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Analysis of the Rainbow Tradeoff Algorithm
Used in Practice

Jung Woo Kim, Jin Hong, and Kunsoo Park

Abstract—Cryptanalytic time memory tradeoff is a tool for
inverting one-way functions, and the rainbow table method,
the best-known tradeoff algorithm, is widely used to recover
passwords. Even though extensive research has been performed
on the rainbow tradeoff, the algorithm actually used in practice
differs from the well-studied original algorithm. This work
provides a full analysis of the rainbow tradeoff algorithm that is
used in practice. Unlike existing works on the rainbow tradeoff,
the analysis is done in the external memory model, so that the
practically important issue of table loading time is taken into
account. As a result, we are able to provide tradeoff parameters
that optimize the wall-clock time.

Index Terms—cryptanalytic time memory tradeoff, rainbow
tradeoff, external memory model.

I. INTRODUCTION

THE rainbow tradeoff [35] is a generic and probabilistic
method for quickly inverting a one-way function. In any

cryptanalytic time memory tradeoff algorithm, such as the
rainbow tradeoff, a large pre-computation table is generated
through a massive one-time pre-computation phase that is
specific to the one-way function under consideration, after
which the inversion of each given target becomes much faster
than an exhaustive search of inputs. Cryptanalytic tradeoff al-
gorithms allow the implementer to balance the size of the pre-
computation table against the time taken for each inversion,
through appropriate choices of the algorithm parameters.

Implementations of the tradeoff technique are actively used
today by law enforcement agencies, system security managers,
and hackers to recover passwords from unsalted password
hashes. There are also many commercially available tools [1],
[3], [5], [7], [8], based on the tradeoff technique, that can
recover forgotten passwords protecting access to certain types
of documents (PDF, MS Word, WinZip, and so on).

The first cryptanalytic tradeoff algorithm was presented
by [23] and this was soon amended with the idea of using
distinguished points [21], which greatly reduced the number
of table lookup operations and made the algorithm much more
practical for use. The rainbow tradeoff [35] is a more recent
invention, which has received a lot of publicity [17], [19],
[31], [32] for being able to “break Windows passwords.” There
are numerous variants of the tradeoff algorithms we have
already mentioned, each claiming to be superior over existing
algorithms, but a quick search on the Web would reveal that
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the rainbow tradeoff is currently almost the only algorithm
used, at least for the purpose of recovering passwords.

The cryptanalytic tradeoff algorithms have been imple-
mented extensively on various platforms [18], [22], [26],
[28], [33], [34], [37], [38], with some of the more recent
implementations taking advantage of the massively parallel
GPU platform. The rainbow tradeoff has its share of imple-
mentations, with [2], [4], [6], [9] being a list of the current
more prominent providers of pre-computed rainbow tables.

In this work, we focus on the discrepancy between the
original rainbow tradeoff algorithm and its variants that are
implemented and used in practice. The rainbow tradeoff, as
with other tradeoff algorithms, was designed with the implicit
assumption of a flat memory structure. In other words, the
random access machine (RAM) model [20] of computation,
where a machine consists of a central processing unit (CPU)
and a single level of memory, was assumed.

However, in practice, the very large pre-computation tables
of the rainbow tradeoff must initially reside on slow disks
and these need to be loaded into smaller main memory for
processing. This situation is quite different from the RAM
model of computation and the highly non-localized memory
access behavior of the original rainbow tradeoff makes its
straightforward implementation on a modern computer quite
impractical for use, except in the less interesting case of small
search spaces. As far as rainbow tradeoffs are concerned,
the external memory model [11], which takes two levels of
memory into account, is a much more realistic view of modern
computing systems than the RAM model of computation.

Current implementers of the rainbow tradeoff are well aware
of the impracticality of the original algorithm and have chosen
to implement slightly modified versions of the algorithm. The
main operations of the original algorithm are retained, but the
order of these operations are changed so that accesses to the
pre-computed tables are done in a somewhat localized and
sequential manner. This removes the need to transfer the same
data multiple times from the slow disk to fast main memory
and the algorithm is made much more suitable for use on real-
world computers.

It must be noted that previous theoretical analyses of the
rainbow tradeoff have all treated the original algorithm and not
the practically modified algorithm. Some of the preliminary
analyses are rough enough to be applicable to any variant
of the rainbow tradeoff, but the more recent complexity
analyses [14], [24], [25], [30] that tried to provide much
more accurate results are not so fortunate. The algorithm
modifications made were in the small obscure details, but these
were crucial enough to prevent these more accurate analyses
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from being applied to the algorithm used in practice.
We further note that these previous analyses were carried

out in the RAM model of computation. For example, the
performance of the algorithm was measured in terms of the
size of the pre-computation tables and the expected amount of
one-way function computations. Such an approach ignores the
fact that the main memory is a much more expensive resource
than the disk and completely disregards the time taken for
data transfers between disk and main memory. Hence, even if
results analogous to the previous analyses were available for
the rainbow tradeoff algorithms used in practice, these would
not properly reflect the performance or characteristics of the
rainbow tradeoff that practitioners would be interested in.

In this work, we analyze the performance of the rainbow
tradeoff variant that is widely used in practice [4], [9]. Our
analysis will be done in the external memory model, so
that the algorithm characteristics of practical importance are
captured, and this will bring forward a completely new type of
tradeoff curve. Note that, because our model of computation
and analysis capture even the disadvantage in table loading
time associated with the use of a larger pre-computation table,
we are able to consider the minimization of the online time of
the rainbow tradeoff variant, where the online time refers to the
sum of the time taken for one-way function computations and
the time taken for loading of tables. This was not previously
possible, since time memory tradeoff in the RAM model
somewhat erroneously implies that a larger pre-computation
table will always bring about a smaller online time. Our
analysis will conclude with the explicit tradeoff parameters
that optimize the online wall-clock time.

The introduction of the classical Hellman algorithm [23]
was accompanied with a very rough cost estimate of its
hardware implementation. This was followed by early works
that discussed the asymptotic effectiveness of the tradeoff
techniques [12] in terms of monetary cost per inversion, or
tried to minimize the hardware implementation cost [29] of
the classical Hellman algorithm under an upper bound on the
online computational complexity. A more recent article [39]
discussed the asymptotic cost and computational complexity
of the classical Hellman algorithm and its distinguished point
variant, along with many other cryptanalytic algorithms. This
was a highly theoretical work that represented the cost of a
machine in terms of its number of components.

The rainbow tradeoff [35] was introduced after modern
computers became widely available. The change in computing
environment made the software implementations of the rain-
bow tradeoff more popular, and the RAM model of computa-
tion naturally became implicit in its theoretical analyses. The
article [14] introduced the notion of tradeoff characteristic to
discuss the advantage of one tradeoff algorithm over another
and [25] brought the cost of pre-computation into considera-
tion in comparing algorithm performances. Even though there
are such articles that consider measures other than the storage
size and online computational complexity in representing the
performance of a tradeoff algorithm, these were still bound by
the RAM model of computation.

