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Abstract

Adaptive security is a strong security notion that captures additional security threats that are not ad-
dressed by static corruptions. For instance, it captures real-world scenarios where “hackers” actively
break into computers, possibly while they are executing secure protocols. Studying this setting is inter-
esting from both theoretical and practical points of view. A primary building block in designing adap-
tively secure protocols is a non-committing encryption (NCE) that implements secure communication
channels in the presence of adaptive corruptions. Current constructions require a number of public key
operations that grows linearly with the length of the message. Furthermore, general two-party protocols
require a number of NCE calls that dependents both on the circuit size and the security parameter.

In this paper we study the two-party setting in which at most one of the parties is adaptively corrupted,
and demonstrate the feasibility of (1) NCE with constant number of public key operations for large
message spaces. (2) Oblivious transfer with constant number of public key operations for large sender’s
input spaces, and (3) constant round secure computation protocols with an overall number of public key
operations that is linear in the circuit size. Our study demonstrates that such primitives indeed exist in
the presence of single corruptions without erasures, while this is not known for fully adaptive security
under standard assumptions (where both parties may get corrupted). Our results are shown in the UC
setting with a CRS setup.
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1 Introduction

1.1 Background

Secure two-party computation. In the setting of secure two-party computation, two parties with private
inputs wish to jointly compute some function of their inputs while preserving certain security properties
like privacy, correctness and more. In this setting, security is formalized by comparing a protocol execution
to a protocol executed in an ideal setting where the parties send inputs to a trusted party that performs
the computation and returns its result (also known by simulation-based security). Starting with the works
of [Yao82, GMW87], it is by now well known that any polynomial-time function can be compiled into a
secure function evaluation protocol with practical complexity; see [BDOZ11, LP12, DPSZ12, NNOB12] for
a few recent works. The security proofs of these constructions assume that parties are statically corrupted.
Meaning, corruptions take place at the outset of the protocol execution and the identities of the corrupted
parties are fixed throughout the computation. A stronger notion is adaptive security where corruptions take
place at any point during the course of the protocol execution. That is, upon corruption the adversary learns
the internal state of the corrupted party which includes its input, randomness and the incoming messages.
This notion is much stronger than static security since the adversary may choose at any point which party to
corrupt, even after the protocol is completed! It therefore models real world threats more accurately.

Typically, when dealing with adaptive corruptions we distinguish between corruptions with erasures and
without erasures. In the former case honest parties are trusted to erase data if they are instructed to do so by
the protocol, whereas in the latter case no such assumption is made. This assumption is often problematic
since it relies on the willingness of the honest parties to carry out this instruction, even though they know that
no other party will be able to verify whether they have carried out the instruction or not. In settings where
the parties are distrustful it may not be a good idea to base security on such an assumption. In addition,
it is generally unrealistic to trust parties to fully erase data since this may depend on the operating system.
Nevertheless, assuming that there are no erasures comes with a price since the complexity of adaptively
secure protocols without erasures is much higher than the analogue complexity of protocols that rely on
erasures. In this paper we do not rely on erasures.

Adaptive security. It is known by now that security against adaptive attacks captures important real-
world concerns that are not addressed by static corruptions. For instance, such attacks capture scenarios
where “hackers” actively break into computers, possibly while they are running secure protocols, or when
the adversary learns from the communication which parties are worth to corrupt more than others. This later
issue can be demonstrated by the following example. Consider a protocol where some party (denoted by the
dealer) shares a secret among a public set of

√
n parties, picked at random from a larger set of n parties. This

scheme is insecure in the adaptive model if the adversary corrupts
√
n parties since it can always corrupt the

particular set of parties that share the secret. On the other hand, in the static setting the adversary can only
corrupt the exact same set of parties that share the secret with a negligible probability in n.

Further difficulties arise when proving security. For instance, consider the following protocol for trans-
ferring a message: A receiver picks a public key and sends it to a sender that uses it to encrypt its message.
Then, security in the static model is simple and relies on the semantic security of the underlying encryption
scheme. Nevertheless, this protocol is insecure in the adaptive model since standard semantically secure
encryption binds the receiver to a single message (meaning, given the public key, a ciphertext can only be
decrypted into a single plaintext). Thus, upon corrupting the receiver after simulating its communication, it
would not be possible to “explain” the simulated ciphertext with respect to the real message. This implies
that adaptive security is much harder to achieve.

In the two-party setting there may be scenarios where the system is comprised of only two parties that do
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not communicate with any external device. In this case, it makes more sense to study the system’s security
in the presence of single corruptions (namely, when at most one party is under attack). This is because
we have no security guarantee once both parties are under attack. In this paper we study secure two-party
computation with single adaptive corruptions in the non-erasure model. To distinguish this notion from fully
adaptive security, where both parties may get corrupted, we denote it by one-sided adaptive security. Our
goal in this work is to make progress in the study of the asymptotic efficiency of secure two-party protocols
with one-sided security.

Our measure of efficiency is associated with the number of public key encryption (PKE) operations,
where our underlying primitives are parameterized by a public key encryption scheme for which we count
the number of key generation/encryption/decryption operations. These operations are captured by the num-
ber of exponentiations in several important groups. That is, groups where the Decisional Diffie-Hellman
(DDH) assumption is hard, as well as composite order groups where the Decisional Composite Residuosity
(DCR) and Quadratic Residuosity (QR) hardness assumptions are believed to hold. Finally, our proofs are
given with universal composable (UC) security proofs [Can01] in the common reference string (CRS) set-
ting. We note that the reductions of our non-committing encryption and oblivious transfer with one-sided
security are tight, whereas the reductions of our general two-party protocols are tighter than proofs in prior
works; see more details below. All our theorems are not known to hold in the fully adaptive setting.

1.2 Our Results

New one-sided NCE constructions. A non-committing encryption (NCE) scheme [CFGN96] implements
a secure channel between two parties in the presence of adaptive corruptions, and is an important build-
ing block in designing adaptively secure protocols. One-sided NCE (resp. NCE) implies a secure chan-
nel where a single (resp. both) parties are adaptively corrupted. Theoretically speaking, one-sided NCE
was demonstrated in [DN00] under a strictly weaker hardness assumption than the assumption needed for
NCE [DN00, CDSMW09a], where the later assumption is simulatable public key encryption scheme. Nev-
ertheless, all known schemes, in both security settings, require a number of PKE operations that grows
linearly with the bit representation of the transmitted message. It was unknown whether this bound is tight
for one-sided NCE or whether the overhead can be made closer to the overhead of PKE.

We suggest a new approach for designing NCE with security against one-sided adaptive attacks. Our
protocols are built based on two public key building blocks that are non-committing with respect to a single
party. We denote these primitives by NCE for the sender and NCE for the receiver. Non-committing for
the receiver (NCER) implies that one can efficiently generate a secret key that decrypts a fake ciphertext
into any plaintext. Whereas non-committing for the sender (NCES) implies that one can efficiently generate
randomness for any plaintext for proving that a ciphertext, encrypted under a fake key, encrypts this plaintext.
A core building block in our one-sided construction is (a variant) of the following protocol, in which the
receiver generates two sets of public/secret keys; one pair of keys for each public key system, and sends
these public keys to the sender. Next, the sender partitions its message into two shares and encrypts the
distinct shares under the distinct public keys. Finally, the receiver decrypts the ciphertexts and reconstructs
the message. Our construction is slightly more technical since it must allow the simulator to decide whether
to send fake keys/ciphertexts only after corruption takes place. To ensure that, we use an additional tool,
denoted by `-equivocal NCE, which is discussed in details below (informally, this primitive improves NCE
constructions for small equivocation space) . We note that our protocol is secure as long as either the sender
or the receiver are adaptively corrupted, but not both. Informally, we prove that

Theorem 1.1 Assume the existence of NCER, NCES and `-equivocal NCE, then there exist one-sided NCE
with a constant number of invocations of these primitives and ` = 2.
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Reference Security Hardness Overhead
Assumption (Number of Exp.)

