Figure 1: System view Figure 2: Prototype view

The untrusted device on which the encrypted document is displayed would not be aware of such mapping.
Because of this, even a keylogger running on the untrusted device the user is interacting with, would not be
able to learn the actual key values inputted by the user.

As mentioned above, EyeDecrypt aims at protecting against attacks on content displayed to the user as
well as on information sent by the user (e.g., by typing). Such attacks may be due to shoulder surfing as
well as to malware. While EyeDecrypt can leverage any device equipped with a camera, the type of device
is important as different types of devices make EyeDecrypt more or less effective depending on the threat
scenario. Let us look at a few settings.

In the most general case of shoulder surfing, the attacker can be anywhere in the victim’s surroundings.
In such a case, displaying decrypted content on a device such as a smartphone does not completely remove
the possibility of someone being able to glance at the smaller screen of the phone even though the smaller
screen of the phone does make it harder. A better solution in this scenario would be to use EyeDecrypt with
a device such as Google Glass where the screen is very small and close to the eyes of the user making a
shoulder-surfing attack much harder.

In a different type of shoulder surfing attack, the attacker has installed a small fixed hidden camera in
close proximity of an ATM keypad so as to film the hands of users as they enter their PIN code. In such
a scenario, a solution based on using EyeDecrypt with a smartphone would be perfectly fine as the hidden
camera would not be able to capture the screen of the smartphone1. Similarly, using EyeDecrypt with a
smartphone would be perfectly suitable to protect against an attack involving malware such as a keylogger.

When thinking about a shoulder-surfing attack it is natural to ask, “Why not just display content in a
head-mounted display without any encryption?” The answer is that this would prevent shoulder surfing, but
it assumes that the device that the head-mounted display is plugged into can be trusted. It does not help in
the more difficult case of a modified ATM or compromised public terminal.

Another idea is to encrypt content at the server, send it to the untrusted device, and have the untrusted
device forward it to the user’s trusted personal device via wireless transmission, instead of using EyeDe-
crypt’s visual channel. This is definitely a viable solution and has its advantages, such as higher bandwidth.
However, it has two significant downsides.

First, both the personal device and the untrusted device need to be equipped with the same wireless
technology. It would not work, for example, with existing ATMs, which do not employ Bluetooth or WiFi.
In contrast, EyeDecrypt works on any personal device equipped with a camera, and it makes no assumptions
about the connectivity of the untrusted device; EyeDecrypt can work with existing ATMs, without requiring
a hardware upgrade.

Second, wireless communication requires secure pairing. As in the ATM case, it may be that the user
has never interacted with the public device before. Pairing is required to be sure that the personal device is
communicating with the intended public device, and not some other device in the vicinity. Secure pairing by
itself is a hard problem and one of the devices being untrusted (i.e., possibly misbehaving) makes it much
harder. EyeDecrypt does not require pairing—the user knows where she is pointing her camera—making

1Naturally, we assume the user to be security conscious so as not to position the phone too close to the ATM keypad.

2



Lorem	  ipsum	  dolor	  sit	  amet,	  consectetur	  adipiscing	  elit.	  	  	  
Morbi	  adipiscing	  felis	  sit	  adipiscing	  elit.	  Morbi	  adipiscing	  
felis	  sit	  amet	  libero	  tempus	  sed	  tempus	  dolor	  sagi7s.	  
Ves9bulum	  ac	  tortor	  diam.	  Cras	  et	  volutpat	  quam.	  
Donec	  9ncidunt	  ultrices	  mauris	  nec	  convallis.	  Mauris	  
congue	  convallis	  ante	  non	  feugiat.	  Aenean	  
vulputate	  velit	  id	  sapien	  fermentum	  vel	  rhoncus	  
nisi	  convallis.	  Maecenas	  mollis	  est	  a	  mi	  auctor	  
commodo.	  Vivamus	  sollicitudin	  eleifend.	  9ncidunt.	  
Phasellus	  vel	  varius	  velit.	  

100101010101000100101010101001
000011101011110101101010110000
011101001111010101010001111010
000000110001000000000000110101
011101010001010100011110001010
111011110101110101010110100101	  

Visualizable	  
Encryp9on	  

Visual	  
Encoding	  

Visual	  Encoding	  

Ciphertext	  

Plaintext	  

Figure 3: EyeDecrypt overview

the whole process much more secure and user-friendly. Notably, most of the secure pairing solutions that
have been proposed involve use of the visual channel, for exactly this reason. In other words, use of the
wireless channel in these scenarios already requires some mechanism like EyeDecrypt. We discuss secure
pairing in Section 6.

Lastly, EyeDecrypt also works with printed content such as passports, bank statements, medical records
and any other type of sensitive material. If the human eye can see it, EyeDecrypt can protect it.

EyeDecrypt consists of three main components: an encryption mechanism which we term visualizable
encryption; a suitable visual data encoding scheme; and a combination of augmented reality and random-
ization for secure input. Figure 3 shows how content is encrypted and then visually encoded.

Visualizable encryption is distinct from ordinary encryption in that information is captured incremen-
tally, frame-by-frame, and even block-by-block within a frame, in a pan-and-zoom fashion. In addition,
our notion of security refers to the security of the “EyeDecrypt activity” and not just to the security of the
encryption scheme. As such, it must also take into account what the adversary is able to observe—not only
ciphertext, but also the user’s interaction (e.g., gesticulation) with the system. We believe that formally
defining the security of these new applications is an important contribution, in particular since our security
notion does not directly reduce to an encryption scheme’s, and can become the basis for the development
of such technologies in the future. As important is the fact that our new notion and scheme are achievable
(resp., realizable) using (the practical instantiations) of basic cryptographic tools, such as a pseudorandom
function generator (PRFG), a collision resistant hash function and an existentially unforgeable message
authentication code (MAC) (cf. Section 3).

EyeDecrypt is symmetric key-based, and the cryptographic keys needed for decryption and authenti-
cation are provisioned and directly shared between the remote content provider and the EyeDecrypt app
running on the user’s personal device. In particular, the untrusted device does not have access to the keys. In
the ATM scenario, for example, the keys would be shared between the bank’s server, which would act as the
remote content provider, and the EyeDecrypt app running on the user’s personal device. The ATM, being
untrusted, would not have access to the keys. Thus, the key provisioning phase is the only time at which
EyeDecrypt requires network connectivity in order for the EyeDecrypt app to communicate privately with
the remote content provider. For everything else, EyeDecrypt does not require it, making it suitable for very
high-security environments where network connectivity may not be permitted. Section B describes the key
provisioning/management aspect in more detail.

EyeDecrypt can use any type of visual encoding (e.g., QR codes [12], Data Matrices [11], Dataglyphs [28])
as long as it satisfies some basic properties (see Section 3.3). In our proof of concept we opted for Dataglyphs
as this particular encoding has very little structure such as no visual landmarks and no fixed block size. This
gives us the flexibility of being able to change parameters of the underlying Visualizable Encryption scheme
(e.g., cipher-block size) without affecting its visual encoding representation. In particular, we have devel-
oped a new dataglyph-based visual encoding scheme that can be decoded progressively, by zooming or
moving the camera close to one part of the encoding, and panning to decode other parts. Due to our use

3



of augmented reality this feels quite natural. At the same time, the security of panning becomes one of the
central challenges in the design of a visualizable encryption scheme compatible with our visual encoding. In
Section 3.3 we discuss how EyeDecrypt allows for the use of other visual data encodings such as QR codes.