To the best of our knowledge, the current article is the first
to consider the rainbow tradeoff in the external memory model

of computation. In fact, this seems to be the first treatment of
any cryptanalytic tradeoff algorithm in the external memory
model.

The rest of the paper is organized as follows. In Section II,
we explain the RAM and external memory models of computa-
tion. The precise version of the rainbow tradeoff algorithm that
will be analyzed in this paper is given in Section III, together
with justifications for choosing to work with this specific
algorithm. The rainbow tradeoff algorithm used in practice
is fully analyzed in Section IV, where formulas for calcu-
lating the optimal algorithm parameters are given. Section V
illustrates our results with examples of optimal parameters.
Test results supporting the correctness of our analysis is given
in Section VI, and we conclude in Section VII. The less
popular non-perfect table rainbow tradeoff is fully treated in
the appendix.

II. MODELS OF COMPUTATION

There are two representative models that are used to
describe modern computers. These are the random access
machine (RAM) model and the external memory model.

RAM Model: In the RAM model, the computer is assumed
to consist of a central processing unit (CPU) and a storage unit
of infinite capacity. The storage is assumed to allow accesses
to any of its location in unit time, even if the locations are
chosen in a random manner. This model is useful in predicting
the real behavior of modern computers, as long as the amount
of data processed is smaller than the size of the main memory
of the computer.

Previous analyses [14], [24], [25], [30], [35] of the rainbow
tradeoff have always been in the RAM model of computation.
Some of these analyses completely ignored the cost of table
lookups. Others claimed that the time taken for table lookups
would be insignificant in comparison to the time taken for
computations of the one-way functions. This claim was based
on the observation that the number of table searches were
of much smaller order than the number of one-way function
computations, but this reasoning becomes problematic when
each table search take much longer than a single iteration of
the one-way function. Results from these previous analyses are
correct and useful when the complete set of pre-computation
tables can be preloaded into the computer’s fast main memory
so that table searches are indeed easy. However, they have
very limited applicability when the size of the pre-computed
data is so large that accesses to slower storage media become
inevitable.

The whole purpose of using any cryptanalytic tradeoff
algorithm is to make appropriate tradeoffs between online
computational time and usage of storage. One must increase
the size of storage in order to reduce online time, and
restricting the combined size of the pre-computed tables to the
size of a computer’s main memory severely limits the usability
of any cryptanalytic tradeoff algorithm. For example, much of
the pre-computation table sets available from [2], [4], [6], [9]
are sized at a few hundred GBs, with a few even going into
the TBs range, whereas the PCs available to the intended users
of these tables are likely to be equipped with only a few GBs
of main memory.
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The discussion so far indicates that the analyses of the
rainbow tradeoff algorithm done in the RAM model have very
limited applicability to the use of rainbow tradeoff seen in
practice, especially when the search space is large enough to
call for the use of very large pre-computation tables.

External Memory Model: The architecture of modern com-
puters are much more complex than what is suggested by the
RAM model. In particular, modern computers have a hierarchy
of memory units, some of which would be registers, caches,
main memory, disk storage, and removable storage media. We
wish to focus on the fact that, on real-world computers, when
the size of data to be processed by a program is very large
and accesses to the data are not localized, the data transfers
between the main memory and the disk often become the
largest performance bottleneck.

The external memory model [11] assumes a machine that
consists of a CPU and two levels of memory. The capacity of
the slower memory is assumed to be infinite, whereas that of
the faster memory is taken to be bounded. This is a reasonable
view of the modern computer, with the main memory and the
disk taken to be the two levels of memory.1 The low price of
disk storage today justifies the treatment of the slower memory
as being unbounded in capacity. Data is transferred between
the two memories in units of blocks.

In this work, we study the performance of the rainbow
tradeoff in the external memory model. Since the disk space
required for the long-term storage of pre-computation tables
is assumed to be unlimited in size, our focus will be on how
the online time can be minimized. Here, the online time refers
to the wall-clock time, consisting mainly of the time taken to
compute the one-way functions and the time taken to transfer
data between disk and main memory. This concept of online
time should not be confused with the online computational
complexity, which most analyses on any time memory tradeoff
algorithm would concentrate on.

III. RAINBOW TRADEOFF ALGORITHM USED IN PRACTICE

In this section, we explain the differences between the
original rainbow tradeoff algorithm [35] and its variant that is
widely used in practice [4], [9]. The two rainbow algorithms
will be referred to as the ThRb (theoretical) and PrRb
(practical) algorithms in this paper. The reader is assumed to
be familiar with the general framework of the rainbow tradeoff
algorithm, although we will review the terminology and fix
notation below.

We focus on the perfect table version of rainbow tradeoff,
which is known to be more efficient in the online phase than
the non-perfect table version. The one-way function to be
inverted, such as the password hash function, will be written
as f , and its composition with the i-th reduction function ri
will be denoted by fi = ri ◦ f . The size of the search space
(domain of f ) will be written as N. As is usual, symbols m, t,
and ` will be used to represent the number of entries per pre-
computation table, the length of each pre-computation chain,

1The cache memory (cache-oblivious model [36]) is not treated separately
in this work. The memory access characteristics of the rainbow tradeoff
variants are such that no meaningful performance improvement can be
expected from cache memory considerations.

and the number of tables, respectively. Reasonable parameter
choices would satisfy mt ≈ N. The matrix stopping constant
is defined to be c̄ = mt

N , and it is known [13], [14], [24] that
c̄ < 2, for perfect tables.

Pre-computation Phase: The ThRb and PrRb algorithms
are identical in their pre-computation phases. During the pre-
computation phase, chains of the form

SPi
f1−−−→ ◦ f2−−−→ ◦ · · · ◦ ft−−→ EPi, (1)

are generated from multiple starting points, and the start-
ing and ending point pairs (SPi,EPi) are stored in a pre-
computation table, after being sorted on the ending points.
Only one entry is stored from any set of chains with identical
ending points, so that usually more than m chains need to be
generated in creating each table. This is the only difference
between a perfect table and a non-perfect table. The set of m
chains corresponding to each pre-computation table is referred
to as the pre-computation matrix. The reader is cautioned
to distinguish between a pre-computation table and a pre-
computation matrix, while reading the rest of this paper.
The table creation procedure is repeated with distinct sets of
reduction functions to produce ` pre-computation tables.

Perfect versus Non-perfect Tables: The currently available
offerings of the rainbow tradeoff tables on the Web indicate
that the perfect tables are being somewhat favored over the
non-perfect tables, at least by those that are using the rainbow
tradeoff in practice.

Pre-computation tables available through the WebTables
paid service from Cryptohaze [2] are perfect tables. Free
Rainbow Tables [4] only releases perfect tables and makes
it clear that they advocate the use of perfect tables. The tables
freely available from ophcrack [6] are also perfect tables and
this indicates that their larger tables, commercially available
from Objectif Sécurité, are also perfect tables.

RainbowCrack Project [9] is an exception, as they sell non-
perfect tables. However, they provide tools for converting the
non-perfect tables to perfect tables, with a warning stating that
the conversion wastes very expensive pre-computation effort.