[CFGN96] one-sided NCE simulatable O(n)
common-domain trapdoor

[DN00] one-sided NCE\ enhanced trapdoor permutation \ O(n)\O(n)
NCE simulatable PKE

[CDSMW09a] NCE trapdoor simulatable O(n)

[HOR15] NCE Φ-hiding O(n)

This Work one-sided NCE NCER+NCES+`-equivocal NCE O(1)

Table 1: Comparisons with prior NCE constructions for message space {0, 1}n and security parameter n.

Secure realizations of NCER and NCES exist under several concrete assumptions. Specifically, NCER
implementations were shown in [JL00, CHK05] under the respective DDH and DCR hardness assumptions,
whereas NCES was realized under the DDH assumption in [BHY09]. In this paper we further show how to
realize NCES under the DCR assumption. Note that when viewing these primitives as two-round protocols,
where the receiver forwards the sender its public key that is followed by a ciphertext sent by the sender,
these primitives are equivalent in the sense that it is possible to convert one primitive to another at the
expense of one additional round. Specifically, given a two-round NCER protocol, a three-round NCES can
be constructed as follows: the sender creates a public key/secret key pair for the NCER and forwards the
public key to the receiver. The receiver then encrypts a one-time pad masking under the public key. Finally,
the sender uses this pad to mask its message in the third round. An NCER protocol can be constructed from
an NCES protocol in a similar way.

Our theorem is also interesting in the sense that it implies one-sided NCE with a number of PKE op-
erations that is independent of the message length. Concretely, if the underlying NCER and NCES are
implemented using a constant number of PKE operations, that is independent of the message length, then
this also holds for our one-sided NCE. In this paper we consider implementations for NCER/NCES that
are efficient in that sense which implies efficient DCR-based one-sided NCE with a constant overhead. We
further consider DDH-based constructions that achieve the same overhead, but for polynomial size domains.
We provide comparison with prior work in Table 1.

Witness equivocal UC ZK PoK for compound statements. A basic tool in constructing maliciously
secure protocols that we exploit in this paper is zero-knowledge (ZK) proofs. More specifically, in this
work we focus on compound statements (where the statement is comprised of sub-statements for which the
prover only knows a subset of the witnesses). We consider a new notion of witness equivocal UC ZK proofs
of knowledge (PoK) where the simulator knows the witnesses for all sub-statements but not which subset
is known to the real prover, and show how to build adaptively secure witness equivocal proofs for a large
class of Σ-protocols. In particular, the security proof for this notion implies that the simulator convinces
the adaptive adversary that it knows the exact same subset of witnesses known also to the real prover.
We demonstrate that even though this notion is weaker than one-sided security (which requires simulation
without any knowledge of witnesses), it is still meaningful in designing one-sided secure protocols.

As a side result, we demonstrate a technique for efficiently generating statically secure UC ZK PoK for
the same class of Σ-protocols. Our protocols use a new approach where the prover commits to an additional
transcript which enables to extract the witness in the CRS setting with a constant overhead where previously,
Σ-protocols were complied into the UC setting using UC commitments [CF01].
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Reference Security Hardness Overhead
Assumption (Number of Exp.)

[PVW08] static dual-mode PKE O(1)

[CLOS02] adaptive augmented NCE O(n)

[CDSMW09b] adaptive adaptive semi-honest OT + UC commitments O(n)

[GWZ09] adaptive enhanced dual-mode PKE + UC commitments O(n)

This Work one-sided adaptive one-sided NCE+dual-mode PKE+ O(1)
witness equivocal ZK PoK

Table 2: Comparisons with prior malicious UC OT constructions for sender’s message space {0, 1}n and
security parameter n.

One-sided oblivious transfer. In the next step we combine our one-sided NCE and witness equivocal
proofs in order to implement one-sided 1-out-of-2 oblivious transfer (OT). We build our protocol based on
the generic framework of [PVW08] with the following modifications. (1) First, we require that the sender
sends its ciphertexts via a one-sided non-committing channel (based on our previous result, this only inflates
the overhead by a constant). (2) We fix the common parameters in a single mode (whereas the [GWZ09]
and [PVW08] proofs need to alternate between the two modes). To ensure correctness with respect to the
receiver’s message, we employ a witness equivocal ZK PoK. Informally, we prove that

Theorem 1.2 Assume the existence of one-sided NCE, dual-mode PKE (cf. Definition 4.1; see also [PVW08])
and witness equivocal ZK PoK, then there exist one-sided OT with O(1) PKE operations.

Considering efficiency, our construction requires a number of PKE operations that is independent of the
sender’s input space. This is significantly better than all prior work on fully adaptively UC secure OT that
require O(1) such operations for implementing bit OT; see Table 2 for comparison with prior work.

We note that this protocol further serves as the basis for the cut-and-choose OT protocol we design next.
In addition, a semi-honest variant of our OT protocol can be considered if the parties mutually generate the
CRS using a coin tossing protocol that is UC secure. By plugging-in this one-sided semi-honest OT protocol
into the [GMW87] static semi-honest protocol we obtain a one-sided semi-honest adaptively secure protocol,
with round complexity that depends on the computed circuit’s depth. This implies the following theorem,

Theorem 1.3 Assume the existence of one-sided semi-honest OT and statically secure UC commitment
scheme, then there exists a semi-honest one-sided adaptively secure two-party protocol that requiresO(|C|))
public key operations.

Constant round one-sided secure computation. Notably, in the plain model any statically secure proto-
col can be transformed into a protocol with one-sided adaptive security by encrypting the communication
of the static protocol using NCE. This approach, taken by [KO04], implies that the number of public key
operations grows linearly with the communication complexity of the static protocol. Moreover, currently the
overhead of generic protocols using this approach depends on the circuit’s size times the security parameter.1

In this work we revisit the general compiler of [KO04] and design improved generic one-sided constant
round protocols tolerating semi-honest and malicious behaviour. This improvement is based on the observa-
tion that it is sufficient to employ one-sided NCE rather than NCE (that is fully secure) in order to secure the

1We note that this statement is valid regarding protocols that do not employ fully homomorphic encryptions (FHE). To this end,
we only consider protocols that do not take the FHE approach. As a side note, it was recently observed in [KTZ13] that adaptive
security is impossible for FHE satisfying compactness.
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Reference Security Hardness Overhead
Assumption (Number of Exp.)

[LP09] static, plain model semi-honest OT O(|input|)
[KO04] one-sided, plain model simulatable PKE O(n2|C|)

[CLOS02] adaptive, UC augmented NCE O(|C|)
This Work one-sided, UC static semi-honest secure O(|C|)

computation + one-sided NCE

Table 3: Comparisons with prior generic semi-honest secure protocols for n the security parameter.

communication. Moreover, by plugging-in our one-sided NCE we obtain a better transformation from static
semi-honest/malicious security into the corresponding attack model with one-sided security. It is important
to note that this transformation does not hold in the UC setting due to the additional setup. Specifically,
the security proof may crucially rely on the fact that the CRS is chosen dependently on the identity of the
corrupted party, as for instance in [PVW08]. Nevertheless, since this identity is not known in advance in the
adaptive setting, fixing the CRS in one particular mode breaks down the static security proof.

To conclude, in the semi-honest setting (when no trusted setup is required) we prove that our transfor-
mation applies even in the UC setting. Informally, we first prove that

Theorem 1.4 Assume the existence of one-side NCE. Then: (1) statically secure semi-honest secure com-
putation implies one-sided semi-honest UC computation, and (2) statically secure malicious secure compu-
tation implies one-sided malicious secure computation.

As a corollary, we obtain that constant round semi-honest secure computation can be achieved based on
the assumptions needed in [LP09] and one-sided NCE. Informally stating,

Corollary 1.5 Under the assumptions of achieving security in [LP09] and one-sided NCE, there exists
a constant round one-sided semi-honest UC secure two-party protocol that requires O(|C|)) public key
operations, where C is the computed circuit.