The rest of the paper is organized as follows. In Section 2 we present our model, give security definitions
for EyeDecrypt and visualizable encryption, and specify requirements for visual encoding. In Section 3 we
present our EyeDecrypt and visualizable encryption constructions, as well as the dataglhyp-based visual en-
coding scheme. Section 4 is dedicated to implementation details, including the design choices to overcome
the various challenges arising from the visual encoding approach, while Section 5 refers to performance
issues. Related work is included in Section 6. Finally, summary and conclusions are presented in Section 7.
Due to space constraints, proofs and complementary material are presented in the appendix.

2 Model and Definitions

In this section we present the basic model where we envision EyeDecrypt operating, as well as formal
definitions of the different components needed for our constructions.

In its basic form, EyeDecrypt operates in a setting with three components, or “parties:” a user personal
device U running the EyeDecrypt app, a server S, an a (polynomial-time) adversary Adv, controlling both
the device where the information is displayed and/or entered (the “untrusted device” in Figure 1) and the
shoulder-surfer(s) surrounding the user. The user device U can be any device that can capture an image,
process it, and display the result to the human user. We envision the server encrypting and transmitting data
to the user by visual means (e.g., rendering a visual encoding of the [encrypted] data on a computer screen),
and the user receiving a (possibly noisy) version of that data. In turn, the user can transmit data back to
the server by means of pressing buttons, active areas on a touch screen, etc., of the untrusted device. We
expect the user and the server to engage in an interaction where the information transmitted at each “round”
is dependent on all prior communication, as well as possibly other external factors.

In this paper we treat both passive and active adversaries threatening the security of the system. A
passive adversary observes the visual channel as well as other available channels of information such as
the user’s body language, the buttons that she presses, the areas of the touch screen that she activates, the
information that is transmitted through the untrusted device, etc. (This type of adversary is also called
honest-but-curious in the literature.) An active adversary, on the other hand, can in addition manipulate the
communication between the server and the untrusted device, mount man-in-the-middle attacks, etc. This
could occur, for example, if the user is interacting with a terminal infected by malware that is displaying
information that is transmitted by a remote trusted server. We assume, however, that the “shoulder-surfer”
component of such an adversary remains passive.

Data transmitted from S to U are partitioned into frames, and each frame is partitioned into blocks. The
frames represent the change of the content over time, and blocks partition the frame into logical units. The
choice of what constitutes a block depends on the parameters of the system. For example, a block could be
a rectangular area in an image, or a group of characters in a text document.

2.1 Security of the EyeDecrypt activity

The security of EyeDecrypt is defined in a setting wherein the server can receive input from the user through
the entry device or from another source such as a local hard drive or the Internet. A screen in the (untrusted)
device is used to display information about the inputs received so far, such as outputs of a visual encoding
function of the encrypted input (see below). The entry device allows the user to select values from a fixed
alphabet Σ, whereas information received from other sources is viewed as arbitrary strings.

Formally, a (stateful) EyeDecrypt scheme is a triple of PPT (probabilistic polynomial-time) algorithms
(EyeDecInit,EyeDecEntry,EyeDecRead) where EyeDecInit : N → S × KED takes as input a security
parameter and outputs an initial state S0 for the EyeDecrypt server, and a long term key for the user viewing

4



device; here, KED is the space of possible keys. EyeDecEntry : S × Σ × {0, 1}∗ → S where S is the
set of possible states of the scheme, and EyeDecRead : KED × {0, 1}∗ → {0, 1}∗ runs on the user device
and outputs the information that is shown to the user. The expression EyeDecEntry(S, x,m) should be
interpreted as the system receiving input x through the entry device, and receiving input m from another
source.

For example, when considering a secure PIN entry application, Σ = {0, . . . , 9} (as well as some other
symbols such as ‘#’, ‘Cancel’, etc., omitted here for simplicity), and corresponding to the buttons on the
keypad. In our solution for the PIN entry application, S will consist of the keys of the visualizable encryption
scheme, and the contents displayed on the screen (see App. B for more details on the PIN entry application).

We define the security of an EyeDecrypt scheme in terms of the information that is “leaked” to the adver-
sary, which may vary depending on the particular real-world application that is being modeled. Specifically,
the definition of security of an EyeDecrypt scheme against passive adversaries is parameterized by a function
Leak : S → {0, 1}∗ that specifies the information that is given to the adversary after each input. Looking
ahead to our construction for the PIN entry case, Leak will reveal the current encrypted image displayed on
the screen, as well as the number on the button that was most recently pressed by the user, but not the keys
of the underlying visualizable encryption scheme. Active adversaries, as mentioned above, can in addition
“tamper” with the information being transmitted (displayed as well as entered), adaptively and as a function
of the current state and of what they observe. Thus, the definition of security of EyeDecrypt in this case is
parameterized by a class of “tamper-leakage” functions of the form S × {0, 1}∗ → S ×{0, 1}∗. Intuitively,
these functions express in addition the ways in which the adversary is allowed to alter the information (mod-
ify the state), when communicated both to the user and to the server. Formally, the security of an EyeDecrypt
scheme against passive and active adversaries is defined via the experiments shown in Figure 4.

ExpEyeDec(1n,Adv,EyeDec) :

S0 ←R EyeDecInit(1n)

((x0,m0), (x1,m1), st)← AdvLeakST(1n, Leak(S0))
where (x0,m0) 6= (x1,m1)
b←R {0, 1}; λ← LeakST(xb,mb)

b′ ← AdvLeakST(1n, λ)
Output 1 if and only if b = b′

ExpEyeDecNM(1n,Adv,EyeDec) :

S0 ←R EyeDecInit(1n)

((x0,m0), (x1,m1),TL∗pre,TL
∗
post, st)← AdvTamperLeakST(1n)

where (x0,m0) 6= (x1,m1)
b←R {0, 1}; (λpre, λpost)← TamperLeakST(xb,mb,TL

∗
pre,TL

∗
post)

b′ ← AdvTamperLeakST(1n, λpre, λpost)
Output 1 if and only if b = b′

LeakST(x,m) is stateful,
and works as follows:

Initially S ← S0

Given (x,m) ∈ Σ× {0, 1}∗ do:
S ← EyeDecEntry(S, x,m)

Output Leak(S)

TamperLeakST(x,m,TLpre,TLpost) is
stateful, and works as follows:

Initially S ← S0, C∗ ← ⊥
Given (x,m) ∈ Σ× {0, 1}∗ do:
S′, λpre ← TLpre(S,C

∗)
S′′ ← EyeDecEntry(S′, x,m)
If challenge query, set:
C∗ ← v′′ (from S′′)

S, λpost ← TLpost(S
′′, C∗)

Output (λpre, λpost)

Figure 4: EyeDecrypt security game definitions for both passive and active adversaries

Note that calls to the corresponding oracle by Adv are slightly different in each experiment, as in the
case of active attacks the adversary is able to choose the tamper-leakage functions (TLpre,TLpost) on the
fly. Also, the design choice of having two functions in the active-attack case, as opposed to encoding all
the tampering actions and leakage into just one, is to avoid having to specify another function for the initial
leakage.