Based on these observations, we focus in the perfect table
version of the rainbow tradeoff in this article. However, an
equally complete analysis of the non-perfect table case is pro-
vided in the appendix, for those interested in taking advantage
of its lower pre-computation cost. The appendix also includes
a very preliminary comparison between the perfect and non-
perfect table versions of the rainbow tradeoff.

Online Phase in General: The only differences between
ThRb and PrRb algorithms are in their online phases. Let
the inversion target be given as y = f(x), where x is the
unknown answer one is aiming to obtain. An online chain of
length k is a chain of the form(

x
ft−k+1−−−−→

)
rt−k+1(y)

ft−k+2−−−−→ ◦ · · · · · · ◦ ft−−−−→ ◦. (2)

Our convention is to include the unknown answer x in the
online chain when stating its length, so that chain lengths k
are in the range 1 ≤ k ≤ t. Note that any online chain must
use a set of reduction functions that were used in creating a
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specific pre-computation table, so that every online chain is
associated with a specific pre-computation table. There are t
online chains, for each of the ` tables.

With both the ThRb and PrRb algorithms, whenever an
online chain is generated, its ending point is searched for
among the ending points recorded in its corresponding pre-
computation table. If a match of ending points is discovered,
one retrieves the corresponding starting point and regenerates
the pre-computation chain to the correct length. One hopes
for this operation to reveal the correct answer x, but because
the one-way function f is not injective, most of these matches
result from merging of chains, and these are identified as false
alarms.

Online Phase of ThRb: The main difference between ThRb
and PrRb algorithms is in the order in which the online chains
are generated. In the ThRb case, all shorter online chains
are generated before any longer chains. More specifically, the
following approach is taken.

Algorithm 1 Online Phase of ThRb
1: for k = 1 to t do
2: for i = 1 to ` do
3: generate length-k online chain for i-th table
4: search for matching ending point in i-th table
5: if match is found then
6: regenerate pre-computation chain
7: end if
8: if answer is found then
9: exit from all loops and terminate

10: end if
11: end for
12: end for

This ordering of online chain generation is often referred to
as the parallel processing of the pre-computation tables.

Note that the probability for each online chain to lead to the
discovery of the correct inversion answer is independent of the
chain length. Since one expects to terminate the algorithm with
the correct inversion answer before generating all t` online
chains, dealing with the shorter chains before the longer chains
is expected to be advantageous in terms of computational cost.

This reasoning may seem plausible, but, in practice, one
must also take into consideration the time required for table
lookups. When the size of the fast main memory is smaller
than the space required to hold the complete set of pre-
computation tables, the approach of ThRb would call for fre-
quent non-sequential accesses to the disk, which is something
many implementers would try to avoid.

Online Phase of PrRb: One wishes to tweak the rainbow
tradeoff algorithm so that the same pre-computation table
information need not be loaded multiple times from slow
storage to fast memory. Switching the order of the first two
lines in the online phase of ThRb, i.e., the two for statements,
is a reasonable solution when each pre-computation table fits
within the main memory, and this is often referred to as the
sequential processing of the pre-computation tables. However,
since we are mainly interested in the situation where even the

size of each pre-computation table is much larger than the
available main memory, further measures are necessary.

To execute the online phase of PrRb, one first decides
on a splitting of each pre-computation table into s sub-
tables. The integer s is chosen so that each sub-table, which
contains m

s entries, fits comfortably within the available main
memory. In processing each pre-computation table, the t online
chains for that table are first generated. Then, each sub-table
is loaded into fast memory, in turn, and all searches and
resolving of false alarms associated with the loaded sub-table
are performed before the next sub-table is loaded.

Explicitly, the following steps are taken.

Algorithm 2 Online Phase of PrRb
1: for i = 1 to ` do
2: for k = 1 to t do
3: generate length-k online chain for i-th table
4: record the online chain ending point
5: end for
6: for j = 1 to s do
7: load j-th sub-table of i-th table
8: for k = 1 to t do
9: retrieve recorded ending point of length-k online

chain
10: search for matching ending point in loaded sub-

table
11: if match is found then
12: regenerate pre-computation chain
13: end if
14: if answer is found then
15: exit from all loops and terminate
16: end if
17: end for
18: end for
19: discard recorded online chain ending points
20: end for

Note that the temporary recording of the online chain
ending points must be done to fast main memory. Since any
reasonable rainbow parameters would satisfy t �

√
N, this

will not cause any practical difficulties, when N is of size for
which the pre-computation can be handled.

Appropriateness of studying PrRb: Let us briefly explain
that the PrRb algorithm is the appropriate online phase
algorithm to study in view of practical usefulness. No two
implementations of the rainbow tradeoff can be exactly the
same, but the above PrRb algorithm is roughly what is
implemented by both RainbowCrack Project [9] and the online
phase program rcracki_mt [10] that is to be used with the
tables freely available from Free Rainbow Tables [4]. Hence
PrRb is indeed widely used in practice.

The online phase algorithm used by ophcrack [6] is dif-
ferent. We cannot be sure, but they seem to be processing
the pre-computation tables in parallel, following the ThRb
algorithm. Unless the combined size of the tables is smaller
than the main memory size, tables are not loaded into memory,
and searches are made directly on the disk with the help of
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index files loaded in main memory. Even though they use some
interesting techniques, such as the separate storing of starting
and ending points, frequent searches to the disk can only leave
the CPU idle, and is likely to result in inefficient use of system
resources.

The ThRb algorithm is more efficient than the PrRb algo-
rithm, when the combined size of the pre-computation tables is
small, so that the RAM model is applicable. We acknowledge
that, when the search space is immensely large, there is
possibility for the direct disk search approach, combined with
a more sophisticated hash table structure, to be reasonable.
However, for large search space sizes that can be processed
today by commercial entities or through distributed computing
on volunteered CPU cycles, the PrRb approach seems to be
more plausible.

Cryptohaze [2], the remaining major provider of pre-
computed rainbow tables, only distributes a GPU implemen-
tation of the online phase. In fact, both rcracki_mt and
the online phase program of RainbowCrack Project contain
supports for GPU use. However, characteristics of compu-
tations and memory accesses done on a GPU platform are
quite different from those associated with a single core or a
small number of cores, and the rainbow tradeoff executed on
these GPU platforms require a completely separate analysis.
Analysis of the rainbow tradeoff specific to the GPU platform
is clearly an interesting subject of study, and the current article
should be a good starting point for such an attempt.

IV. ANALYSIS IN THE EXTERNAL MEMORY MODEL

In this section, we analyze the performance of PrRb, the
rainbow tradeoff algorithm that is used in practice. The exact
details of the algorithm were explained in Section III.

Our goal is to minimize the expected online wall-clock time
for solving an inversion problem. In dealing with the rainbow
tradeoff algorithm in the external memory model, there are
two major components that constitute the online time. These
are the time required for computations of the one-way function
and the time required to load pre-computation table from slow
disk storage to fast main memory. There are other smaller
issues, such as the time taken to perform table lookups within
data that is already residing in fast memory, but these should
be small enough to be ignored. To achieve our goal, we will
need to obtain the expected online computational complexity
and the amount of pre-computation table that is expected to
be loaded into main memory during the online phase.