We provide a detailed comparison with prior work for the semi-honest setting in Table 3. Next, in
order to obtain one-sided UC security against malicious attacks we adapt the cut-and-choose based protocol
from [LP12], which relies heavily on [PVW08] DDH based OT protocol. The idea of the cut-and-choose
technique is to ask one party to send s garbled circuits and later open half of them by the choice of the
other party. This ensures that with very high probability the majority of the unopened circuits are valid.
Proving security in the one-sided setting requires dealing with new subtleties and designing a modified cut-
and-choose building blocks, since [LP12] defines the public parameters for these building blocks in a way
that precludes equivocation of the parties’ inputs. Informally,

Theorem 1.6 Under the assumptions of achieving static malicious UC security in [LP12], one-sided cut-
and-choose OT and simulatable PKE, there exists a constant round one-sided malicious UC secure two-party
protocol that requires O(s|C|) public key operations where s is a statistical parameter that determines the
cut-and-choose soundness error.

We provide a details comparison with prior work for the malicious setting in Table 4.

To conclude, our results imply that one-sided security is easier to achieve than fully adaptive security.
We leave open the efficiency of constant round one-sided secure protocols in the multi-party setting. Cur-
rently, it is not clear how to extend our techniques beyond the two-party setting (such as for the [BMR90]
protocol). Another open problem is whether it is feasible to achieve secure constructions with a number of
PKE operations that is strictly less than what we achieve here.
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Reference Security Hardness Overhead
Assumption (Number of Exp.)

[LP12] static, plain model DDH O(|input|)
[KO04] one-sided, plain model simulatable PKE O(n2|C|)

[CLOS02] adaptive, UC augmented NCE O(n2|C|)
[IPS08] adaptive, UC adaptive malicious OT O(|n2C|)

This Work one-sided, UC DDH+DCR O(|sC|)

Table 4: Comparisons with prior generic maliciously secure protocols for n the security parameter.

1.3 Prior Work

We describe prior work on NCE, adaptively secure OT and adaptively secure two-party computation.

Non-committing encryption. (One-sided) NCE was introduced in [CFGN96] which demonstrated its fea-
sibility under the RSA assumption. Next, NCE was studied in [DN00, CDSMW09a]. More concretely, the
construction of [DN00] requires constant rounds on the average and is based on simulatable PKE, whereas
[CDSMW09a] presented an improved expected two rounds NCE based on a weaker primitive. [DN00] fur-
ther presented one-sided NCE based on a weakened simulatable PKE notion. The computational overhead
of all these constructions depends on the message length. Following that, the relatively new `-euivocal NCE
notion was introduced in [GWZ09]. This primitive enables to send arbitrarily long messages at the cost of
log ` PKE operations, where ` is the equivocality parameter, and improves over NCE for sufficiently small
`’s. In [Nie02] Nielsen proved that NCE must have a decryption key that is at least as long as the transmitted
message. Finally, Hemenway et al. [HOR15] presented the first two-round NCE construction under the Φ-
hiding hardness assumption where the communication complexity of the second message isO(m logm+n)
where m is the message length and n is the security parameter, which improves over all prior constructions.

Adaptively secure oblivious transfer. In [Bea97, CLOS02] semi-honest adaptively secure OT protocols
were shown, that were then compiled into the malicious setting using generic ZK proofs. More recently,
in a weaker model that assumes erasures, Lindell [Lin09] used the method of [WW06] to design an ef-
ficient transformation from static OT to semi-honest composable adaptive OT. Another recent work by
Garay et al. [GWZ09] presented a UC adaptively secure OT, building on the static OT of [PVW08] and
`-equivocal NCE. This paper introduced an OT protocol with security under a weaker semi-adaptive notion,
that is then compiled into an adaptive OT by encrypting the transcript of the protocol using `-equivocal
NCE.2 Finally, [CDSMW09b] presented a compiler for UC adaptive OT in the malicious setting based on
semi-honest adaptive OT and UC commitment schemes.

Adaptively secure two-party computation. The work by Katz and Ostrovsky [KO04] was the first to
study the round complexity of one-sided secure protocols. Their round efficient protocol takes a naive ap-
proach of encrypting the entire communication using NCE. Next, the work of [IPS08] provided all-but-one
adaptively secure protocols based on honest majority adaptively secure protocols (where their particular in-
stantiation uses the constant rounds protocol from [DI05]). Finally, a recent work by Garg and Sahai [GS12]
presents adaptively secure constant round protocols tolerating all-but-one corrupted parties using a non-
black box simulation approach. Their approach uses the OT hybrid compiler of [IPS08].

2We stress that the semi-adaptive notion is incomparable to the one-sided notion since the former assumes that either one party
is statically corrupted or none of the parties get corrupted.
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Adaptive secure computation has been extensively studied as well. In the non-erasure model, the work
of [CLOS02] demonstrated the feasibility of adaptive UC security of any well-formed functionality. The
followup work of [DN03] showed how to use a threshold encryption to achieve UC adaptive security but
required honest majority. A generic compiler from static to adaptive security was shown in [CDD+04]
(yet without considering post-execution corruptions). Assuming erasures, which significantly simplifies the
problem, one of the earliest works by Beaver and Haber [BH92] showed an efficient generic transformation
from adaptively secure protocols with ideally secure communication channels, to adaptively secure protocols
with standard (authenticated) communication channels. A more recent work by Lindell [Lin09] presented
an efficient semi-honest constant round two-party protocol with adaptive security.

A recent line of works [CGP15, DKR15, GP15] studies constant rounds adaptively secure computation
using obfuscation techniques. This approach is different than all prior work on adaptive security since it
obfuscates the circuit that computes the next message in the protocol and places the result in the CRS.

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible if for every polynomial p(·) there exists
a value N such that for all n > N it holds that µ(n) < 1

p(n) . We write PPT for probabilistic polynomial-
time. We denote the message spaces of our non-committing encryption schemes and the message space of
the sender in our OT protocols by {0, 1}q for q = n.

We specify the definitions of computational indistinguishability and statistical distance.

Definition 2.1 (Computational indistinguishability by circuits) LetX = {Xn(a)}n∈IN,a∈{0,1}∗ and Y =
{Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X ≈c Y , if for every family {Cn}n∈IN of polynomial-size circuits, there exists a negligible
function µ(·) such that for all a ∈ {0, 1}∗,

|Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

Definition 2.2 (Statistical distance) Let Xn and Yn be random variables accepting values taken from a
finite domain Ω ⊆ {0, 1}n. The statistical distance between Xn and Yn is

SD(Xn, Yn) =
1

2

∑
ω∈Ω

|Pr[Xn = ω]− Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤ ε(n). We say that
Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is negligible in n.

2.1 Security Definitions

In the following, we formalize the notion of UC one-sided adaptive security [Can01]. Formally, a two-
party computation protocol is cast by specifying the participating parties P0 and P1 and a function f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f0, f1) mapping pairs of inputs to pairs of outputs
(one for each party). That is, for every pair of inputs x0, x1 ∈ {0, 1}n the output pair is a random vari-
able (f0(x0, x1), f1(x0, x1)) ranging over pair of strings. The first party with input x0 wishes to receive
f0(x0, x1), while the second party with input x1 wishes to obtain f1(x0, x1).
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2.1.1 One-Sided Adaptive Security

In the two-party setting, a real execution of some protocol Πf that implements f is run between two parties
P0 and P1 in the presence of an adversary ADV and an environment ENV (that is given an input z, a random
tape rENV and a security parameter n), and is modeled as a sequence of activations of the entities. ENV

is activated first and generates the inputs for the other entities. Then the protocol proceeds by having the
parties communicate with each other and ADV exchange messages with ENV. Upon completing the real
execution ENV outputs a bit. In the ideal model, the computation involves an incorruptible trusted third
party Ff which receives the parties’ inputs, computes the function f on these inputs and returns to each
party its respective output. The parties are replaced by dummy parties that do not communicate with each
other, such that whenever a dummy party is activated it sends its input to the ideal functionality. Upon
completing the ideal execution ENV outputs a bit. We say that a protocol Πf UC realizes functionality Ff
if for any real world adversary ADV there is a ideal world adversary SIM such that no ENV can tell with
non-negligible probability whether it is interacting with ADV and the parties running Πf in a real execution
or with SIM and the dummy parties in an ideal execution; details follow.

