
Cryptanalysis of the Toorani-Falahati Hill Ciphers ∗

Liam Keliher † Anthony Z. Delaney †

Abstract

In 2009 and 2011, Toorani and Falahati introduced two variants of the classical Hill Cipher,
together with protocols for the exchange of encrypted messages. The designers claim that the
new systems overcome the weaknesses of the original Hill Cipher, and are resistant to any
ciphertext-only, known-plaintext, chosen-plaintext, or chosen-ciphertext attack. However, we
describe a chosen-plaintext attack that easily breaks both Toorani-Falahati Hill Ciphers, and
we present computational results that confirm the effectiveness of our attack.

1 Introduction

The Hill Cipher is a classical symmetric-key cipher that was published by Lester Hill in 1929 [1].
The Hill Cipher represents each plaintext as a vector of integer values, and encrypts this vector using
a single multiplication by a square key matrix. This has the advantage of simplicity, but renders
the cipher vulnerable to a straightforward known-plaintext attack based on linear algebra [2].
Despite this weakness (or perhaps because of it), the Hill Cipher is often described in cryptography
textbooks, where it serves to introduce students to a number of important concepts, including
modular arithmetic, linear algebra, and basic cryptanalysis.

Several researchers have presented variants of the Hill Cipher that attempt to correct its security
flaws; these are based on a variety of techniques. One approach is to add features borrowed from
modern symmetric-key cryptography, such as iteration of a simpler encryption step (or “round”)
that involves matrix multiplication internally. An example is a modified Hill Cipher due to Sastry
et al. [3], which was broken by Keliher [4] using a known/chosen-plaintext attack similar to the
linear algebraic attack on the original Hill Cipher. Another approach is to modify the Hill Cipher so
that the encryption process changes for each plaintext, since the standard known-plaintext attack
exploits the fact that each plaintext is encrypted in an identical fashion. Saeednia [5] derives a
new key matrix for each plaintext by permuting the rows and columns of the key matrix used for
the previous plaintext, but Lin et al. [6] demonstrate weaknesses in this approach. Ismail et al. [7]
employ vector-matrix multiplication to derive a new key matrix for each plaintext, however Li
et al. [8] showed that this cipher can also be broken using a known-plaintext attack.

In 2009 and 2011, Toorani and Falahati introduced two variants of the Hill Cipher, together
with protocols for the exchange of encrypted messages [9, 10]. We refer to these ciphers as Toorani-
Falahati Hill Cipher #1 (2009) and #2 (2011), and we shorten the names to TFHC1 and TFHC2.
Both ciphers use a one-way hash function to modify the encryption process for each plaintext,

∗Copyright IEEE. Presented at IEEE Symposium on Computers and Communications (ISCC 2013).
†AceCrypt Research Group, Department of Mathematics and Computer Science, Mount Allison University,

Sackville, New Brunswick, Canada.

1

and Toorani and Falahati claim that both are secure against ciphertext-only, known-plaintext,
chosen-plaintext, and chosen-ciphertext attacks. However, we describe a chosen-plaintext attack
that easily breaks TFHC1 and TFHC2 by bypassing their main security features, and we present
computational results that confirm the effectiveness of our attack.

Although TFHC1 and TFHC2 have significant differences, our attack works identically for both,
so we focus primarily on TFHC1. The remainder of this paper is organized as follows. In Section 2
we introduce some basic concepts from cryptanalysis. In Section 3 we discuss the classical Hill
Cipher and the Affine Hill Cipher. In Section 4 we give the details of TFHC1. In Section 5
we describe our attack on TFHC1, and in Section 6 we present computational results from the
implementation of our attack. In Section 7 we briefly explain the differences between TFHC1 and
TFHC2, and in Section 8 we conclude the paper.

2 Basic Cryptanalysis Concepts

The primary goal of cryptanalysis applied to a symmetric-key cipher is to gain the ability to decrypt
any ciphertext. Typically this involves learning the secret key, although on occasion an attacker is
able to construct an algorithm that decrypts any ciphertext without determining the key (see [4],
for example).