Definition 1 (Passive Attacks) Let EyeDec = (EyeDecInit,EyeDecEntry,EyeDecRead) be an EyeDecrypt
scheme, and Leak : S → {0, 1}∗. Then, EyeDec is a Leak-secure EyeDecrypt scheme if for all PPT

5



adversaries Adv, and all n ∈ N,

Pr[ExpEyeDec(1n,Adv,EyeDec) = 1] ≤ 1

2
− neg(n).

Definition 2 (Active Attacks) Let EyeDec = (EyeDecInit,EyeDecEntry,EyeDecRead) be an EyeDecrypt
scheme, and T L be a class of tamper-leakage functions. Then, EyeDec is T L-secure against active adver-
saries if for all PPT adversaries Adv, and all n ∈ N,

Pr[ExpEyeDecNM(1n,Adv,EyeDec) = 1] ≤ 1

2
− neg(n),

as long as Adv only queries the TamperLeakST oracle on inputs (x,m,TLpre,TLpost), where TLpre,TLpost ∈
T L.

Note that the algorithm EyeDecRead does not play a role in the above definitions. This is because it is
only used to specify the functionality of the scheme that is available to the legitimate user U (i.e., the
unencrypted content from the screen). Its role is in fact similar to the role of the decryption algorithm in
encryption schemes.

2.2 Defining the building blocks

The basic components in an EyeDecrypt application specify suitable ways for the information to be displayed
in the rendering device and captured by the user, as well as a method for encrypting the plaintext content. We
elaborate on such visual encoding schemes along with some desirable properties at the end of the section.
First, we present a definition of visualizable encryption—a key component in our solution.

Visualizable encryption. A private-key visualizable encryption scheme consists of a triple of PPT algo-
rithms 〈KeyGen,Enc,Dec〉, where KeyGen takes as input a security parameter n ∈ N, and outputs a key;
Enc takes as input a key K, a frame index f , block number i, and a plaintext m, and outputs a ciphertext;
and Dec takes as input a key K, a frame index f , block number i, and a ciphertext, and outputs a plaintext.

ExpVisIND-ATK(1n,Adv,VisEnc) :

K ←R KeyGen(1n);
(f∗, i∗,m0,m1, st)← AdvEncATKK(·,·,·),DecATKK(·)(1n)
b←R {0, 1}; C∗ ←R EncK(f∗, i∗,mb)

b′ ← AdvEncATKK(·,·,·),D̂ecATKK(·)(1n)
Let viewAdv be the view of the adversary.
Output 1 if and only if b′ = b and Check(view) = 1.

Enc{CPA,CCA}K(f, i,m)
def
= EncK(f, i,m)

DecCPAK(C)
def
= ⊥

DecCCAK(C)
def
= DecK(C)

D̂ecCCAK(C)
def
= DecK(C) if C 6= C∗
⊥ if C = C∗

Check(view):
Let (f`, i`,m`)1≤`≤q be the queries
made to EncATK. Output 1 if and only if
for all `, `′, if f` = f`′ and i` = i`′
then m` = m`′ .

Figure 5: Security game definition for visualizable encryption

Definition 3 Let VisEnc = 〈KeyGen,Enc,Dec〉. Then, VisEnc is a ATK-secure visualizable encryption
scheme, where ATK ∈ {CPA,CCA}, if for all PPT adversaries Adv, all n ∈ N,

Pr[ExpVisIND-ATK(1n,Adv,VisEnc) = 1] ≤ 1

2
− neg(n),

where ExpVisIND-ATK(·, ·, ·) is the experiment presented in Figure 5.

6



In our proofs in Section 3 we require a slightly different security property from the encryption scheme,
where the adversary can receive an encryption of a sequence of blocks as a challenge instead of a single
block. Namely, the adversary outputs four vectors f∗, i∗,m0,m1, where m0 6= m1 and receives back a
vector C∗ of ciphertexts of the elements of mb with frame and block numbers at the matching positions
in f∗ and i∗, respectively. Let us call this notion of security ATK-security for multiple messages. The
following claim can be shown to be true by a standard hybrid argument:

Claim 4 Let E be an ATK-secure visualizable encryption scheme. Then, E is also ATK-secure for multiple
messages with a 1

ν loss in security, where ν is the number of messages encrypted in the challenge.

We now provide some intuition regarding the applicability of our definition to the EyeDecrypt setting.
Recall that a main motivation for our work is to prevent “shoulder-surfing” attacks. In such a scenario, an
attacker is covertly observing the content of a (supposedly) private screen or paper document; in addition,
the attacker may be able to observe the activities (gesticulation, movements, etc.) of the legitimate content’s
owner, and infer information. For example, by measuring how long the user spends looking at a given
(encrypted) document, or the sequence of buttons that the user presses, the attacker may learn a lot about
the content of the document. Our definition accounts for such a scenario similarly to the way that semantic
security of encryption [9] accounts for partial knowledge of the plaintext by the adversary: by allowing
the adversary in the security experiment to specify all the content but a single block in a single frame, we
capture any external knowledge that the adversary may have about the plaintext.

Visual encoding. Let d1, d2, t1, t2 ∈ N (see below for an explanation of these parameters), and P be a
finite set representing possible values that can be assigned to a pixel (e.g., RGB values2). A visual en-
coding scheme is a pair of functions (Encode,Decode) such that Encode : ({0, 1}n)d1×d2 → Pt1×t2 , and
Decode ≡ Encode−1.

d1 × d2 is the size of the (ciphertext) input matrix, measured in number of blocks; the size of a block
is n bits. t1 × t2 is the size (resolution) of the output (image); e.g., 640 × 480 pixels. One basic but useful
property of a visual encoding scheme is that it preserves the relative positioning of elements (in our case,
blocks) in the source object. The following definition makes that explicit.

Definition 5 A visual encoding scheme is said to satisfy relative positioning if the following conditions hold:
1. Decode maps P≤t1×≤t2 to ({0, 1}n)≤d1×≤d2;

2. for all X ∈ ({0, 1}n)d1×d2 , r1 and r2 such that 1 ≤ r1 < r2 ≤ d1, and c1 and c2 such that 1 ≤
c1 < c2 ≤ d2, if Y ← Encode(X) and (r′1, r

′
2, c
′
1, c
′
2) = (r1 · t1d1 . . . r2 ·

t1
d1
, c1 · t2d2 . . . c2 ·

t2
d2

), then
Xr1...r2,c1...c2 ← Decode(Yr′1...r′2,c′1...c′2).

3 Constructions

We start off this section with a CCA-secure construction for visualizable encryption using basic crypto-
graphic tools, followed by an EyeDecrypt scheme with two flavors (secure against passive and active attacks,
respectively), which are based on it. The section concludes with the dataglyphs-based visual enconding con-
struction.

3.1 The visualizable encryption scheme

Our construction of a visualizable encryption scheme uses a pseudorandom function generator (PRFG), a
strongly collision resistant hash function family, and an existentially unforgeable message authentication
code (MAC).