Execution in the real model. We now proceed with a real world execution, where a real two-party proto-
col is executed. Whenever ENV is activated, it first fixes input xi ∈ {0, 1}∗ for party Pi. Each party Pi then
starts the execution with an input xi ∈ {0, 1}∗, a random tape ri and a security parameter n. A one-sided
adversary ADV is a probabilistic polynomial-time interactive Turing machine that is given a random tape
rADV and a security parameter n and is allowed to corrupt at most one party. At the outset of the protocol,
ADV receives some initial information from ENV. Then the computation proceeds in rounds such that in
each round ADV sees all the messages sent between the parties. At the beginning of each round, ADV may
choose to corrupt Pi∗ for i∗ ∈ {0, 1}. Upon corrupting Pi∗ , ADV learns its input and the random tape,
and notifies ENV, obtaining back some auxiliary information. In case ADV is malicious Pi∗ follows ADV’s
instructions from the time it is corrupted. At the end of the protocol execution the honest parties locally
compute their outputs and output the value specified by the protocol, whereas the corrupted party outputs a
special symbol ⊥. The adversary ADV outputs an arbitrary function of its internal state that includes, rADV,
the messages received from ENV and the corrupted party’s view. Next, a post-execution corruption process
begins where ENV first learns the outputs. Then, ADV and ENV interact in at most one additional round.
If none of the parties is corrupted yet, ENV can ask ADV to corrupt Pi∗ for i∗ ∈ {0, 1}, receiving back the
state of this party. At the end ENV outputs a bit.

Let f be as specified above and Πf be a two-party protocol that computes f . We denote by the vari-
able OREALΠf ,ADV,ENV(n, x0, x1, z, r) the output of ENV on input z, random tape rENV and a security
parameter n upon interacting with ADV and parties P0, P1 that engage in protocol Πf on inputs rADV and
(x0, r0), (x1, r1), respectively, where r = (rENV, rADV, r0, r1). Let OREALΠf ,ADV,ENV(n, x0, x1, z) de-
note a random variable describing OREALΠf ,ADV,ENV(n, x0, x1, z, r) where the random tapes are chosen
uniformly. Let OREALΠf ,ADV,ENV denote the distribution ensemble:

{OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN.

Execution in the ideal model. A one-sided ideal world adversary SIM is a probabilistic polynomial-time
interactive Turing machine that is given a random tape rSIM and a security parameter n and is allowed to
corrupt at most one party. The ideal process is defined with respect to a trusted party that implements
functionality Ff as follows:

First corruption phase: SIM receives some auxiliary information from ENV. Next, SIM may decide
whether to corrupt party Pi∗ for i∗ ∈ {0, 1}. Upon corrupting party Pi∗ , SIM notifies to ENV and
learns its input xi∗ . In addition, ENV hands some auxiliary information to SIM.

8



Computation phase: In the semi-honest setting, each party forwards its input to the trusted party. In the
malicious settings, the corrupted party hands Ff the values handed to it by SIM. The trusted party
computes (y0, y1) = f(x0, x1) and hands each Pi the value yi. SIM receives the output of the cor-
rupted party.

Second corruption phase: SIM continues to another corruption phase, where it might choose to corrupt
Pi∗ for i∗ ∈ {0, 1} (in case it did not corrupt any party in the first corruption phase), where this choice
is made based on SIM’s random tape and all the information gathered so far. Upon corrupting Pi∗ ,
SIM notifies to ENV and learns the party’s input xi∗ . ENV hands SIM some auxiliary information.

Output: The uncorrupted party P1−i∗ outputs y1−i∗ and the corrupted party outputs ⊥. SIM outputs an
arbitrary efficient function of its view. ENV learns all the outputs.

Post-execution corruption phase: After the outputs are generated, SIM proceeds with ENV in at most
one round of interaction, where ENV can instruct SIM to corrupt Pi∗ for i∗ ∈ {0, 1} (if none of the
parties are corrupted yet). SIM generates some arbitrary answer and might choose to corrupt Pi∗ . The
interaction continues until ENV halts with an output.

We denote by OIDEALFf ,SIM,ENV(n, x0, x1, z, r) the output of ENV on input z, random tape rENV and
security parameter n upon interacting with SIM and parties P0, P1, running an ideal process with inputs rSIM

and x0, x1, respectively, where r = (rENV, rSIM). Let OIDEALFf ,SIM,ENV(n, x0, x1, z) denote a random
variable describing OIDEALFf ,SIM,ENV(n, x0, x1, z, r) when the random tapes rENV and rSIM are chosen
uniformly. Let OIDEALFf ,SIM,ENV denote the distribution ensemble:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

Then we define security as follows.

Definition 2.3 Let Ff and Πf be as defined above. Protocol Πf UC realizes Ff in the presence of one-
sided semi-honest/malicious adversaries if for every non-uniform probabilistic polynomial-time one-sided
semi-honest/malicious adversary ADV, there exists a one-sided non-uniform probabilistic polynomial-time
ideal adversary SIM such that:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

≈c {OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

where |x0| = |x1|.

Composition. In order to simplify our security proofs we consider a hybrid setting where the parties
implement some functionalities using ideals calls. We rely on the composition theorem introduced by
Canetti [Can01] in the adaptive setting. (Note that we are only interested in cases where the same party
is corrupted with respect to all composed protocols.)

2.1.2 Concrete Functionalities

We specify the definition of three important functionalities for this work.
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Functionality FOSC

Functionality FOSC communicates with sender SEN and receiver REC, and adversary SIM. The function-
ality starts with a channel-setup phase after which the two parties can send arbitrary many messages from
one to another. The functionality is parameterized by a non-information oracle O.

1. Channel Setup. Upon receiving input (ChSetup, sid, SEN) from SEN, initialize the machine O
and record the tuple (sid,O). Pass the message (ChSetup, SEN) to REC. In addition pass this
message to O and forward its output to SIM.

2. Message Transfer. Upon receiving an input (send, sid, SEN,m) from party SEN, find a tuple
(sid,O), and, if none exits, ignore the message. Otherwise, send the message (send, sid, SEN,m)
to REC. In addition invoke O with (send, sid, SEN,m) and forward its output to SIM.

3. Corruption. Upon receiving message (corrupt, sid, P ) from SIM where P ∈ {SEN,REC}, send
(corrupt, sid, P ) to O and forward its output to the adversary. After the first corruption, stop the
execution of O and give SIM complete control over the functionality to let it learn all inputs and
specify any outputs.

Figure 1: The message transfer functionality.

Secure communication (SC). We define the functionality FSC for securely communicating a message
m from SEN to REC, following the notations from [GWZ09]. To handle the appropriate leakage to the
adversary in the ideal setting, the functionality is parameterized using a non-information oracle O which
gets the values of the exchanged messages m and outputs some side information to the adversary. The
security of this functionality depends on the security properties required for the oracle and thus can capture
several notions such as NCE and `-equivocal NCE (see Section 3.1). Specifically, for NCE the oracle only
leaks the length of the message, whereas for `-equivocal NCE with equivocality parameter ` the oracle leaks
an `-length vector such that the ith element in the vector depends onm, for some i ∈ {1, . . . , `}. In Figure 1
we define the message transfer functionality with respect to oracle O. Next, we define the oracles for the
cases of NCE and `-equivocal NCE, starting with the former.

Definition 2.4 LetO be an oracle, which on input (send, sid, SEN,m), produces the output (send, sid, SEN,
|m|), and on any inputs corresponding to the ChSetup, Corrupt commands produces no output. We call the
functionality FOSC or just FSC for brevity, an NCE ideal functionality. A real world protocol which realizes
FSC is called an NCE scheme.