During our analysis we will frequently write very accurate
approximations as equalities. The two most common such
approximations are applications of

(
1 − 1

a

)b
= e−

b
a and

definite integral expressions for large summations.
Recall that disk reads are usually performed in units of

blocks. In the remainder of this article, we assume each block
contains β pre-computation table entries.

For the sake of clarity, the notation used for the tradeoff
parameters are summarized in Table I.

Some Probabilities of Failure: We start by writing down
a few probabilities of failure at various stages of the online
phase. It is quite straightforward to argue as in [13], [14], [35]

TABLE I
NOTATION FOR ALGORITHM PARAMETERS.

Symbol Meaning
N size of search space
m number of chains per table
t length of chains
` number of tables
s number of sub-tables per table

that the online processing of a single perfect rainbow table,
constructed with parameters m and t, will fail to return the
correct inversion answer with probability(

1− m

N

)t
= e−

mt
N = e−c̄, (3)

and this implies that the probability for all pre-computation
tables before the i-th one not to contain the inversion answer
is {(

1− m

N

)t}i−1

= e−(i−1)c̄. (4)

A trivial corollary would be the probability of success [35]

R̄ps = 1− e−c̄`, (5)

for the full online phase. Similarly, the probability for the
correct inversion answer not to be found in the first j − 1
sub-tables of a pre-computation table is(

1− (j − 1)m

sN

)t
= e−

j−1
s c̄, (6)

and the similar probability of failure for the first j − 1 sub-
tables and the first k − 1 columns of the j-th sub-table that
are closest to the ending column in a pre-computation table is(

1− jm

sN

)k−1(
1− (j − 1)m

sN

)t−k+1

= e−
j
s
k−1
t c̄e−

j−1
s

t−k+1
t c̄ = e−

k−1
t

c̄
s e−

j−1
s c̄.

(7)

The probabilities stated above are at the core of all proofs
for the claims to be given below.

Supporting Claims: Our first statement presents the average
usage of the pre-computed data.

Proposition 1. During the online phase of the perfect rainbow
tradeoff, one can expect

L =
1− e−c̄`

1− e− c̄
s

m

sβ

blocks of pre-computation table data to be loaded into main
memory and searched for collisions with the online chains.
When s is sufficiently large,

L =
1− e−c̄`

c̄

m

β

is a good approximation.

Proof: The j-th sub-table of the i-th pre-computation
table, containing m

s entries or m
sβ blocks, is loaded into main

memory if and only if all previous i−1 pre-computation tables
and the previous j − 1 sub-tables of the i-th pre-computation
table did not return the correct inversion answer. Referring
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to (4) and (6), the number of loaded blocks may be counted
as ∑̀

i=1

s∑
j=1

e−(i−1)c̄ e−
j−1
s c̄ m

sβ
=

1− e−c̄`

1− e− c̄
s

m

sβ
.

The second claim is the s→∞ limit of the first claim. Note
that 1

1−e−
c̄
s

c̄
s = 1 + 1

2
c̄
s +O(

(
c̄
s

)2
), so that this approximation

is quite accurate for even moderately large s.
Our next goal is to find the computational complexity of the

online phase. This is broken into to the online chain generation
part and the false alarm resolving part.

Lemma 2. The generation of the online chains is expected to
require

1− e−c̄`

1− e−c̄

t2

2

iterations of the one-way function.

Proof: The batch of t online chains for the i-th pre-
computation table, which requires approximately t2

2 one-way
function iterations to create, will be generated if and only if
all previous i − 1 pre-computation tables did not contain the
correction inversion answer. Referring to (4), the number of
one-way function iterations associated with the generation of
online chains can be written as

∑`
i=1 e

−(i−1)c̄ × t2

2 , which is
what is claimed.

The remaining online computational complexity associated
with false alarm resolving may be treated similarly, except that
the calculations are slightly more complicated.

Lemma 3. The resolving of false alarms is expected to require

1− e−c̄`

1− e− c̄
s


2
(

(3s− 4)− (s− 2)
c̄

s

)
−
(

2(3s− 4) + (4s+ c̄− 4)
c̄

s

)
e−

c̄
s


(s
c̄

)2 t2

4

iterations of the one-way function. When s is sufficiently large(
1− e−c̄`

)(1

6
− c̄

48

)
t2

is a good approximation.

Proof: According to Proposition 4 of [24], the probability
for an online chain of length k to merge into a perfect rainbow
matrix consisting of m ending points is m(k+1)

N

(
1−mk

4N

)
. The

probability for an online chain to merge into any sub-table of
m
s chains would be 1

s of this. Now, referring to (4) and (7),
the work expected from resolving alarms may be written as

∑̀
i=1

s∑
j=1

t∑
k=1

(t− k + 1)× 1

s

m(k + 1)

N

(
1− mk

4N

)
× e−(i−1)c̄e−

k−1
t

c̄
s e−

j−1
s c̄.

After the i and j summations are separated, we have

1− e−c̄`

1− e−c̄

1− e−c̄

1− e− c̄
s

×
t∑

k=1

(t− k + 1)× 1

s

m(k + 1)

N

(
1− mk

4N

)
× e−

k−1
t

c̄
s .

The remaining summation may be approximated by a definite
integral and the above becomes

1− e−c̄`

1− e− c̄
s

c̄

s
t2
∫ 1

0

(1− x)x
(

1− c̄

4
x
)
e−

c̄
sx dx.

What is stated is the result of explicitly calculating this definite
integral.

The second statement follows from an easy verification of
1

1−e−
c̄
s

{
. . .
}(

s
c̄

)2 1
4 = 1

6 −
c̄

48 + c̄
480

c̄
s + O(

(
c̄
s

)2
). Here, the

constant hidden behind the big-O notation does depends on c̄,
but does not depend on s. This also indicates the accuracy of
the approximation.

The computational complexity of the online phase is now a
direct consequence of the previous two lemmas.

Proposition 4. The online phase of the perfect rainbow
tradeoff is expected to require

F =
1− e−c̄`

1− e− c̄
s

t2

×



1

2

1− e− c̄
s

1− e−c̄
+

1

4

(s
c̄

)2

×


2
(

(3s− 4)− (s− 2)
c̄

s

)
−
(

2(3s− 4) + (4s+ c̄− 4)
c̄

s

)
e−

c̄
s




iterations of the one-way function. This includes both the
cost of generating the online chains and the cost of resolving
alarms. When s is sufficiently large,

F =
(
1− e−c̄`

)( 1

2(1− e−c̄)
+

1

6
− c̄

48

)
t2

is a good approximation.

We have thus acquired complete knowledge of both the
computational complexity and the pre-computation table load-
ing behavior of the rainbow tradeoff algorithm.

Main Results: The following statement is a direct conse-
quence of Proposition 1 and Proposition 4.