2The RGB color model is an additive color model in which red, green, and blue light are added together in various ways to
reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors.

7



Construction 1. Let F be a PRFG with key space KPRF, H be a family of hash functions, and MAC an
existentially unforgeable MAC with key space KMAC. Then we construct a visualizable encryption scheme
E = 〈KeyGen,Enc,Dec〉 as follows:

KeyGen(1n): Generate KPRF ∈R KPRF; KMAC ∈R KMAC; H ∈R H; and output K = (KPRF,KMAC,
H).
EncK(f, i,M): ComputeC0 ← FKPRF

(H(f, i))⊕M ; τ ← MACKMAC
(C0); and outputC = (C0, τ, i, f).

DecK(C): Interpret C as a tuple (C0, τ, i, f), and compute τ ′ ← MACKMAC
(C0). If τ ′ 6= τ , output ⊥.

Otherwise, compute and output M ← C0 ⊕ FKPRF
(H(f, i)).

Theorem 1 The visualizable encryption scheme E in Construction 1 is CCA-secure according to Def. 3.

3.2 An EyeDecrypt scheme

We construct an EyeDecrypt scheme(s) based on our visualizable encryption scheme E , and the dataglyphs-
based visual encoding scheme described in Section 3.3, which for now can be thought of as satisfying
Definition 5; let V = (Encode,Decode) denote that scheme. Our construction is parameterized by a function
g which specifies how an application converts inputs to a new visual frame. Here g(x,m, frame, π) outputs
a sequence of blocks frame′ = (t1, . . . , tn) comprising the content of the new frame given the input from the
user, an input from another source (such as a harddrive or the Internet), and the previous frame. The input π
to g is a permutation over alphabet Σ, and its meaning will become clear in the discussion that follows the
construction. In order to use the EyeDecrypt scheme for a particular application, one only has to plug in an
appropriate g into the construction below.

Construction 2. The generic EyeDecrypt scheme secure against passive attacks works as follows:
EyeDecInit(1n): Run KeyGen(1n) to obtain a key K, and generate a random permutation π over Σ.
Output S0 = (K,π,⊥,⊥, 0) and K. The two ⊥ values in the tuple corresponds to the current cleartext
and ciphertext frames, which are initially empty, and 0 is the initial frame number.
EyeDecEntry(S, x,m): Parse S as (K,π, frame, v, j). Generate a random permutation π′ over Σ, and
compute (t1, . . . , tn) ← g(π(x),m, frame, π′), set frame′ = (t1, . . . , tn), and compute ci ← EncK(j,
i, ti) and v′ ← Encode(c1, . . . , cn). Lastly, set S = (K,π′, frame′, v′, j + 1).
EyeDecRead(K, v): Compute (c1, . . . , cn) ← Decode(v) and ti ← DecK(ci), for 1 ≤ i ≤ n. Output
(t1, . . . , tn).

The intuition behind the construction is to encrypt content as it is displayed, and to randomly permute the
meaning of the possible inputs that can be received from the user input device. In the PIN entry application,
for example, we envision a touchscreen in the entry device where the nine digits are randomly re-ordered
each time the user enters a PIN digit; see Fig. 10. Alternatively, the device may have a keypad with unlabeled
buttons, and a random mapping of buttons to digits will be displayed to the user in encrypted form.

Theorem 2 Let Leak(S) = v. Then, the EyeDecrypt scheme given in Construction 2 is Leak-secure ac-
cording to Definition 1 if E is a CPA-secure visualizable encryption scheme.

Turning to active attacks, simply substituting a CCA-secure encryption scheme for the CPA-secure one
in Construction 2 is not enough to achieve non-malleability of the EyeDecrypt scheme against an interesting
class of tamper-leak functions. In addition, we must perform checks on the viewing device to see if block
positions have been modified.

Construction 3. The generic EyeDecrypt scheme secure against active attacks works as follows: EyeDecInit(1n)
and EyeDecEntry(S, x,m) are identical to Construction 2’s, except that the encryption scheme (KeyGen,Enc,Dec)
must be CCA-secure according to Definition 3. The viewing function is defined as follows:

8



EyeDecRead(K, v): Compute (c1, . . . , cn) ← Decode(v), parse each ci as (Ci0, τi, i
′, j′) and compute

ti ← DecK(ci) for 1 ≤ i ≤ n. Let j be the current frame number. If i′ 6= i or j′ 6= j or ti = ⊥, return
⊥; otherwise, output (t1, . . . , tn).

Note that the above construction requires the device to keep track of the current frame number, but this
is an implementation issue. We now prove that Construction 3 is secure against active attacks where the
adversary is limited to modifying the displayed contents in addition to the capabilities it is given in the
passive attack setting. Specifically, let T L be the class of functions defined as follows:

T L def
= {TL(·)|TL(K,π, frame, v, j, C∗) = ((K,π, frame, f(v), j), Leakact(K, f(v), C∗))}

where f : Pt1×t2 → Pt1×t2 and Leakact : KED × {0, 1}∗ × {0, 1} → {0, 1}∗ is defined as

Leakact(K,u,C
∗)

def
=

{
(EyeDecRead(K,u), u) if ui 6= C∗i for 1 ≤ i ≤ n;

(⊥, u) otherwise.

Note that v, the visual encoding, is the value that is tamperable and that is leaked to the adversary. Also
note that in the above definition we require that the adversary does not apply any tamper-leakage functions
that attempt to decrypt parts of the challenge ciphertext. Every block has to be different from the blocks
of the challenge. This is so because, unlike in standard (non-visualizable) encryption, here blocks must be
decryptable individually. Therefore, there is no way to determine if other blocks outside the field of view
have been tampered with. We can now show the following theorem:

Theorem 3 Let T L be as above. The EyeDecrypt scheme given in Construction 3 is T L-secure according
to Definition 2 if E is a CCA-secure visualizable encryption scheme.

Given the EyeDecrypt constructions above, specifying the function g defines the functionality of the
application. In Appendix B we do this to provide a complete solution to the secure PIN entry application.
Finally, as mentioned in Section 1 and made evident by the definitions and constructions above, EyeDe-
crypt is symmetric key-based. In Appendix B we also briefly sketch how the personal device running the
EyeDecrypt app and the content generating server are able to share cryptographic keys in a secure manner.

3.3 A dataglyphs-based visual encoding scheme

Many existing visual encoding schemes are compatible with visualizable encryption (e.g., QR codes [12],
Data Matrices [11], Dataglyphs [28], High Capacity Color Barcodes (HCCB) [19]), but visualizable encryp-
tion does impose some constraints.

First, the system should be able to decrypt content when zoomed in to a single block. Our chosen visual
encoder should therefore not encode more than one block per code—otherwise zooming in to a single block
would present the decoder with only a portion of a code. On the other hand, we are free to encode a block
using multiple codes.

Second, the system must support decoding multiple blocks of a frame all at once. We have found that
some decoders get “confused” by images containing multiple codes (we need at least one code per block)
or partial codes. Sometimes, decoders that support multiple codes per image impose constraints on their
arrangement (for example, multiple QR codes require a “quiet zone” between codes).