There are four standard categories of attacks on symmetric-key ciphers, based on the type of
data the attacker is able to obtain/capture:

1. ciphertext-only: attacker can obtain one or more ciphertexts

2. known-plaintext: attacker can obtain one or more plaintexts and the corresponding cipher-
texts

3. chosen-plaintext: attacker can choose one or more plaintexts and obtain the corresponding
ciphertexts

4. chosen-ciphertext: attacker can choose one or more ciphertexts and obtain the correspond-
ing plaintexts

The data complexity of an attack is the number of plaintexts/ciphertexts that must be obtained
in order for the attack to succeed, and the time complexity is the number of operations that must be
performed. (There is no fixed definition of “operation,” but often a natural unit of computational
work, such as a single encryption, is used.)

The simplest attack is exhaustive search of the key space, also known as brute force. This is a
known-plaintext attack in which the attacker first obtains a small number of plaintext-ciphertext
pairs (often 2 or 3 are sufficient), and then systematically tries all possible cipher keys until one
is found that encrypts each plaintext to the corresponding ciphertext. With high probability, a
candidate key that passes this test is the true key. The data complexity of exhaustive search is
small, but the time complexity is approximately equal to the size of the keyspace (the set of all
keys), which is prohibitively large for most modern ciphers.

Brute force is viewed as a “baseline”—that is, an attack is considered to be significant if it has
lower time complexity than brute force (but possibly higher data complexity).

2

3 The Classical Hill Cipher

For the classical Hill Cipher, each plaintext is a row vector X = (x1, x2, . . . , xn) of length n ≥ 2,
where each xi is an integer (mod m), with m ≥ 2 (traditionally m = 26, since there are 26 letters
in the English alphabet). A plaintext X is encrypted to the corresponding ciphertext Y through
multiplication by an n × n invertible key matrix K, that is, Y = XK (mod m). The ciphertext
is decrypted by computing X = YK−1 (mod m). In most situations, the key matrix K is known
only to the sender (Alice) and the receiver (Bob).

Here is the standard known-plaintext attack against the Hill Cipher: If an attacker is able to
learn n or more plaintext-ciphertext pairs such that n of the the plaintexts are linearly independent,
the attacker places the linearly independent plaintexts in the rows of an n×n matrix R, and places
the corresponding ciphertexts in the rows of an n × n matrix S. It follows that RK = S, and
therefore K = R−1S. Since the attacker knows R and S, and can compute R−1 (R is guaranteed
to be invertible because its rows are linearly independent), the attacker can determine the secret
key matrix K, and therefore the cipher is broken.

In the Affine Hill Cipher, Alice and Bob share both a secret matrix K and a secret vector V,
so technically the key is the pair (K,V). A plaintext X is encrypted using Y = XK + V. The
Affine Hill Cipher is also easily broken using a known-plaintext attack [11].

4 Toorani-Falahati Hill Cipher #1 (TFHC1)

One reason the classical Hill Cipher and the Affine Hill Cipher are easily attacked is that exactly
the same encryption process is applied to each plaintext. TFHC1 uses pseudo-random numbers
produced by a one-way hash function, H(), to modify the encryption step for each plaintext. H()
is assumed to be a strong standard hash function such as SHA-1 [12]. In addition, operations in
TFHC1 are performed (mod p), where p is a prime number. Note that several of the ideas used in
TFHC1 are based on the cipher introduced by Lin et al. [6], but Lin et al. make more extensive use
of H() by applying it multiple times in the encryption of each plaintext; this potentially increases
security, but significantly reduces efficiency.

The key for TFHC1 is an invertible n×n matrix K with integer values in the interval [0, p− 1],
i.e., integer values reduced (mod p). We use kij to denote the entry in row i and column j of K, for
1 ≤ i, j ≤ n. In keeping with good practice in cryptography, we adopt Kerkhoffs’ Principle [12],
which states that the security of a cipher should rest entirely in the key, with all other details
assumed to be known. In particular, for TFHC1 we assume the attacker knows n and p.