In order to define O for `-equivocal NCE, we present the following definitions first.

Definition 2.5 An oracle I is called message-ignoring oracle if, on any input (send, sid, SEN,m), it ig-
nores the message value m and processes only the input (send, sid, SEN, |m|). An oracle M is called
message-processing oracle if it has no such restrictions. We call a pair of oracles (M, I) well-matched
if no PPT distinguisher D (with oracle access to either M or I) can distinguish the message-processing
oracleM from the message-ignoring oracle I.

Definition 2.6 Let (M, I) be a well-matched pair which consists of a message-processing and a message-
ignoring oracle respectively. Let O` be a (stateful) oracle with the following structure.

– Upon initialization, O` chooses a uniformly random index i ← {1, . . . , `}. In addition it initializes a
tuple of ` independent oracles: (O1, . . . ,O`), where Oi = M and for j 6= i, the oracles Oj are
independent copies of the message-ignoring oracle I.
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Functionality FOT

Functionality FOT communicates with with sender SEN and receiver REC, and adversary SIM.

1. Upon receiving input (sender, sid, x0, x1) from SEN where x0, x1 ∈ {0, 1}n, record (sid, x0, x1).

2. Upon receiving (receiver, sid, σ) from REC, where a tuple (sid, x0, x1) is recorded and σ ∈ {0, 1},
send (sid, xσ) to REC and sid to SIM. Otherwise, abort.

Figure 2: The oblivious transfer functionality.

– WheneverO` receives inputs of the form (ChSetup, sid, SEN) or (send, sid, SEN,m), it passes the input
to each oracle Oi receiving an output yi. It then outputs the vector (y1, . . . , y`).

Upon receiving an input (corrupt, sid, P ), the oracle reveals the internal state of the message-processing
oracle Oi only.

For any such oracle O`, we call the functionality FO`

SC an `-equivocal NCE. For brevity, we will also use the
notation F `SC to denote FO`

SC for some such oracle O`. Lastly, a real world protocol which realizes F `SC is
called an `-equivocal NCE scheme.

As before, no information about messages m is revealed during the “send” stage. However, the internal
state of the message-processing oracleOi, which is revealed upon corruption, might be “committing”. Nev-
ertheless, a simulator can simulate the communication between two honest parties over a secure channel, as
modeled by F `SC, in a way that allows it to later explain this communication as any one of ` possibilities.

Oblivious transfer (OT). The 1-out-of-2 oblivious transfer functionality FOT is defined in Figure 2.

3 One-sided Adaptively Secure NCE

In this section we discuss our first result regarding one-sided NCE, that is building on the cryptographic
primitives NCE for the receiver (NCER), NCE for the sender (NCES) and `-equivocal NCE. Before pre-
senting our construction we review the security definitions of these primitives.

3.1 NCER, NCES and `-Equivocal NCE

NCE for the receiver. NCE for the receiver is a secure PKE with an additional property that enables gen-
erating a secret key that decrypts a fake ciphertext into any plaintext. Specifically, the scheme operates in
two modes. The real mode enables to encrypt and decrypt as in the standard definition of PKE. Whereas
the fake mode enables to generate fake ciphertexts that are computationally indistinguishable from real ci-
phertexts, such that using a special trapdoor one can produce a secret key that decrypts a fake ciphertext into
any plaintext. More formally, an NCE for the receiver encryption scheme with message space m ∈ {0, 1}n
consists of a tuple of probabilistic algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:

• Gen,Enc,Dec are as specified in Definition A.4.

• Enc∗, given the public key PK output a ciphertext c∗ and a trapdoor tc∗ .

• Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m ∈ {0, 1}n, output SK∗ such that
m = DecSK∗(c

∗).
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Definition 3.1 (NCER) NCE for the receiver is a tuple of algorithms defined above that satisfy the following
properties:

1. Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition A.5.

2. Ciphertext indistinguishability. For any m ∈ {0, 1}n the following distributions are computation-
ally indistinguishable:

{(PK, SK, c,m) | (PK, SK)← Gen(1n), c← EncPK(m)} and

{(PK, SK∗, c∗,m) | (PK, SK)← Gen(1n), (c∗, tc∗)← Enc∗(PK), SK∗ ← Equivocate(SK, c∗, tc∗ ,m)}.

NCER can be realized under the DDH assumption [JL00, CHK05] for polynomial-size message spaces and
under the DCR assumption for exponential-size message spaces [CHK05].

NCE for the sender. NCE for the sender is a secure PKE with an additional property that enables gener-
ating a fake public key, such that any ciphertext encrypted under this key can be viewed as the encryption
of any message together with the matched randomness. Specifically, the scheme operates in two modes.
The real mode enables to encrypt and decrypt as in standard definition of PKE. Whereas the fake mode
enables to generate fake public keys and an additional trapdoor, such that the two modes keys are compu-
tationally indistinguishable. In addition, given this trapdoor and a ciphertext generated using a fake public
key, one can produce randomness that is consistent with any plaintext. More formally, an NCE for the
sender encryption scheme with message space m ∈ {0, 1}n consists of a tuple of probabilistic algorithms
(Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

• Gen,Enc,Dec are as specified in Definition A.4.

• Gen∗ generates public key PK∗ and a trapdoor tPK∗ .

• Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plaintext m ∈ {0, 1}n,
output r such that c∗ = Enc(m; r).

Definition 3.2 (NCES) An NCE for the sender is a tuple of algorithms defined above that satisfy the fol-
lowing properties:

1. Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition A.5.

2. Public key indistinguishability. For anym ∈ {0, 1}n the following distributions are computationally
indistinguishable:

{(PK, r,m, c) | (PK, SK)← Gen(1n), c← EncPK(m; r)} and

{(PK∗, r∗,m, c∗) | (PK∗, tPK∗)← Gen∗(1n), c∗ ← EncPK∗(m
′; r′), r∗ ← Equivocate(c∗, tPK∗ ,m)}.

NCES can be realized under the DDH assumption [BHY09] for polynomial-size message spaces and un-
der the DCR assumption for exponential-size message spaces. The later construction is presented in Sec-
tion 3.1.1.
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`-Equivocal NCE [GWZ09]. The idea of `-equivocal NCE is to exploit the fact that it is often unnecessary
for the simulator to explain a fake ciphertext with respect to any potential plaintext. Instead, the simulator
is given a set of ` messages during the generation of the fake ciphertext and must later be able to plausibly
explain the ciphertext as the encryption of any one of those ` messages (where ` might be as small as 2).
Specifically, two parameters are considered here: a plaintext of bit length `′ and an equivocality parameter `
which denotes the potential number of plaintexts (namely, the non-committed domain size). The parameter
` further dominates the overhead of the `-equivocal NCE construction from [GWZ09] and thus improves
over NCE whenever ` is very small, but the plaintext length is large. Specifically, the [GWZ09] construction
requiresO(log `) PKE operations. In this paper, we use this primitive to encrypt plaintexts domains of length
n with constant overhead. `-equivocal NCE is realized in [GWZ09] under the same hardness assumptions
that imply NCE.

3.1.1 NCES for Exponential-Size Message Spaces

In what follows, we introduce a new NCE for the sender based on the security of the DCR assumption. Our
scheme is based on the PKE from [CHK05], building on earlier work by Cramer and Shoup [CS02]. Let
N = pq be an RSA modulus, then define ΠDCR

NCES = (Gen,Gen∗,Enc,Dec,Equivocate) an NCES as follows.

– Gen, given the security parameter n, generate an RSA modulus N = pq with p = 2p′+1 and q = 2q′+1
where p, q, p′, q′ are primes. Pick g′ ← Z∗N2 and α ← ZN2/4 and set g0 = g′2N mod N2 and
h0 = gα0 mod N2. Choose a random r ← ZN/4 and compute g1 = gr0 mod N2, h1 = ((1 + N) ·
hr0) mod N2. Output PK = (N, g0, h0, g1, h1) and secret key SK = α.