Finally, the visual decoder must not only be able to decode multiple blocks, it must also understand
their spatial arrangement. For any given block the decoder must understand which other block is its right
neighbor, etc., so that the system can detect whether an attacker has re-arranged blocks of ciphertext (cf.
Construction 3 above). This is a computer vision problem that is not solved by simply reading multiple
codes independently, and existing systems using multiple codes (e.g., [6]) do not implement it. Note that

9



simply knowing the pixel coordinates of codes within an image is not sufficient as images taken with a
hand-held device exhibit rotation, skew, perspective shift, and other misalignments.

Still, within these constraints many existing visual encodings could be made to work. For our implemen-
tation we had to choose one, and we have (somewhat arbitrarily) chosen to use Dataglyphs (Figure 6(a)).

Figure 6: (a) Dataglyph encoding (b) Blocks of the encoding (c) Structure of a block

A (data)glyph is a marking with two possible angles, +45◦ and−45◦, indicating a 0 or 1 bit, respectively.
Multiple bits are encoded by organizing multiple glyphs into a grid. Decoding multiple bits therefore means
reconstructing the grid structure from the pixel coordinates of glyphs within an image. While this is not a
trivial task, the great advantage in our setting is that the resulting grid structure can be used not only for
decoding a single glyph, but also for understanding the spatial arrangement of multiple blocks also arranged
in a grid. In fact, what is shown in Figure 6(a) is actually an encoding of a grid of blocks, with each block
being encoded by a grid of glyphs, as indicated in Figure 6(b). Blocks can be arranged seamlessly into a
grid of arbitrary size. This gives dataglyphs a flexibility that has proven to be very useful in experimenting
with parameters of the underlying visualizable encryption scheme (e.g., cipher-block size, aspect ratio).

4 The EyeDecrypt Prototype

EyeDecrypt would be a natural fit for augmented-reality devices such as Google Glass [10]: the user would
simply look at encrypted content and have the decrypted version displayed directly on the screen of the
glasses. However, given that such devices are not yet widely available, we implemented EyeDecrypt on a
smartphone, an iPhone 5S equipped with an 8 MP rear-facing camera.

The EyeDecrypt app shows a live camera view and decrypts on the fly, at a rate of 20–30 frames per sec-
ond, depending on the number of blocks in view. The decrypted content is overlaid over the corresponding
block of dataglyphs in the camera view itself. The only action users need to perform is to position the phone
camera in front of the encrypted document they wish to decrypt and move the camera around to decrypt
different parts of the document. This is illustrated in Figure 2.

Figure 7(a) shows a screenshot of the application. The encrypted message consists of ten blocks laid
out in two rows. Each decrypted block is rendered independently, directly over the corresponding block
of glyphs; gaps between decrypted blocks are the result of camera motion during the live capture. The
decrypted blocks track the glyphs at 20–30fps, achieving a true augmented reality experience. The applica-
tion verifies that adjacent blocks are correctly arranged, and displays any out-of-place blocks in red, as in
Figure 7(b), making evident any rearrangement of blocks by cut-and-paste.

In the current implementation we encrypt the plaintext instantiating the PRF in the visualizable encryp-
tion scheme of Section 3.1 with AES-128, and visually-encode it using dataglyphs. Currently, no MAC is
implemented and therefore our implementation is only secure against passive attacks, except for the detec-
tion of block rearrangement (Figure 7(b)).

We now list the steps that EyeDecrypt goes through in order to decode a visually encoded ciphertext.

10



(a) A decrypted message (b) Detecting rearranged blocks

Figure 7: Screenshots of the EyeDecrypt application

Removing Moiré patterns. EyeDecrypt works not only with documents printed on paper but also doc-
uments viewed on computer screens. In this second scenario, additional noise is introduced to the image
captured by the phone camera. In particular, Moiré patterns [30] are well-known artifacts present in digital
images. In order to reduce Moiré patterns when reading a visual encoding from a screen, we apply a series
of low-pass filters and high-pass filters to filter out such patterns as much as possible while, at the same time,
trying to enhance the dataglyphs. In our implementation we use OpenCV [13], and, in particular, we use a
Gaussian Blur as low-pass filter and a Laplacian as high-pass filter.

Contour detection. We convert the image to gray scale, use the Scharr transform to perform edge detection,
and the Suzuki-Abe algorithm to detect contours [26]. For each contour, we calculate its centroid coordinates
and angle.

Reconstructing the grid. We build a graph by Delaunay triangulation of the glyph centroids. The result
is an undirected graph in which each centroid has edges to up to 8 of its nearest neighbors. We remove
“diagonal” edges so that remaining edges roughly follow the rows and columns of a grid, and each centroid
is connected to at most four other centroids.

Removing noise. Camera lens deformation, non-uniform light conditions, variable distance from content
and camera resolution all lead to the creation of noise and artifacts in the detection of the contours that is,
in the detection of the centroids. Such artifacts are usually located at the edges of the camera field of view
which translates to disconnected or missing centroids at the edges of the graph. The way users hold their
phone represents another significant source of noise. In particular, given that the visual encoding we use
does not have any landmark to help with alignment, if the phone is rotated by a significant amount, it may be
very hard to tell left from right and top from bottom of the visually encoded content captured by the camera.
Figure 8a shows this problem. As we can see, by just looking at the centroids of the contours we cannot tell
the correct alignment of the ciphertext.

In order to solve all these issues, we apply various graph-theory algorithms that allow us to remove
all the artifacts due to noise and reconstruct the graph. Figure 8b shows the graph reconstructed from the
centroids shown in Figure 8a. We can see that we were able to remove artifacts and infer the camera rotation
which is an essential step to correctly decode the content.

Decoding. The corrected graph from the previous step is next converted to a binary matrix by converting
the angle information of each centroid into ones and zeros.

In the current implementation, one block of ciphertext has dimensions 10×10 bits (see Figure 6(c)).
The first 16 bits of the block represent the coordinates i and j of that block in the frame, while the last 12
bits of the block represent a checksum. This checksum is the truncated output of AES-128 applied to the
coordinates i, j of the block. We know we have found a valid block of ciphertext when computing AES-128
over the first 16 bits of a block, we get the same checksum found in the last 12 bits of that block. If the

11



(a) Rotated centroids (b) Rebuilt graph

Figure 8: Rebuilding a graph from noisy centroids with unknown rotation

checksum fails, we move one column to the right in the matrix and perform the same check on the new
block until we have tested all the bits of a 12x12 matrix. If a valid block is found, each block of the matrix
is decrypted. Finally, the decrypted content from all the decrypted blocks is displayed as an overlay on the
phone camera view.

Figure 9: Decoding and decryption of 4,800 bits
of ciphertext with Moiré noise

Figure 10: Decoding and decryption of a
randomized keypad

5 Performance Evaluation

As mentioned in the previous section, each block of ciphertext has a dimension of 10×10 bits. Figure 6(c)
shows the structure of the block. The first 16 bits are used to encode the coordinates i, j corresponding to
the position of the block in the document, while the last 12 bits are used for the block checksum. This leaves
72 bits of encrypted payload per block. Given that the visualizable encryption scheme is length-preserving
(uses a one-time pad approach; see Section 3.1), we can encrypt 72 bits of data in each block. In the case of
text, this means that we can encrypt nine characters per block of ciphertext.