Suppose Alice has a message M consisting of T plaintexts X1,X2, . . . ,XT that she wants to
send to Bob. In essence, TFHC1 is an Affine Hill Cipher for which Alice derives a new secret
pair (Kt,Vt) for each plaintext Xt (1 ≤ t ≤ T). (In this sense, TFHC1 is behaving like a stream
cipher [12].) Alice computes the corresponding ciphertext Yt using Yt = XtKt + Vt, and sends
Y1,Y2, . . . ,YT to Bob, along with a small amount of information that allows Bob to derive the
identical pairs (Kt,Vt), and thereby recover each plaintext Xt using Xt = (Yt−Vt)K−1

t . We now
give the exact details.

Assume that prior to communicating, Alice and Bob have established the shared key K. Here
are the steps for TFHC1:1

1We break the process into a larger number of steps than in [9].

3

1. Alice chooses a random integer a0 ∈ [1, p−1], and computes a1, a2, . . . , aT , where at = H(at−1)
for t ≥ 1 (recall that H() is the one-way hash function).

2. For 1 ≤ t ≤ T , Alice assigns v0 = at (mod p), unless the resulting value of v0 is 0, in which
case v0 = 1. She then sets Kt = v0K.

3. Alice constructs Vt = (v1, v2, . . . , vn) as follows: For 1 ≤ i ≤ n, she sets ji = (vi−1 mod n)+1
and vi = (kiji +ṽi−1 v0) (mod p), where ṽi−1 = 2dγ/2e+(vi−1 mod 2dγ/2e) and γ = blog2 vi−1c+
1 (b·c is the floor function).2

4. Alice encrypts each Xt using Yt = XtKt + Vt. Let E(M) denote the entire encrypted
message, i.e., E(M) = (Y1,Y2, . . . ,YT).

5. Alice chooses a random integer b ∈ [1, n2], and computes x = db/ne (d·e is the ceiling function)
and y = b− n(x− 1). She then computes r = a0 kxy (mod p).3 (Note that if the elements in
K are enumerated in row-major order from 1 to n2, then b is the index of kxy.)

6. Alice sends (E(M), b, r) to Bob. This is the one-pass protocol in [9].

7. Bob derives x and y from b as in Step 5, and obtains kxy from K. He recovers a0 by computing
r k−1

xy (mod p) = a0 kxy k−1
xy (mod p) = a0.4 Bob can then compute each Kt and Vt in the

same manner as Alice, and recover each plaintext of the original message M using using
Xt = (Yt −Vt)K−1

t .

Our description of TFHC1 differs slightly from that in [9]. In particular, Toorani and Falahati
do not “bundle” together v0 and K to form Kt, but instead define encryption of plaintext Xt as
Yt = v0XtK + Vt. However, this is equivalent to our approach, since v0XtK = Xt(v0K) = XtKt.

Note that a0 is critical to both Alice and Bob, since it is used to derive all the at values, which
in turn are used to compute each Kt and Vt. When Alice multiplies a0 by kxy to obtain r, she is
“masking” the value of a0 before sending it to Bob in order to hide it from an attacker. Clearly it
is important that a0 6= 0 (as specified in Step 1 above), since if a0 = 0, then the value r sent from
Alice to Bob is also equal to 0, and the attacker immediately knows that a0 = 0.

Toorani and Falahati claim that the design of TFHC1 makes it resistant to attack. However,
despite the improvements in TFHC1 over previous attempts to strengthen the Hill Cipher, we are
able to break TFHC1 using a chosen-plaintext attack. We present our cryptanalysis in the next
section.

2In [9], vi is defined by vi = (kiji + ṽi−1 at) (mod p), which is equivalent to the expression used in this paper in
most cases, since in general v0 ≡ at (mod p). The exception is when at ≡ 0 (mod p), and thus v0 = 1, in which
case it is safer to use our expression, because otherwise vi = kiji + 0 = kiji , so if the attacker can learn vi, then the
attacker immediately knows one of the entries in the key matrix K, a situation that should be avoided.
Also note that if vi−1 = 0, then log2 vi−1 is undefined. A potential fix is to assign γ = 0 in this situation, resulting
in ṽi−1 = 1.