– Gen∗, given the security parameter n, generateN, g0, h0 as in Gen. Choose a random r ← ZN/4 and com-
pute g1 = gr0 mod N2, h1 = hr0 mod N2. Output PK∗ = (N, g0, h0, g1, h1) and trapdoor tPK∗ = r.

– Enc, given the public key PK = (N, g0, h0, g1, h1) (or PK∗) and a message m ∈ ZN , choose a random
t← ZN/4 and output the ciphertext

c← Enc(m; t) =
(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
.

– Dec, given the public key PK = (N, g0, h0, g1, h1), secret key SK = α and ciphertext c = (gc, hc),
compute m̂ as follows and output m ∈ ZN such that m̂ = 1 +mN .

m̂ = (hc/g
α
c )N+1 = [(1 +N)m]N+1 = (1 +N)m.

– Equivocate, given Φ(N), the fake key PK∗ = (N, g0, h0, g1, h1), trapdoor tPK∗ = r, a ciphertext c∗ ←
EncPK∗(m; t) = (gc, hc) and a message m′, output t′ = (rm+ t− rm′) mod Φ(N)/4. It is easy to
see that

EncPK∗(m
′; t′) =

(
(gm

′
1 gt

′
0 ), hm

′
1 ht

′
0 )
)

=
(

(grm
′

0 g
(rm+t−rm′)
0 ), (hrm

′
0 h

(rm+t−rm′)
0 )

)
= c.

Next, we show that this scheme meets Definitions 3.2.

Proposition 3.1 Assume that the DCR assumption is hard in Z∗N2 , then ΠDCR
NCES is a NCES.
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Proof: Given the public key PK = (N, g0, h0, g1, h1) and two messages m,m′ ∈ ZN , it holds that
encryptions of any two messages m and m′, namely the tuples (1)

(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
and (2)

(
(gm

′
1 gt0) mod N2, (hm

′
1 ht0) mod N2

)
are computationally close. This follows immediately from

the IND-CPA security proof for the modified scheme in [DJ03] (cf. Theorem 2 of [DJ03]). The fact that fake
and valid public keys are computationally indistinguishable follows from the IND-CPA security of [CHK05]
and [CS02], as the former key is an encryption of zero whereas the latter key is an encryption of one.

3.2 Our Construction

The idea of our protocol is to have the receiver create two public/secret key pairs where the first pair is
for NCES and the second pair is for NCER. The receiver sends the public keys and the sender encrypts
two shares of its message m, each share with a different key. Upon receiving the ciphertexts the receiver
recovers the message by decrypting the ciphertexts. We stress that this idea only works if the simulator
knows the identity of the corrupted party prior to the protocol execution, since the simulator must decide
in advance whether the keys or the ciphertexts should be explained as valid upon corruption (as we cannot
have both generated in a fake mode). Nevertheless, in the one-sided setting we cannot tell which party
will be adaptively corrupted prior to the execution. We thus resolve this issue using `-equivocal NCE in
order to commit to the choice of having fake/valid keys and ciphertexts (so the simulator can postpone its
decision regarding having either fake keys or ciphertexts to the point where corruption occurs). The fact
that this choice induces a binary equivocation space enables to design a protocol with a constant overhead.
We are now ready to introduce our protocol in the F `SC-hybrid model (for ` = 2). Formally, let ΠNCES =
(Gen,Gen∗,Enc,Dec,Equivocate) and ΠNCER = (Gen,Enc,Enc∗,Dec,Equivocate) respectively denote
NCES and NCER for message space {0, 1}n. Then, consider the following protocol that realizes FSC with
one-sided security.

Protocol 1 (One-sided NCE (ΠOSC))

• Inputs: Sender SEN is given input message m ∈ {0, 1}n. Both parties are given security parameter 1n.

• The Protocol:

1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains two public/secret
key pairs (PKS , SKS) and (PKR, SKR), respectively. REC then forwards (ChSetup, sid,REC) and
(send, sid,REC, PKS) to F`SC, and the message PKR to SEN.

2. Message from the sender. Upon receiving (send, sid,REC, PKS) from F`SC and PKR from REC,
SEN creates two shares of m, mS and mR, such that m = mS ⊕ mR. It then encrypts mS (resp.
mR) using PKS (resp. PKR), creating ciphertext cS (resp. cR), and forwards (ChSetup, sid′, SEN),
(send, sid′, SEN, cS) and (ChSetup, sid′′, SEN), (send, sid′′, SEN, cR) to F`SC

3. Output. Upon receiving (send, sid′, SEN, cS) and (send, sid′′, SEN, cR) from F`SC, REC decrypts cS
(resp. cR) using SKS (resp. SKR) and outputs the bitwise XOR of the decrypted plaintexts.

Our protocol can be instantiated using DDH based NCES and NCER for polynomial-size message
spaces, and using DCR based NCES and NCER for exponential-size message spaces. Note that the message
space of our one-sided NCE is implied by the message spaces of the underlying NCES/NCER schemes.
Therefore, when instantiated with the above concrete constructions, our protocol can transmit n-bits mes-
sages using a constant number of PKE operations, as opposed to NCE that requires O(n) such operations.
We conclude with the following theorem and the complete proof.

Theorem 3.3 Assume the existence of NCER and NCES. Then Protocol 1 UC realizesFSC in theF `SC-hybrid
model (for ` = 2) in the presence of one-sided adaptive malicious adversaries.
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Intuitively, security follows due to the fact that the simulator is not committed to either valid keys or
valid ciphertexts as it plays the role of functionality F `SC. Thus, upon corrupting one of the parties it is able
to explain that party’s internal state while equivocating the communication with respect to message m.

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking Protocol 1 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FSC such that no
environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in the
hybrid setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality FSC

and the environment ENV. We refer to the interaction of SIM with FSC and ENV as the external interaction.
The interaction of SIM with the simulated ADV is the internal interaction. We explain the strategy of the
simulation for all corruption cases.

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by the environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and sends the message
(corrupt, sid, SEN) to FSC, receiving back the message (send, sid, SEN, |m|) and the sender’s in-
put m. It then picks two public/secret key pairs (PKS , SKS) and (PKR, SKR). It then emulates
functionality F `SC and the honest receiver by forwarding ADV the message (send, sid,REC, PKS)
from F `SC and PKR from REC. Upon receiving (send, sid′, SEN, cS) and (send, sid′′, SEN, cR)
from ADV, SIM extracts m (that may be different than the message received from FSC) by computing
m = DecSKS

(cS) ⊕ DecSKR
(cR). In case decryption does not follow correctly, SIM fixes m to be a

default value. It then externally forwards (ChSetup, sid, SEN) and (send, sid, SEN,m) to the ideal
functionality FSC. Note that corruption takes place at the outset of the protocol execution and thus the
simulator is able to simulate the transcript exactly as in the hybrid setting.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and sends the message
(corrupt, sid, SEN) to FSC, receiving back the message (send, sid, SEN, |m|) and the receiver’s out-
putm. SIM invokes ADV and receives (send, sid, SEN, PKS) (which is the message sent toF `SC), and
PKR. Next, SIM completes the execution playing the role of the honest sender on input m. Note that
it does not make a difference whether REC generates valid or invalid public keys since SIM knows m
and thus perfectly emulates the receiver’s view.

Otherwise, upon receiving (send, sid, SEN, |m|) fromFSC, SIM emulates the receiver’s message as follows.
It creates public/secret key pair (PKR, SKR) for ΠNCER, a valid public/secret key pair (PKS , SKS) and a
fake public key with a trapdoor (PK∗S , tPK∗S ) for ΠNCES (using Gen and Gen∗, respectively). SIM emulates
the honest receiver by sending PKR to the sender (recall that the other public key is sent via F `SC).

SEN is corrupted between Steps 1 and 2. Upon receiving the sender’s input m, SIM completes the
simulation exactly as in the previous case when SEN was corrupted at the outset of the protocol
execution, as no message was sent yet on behalf of the sender.