In general, users will hold their device so that multiple blocks will be decoded at once, that is, a multiple
of nine characters will be displayed at once to the user. Increasing the ciphertext block size would reduce
the overhead due to block coordinates and checksum. A larger block size, however, would also mean that
users have to hold their devices at a larger distance from the encoded image in order to fit at least one block

12



in the camera field of view. The larger distance would add additional noise, possibly leading to a higher
probability of decryption failure.

Figure 9 shows the correct decoding and decryption of 4,800 bits of ciphertext displayed on a computer
screen, where the decoding was successful despite the presence of Moiré patterns. In such case, the decoding
took an average time of 250 milliseconds (i.e., 4 frames per second). This time, however, largely depends
on the camera resolution being used and the number of cipher-blocks visible in the same frame. For the
decoding shown in Figure 9, we used a resolution of 640x480 pixels and decoded 48 cipher-blocks in a
single frame. In the case of a numerical keypad, as shown in Figure 10, the visual encoding includes 12
cipher-blocks in a single frame which we were able to process at a rate of about 18 frames per second.

The resolution of the camera plays an important role in EyeDecrypt. On one hand, higher resolution
means that the camera has better accuracy in reading the image, and hence a larger number of cipher blocks
can be correctly decoded in a single frame. Also, decoding can happen at greater distance. On the other
hand, higher resolution means that the device has to process a larger image, i.e., more information, and
the decoding takes longer. Furthermore, with higher resolution Moiré noise gets amplified as well so that
accuracy does not increase linearly with resolution. A consequence of this is that decrypting content in
printed form is much more reliable and accurate than decrypting electronic content where Moiré noise is
present. Different camera resolutions imply a tradeoff between accuracy, decryption speed and maximum
decoding distance.

The visual encoding based on dataglyphs could be easily enhanced to increase the amount of information
it conveys. As we mentioned in Section 3.3, we currently use only two angle values to encode ones and
zeros—namely, −45◦ for bit 1 and +45◦ for bit 0.

Naturally, the problem in having only two possible values is that less information can be conveyed in
the dataglyph encoding. In particular, by using 0◦, +45◦, −45◦ and 90◦, each dataglyph could encode two
bits of information. This, however, would make dataglyphs less resilient to noise. Other ways to enhance
dataglyphs would be by using different colors and sizes so that for each dataglyph we can now specify
angle, color and size. If we assume four possible angles, four independent colors and two different sizes,
one dataglyph could now convey 5 bits of information. Enhancing the visual encoding so to convey more
information as described above is left for future work.

6 Related Work

Human-computer interactions almost universally involve human vision, and so EyeDecrypt or any other HCI
technology is subject to the security limitations of vision. In particular, vision is susceptible to interception,
by means as simple as shoulder surfing or as sophisticated as capturing the reflection of images from the
surface of the eye [18, 1, 2]. EyeDecrypt protects against many interception attacks by encrypting the visual
channel between the encoding and a personal device. The visual channel from the personal device to the
eye remains unprotected by EyeDecrypt itself; it is intended for use only when the personal device remains
inaccessible to adversaries. When eye reflections are a concern but it is still desirable to use the visual
channel, we know no protection short of an enclosed display. EyeDecrypt is compatible with such a display.

On the other hand, vision has some inherent security advantages. Humans generally know with certainty
what physical object they are looking at (as opposed to what device has sent them a wireless transmission),
and vision is resistant to active tampering. For example, there are a few techniques to overload camera
sensors but a user can detect this by comparison with their own vision. Consequently, visual encodings
are widely use in security for key establishment, wireless device pairing, and trusted display establishment
[16, 24, 25, 6]; EyeDecrypt can be used for these purposes as well.

Computer vision researchers have been studying visual encodings for decades, seeking to increase their
capacity and their robustness against lens distortion, image compression, non-uniform lighting, skew, mo-
tion blur, shake, low camera resolution, poor focus, etc. [15, 29, 20]. Techniques for zooming into visual
encodings include recursive grids of barcodes [21] and nested barcodes [27]. Fourier tags [23] handle the

13



opposite case of zooming out: at close distance, they can be completely decoded, but as the camera zooms
out, fewer bits can be decoded; low-order bits are lost before high-order bits.

Encrypted content is often used in single barcodes (e.g., [3]) but less often in multiple barcodes. Fang
and Chang describe a method for encoding a large encrypted message in multiple barcodes [6]. All barcodes
must be decoded and decrypted to view the message, and the barcodes must be presented in a known order,
unlike our blocks which can be viewed independently. They are concerned with rearrangement attacks in
which the adversary is able to rearrange the order of the barcodes so that the message cannot be decrypted.
Their solution is to use a visual cue (numbers in sequence) over which each barcode is interleaved. The user
can manually verify that the barcodes are in the correct order, while the device handles the decoding and
decryption of the actual data. In our solution, visual clues are not necessary, as the frame and block numbers
of adjacent regions are directly encoded and can be read and compared automatically by the device.

Many defenses against shoulder surfing during PIN entry have been proposed; we discuss a representa-
tive sampling here. We emphasize that unlike EyeDecrypt, these systems do not encrypt the device display,
so they are not appropriate for displaying private information, only entering it.

EyePassword [14] and Cued Gaze-Points [8] are two systems that use gaze-based input for password/PIN
entry. These systems require the public device (e.g., an ATM) to have a camera and they work by computing
the point on the screen that the user is looking at. In the Cued Gaze-Points system PIN entry works by the
user selecting gaze-points on a sequence of graphic images. In EyePassword, the user gazes at a standard
onscreen keyboard. The key assumption in both cases is that the adversary does not see the input at all (the
adversary does not have a view of the user’s eyes). In contrast, EyeDecrypt assumes that the adversary can
see the input but only in obfuscated form (randomized and encrypted).

Roth et al. [22] require users to enter PINs via cognitive trapdoor games, e.g., a sequence of puzzles
that are easy to solve (by an unaided human) with knowledge of the PIN, but hard to solve without it. Their
scheme emphasizes useability and is intended only to defend against attackers that are unaided humans (for
example, with human short-term memories). Unlike gaze-entry systems, and similar to EyeDecrypt, it can
work without modifying ATM hardware.

In the ColorPIN system [5], a user’s PIN is a sequence of colored digits, and the ATM displays a ten-
digit keypad where each digit appears with three colored letters. For example, the digit “1” could appear
above a black “Q,” a red “B,” and a white “R,” and the user would enter “black 1” by hitting “Q.” Each letter
appears with multiple digits, so that a sequence of letters is associated with multiple sequences of digits. A
shoulder-surfing observer thus gets partial information about the PIN (e.g., for a four-digit pin the observer
knows that it is one of 3 × 3 × 3 = 81 possibilities). EyeDecrypt’s visual encryption protects against this
sort of leakage.

MobilePIN [4], like EyeDecrypt, uses a trusted personal device to aid PIN entry. In MobilePIN, the
ATM displays its wireless address and authentication token onscreen as a QR code, and the user reads the
code using the camera of the personal device. The personal device can then establish a secure wireless
connection between with the ATM (secure pairing using the visual channel). The user enters her PIN on the
trusted personal device, which transmits it to the ATM over the wireless channel. MobilePIN therefore has
similar assumptions as EyeDecrypt, except in addition it assumes that the ATM is equipped with a radio.