3We use variables x and y in Step 5 and Step 7, whereas [9] uses i and j. We made the change in order to avoid
confusion with the variables in Step 3.

4It is important that kxy 6= 0, since otherwise Bob cannot compute its inverse in Step 7. If Alice’s choice of b in
Step 5 yields kxy = 0, she should choose another b for which kxy 6= 0 before proceeding.

4

5 Cryptanalysis of TFHC1

The goal of our attack on TFHC1 is to determine all n2 entries in K. Once K is known, we can
eavesdrop on any instance of the one-pass protocol to capture (E(M), b, r), and then recover the
original message M using Bob’s calculations in Step 7.

If reasonable values of p and n are chosen for TFHC1, the cipher is resistant to a brute force
attack, since the keyspace is extremely large. The size of the keyspace is given in [13]:

n−1∏

i=0

(pn − pi)

For p = 257 and n = 4 (small example values used in [9]), the number of keys is 3.6× 1038 ≈ 2128,
which corresponds to a 128-bit key, a standard size for modern block ciphers such as the Advanced
Encryption Standard (AES) [11]. For p = 1723 and n = 10 (larger values we tested in the
implementation of our attack), the number of keys is 4.25× 10323 ≈ 21075.

5.1 Attack Fundamentals

We break TFHC1 using a chosen-plaintext attack in which we repeatedly obtain the encryption of
the all-zero plaintext 0. Note that the different all-zero plaintexts do not need to be consecutive
within a message, nor do they even need to be part of the same message (i.e., involved in the same
instance of the one-pass protocol).

The critical point is that if a plaintext Xt = 0, then the corresponding ciphertext is Yt =
0Kt + Vt = Vt, that is, the ciphertext, which are able to obtain in a chosen-ciphertext attack, is
equal to Vt = (v1, v2, . . . , vn). Using the vi and the information in Step 3 above, we can compute
ṽ1, ṽ2, . . . , ṽn−1. We now know many of the values in the following system of n linear equations:5

v1 = k1j1 + ṽ0 v0

v2 = k2j2 + ṽ1 v0

v3 = k3j3 + ṽ2 v0

. . .

vn = knjn + ṽn−1 v0

For 2 ≤ i ≤ n, multiply the ith equation by ṽ−1
i−1 to give

(ṽ−1
i−1)vi = (ṽ−1

i−1)kiji + (ṽ−1
i−1)ṽi−1 v0

(A careful examination of the formula for ṽi−1 in Step 3 reveals that 0 < ṽi−1 < p, so ṽ−1
i−1 always

exists.) If we define ci = ṽ−1
i−1 and di = (ṽ−1

i−1)vi, and apply the identity (ṽ−1
i−1)ṽi−1 = 1, the set of

equations above simplifies to

[v1 = k1j1 + ṽ0 v0]
d2 = c2k2j2 + v0

d3 = c3k3j3 + v0 (1)
. . .

dn = cnknjn + v0

5For simplicity, we will no longer write (mod p) to accompany an equation; this will be implied.

5

We emphasize here that we know the values of ci and di for 2 ≤ i ≤ n. We enclose the first equation
in brackets to highlight the fact that its structure is different from the others; this is because we
do not (yet) know the value of ṽ0, so we cannot isolate v0.

From now on we use C = (v1, v2, . . . , vn) to denote a ciphertext obtained from the encryp-
tion of an all-zero plaintext. For any such ciphertext C, let W (C) be the set of n equations
in (1), and let W ∗(C) denote W (C) with the first equation removed. In addition, define U(C) =
{k1j1 , k2j2 , . . . , knjn} and U∗(C) = {k2j2 , . . . , knjn} (which is U(C) with k1j1 removed). Clearly
U(C) and U∗(C) are sets of entries in K.