Proposition 5. The expected number of blocks containing pre-
computation table data loaded into main memory L and the
expected number of one-way function iterations F for the
perfect rainbow tradeoff used in practice satisfy the tradeoff
curve

L2F = R̄tcN
2,

where the tradeoff coefficient is

R̄tc =
(1− e−c̄`

1− e− c̄
s

)3 1

β2

×



1

2

1− e− c̄
s

1− e−c̄

( c̄
s

)2

+
1

4


2
(

(3s− 4)− (s− 2)
c̄

s

)
−
(

2(3s− 4) + (4s+ c̄− 4)
c̄

s

)
e−

c̄
s




.

When s is sufficiently large

R̄tc =
(
1− e−c̄`

)3 1

β2

( 1

2(1− e−c̄)
+

1

6
− c̄

48

)
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is a good approximation of the tradeoff coefficient.

The original rainbow tradeoff algorithm ThRb allows trade-
offs of the form M2F ≈ N2 to be performed, where M is the
size of the required long-term storage (M = m`) and F is
the number of one-way function iterations expected during its
online phase. In fact, it can be shown that such a tradeoff
curve is valid even for the rainbow tradeoff variant that is
being considered here. However, since we are working in the
external memory model, the long term storage size is no longer
of interest.

Assuming the use of a modern multi-core CPU, it should
be possible to tweak the PrRb algorithm, so that the sub-
table loading and the one-way function computation operations
are performed, at least in part, simultaneously. However, the
corresponding programming is quite nontrivial, and the current
implementations [4], [9] do not incorporate such an approach.
Hence, the average wall-clock time for the online phase may
be expressed as

T = τLL+ τFF, (8)

where τL and τF denote the average wall-clock time required
to load a single block of pre-computation table data into main
memory and the average wall-clock time taken by a single
one-way function application, respectively.

Our next goal is to minimize the expected online time (8),
by locating the appropriate balance between the values L and
F , which must adhere to the tradeoff curve of Proposition 5.

Theorem 6. Let the success rate requirement R̄ps and the pre-
computation table count ` be such that c̄ = − ln(1−R̄ps)

` < 2.
Let s and β be given and set R̄tc to the tradeoff coefficient
computed through Proposition 5, using the given `, s, and β
values and the c̄ value we have just defined.

The online wall-clock time of the perfect rainbow tradeoff
that achieves success rate R̄ps, uses ` pre-computation tables,
and divides each table into s sub-tables can be minimized to

T =
3

2
2
3

τ
2
3

L τ
1
3

F R̄
1
3
tcN

2
3 ,

with

L =
(2τF
τL

) 1
3

R̄
1
3
tcN

2
3 and F =

( τL
2τF

) 2
3

R̄
1
3
tcN

2
3 .

The above remains true when s is sufficiently large, as long
as the tradeoff coefficient R̄tc of Proposition 5 corresponding
to such a case is used.

Proof: Let us assume a fixed s and a fixed requirement
R̄ps on the success rate of inversion, throughout this proof.
When (5) is rewritten in the form c̄ = − ln(1−R̄ps)

` , it becomes
clear that, if the given success rate is to be met, the matrix
stopping constant c̄ that must be used is completely determined
by the number of tables ` one chooses to use. Hence, under the
fixed s and R̄ps, the choice of ` fully determines the tradeoff
coefficient R̄tc, given by Proposition 5.

It is now straightforward to minimize the online time,
separately for each choice of `, under the restriction placed by
the tradeoff curve of Proposition 5. It suffices to substitutes

F = R̄tcN
2

L2 into (8), the expression for online time, and
minimize the resulting equation as a function of L.

Computing the Optimal Parameter Set: Given L and F
satisfying the tradeoff curve L2F = R̄tcN

2, together with
the corresponding `, c̄, s and β, the explicit parameters
that achieve these average behavior can be calculated from
Proposition 1 and Proposition 4. In fact, recalling the definition
of the matrix stopping constant, we can even write

m =
1− e− c̄

s

1− e−c̄`
sβL and t =

c̄ N

m
. (9)

When a sufficiently large s is assumed, the algorithm param-
eters can be computed directly from c̄ through the formulas

m =
(βτF
τL

) 1
3
( 1

1− e−c̄
+

1

3
− c̄

24

) 1
3

c̄ N
2
3 , (10)

t =
( τL
βτF

) 1
3
( 1

1− e−c̄
+

1

3
− c̄

24

)− 1
3

N
1
3 . (11)

Thus, Theorem 6 allows us to obtain the parameters that
minimize the online time, for each choice of s and `. It now
remains to discuss the optimal choice of s and `. A fixed
requirement on the success rate R̄ps is assumed throughout
the discussion below.

Recall that each choice of ` completely determines c̄. Hence,
the tradeoff coefficient R̄tc of Proposition 5 can be understood
as a function of the single variable s, for each fixed `, and
one can check through a quick 3D plot that R̄tc is a decreasing
function of s, for each fixed c̄. Since the online time T is a
constant multiple of R̄

1
3
tc , using a larger s is always better.

Note that the proofs of our claims show that when any
specific-s formula is approximated by a large-s formula, one
will experience an error rate of roughly O

(
1
s

)
-order. This

implies that taking s = 100 will be sufficient to make any
differences unnoticeable. On the other hand, this also shows
that even if s is increased very far beyond, say, s = 100, the
additional reduction in online time to be experienced will be
very small.

We can even provide a heuristic argument to advocate
the use of small sub-tables. The sub-table that was loaded
just before the online phase returns the correct answer and
terminates would not have been used as fully as the previous
sub-tables. That is, if each sub-table size is very large, much
of the data contained in the final sub-table to be processed
would have been loaded into main memory in vain. Hence, it
is advisable to increase s and reduce the size of each sub-table.

In practice, making the sub-tables too small could bring
about negative effects. Since disk read operations are ineffi-
cient when done in sizes that are too small, one should not
take the extreme approach of setting s = m and treat each
table entry as a separate sub-table. One should choose the sub-
table size to be sufficiently large, so that the average speed of
the segmented reading is sufficiently close to that expected
of reading a very large file. However, considering the fact
that filesystem block sizes are in the few KBs range, this
minimum bound condition should never interfere with making
s sufficiently large.

The division of a pre-computation table into very small sub-
tables can also have the negative effect of segmenting binary
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TABLE II
PARTIAL INFORMATION ON THE OPTIMAL PARAMETERS FOR THE PERFECT
RAINBOW TRADEOFF USED IN PRACTICE. USE OF A LARGE s IS ASSUMED.

R̄ps ` c̄ β2R̄tc R̄pc

70% 1 1.20397 0.293563 3.02495
80% 1 1.60944 0.388166 8.24165

86.4% 1 1.99510 0.453935 814.392
90% 2 1.15129 0.637087 5.42610
95% 2 1.49787 0.668294 11.9320

98.1% 2 1.98166 0.665877 432.161
99% 3 1.53506 0.749060 19.8096

99.5% 3 1.76611 0.722067 45.3052
99.7% 3 1.93638 0.704215 182.623
99.9% 4 1.72694 0.736620 50.5949

searches and thus increasing the number of memory lookups.
However, searches within data that already resides in main
memory should take very little time and this increase should
be ignorable. Furthermore, since the whole pre-computation
table is sorted before it is divided into sub-tables, the extra
memory lookups can be removed by sorting the t online chain
ending points and searching for the online ending point only
in the appropriate sub-table.