REC is corrupted between Steps 1 and 2. Upon receiving the receiver’s output message m, SIM ex-
plains the receiver’s internal state as follows. Specifically, it reveals the randomness for generating
PKS , SKS and PKR, SKR, and explains PKS as the message that was sent to F `SC. SIM then com-
pletes the simulation while playing the role of the honest sender with input message m.

Note that in the F `SC-hybrid model the simulation and the hybrid executions are identically distributed
since the transcript only includes PKR.
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If none of the above corruption cases occur, SIM emulates the sender’s message as follows. It first
chooses two random shares m′S ,m

′
R and generates a pair of ciphertexts (c′S , c

∗
S) for ΠNCES where both

encrypt m′S respectively using PKS and PK∗S . It then generates a pair of ciphertexts (c′R, c
∗
R) for ΠNCER

such that c′R is a valid encryption of m′R under public key PKR, and c∗R is a fake ciphertext generated using
Enc∗ and PKR. (Recall that the sender’s message is sent via F `SC thus it is not part of the transcript seen by
the adversary).

SEN is corrupted after Step 2 is concluded. Upon receiving the sender’s inputm fromFSC, the simulator
explains the sender’s internal state as follows. It first explains PK∗S for being the public key received
from F `SC. Furthermore, it explains c∗S and c′R as the ciphertexts sent to F `SC. Finally, it computes
r′′ ← Equivocate(c∗S , tPK∗S ,m

′′
S) form′′S such thatm = m′′S⊕m′R, and presents r′′ as the randomness

used to generate c∗S for encrypting m′′S . The randomness used for generating c′R is revealed honestly.

Consider the adversary’s view which is comprised from three invocations of F `SC (one played with
the role of the receiver and two with the role of the sender) and a public key PKR that was honestly
generated. Note that the message received via the first F `SC invocation is a fake public key PK∗S .
Moreover, the remaining two invocations are for sending the honestly generated ciphertexts relative
to keys PK∗S and PKR. Now, since the only different between the simulated and hybrid views is with
respect to the key for NCES, we reduce the security of this case to the security of ΠNCES.

Specifically, here the difference boils down to the key indistinguishability property of ΠNCES. Given
m and a tuple in one of these forms (PK∗, r∗, m̃, c∗) or (PK, r, m̃, c) for an arbitrary m̃, as specified
in Definition 3.2, a distinguisher AdvNCES continues as follows. Say it was given (PK′, r′, m̃, c′),
then AdvNCES emulates the role of the honest receiver and forwards the key PK′ to F `SC and a valid
key PKR to SEN. It then completes the simulation as the simulator would do while plugging-in c′

as the ciphertext that encrypts m̃ under PK′. The distinguisher then explains the sender’s internal
state as in the simulation. Clearly, any advantage in distinguishing the hybrid and simulated views
can be reduced to breaking the indistinguishability of ΠNCES since AdvNCES generates a view that is
distributed according to one of these executions.

REC is corrupted after Step 2 is concluded. Upon receiving the receiver’s message m from FSC, the
simulator explains the receiver’s internal state as follows. It explains PKS for being the public key
sent to F `SC and presents the randomness for generating (PKS , SKS) and (PKR, SK∗R) where SK∗R is
as defined below. It then explains cS and c∗R for being the ciphertexts received from F `SC. Specifically,
SK∗R is defined such that m′′R ← DecSK∗R(c∗R) and m′′R ⊕m′S = m.

Security is proven similarly to the case the sender is corrupted at the end. Namely, the receiver’s
view is comprised from three invocations of F `SC and ciphertexts cS , c∗R. Security follows due to the
security of ΠNCER, where a distinguisher AdvNCER that wishes to distinguish between a fake and a
real ciphertext receives either (PK, SK∗R, c

∗
R,m

′′
R) or (PK, SK, cR,m′′R).

4 One-Sided Adaptively Secure OT

FOT, formally defined in Figure 2, is one of the fundamental functionalities in secure computation. In this
section we design one-sided OT based on the [PVW08] construction which is designed based on dual-mode
PKE. We recall this definition first.
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4.1 Dual-Mode PKE

Loosely speaking, a dual-mode PKE is a PKE that is initialized with system parameters that can be defined in
two modes. For each mode it is possible to generate public and secret keys that are associated with a branch
σ ∈ {0, 1}. Similarly, the encryption algorithm generates ciphertexts with respect to a branch β ∈ {0, 1}.
Moreover, if the key branch matches the ciphertext branch (that is, σ = β), then the ciphertext can be
correctly decrypted. The security of dual-mode PKE relies on the indistinguishability of the two system
parameters modes, which are denoted by messy and decryption. In messy mode the system parameters are
generated together with a messy trapdoor, which imply that any public key (even malformed keys) can be
associated with any branch. Moreover, when the key branch does not match the ciphertext branch then
the ciphertext becomes statistically independent of the plaintext. On the other hand, in decryption mode
the system parameters allow to generate two secret keys that correctly decrypt the ciphertexts generated
for either branch. Formally, a dual-mode PKE ΠDUAL with message space {0, 1}n consists of a tuple of
probabilistic algorithms (Setup, dGen, dEnc, dDec,FindBranch,TrapKeyGen) specified as follows:

• Setup(1n, µ), given security parameter n and mode µ ∈ {0, 1}, outputs (CRS, t). The CRS is a com-
mon string for the remaining algorithms, and t is a trapdoor value that is given to either FindBranch
or TrapKeyGen, depending on the mode.

The setup algorithms for messy and decryption modes are denoted by SetupMessy and SetupDecryption,
respectively; namely SetupMessy(1n) := Setup(1n, 0) and SetupDecryption(1n) := Setup(1n, 1).

All the remaining algorithms take CRS as their first input. For clarity, we usually omit it from their
lists of arguments.

• dGen(σ), given a desired decryptable branch value σ, outputs (PK, SK) where PK is a public encryp-
tion key and SK is a corresponding secret decryption key for messages encrypted in branch σ. For
our purpose, the secret decryption key denotes the randomness used by dGen which further induces
the secret key.

• dEnc(PK, β,m), given a public key PK, a branch value β ∈ {0, 1} and a message m ∈ {0, 1}n,
outputs a ciphertext c encrypted on branch β.

• dDec(SK, c), given a secret key SK and a ciphertext c, outputs a message m ∈ {0, 1}n.

• FindBranch(t, PK), given a trapdoor t and some (possibly even malformed) public key PK, outputs
a branch value β ∈ {0, 1} corresponding to a messy branch of PK.

• TrapKeyGen(t), given a trapdoor t, outputs (PK, SK0, SK1), where PK is a public encryption key
and SK0, SK1 are corresponding secret decryption keys for branches 0 and 1, respectively.

Definition 4.1 (Dual-mode PKE) A dual-mode PKE is a tuple of algorithms described above that satisfy
the following properties:

1. Completeness for decryptable branch. For every σ ∈ {0, 1}, every (CRS, t) ← Setup(1n, σ),
every (PK, SK) ← dGen(σ), and every m ∈ {0, 1}n, decryption is correct on branch σ, i.e.,
dDecSK(dEncPK(m,σ)) = m.

2. Indistinguishability of modes. The CRS generated by SetupMessy and SetupDecryption are com-
putationally indistinguishable, i.e., SetupMessy(1n) ≈c SetupDecryption(1n).
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3. Trapdoor extraction of a messy branch (messy mode). For every (CRS, t) ← SetupMessy(1n)
and every (possibly malformed) PK, FindBranch(t, PK) outputs a branch value β ∈ {0, 1} such that
dEnc(PK, β, ·) is messy. Namely, for every m0,m1 ∈ {0, 1}n, dEncPK(m0, β) ≈s dEncPK(m1, β).