If we take any two equations in W ∗(C), for example

d2 = c2k2j2 + v0

d3 = c3k3j3 + v0

and subtract one from the other, the result is that v0 cancels out, leaving a single linear equation
involving two of the entries in K, with all other values known:

d2 − d3 = c2k2j2 − c3k3j3 (2)

(c2, c3, d2, and d3 are known, and k2j2 and k3j3 are possibly unknown). We can repeat this process
for all pairs of equations in W ∗(C). This yields

(n−1
2

)
= (n−1)(n−2)

2 linear equations such as (2),
each involving two entries in K.

5.2 Important Observations

We summarize preliminary information about our attack in the following list of observations:

1. By subtracting equations in W ∗(C) from each other, we obtain linear equations that involve
only known values and entries in K, but no longer involve the value v0 produced by the hash
function H(). This means we have bypassed the security that Toorani and Falahati intended
for H() to provide.

2. Linear equations are the easiest equations to solve. Given a set of unknowns (in this case,
the n2 entries in K), it is possible to solve for them by obtaining a large enough set of linear
equations involving only those unknowns.

3. For any W (C), initially we do not know v0, but if we do know the value of any one of the
kiji , for 2 ≤ i ≤ n (i.e., the value of any entry in U∗(C)), we can solve for v0 using the ith

equation,6 and then substitute v0 into each of the remaining equations in W ∗(C) to determine
all of U∗(C) = {k2j2 , . . . , knjn}.

4. In addition, once we know v0, we can calculate ṽ0, and then substitute these two values into
the first equation in (1) to determine k1j1 .

5. For any W (C), if we do not know the value of any of the kiji , we cannot yet apply Ob-
servations 3 and 4. Instead, we can form

(n−1
2

)
linear equations such as (2), as previously

described, and store these for future use.
6Note that in general v0 is not the same as at, since v0 = at (mod p), so learning a v0 value does not necessarily

allow us to apply H() to learn later at (and v0) values.

6

6. If we repeatedly process ciphertexts, Observation 5 may lead to a situation in which we
have stored two different equations involving the same two (unknown) entries in K. If these
equations are consistent and independent [14], we can solve for the two unknowns.

7. For any linear equation such as (2) involving two entries in K, as soon as we know the value
of one of the entries, we can immediately solve for the other, since the other entry in K is the
only remaining unknown in the equation.

5.3 Graph Theoretic Framework

We use a graph theoretic framework to organize our attack against TFHC1 by viewing each of
the n2 unknown values in K as a node in a graph data structure [15], which we denote G. Two
nodes are joined by an edge if and only if we have derived a linear equation involving the two
corresponding unknowns. We say that a node is solved when we have learned the value of (solved
for) the corresponding entry in K. We incorporate the following two graph operations in our attack:
Propagate Solutions: It follows from Observation 7 that if z is a node in G, and z is solved,
then we can solve every node z′ connected to z. Repeating this process, we can solve every node
z′′ connected to z′, and so on. We continue until no further nodes can be solved. The overall effect
is that if it is possible to reach any unsolved node z∗ by starting at a solved node z and travelling
along the edges of G, then z∗ can be solved. (In graph terminology, we say that if z is solved, then
every node belonging to the same connected component as z can be solved [15].)
Transitive Closure: In this operation, we add new “implied” edges to G based on existing edges.
For each triple of nodes (z1, z2, z3), if there is an edge between z1 and z2, and also an edge between
z2 and z3, but no edge between z1 and z3, we can add an edge between z1 and z3. The reason is that
the edge between z1 and z2 is based on a linear equation involving the two corresponding unknowns,
as is the edge between z2 and z3. By solving the first equation for the unknown corresponding to
z2, and then substituting the result into the second equation, we obtain an equation involving the
unknowns corresponding to z1 and z3, which means we now have an edge between z1 and z3.