Now that the use of an appropriately large s is justified, we
can choose to work with the tradeoff coefficient

R̄tc =
R̄3

ps

β2

( 1

2(1− e−c̄)
+

1

6
− c̄

48

)
(12)

that does not involve s. It is easy to check that this is a
strictly decreasing function c̄ for a fixed β. Hence, to minimize
the online time T , the largest possible c̄ = − ln(1−R̄ps)

` , or,
equivalently, the smallest possible `, must be used, except that
the condition c̄ < 2 must always be adhered to [13], [14],
[24].

In summary, the online wall-clock time of the perfect
rainbow tradeoff that achieves success rate R̄ps can be min-
imized by using the smallest positive integer ` that satisfies
c̄ = − ln(1−R̄ps)

` < 2, together with the corresponding m and t
calculated through (10) and (11). The s should be chosen to be
sufficiently large, but not so large that it decreases the speed
of data transfer between the disk and main memory.

We have thus obtained explicit procedures and formulas for
obtaining rainbow tradeoff parameters that are optimal, given
any disk read speed, one-way function computation speed, and
success rate requirement. Since the optimal table count ` and
the matrix stopping constant c̄ depends only on the success
rate and not on the implementation platform, we have listed
them in Table II for some success rates of interest.

The optimal values for the parameters m and t, which are
not listed in the table, depend on the system constants τL
and τF , and hence must be newly computed for each system
through (10) and (11). The final column of the table contains
the pre-computation coefficient, computed through the formula

R̄pc =
2c̄`

2− c̄
, (13)

found in [30]. This is the number of one-way function it-
erations, in multiples of N, that are required to produce the
pre-computation table achieving the given success rate.

Miscellaneous Remarks: It should be understood that the
optimality considered in this paper refers to the minimization
of the online wall-clock time. In certain cases, the use of
optimal parameters could require the cost of pre-computation
to become prohibitively large. For example, it is possible
to achieve the success rate of 86.4% with a single pre-
computation table, but this requires c̄ = 1.9951 to be used and
813.39N iterations of the one-way function to be computed
during the pre-computation phase. In such a case, one may
choose to work with a slightly larger table count `, which
would result in a slightly less efficient online phase.

Another point to note is that, by choosing to work in the
external memory model, we have completely ignored the size
of the required long-term storage. This is quite reasonable even
in practice, as the low costs of hard disks and external storage
units make the storage size requirement of much less practical
importance than the online time. Nevertheless, since it can be
shown that the storage size M and the expected number of
blocks containing pre-computation table data loaded into main
memory L are connected through the relation

L = −
R̄ps

β ln(1− R̄ps)
M, (14)

we know that the minimization of (8), the online time, will
automatically hold back the storage size M to within a man-
ageable range, for any reasonable success rate requirement.

V. OPTIMAL PARAMETER EXAMPLES

In this section, we provide two examples of optimized
parameter sets. We use explicit realistic numbers and work
with both a very large search space and a very small search
space.

Constants: Let us first present the system constants. Our
online machine consisted of an Intel i5 2.53GHz quad-core
CPU, a 4GiB DDR3 main memory, and a 500GB 7200 RPM
SATA hard disk drive. To work with realistic speed constants,
we downloaded and made measurements using the online
phase program rcracki_mt [10] and a sub-table from [4].
The 448.70MiB size sub-table, consisting of 226 entries, had
been created with the cryptographic hash function MD5 as
the one-way function. Each sub-table entry takes 7 bytes of
disk storage, with the decimal part of 448.70×220

226 = 7.0110
coming from the index structure stored within the sub-table
file. The block size of our filesystem is 4KiB, so that each
block contains β = 4×210

7.0110 = 584.23 table entries.
Using rcracki_mt and averaging over 5 × 1010 MD5

applications, we found that our machine required τF =
9.8195 × 10−8 seconds per one-way function iteration. The
speed of loading the sub-table from the disk to main memory,
averaged over 180 trials, was τL = 8.5368 × 10−5 seconds
per loading of pre-computation table data of a block size.
We clarify that, to expedite table searches, rcracki_mt
expands each 7-byte pre-computation table entry into 16 bytes
as it loads the table into main memory and that the stated
measurement includes the time taken for this process.

Large Search Space Example: We took the complete 95
characters on the standard keyboard as our character set and
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considered all passwords that are at most eight characters in
length. This was taken to be our search space, which is of size
N =

∑8
i=1 95i = 6.7048× 1015 = 252.574.

Our next steps concern Proposition 5 and Theorem 6. To
obtain the success rate of R̄ps = 99%, one must use ` =
3 pre-computation tables, together with parameters m and t
satisfying

mt

N
= c̄ = −

ln(1− R̄ps)

`
= 1.5351. (15)

The success rate of 99% cannot be reached with less than 3
pre-computation tables, so that ` = 3 is the optimal number of
tables to use. After calculating the tradeoff coefficient R̄tc =
0.74906 from the large-s formula of Proposition 5, we find
that the average wall-clock time of the online phase can be
minimized to

T = 7811 sec = 2 hr 10 min 11 sec, (16)

with the sub-table loadings and one-way function computa-
tions taking

τLL = 5207 sec and τFF = 2604 sec, (17)

respectively.
The tradeoff parameters need to be set to m = 5.5257 ×

1010 = 235.685, t = 1.8626 × 105 = 217.507, and ` = 3,
for the stated optimal online performance and the success rate
R̄ps = 99% to be obtained. We assume 2GiBs of our system’s
4GiBs of main memory are available for table loading. At
16 bytes per table entry, this amounts to 2×230

16 = 227 table
entries, so that each pre-computation table must be divided
into at least 5.5257×1010

227 ≈ 411.70 sub-tables. This is already a
large number, so that the effect of increasing s any further will
be negligible in reducing the online time, and we somewhat
arbitrarily choose to take s = 450.

The s to be used is sufficiently large, but to verify that
our approximations did not introduce unreasonable error, let
us substitute the parameters m, t, `, and s into the formula
of Proposition 5 that contain the parameter s and into the
formulas of Theorem 6. We find that T(s=450) = 7820 sec,
τLL(s=450) = 5213 sec, and τFF(s=450) = 2607 sec are quite
close to the previous large-s approximations given by (16)
and (17).

Small Search Space Example: Let us next consider the
example of a very small search space. We take the upper
and lower case alphabets as our character set and consider
all passwords of length 7, so that our search space is of size
N = 527 = 239.903.

To reach the success rate of R̄ps = 99.9%, one must use
` = 4 pre-computation tables with c̄ = 1.7269. The large-s
version of the tradeoff coefficient is R̄tc = 0.73662, and further
calculations show that the optimal performance of

T = 22.252 sec, τLL = 14.835 sec, τFF = 7.4174 sec (18)

can be achieved with parameters m = 1.7550 × 108, t =
1.0116× 104, ` = 4, and a large s.