Most other shoulder-surfing-resistant PIN entry methods involve changing the authentication process,
e.g., by using graphical passwords or security tokens, or by requiring network connectivity or device pairing.

Naturally, EyeDecrypt is related to the cryptographic technique known as visual cryptography ([17]
and follow-ups), which allows visual information (pictures, text, etc.) to be encrypted in such a way that
decryption becomes a mechanical operation that does not require a computer, such as for example over-
imposing two (transparent) images in the Naor-Shamir visual secret-sharing scheme.

Finally, EyeDecrypt has the additional ability to ensure that only legitimate users can view the infor-
mation that is openly displayed, and in that sense bears some similarity to broadcast encryption ([7] and
numerous follow-ups), with closely related applications such as pay-TV. A fundamental difference in Eye-
Decrypt is the public-view nature of the rendering device.

14



7 Summary and Conclusions

In this paper we introduced EyeDecrypt, a novel technology aimed at protecting content displayed to the
user as well as interactions the user has with the system (e.g., by typing). In particular, we do not trust the
device the user interacts with as it may have been compromised (e.g., root-kits, key-loggers) nor do we trust
the user’s environment. (“shoulder surfing”). Although we presented a visual encoding scheme based on
Dataglyphs, EyeDecrypt can easily support any other visual encoding. It protects electronic content (e.g.,
displayed on a computer screen or a smartphone display) as well as non-electronic content (e.g., passports,
medical records). EyeDecrypt does not require network connectivity to operate except for the initial key
exchange with the content provider.

We envision EyeDecrypt being applied to very different scenarios. For example, EyeDecrypt can pro-
tect interactions users have with their laptops or smartphones (i.e., running the EyeDecrypt app on Google
Glass); EyeDecrypt can protect users when buying in stores using mobile payment platforms (e.g., Square)
where they have to input their PIN on a store device. Similarly, EyeDecrypt could be used to encrypt per-
sonalized ads in public settings (e.g., showing personalized ads in a movie theater) without violating users
privacy. If the human eye can see it, EyeDecrypt can protect it.

References
[1] Michael Backes, Tongbo Chen, Markus Drmuth, Hendrik P. A. Lensch, and Martin Welk. Tempest in a teapot:

Compromising reflections revisited. In IEEE Symposium on Security and Privacy, pages 315–327, 2009.

[2] Michael Backes, Markus Drmuth, and Dominique Unruh. Compromising reflections-or-how to read LCD mon-
itors around the corner. In IEEE Symposium on Security and Privacy, pages 158–169, 2008.

[3] D. Conde-Lagoa, E. Costa-Montenegro, F.J. Gonzalez-Castao, and F. Gil-Castieira. Secure eTickets based on
QR-Codes with user-encrypted content. In 2010 Digest of Technical Papers International Conference on Con-
sumer Electronics (ICCE), pages 257–258, 2010.

[4] Alexander De Luca, Bernhard Frauendienst, Sebastian Boring, and Heinrich Hussmann. My phone is my keypad:
Privacy-enhanced PIN-entry on public terminals. In Proceedings of the 21st Annual Conference of the Australian
Computer-Human Interaction Special Interest Group, pages 401–404, New York, NY, USA, 2009. ACM.

[5] Alexander De Luca, Katja Hertzschuch, and Heinrich Hussmann. ColorPIN: Securing PIN entry through indirect
input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1103–1106,
New York, NY, USA, 2010. ACM.

[6] Chengfang Fang and Ee-Chien Chang. Securing interactive sessions using mobile device through visual channel
and visual inspection. In Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC
’10, pages 69–78, New York, NY, USA, 2010. ACM.

[7] Amos Fiat and Moni Naor. Broadcast encryption. In Proceedings of the 13th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’93, pages 480–491, London, UK, UK, 1994. Springer-Verlag.

[8] Alain Forget, Sonia Chiasson, and Robert Biddle. Shoulder-surfing resistance with eye-gaze entry in cued-recall
graphical passwords. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1107–1110, New York, NY, USA, 2010. ACM.

[9] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[10] Google. Google Glass.

[11] ISO. Information technology – Automatic identification and data capture techniques – Data Matrix bar code
symbology specification. ISO 16022:2006, International Organization for Standardization, Geneva, Switzerland,
2006.

15



[12] ISO. Information technology – Automatic identification and data capture techniques – QR Code 2005 bar code
symbology specification. ISO 18004:2006, International Organization for Standardization, Geneva, Switzerland,
2006.

[13] itseez. Open Source Computer Vision (OpenCV) Library.

[14] Manu Kumar, Tal Garfinkel, Dan Boneh, and Terry Winograd. Reducing shoulder-surfing by using gaze-based
password entry. In Proceedings of the 3rd Symposium on Usable Privacy and Security, SOUPS ’07, pages 13–19,
New York, NY, USA, 2007. ACM.

[15] Jian Liang, David Doermann, and Huiping Li. Camera-based analysis of text and documents: a survey. Interna-
tional Journal of Document Analysis and Recognition (IJDAR), 7(2-3):84–104, July 2005.

[16] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Seeing-is-believing: Using camera phones for
human-verifiable authentication. In IEEE Symposium on Security and Privacy, pages 110–124, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[17] Moni Naor and Adi Shamir. Visual cryptography. In Alfredo De Santis, editor, EUROCRYPT, volume 950 of
Lecture Notes in Computer Science, pages 1–12. Springer, 1994.

[18] Ko Nishino and Shree K. Nayar. Corneal imaging system: Environment from eyes. International Journal of
Computer Vision, 70(1):23–40, 2006.

[19] Devi Parikh and Gavin Jancke. Localization and segmentation of a 2D high capacity color barcode. In IEEE
Workshop on Applications of Computer Vision, pages 1–6. IEEE, 2008.

[20] Samuel David Perli, Nabeel Ahmed, and Dina Katabi. PixNet: interference-free wireless links using LCD-
camera pairs. In Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Net-
working, MobiCom ’10, pages 137–148, New York, NY, USA, 2010. ACM.

[21] Derek Reilly, Huiqiong Chen, and Greg Smolyn. Toward fluid, mobile and ubiquitous interaction with paper
using recursive 2D barcodes. In 3rd International Workshop on Pervasive Mobile Interaction Devices (PERMID
2007), May 2007.

[22] Volker Roth, Kai Richter, and Rene Freidinger. A PIN-entry method resilient against shoulder surfing. In
Proceedings of the 11th ACM Conference on Computer and Communications Security, pages 236–245, New
York, NY, USA, 2004. ACM.

[23] J. Sattar, E. Bourque, P. Giguere, and G. Dudek. Fourier tags: Smoothly degradable fiducial markers for use in
human-robot interaction. In Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV ’07, pages
165–174, 2007.

[24] Nitesh Saxena, Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. Secure device pairing based on a visual
channel. In IEEE Symposium on Security and Privacy, pages 306–313. IEEE Computer Society, 2006.