5.4 Complete Attack Algorithm

Here is the pseudocode for the complete attack:

initialize G to be a graph with n2 nodes and no edges
while not all entries in K are known

• get the next ciphertext C and form W (C)

• Case I: at least one entry in U∗(C) is known

– solve for every entry in U(C) (Observations 3 and 4)

– call Propagate Solutions

– for each previous ciphertext C′, if every entry in U∗(C′) is now known, but k1j1 is not
known, solve for k1j1 (Observation 4)

7

• Case II: none of the entries in U∗(C) are known

– form
(n−1

2

)
linear equations as in Observation 5, and add the corresponding edges to G.

If at any time in this process two nodes in G are joined by two edges, attempt to solve
the two nodes (Observation 6)

– call Transitive Closure. As in the previous step, whenever this results in two nodes
in G that are joined by two edges, attempt to solve the nodes

– call Propagate Solutions

– for each previous ciphertext C′, if every entry in U∗(C′) is known, but k1j1 is not known,
solve for k1j1 (Observations 3 and 4)

5.5 Correctness of Attack

Case I: When at least one of the values in U∗(C) = {k2j2 , . . . , knjn} is already known, we use
Observations 3 and 4 to determine the remaining values. Typically this means that we learn at
least one new entry in K (unless all the entries in U(C) were previously known), i.e., there are
new solved nodes in the graph G, so we call Propagate Solutions to “spread” solutions as far as
possible in G. At this point, because of the addition of new edges in earlier iterations of Case II,
together with the call to Propagate Solutions in Case I, it is possible that there are previous
ciphertexts C′ for which every value in U∗(C′) is now known, but the k1j1 value is not known. This
is the reason for the last step in Case I.
Case II: In this case, none of the entries in U∗(C) are initially known, so we cannot immediately
solve for any kiji value. Instead, we add as many edges as possible to G, first by inserting the

(n−1
2

)

edges justified by Observation 5, and then by calling Transitive Closure. These steps may result
in new solved nodes, so we spread solutions by calling Propagate Solutions. Finally, we solve for
the “lone wolf” k1j1 values by repeating the last step in Case I.

6 Computational Results

We implemented TFHC1 (with SHA-1 for H()), and then ran our attack to verify its effectiveness.
The computer we used was a Dell Precision M4500 laptop running Windows 7, and our implemen-
tation was in Java. The attack worked as theorized, with negligible time and space requirements,
even for large keys.

An interesting statistic is the number of ciphertexts (corresponding to the all-zero plaintext)
required to determine every entry in the key K. For prime modulus p = 257 and n = 4, we ran
our attack 1000 times, each time with a new value of a0 and a new randomly generated key. Over
these 1000 trials, the average number of ciphertexts required to find K was 12.52, and the average
computation time per trial was 0.00075 seconds.

For prime modulus p = 1723 and n = 10, we also ran our attack 1000 times. The average
number of ciphertexts required was 50.01, and the average computation time per trial was 0.0068
seconds.

These experimental results confirm that not only does our attack work as expected, but in
addition both the data complexity and the time complexity are very low, which makes it easy to
carry out the attack in practice.

8

7 Application of Attack to TFHC2

Toorani and Falahati introduce TFHC2 in [10], together with a two-pass protocol (“Protocol A”)
and a one-pass protocol (“Protocol B”). The core cipher is identical to TFHC1, except for the
technique used to generate the at value for each plaintext. In TFHC2, a hash-based message
authentication code (HMAC), which is essentially a hash function parameterized by a secret key [11],
is used instead of a standard unkeyed hash function H(). Once Alice has selected a0, she computes
each subsequent at using at = HMAC k′(at−1), where k′ = (k11‖k12‖k13‖ . . . ‖knn‖at−1). Here the
kij values are the n2 entries in K in row-major order. This construction ensures that only a party
in possession of both at−1 and the secret key K will be able to compute at. However, because we
bypass the hash function (or the HMAC), we do not need to compute at, and therefore our attack
against TFHC1 can be applied to TFHC2 without modification to obtain K.

The one-pass Protocol B for TFHC2 is is identical to the one-pass protocol for TFHC1, and
therefore as soon as we obtain K using our attack, we can eavesdrop on all future communication
between Alice and Bob that uses Protocol B.