At 16 bytes per table entry, each table requires 16m =
2.8080 × 109 bytes, to be loaded into main memory. A
large portion of this could fit within our system’s 4GiB main

memory, but certainly not all ` = 4 pre-computation tables
can be loaded into main memory simultaneously, so that we
cannot run the ThRb algorithm on these pre-computation
tables. Choosing to use s = 64, which is large enough to make
our large-s computations sufficiently accurate, we can divide
each pre-computation table into sub-tables of 41.843MiB size,
which is more than large enough to prevent visible degradation
of disk read speed.

ThRb versus PrRb : Since the ThRb algorithm was men-
tioned during our discussion of the small search space exam-
ple, let us present a brief comparison under the setting of the
example. Referring to Theorem 17 of [30], we can state that
the ThRb allows tradeoffs of the form

M2F = 8.3915N2, (19)

where M refers to the number of table entries. The tradeoff
coefficient 8.3915 has been calculated from the values ` = 4
and c̄ = 1.7269, which are optimal for even the ThRb case,
under the R̄ps = 99.9% requirement.

At 16 bytes per table entry, at most M = 3×230

16 table entries
can be loaded into our system’s main memory, assuming
3GiBs of the 4GiBs were freely available. Thus, at least
F = 8.3915N2

M2 = 2.1882 × 108 iterations of the one-way
function, which translates to T = τFF = 37.519 seconds,
are required during the online phase of ThRb, assuming
the pre-computation tables are pre-loaded into main memory.
This is worse than the PrRb performance given by (18), but
still somewhat comparable. In fact, if we assume that each
table entry taking 7 bytes of disk space is expanded more
carefully into only 8 bytes, rather than 16 bytes, of main
memory space, with no changes to τL or τF , we arrive at the
opposite conclusion, with PrRb taking 22.252 seconds and
ThRb taking 9.3796 seconds.

When dealing with small search spaces, neither the ThRb
algorithm nor the PrRb algorithm is at a clear advantage over
the other. The choice of which to use must be made in a case
by case manner based on many factors, such as the speed
of one-way function computation, the speed of data transfer
between disk and main memory, the size of main memory, and
the required success rate. However, when large search spaces
are under consideration, the use of ThRb algorithm can no
longer be practical. Furthermore, even if the ThRb algorithm
were to be executed, with frequent accesses to slow disk, the
currently available analyses of ThRb would have very limited
success in predicting its online phase running time.

VI. EXPERIMENTAL RESULTS

In this section, we show the results of our experiments
done with the PrRb algorithm. To be as objective as possible,
we downloaded and used the executables and pre-computed
rainbow tables from Free Rainbow Tables [4], and used them
in verifying the correctness of our analyses.

Let us first present the details of the tables used in our
experiment. Cryptographic hash function MD5 was used as
the one-way function. The tables had been created to recover
passwords that are combinations of the 95 characters on the
standard keyboard with lengths at most 7, so that the search
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space size is N =
∑7
i=1 95i = 7.0577 × 1013 = 246.004.

The tables had been created and divided into sub-tables2 using
parameters

m = 45× 226, t = 40000, ` = 4, and s = 45, (20)

which corresponds to R̄ps = 99.89% and c̄ = 1.7116.
Our online system of speed characteristics τF = 9.8195 ×

10−8 and τL = 8.5368 × 10−5 was explained at the start
of Section V. Using the downloaded executable, we ran the
online phases on 200 randomly generated password hashes.
Each run of the program displayed information labeled as
“total disk access time”, “total cryptanalysis time” (false
alarm treatment), and “total pre-calculation time” (online chain
generation). We took the sum of the latter two as the time spent
on one-way function computations. The average times for the
200 experiments, during which 99.5% of the hash values were
successfully inverted, were

disk: 281.73 sec and comp: 118.09 sec, (21)

and this amounts to total time T = 399.82 sec.
These are in good agreement with the values

τLL = 262.47 sec, and τFF = 116.35 sec, (22)

predicted by the s = 45 cases of Proposition 1 and Propo-
sition 4. The small difference between theory (22) and prac-
tice (21) can be explained by the fact that we have ignored
the time taken for table searches. However, the difference is
rather small, and the experiment confirms that there is no large
overhead that has not been taken into account by our analysis.

Let us briefly discuss the optimal parameters. For success
rate R̄ps = 99.89%, the use of ` = 4 is optimal, and we can
calculate from (10) and (11) that the other parameters need to
be set to m = 2919352791 and t = 41379. Incidentally, these
are quite close to the parameters (20), used by our test table
that was downloaded from Free Rainbow Tables.

Note that (10) and (11) imply that, for any fixed requirement
on the success rate, optimal parameters m and t depend only
on the ratio τL

βτF
. Hence, anyone who wishes to create rainbow

tables to be used by others, should first investigate into the
approximate range of this ratio measured on the targeted users’
online phase systems.

VII. CONCLUSION

The performance of the rainbow tradeoff variant that is
widely used in practice, as opposed to the well-studied original
version, was analyzed in this paper. This was done in the
external memory model, so that issues of practical relevance
are brought into the discussion. The analysis focused on the
wall-clock time for the whole password recovery process,
rather than on the disk storage size and one-way function
iteration counts, which were the main subjects of previous
theoretical treatments of the time memory tradeoff technique.

As a result, we were able to obtain explicit formulas for
calculating tradeoff parameters that are optimal in the sense
that the wall-clock time is minimized. This will be of great

2The true m = 45.589 × 226 was slightly larger, but we discarded the
final smaller 46-th sub-table from each of the ` = 4 tables.

practical importance to implementers of the rainbow tradeoff
that have so far relied on experience and repeated attempts in
selecting the parameters that are appropriate for their intended
environments. In the process, our analysis brought forward
a new type of tradeoff curve, which describes the balance
between the expected amount of pre-computation table data
that are loaded into main memory and the expected amount
of one-way function computations.

A recent result [27] indicated that the fuzzy rainbow
tradeoff [15], [16] could be advantageous over the rainbow
tradeoff. Since this was discussed in the traditional crypto-
graphic complexity setting of the RAM model, it would be
interesting to see if their conclusion also holds in the external
memory model. More generally, it would be interesting to see
a comparison of all the major tradeoff algorithms, including
the distinguished point method and the rainbow tradeoff, in
the external memory model.

APPENDIX

NON-PERFECT RAINBOW TRADEOFF

Even though the non-perfect table version of the rainbow
tradeoff is receiving less attention today, we treat them in this
section for completeness.

Standard notation for parameters, such as m, t, and `, will
continue to be used, but the matrix stopping constant will
be given the new notation c = mt

N . Before beginning the
analysis, we make one simplification to the PrRb algorithm.
Note that the heuristic argument we gave in Section IV as
to why a larger s is always advisable, at least in theory,
applies equally well to the non-perfect tables. Hence, we
restrict our non-perfect PrRb algorithm to use s = m

β ,
which is equivalent to treating each block size amount of pre-
computation table entries as a separate sub-table. Analyzing
this restricted version is equivalent to analyzing PrRb under
the assumption that s is sufficiently large.