[25] G. Starnberger, L. Froihofer, and K.M. Goeschka. QR-TAN: secure mobile transaction authentication. In Inter-
national Conference on Availability, Reliability and Security, 2009. ARES ’09, pages 578–583, 2009.

[26] Satoshi Suzuki and Keiichi Abe. Topological structural analysis of digitized binary images by border following.
Computer Vision, Graphics, and Image Processing, 30:32–46, 1985.

[27] K. Tateno, I. Kitahara, and Y. Ohta. A nested marker for augmented reality. In IEEE Virtual Reality Conference,
2007. VR ’07, pages 259–262, 2007.

[28] Robert F Tow. Methods and means for embedding machine readable digital data in halftone images, May 24,
1994. US Patent 5,315,098.

[29] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: A survey. Foundations and Trends
in Computer Graphics and Vision, 3(3):177–280, 2007.

[30] Wikipedia. Moiré pattern, 2013.

16



A Proofs

We repeat the statements of the claims here for convenience.

Theorem 1 The visualizable encryption scheme E in Construction 1 is CCA-secure according to Def. 3.

Proof sketch. The proof follows by describing a sequence of hybrid arguments from the security definitions
of F ,H, and MAC. We next sketch the sequence of games that gives us the proof.

Game 0: This is the original ExpVisIND-ATK experiment.
Game 1: Game 1 proceeds identically to Game 0, except that Check(view) is modified as follows.
Check(view)′: Proceed as in Check(view), but output 1 if and only if for all `, `′, if H(f`, i`) =
H(f`′ , i`′) then m` = m`′ . Game 1 and Game 0 will proceed identically, unless the adversary finds
a strong collision in H .
Game 2: Game 2 proceeds as Game 1, except that FKPRF

is replaced by a random function R with the
same range and domain. The fact that Game 2 and Game 1 proceed identically (except with negligible
probability) follows from the pseudo-randomness of F .
Game 3: Game 3 proceeds as Game 2, except that we further modify Check(view) to output 0 if the
adversary has queried the decryption oracle on two ciphertexts C = (f, i, C0, τ) and C ′ = (f, i, C ′0, τ

′)
where (C0, τ) 6= (C ′0, τ

′), and both queries resulted in non-⊥.
This concludes the proof. �

Theorem 2 Let Leak(S) = v. Then, the EyeDecrypt scheme given in Construction 2 is Leak-secure
according to Definition 1 if E is a CPA-secure visualizable encryption scheme.

Proof sketch. We prove the theorem by reducing the security of the EyeDecrypt scheme to the security of
E . Let Adv be an adversary that breaks Leak-security of EyeDecrypt. Then, we construct Adv′ that breaks
the CPA-security for multiple messages of E . Then, by Claim 4, we obtain the security of EyeDecrypt.

Our adversary Adv′ works as follows. Initially, Adv′ simulates EyeDecInit(1n) except that no encryption
key is generated. Adv′ then simulates Adv. To answer a query (x,m) to the LeakST oracle, Adv′ works as
follows. Adv′ computes (t1, . . . , tn)← g(π(x),m, frame, π′), and obtains ci = EncK(j, i, ti) for 1 ≤ i ≤ n
by querying its EncCPA oracle. All other steps are identical to EyeDecEntry. Adv′ then computes and
returns v′ ← Encode(c1, . . . , cn) to Adv.

When Adv submits the challenge tuple (x0,m0), (x1,m1), Adv′ computes frameb ← g(π(xb),mb, frame, π′)
for b ∈ {0, 1}. If frame0 = frame1, then Adv′ gives up, and outputs a random bit. Otherwise, Adv′ sub-
mits (frame0, frame1) as its challenge in the ExpVisIND-CPA experiment. Given a vector of ciphertexts
(c∗1, . . . , c

∗
n), Adv′ constructs the challenge ciphertext as above, and returns the encoded version to Adv. The

simulation is concluded naturally.
Given the above construction, Adv′ simulates Adv perfectly in the ExpEyeDec experiment, except when

frame0 = frame1. However, in this case, Adv obtains no information about b in the challenge. Therefore,
Adv′ wins with the same advantage as Adv. �

Let T L be the class of functions defined as follows:

T L def
= {TL(·)|TL(K,π, frame, v, j, C∗) = ((K,π, frame, f(v), j), Leakact(K, f(v), C∗))}

where f : Pt1×t2 → Pt1×t2 and Leakact : KED × {0, 1}∗ × {0, 1} → {0, 1}∗ is defined as

Leakact(K,u,C
∗)

def
=

{
(EyeDecRead(K,u), u) if ui 6= C∗i for 1 ≤ i ≤ n;

(⊥, u) otherwise.

Theorem 3 Let T L be as above. The EyeDecrypt scheme given in Construction 3 is T L-secure according
to Definition 2 if E is a CCA-secure visualizable encryption scheme.

17



Proof sketch. The proof proceeds by a relatively straightforward reduction to the CCA-security of the
underlying visualizable encryption scheme E . Intuitively, the decryption condition in the definition of Leak
prevents the adversary from querying the challenge ciphertext, unless she is able to change the block number
of a ciphertext block. However, the position of the block that is obtained by decrypting the ciphertext is
verified by EyeDecRead to match the position of the block in the field of view. �

B Constructions (cont’d)

Instantiating EyeDecrypt for secure PIN entry. Here we provide a complete to the secure PIN entry
application. Given the EyeDecrypt constructions above, the missing piece is the function g which defines the
functionality of the application. The exact nature of g will depend on the content being protected by the PIN.
However, any PIN-protected application must allocate some of the output blocks of g to display a permuted
numeric keypad. Suppose that the user input device is a (fixed) numeric keypad, and suppose (wlog) that
blocks t1, . . . , ti in the plaintext visual frame are allocated to the permuted keypad. Let P (pin, data) be a
program that, given the PIN and additional data, generates blocks ti+1, . . . , tn. Then, g(pin, data, frame, π)
computes (ti+1, . . . , tn)← P (pin, data), and computes blocks t1, . . . , ti by generating an image that shows
the digit d written on the physical button that has the digit label π−1(d).

Key establishment. As mentioned in Section 1 and made evident by the definitions and constructions
above, EyeDecrypt is symmetric key-based. Here we briefly sketch for completeness how the personal
device running the EyeDecrypt app and the content generating server are able to share cryptographic keys
in a secure manner. The personal device is provisioned with a master key using standard methods (e.g., by
performing a key exchange with the content provider on a connection that is authenticated with the user’s
credentials). Then, whenever a new content is being viewed by the user, it will first contain a visually (e.g.,
QR-, Dataglyph-) encoded nonce; by applying a key-derivation function (KDF) to the per-document nonce
the viewer and the content provider are able to derive the same key from the shared master key.3

3 Naturally, in the case of active attacks, standard additional precautions need to be taken (e.g., to guarantee freshness, avoid
replay attacks, etc.).

18


	Introduction
	Model and Definitions
	Security of the EyeDecrypt activity
	Defining the building blocks

	Constructions
	The visualizable encryption scheme
	An EyeDecrypt scheme
	A dataglyphs-based visual encoding scheme

	The EyeDecrypt Prototype
	Performance Evaluation
	Related Work
	Summary and Conclusions
	Proofs
	Constructions (cont'd)