The two-pass Protocol A for TFHC2, which is based on concepts from public-key cryptography,
provides a higher level of security for the exchange of a0 between Alice and Bob. Protocol A does not
protect TFHC2 against the use of our attack to obtain K (since, again, we do not need to know a0),
but it may prevent us from simply eavesdropping on and decrypting future communication between
Alice and Bob after we have learned K, because at that point we do need to know the value of
each a0. On the other hand, it is interesting that Protocol A was also intended to thwart “intruder-
in-the-middle” attacks [12] for any party that does not know K. However, since we can use our
attack to obtain K, we can then carry out an intruder-in-the-middle attack against Protocol A.

8 Conclusion

In this paper we have presented a chosen-plaintext attack against two closely related Hill Cipher
variants due to Toorani and Falahati, which we denote TFHC1 and TFHC2. Our attack bypasses
the main security features of these ciphers—in particular, the incorporation of a strong one-way hash
function such as SHA-1 to modify the encryption process—and exploits the relationship between
key entries and any ciphertext produced from the encryption of the all-zero plaintext in order to
recover the full key. We present computational results that confirm the effectiveness of our attack,
and verify that it requires minimal time and space resources.

Acknowledgment

This research was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

9

References

[1] L. S. Hill, “Cryptography in an algebraic alphabet,” American Mathematical Monthly, vol. 36,
no. 6, pp. 306–312, 1929.

[2] W. Stallings, Cryptography and Network Security: Principles and Practice, 5th ed., Boston:
Prentice Hall, 2011.

[3] V. U. K. Sastry, D. S. R. Murthy, and S. Durga Bhavani, “A block cipher involving a key
applied on both sides of the plain text,” International Journal of Computer and Network
Security, vol. 1, no. 1, pp. 27–30, Oct. 2009.

[4] L. Keliher, “Cryptanalysis of a modified Hill Cipher,” International Journal of Computer and
Network Security, vol. 2, no. 7, pp. 122–126, Jul. 2010.

[5] S. Saeedinia, “How to make the Hill Cipher secure,” Cryptologia, vol. 24, no. 4, pp.353–360,
Oct. 2000.

[6] C. H. Lin, C. Y. Lee, and C. Y. Lee, “Comments on Saeednia’s improved scheme for the Hill
Cipher,” Journal of the Chinese Institute of Engineers, vol. 27, no. 5, pp. 743–746, 2004.

[7] I. A. Ismail, M. Amin, and H. Diab, “How to repair the Hill Cipher,” Journal of Zhejiang
University SCIENCE A, vol. 7, no. 12, pp. 2022–2030, 2006.

[8] C. Li, D. Zhang, and G. Chen, “Cryptanalysis of an image encryption scheme based on the
Hill Cipher,” Journal of Zhejiang University SCIENCE A, vol. 9, no. 8, pp. 1118–1123, 2008.

[9] M. Toorani and A. Falahati, “A secure variant of the Hill Cipher,” Proc. IEEE Symposium on
Computers and Communications (ISCC’09), Sousse, Tunisia, Jul. 2009, pp 313–316.

[10] M. Toorani and A. Falahati, “A secure cryptosystem based on affine transformation,” Journal
of Security and Communication Networks, vol. 4, no. 2, pp. 207–215, Feb. 2011.

[11] D. R. Stinson, Cryptography: Theory and Practice, 3rd ed., Boca Raton: Chapman &
Hall/CRC, 2006.

[12] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography,
Boca Raton: CRC Press, 1997.

[13] J. Overbey, W. Traves, and J. Wojdylo, “On the keyspace of the Hill Cipher,” Cryptologia,
vol. 29, no. 1, pp. 59–72, 2005.

[14] D. Poole, Linear Algebra: A Modern Introduction, 3rd ed., Boston, Massachusetts:
Brooks/Cole, 2011.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Indroduction to Algorithms, 3rd ed.,
Cambridge, Massachusetts: MIT Press, 2009.

10