It is known [24], [25], [35] that the online processing of
a single non-perfect rainbow table, constructed with parame-
ters m and t, will fail to return the correct inversion answer
with probability

(
2

2+c

)2
, and this implies that the probability

for all pre-computation tables processed before the i-th table
not to contain the correct inversion answer is( 2

2 + c

)2(i−1)

. (23)

A trivial corollary would be the probability of success [25]

Rps = 1−
( 2

2 + c

)2`

, (24)

for the full online phase of the non-perfect table rainbow
tradeoff.

Since the first j−1 sub-tables (blocks) in a pre-computation
matrix may be viewed as a pre-computation matrix constructed
from β(j − 1) starting points, the probability for the correct
inversion answer not to be found in the first β(j − 1) chains
of a pre-computation matrix is( 2

2 + β(j−1)t
N

)2

=
( 2

2 + β(j−1)
m c

)2

. (25)
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The non-perfect analogue of Proposition 1 is the following.

Proposition 7. During the online phase of the non-perfect
rainbow tradeoff, one can expect L =

1−( 2
2+c )2`

1−( 2
2+c )2

2
2+c

m
β blocks

of pre-computation table data to be loaded into main memory
and checked for collisions with the online chains.

Proof: A combination of (23) and (25) implies that∑`
i=1

∑m
β

j=1

(
2

2+c

)2(i−1)
(

2

2+
β(j−1)
m c

)2

is the number of sub-
tables to be processed during the online phase. This can be
approximated by

1−( 2
2+c )2`

1−( 2
2+c )2

m
β

∫ 1

0

(
2

2+cx

)2
dx.

The non-perfect case analogues of Lemma 2 and Lemma 3
are as follows.

Lemma 8. The generation of the online chains for the non-
perfect rainbow tradeoff is expected to require

1−( 2
2+c )2`

1−( 2
2+c )2

t2

2

iterations of the one-way function.

Proof: The batch of t online chains corresponding to
the i-th pre-computation table is generated if and only if all
previously processed pre-computation tables did not contain
the correct answer. In view of (23), one can expect to gen-
erate online chains corresponding to

∑`
i=1

(
2

2+c

)2(i−1)
pre-

computation tables.

Lemma 9. During the online phase of the non-perfect rainbow
tradeoff, the resolving of false alarms is expected to require
1−( 2

2+c )2`

1−( 2
2+c )2

c
3(2+c) t

2 iterations of the one-way function.

Proof: According to Lemma 6 of [24], the probabil-
ity for an online chain of length k to merge into any
single rainbow chain is k+1

N . Referring to (23) and (25),
the work expected from resolving alarms may be written

as
∑`
i=1

∑m
j=1

∑t
k=1(t − k + 1)k+1

N

(
2

2+c

)2(i−1)
(

2
2+ j−1

m c

)2

.
Recalling a similar computation within the proof of Proposi-
tion 7, we can approximate the above with

1−( 2
2+c )2`

1−( 2
2+c )2

2
2+cm×

t3

N

∫ 1

0
(1−x)x dx, which is what is claimed by this lemma.

The computational complexity and the tradeoff curve in the
external memory model for the non-perfect rainbow tradeoff
that uses a large number of sub-tables are as follows.

Proposition 10. The online phase of the non-perfect rainbow
tradeoff is expected to require F =

1−( 2
2+c )2`

1−( 2
2+c )2

{
1
2 + c

3(2+c)

}
t2

iterations of the one-way function. This includes both the
cost of generating the online chains and the cost of resolving
alarms.

Proposition 11. The expected number of blocks containing
pre-computation table data loaded into main memory L and
the expected number of one-way function iterations F for
the non-perfect rainbow tradeoff satisfy the tradeoff curve
L2F = RtcN

2, where the tradeoff coefficient is Rtc =

1
β2

{
1−
(

2
2+c

)2`

1−
(

2
2+c

)2

}3 (
2c

2+c

)2{ 1
2 + c

3(2+c)

}
.

To discuss the optimal parameters for the non-perfect rain-
bow tradeoff, we first define the online wall-clock time of
the algorithm, exactly as before, to (8). The constants τL

TABLE III
OPTIMAL PARAMETERS FOR THE NON-PERFECT RAINBOW TRADEOFF

USED IN PRACTICE.

Rps ` c β2Rtc Rpc

70% 1 1.65148 0.532464 1.65148
80% 2 0.99070 0.812127 1.98140
90% 2 1.55656 1.128445 3.11312
95% 3 1.29510 1.326837 3.88529
99% 4 1.55656 1.501960 6.22624

99.5% 5 1.39729 1.522133 6.98646
99.9% 6 1.55656 1.543296 9.33935

and τF describing the times taken for data transfer from disk to
main memory and the one-way function computation are also
defined as was done previously. Our main claim concerning
the optimality of the non-perfect rainbow tradeoff is essentially
identical to the perfect case that was given by Theorem 6.

Theorem 12. Let us be given any success rate requirement Rps
and any pre-computation table count `. Calculate the matrix
stopping constant c = 2{(1−Rps)

− 1
2` − 1} and let Rtc be the

tradeoff coefficient calculated through Proposition 11.
The online wall-clock time of the non-perfect rainbow

tradeoff that achieves success rate Rps and uses ` pre-
computation tables can be minimized to T = 3

2
2
3
τ

2
3

L τ
1
3

F R
1
3
tcN

2
3

with L =
(

2τF
τL

) 1
3R

1
3
tcN

2
3 and F =

(
τL
2τF

) 2
3R

1
3
tcN

2
3 .

The proof of this theorem is almost identical to that of
Theorem 6, except that the relation

c = 2
{

(1− Rps)
− 1

2` − 1
}

(26)

is derived from (24). The use of ` and c satisfying this relation
guarantees that the probability of success will be Rps.

It only remains to find the optimal value of ` to be used
for each probability of success. This part is slightly different
from the perfect table case, as there is no bound on c or a
corresponding natural extremal value for `. However, since
Theorem 12 shows that the minimization of the online time is
equivalent to that of the tradeoff coefficient, the minimization
can easily be done by substituting a few explicit ` values,
together with the corresponding c values given by (26), into
the formula for Rtc given by Proposition 11. Once the optimal
` and the associated c are found, we gain access to the loaded
table entry count L and the computational complexity F .
The explicit parameters m and t to be used may then be
calculated from the L and F values through Proposition 7
and Proposition 10.

Partial information on the optimal parameters for a number
of success rate requirements are listed in Table III, assuming
a large s is used. The final column containing the pre-
computation coefficient has been calculated with Rpc = mt`

N =
c`. Since Theorem 6 and Theorem 12 state the same formula
for the optimal online time, a comparison of the tradeoff
coefficients R̄tc and Rtc from Table II and Table III reveals the
relative performances of the perfect and non-perfect rainbow
tradeoffs. As expected, the perfect table version is superior
to the non-perfect version, regardless of the success rate
requirement. However, it should be kept in mind that the



12 IACR Cryptology ePrint Archive 2013

online time is all we are considering in such a comparison.
For example, comparing the numbers for the 99.9% success
rate from Table II and Table III, one must consider whether
the reduction of the online time in half justifies the five-fold
increase in the pre-computation cost.

This completes our analysis and optimization of the non-
perfect table rainbow tradeoff algorithm that is used in prac-
tice.
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