4. Trapdoor generation of keys decryptable on both branches (decryption mode). For every (CRS, t)
← SetupDecryption(1n), TrapKeyGen(t) outputs (PK, SK0, SK1) such that for every σ ∈ {0, 1},
(PK, SKσ) ≈c dGen(σ).

This notion was introduced by Peikert et al. in [PVW08], which further showed how to instantiate it based
on the DDH, QR and Learning with Errors hardness assumptions. We note that our definition is slightly
different than the original [PVW08] definition in the sense that algorithm dGen returns the randomness it
uses in order to generate the secret key and the public key. This is required for equivocating the internal
state of the receiver upon being adaptively corrupted (and is not required in the static setting). We note that
this modification does not effect the former two instantiations in [PVW08] and further arises in [GWZ09].

4.2 Our Construction

We now concentrate on designing our one-sided OT based on the [PVW08] construction. Recall that in
PVW protocol [PVW08] the receiver first generates public and secret keys for branch σ. In response, the
sender returns the encryptions of x0 with respect to branch 0 and x1 with respect to branch 1. Finally,
the receiver decrypts the ciphertext for branch σ. Our one-sided OT requires the following modifications
with respect to [PVW08]. First, we fix the system parameters of the dual-mode PKE in decryption mode
(where originally the system parameters are defined in either messy mode or decryption mode). Specifically,
fixing the system parameters in decryption mode as we suggest here implies that in the security proof the
simulator can extract the sender’s input and equivocate the receiver’s input. In addition, in order to be able
to equivocate the sender’s input in the security proof we encrypt its message using our one-sided NCE (see
Section 3.1). Finally, in order to extract the receiver’s bit, we ask the receiver to prove its behaviour using
a special ZK PoK type for compound statements. In particular, the receiver proves that it knows a secret
key for either branch 0 or 1, where the extracted branch value implies the extraction of σ. We design this
proof so that it exploits the fact that the simulator knows the secret keys for both branches. Specifically, the
proof allows the simulator to use both secret keys when emulating the receiver’s role and later convince the
adversary that it only knows the σth secret key. We denote these type of proofs by witness equivocal and
explain them in more details in Section 6.2. More formally, the compound relation RLR we use in our OT
protocol is combined of the following two relations:

RZERO =
{

(PK, SK) | (PK, SK)← dGen(CRS, 0)
}
,

where CRS are the system parameters and dGen is the key generation algorithm for the underlying dual-
mode system. Similarly, we define RONE for public keys generated with respect to branch 1. Then, the
compound relationRLR is defined by

RLR =
{

((PK0, PK1), (SK, σ)) | (PKσ, SK)← dGen(CRS, σ)
}
.

In Section 6.2 we consider two instantiations ofRLR based on the DDH and QR assumptions.
We are now ready to describe our protocol in details. Formally, we denote the dual-mode PKE of [PVW08]

by ΠDUAL = (SetupMessy, SetupDecryption, dGen, dEnc, dDec,FindBranch,TrapKeyGen) and describe
our construction in the (FSC,FLR)-hybrid model, where FLR is the ideal functionality that verifies the rela-
tionRLR and returns Accept to the verifier only if the witness provided by the prover meets the definition
ofRLR. More formally,
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Protocol 2 (One-sided OT ( ΠOT))

• Inputs: Sender SEN has x0, x1 ∈ {0, 1}n and receiver REC has σ ∈ {0, 1}.

• CRS: CRS such that (CRS, t)← SetupDecryption.

• The Protocol:

1. REC generates (PK, SK)← dGen(CRS, σ) and sends PK. REC further calls FLR with (PK, (SK, σ)).

2. Upon receiving Accept from FLR and PK from REC, SEN generates c0 ← dEncPK(x0, 0) and c1 ←
dEncPK(x1, 1). SEN sends FSC the messages (send, sid, SEN, c0) and (send, sid′, SEN, c1).

3. Upon receiving (send, sid, SEN, c0) and (send, sid′, SEN, c1) from FSC, REC outputs dDecSK(cσ).

Note that our protocol implies oblivious transfer with constant number of PKE operations for sender’s
input space {0, 1}n if the underlying one-sided NCE requires a constant overhead for message space {0, 1}n,
as holds for our construction from Section 3.1.

Theorem 4.2 Assume the existence of one-sided NCE and dual-mode PKE. Then Protocol 2 UC realizes
FOT in the (FSC,FLR)-hybrid model in the presence of one-sided adaptive malicious adversaries.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol 2 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FOT such that no
environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in the
hybrid setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality
FOT and the environment ENV. We refer to the interaction of SIM with FOT and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction. Upon computing
(CRS, t)← SetupDecryption(1n), SIM proceeds as follows:

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and emulates the receiver
by running (PK, SK0, SK1) ← TrapKeyGen(t). It then sends PK to the adversary on behalf of the
honest receiver and an Accept message on behalf of FLR. Next, upon receiving from ADV the mes-
sages (send, sid, SEN, c1) and (send, sid′, SEN, c1), sent to FSC, SIM computes x0 = dDecSK0(c0)
and x1 = dDecSK1(c1). It then forwards FOT the message (sender, sid, x0, x1) and completes the
execution playing the role of the receiver using an arbitrary σ.

Note that, in contrast to the hybrid execution where the receiver uses its real input σ as input to dGen
in order to create public/secret keys pair, the simulator does not know σ and thus creates the keys
using TrapKeyGen. Nevertheless, when the CRS is set in a decryption mode the left public key is
statistically indistinguishable from the right public key. Furthermore, the keys (PK, SKi) that are
generated by TrapKeyGen are statistically close to the keys generated by dGen with input bit i. This
implies that the hybrid and simulated executions are statistically close.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and receives a public
key PK and a witness SKσ as the input to FLR. Given SKσ, SIM checks if PK is the left or the right
key and uses it to extract the receiver’s input σ. If the adversary’s message is invalid then SIM aborts,
sending ⊥ to FOT. Otherwise, it forwards the message (receiver, sid, σ), receiving back xσ. Finally,
SIM computes the sender’s message using xσ and an arbitrary x′1−σ.
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Note that unlike in the hybrid execution, the simulator uses an arbitrary x′1−σ instead of the real x1−σ.
However, a decryption mode implies computational privacy of x1−σ. This follows from the same
proof in [PVW08]. Therefore, the hybrid view is also computationally indistinguishable from the
simulated view as in the static setting.

If none of the above corruption cases occur SIM invokes (PK, SK0, SK1)← TrapKeyGen(t) and emulates
the message PK sent to the sender.

SEN is corrupted between Steps 1 and 2. SIM trivially explains the sender’s internal state since SEN did
not compute any message so far. The simulator completes the simulation by playing the role of REC
using an arbitrary bit σ as in the case when the sender is corrupted at the outset of the execution.

Indistinguishability for this case follows similarly to the prior corruption case when SEN is corrupted
at the outset of the execution since the simulator uses the same simulation strategy as above. Namely,
the adversary’s simulated view is identically distributed in both simulation cases. This is because this
view only contains the public key which is statically independent of σ in a decryption mode.

REC is corrupted between Steps 1 and 2. Upon corrupting the receiver SIM obtains (sid, σ, xσ) from
FOT and explains the receiver’s internal state as follows. It first explains SKσ as the witness given to
FLR and PK as the outcome of dGen(CRS, σ). The simulator then completes the simulation playing
the role of the honest sender with xσ and an arbitrary x′1−σ.

Indistinguishability for this case follows similarly to the prior corruption case since the simulator did
not emulate the sender’s message yet.

If none of the above corruption cases occur then SIM chooses two arbitrary inputs x′0, x
′
1 for the sender and

encrypts them using the dual-mode encryption. Denote these ciphertexts by c′0, c
′
1. SIM emulates the sender

that sends these ciphertexts using FSC.

SEN is corrupted after Step 2. Upon corrupting the sender, SIM obtains (sid, x0, x1) from FOT. It then
explains the sender’s internal state as follows. It first computes c0, c1 that respectively encrypt x0 and
x1. It then explains c0 and c1 as being sent to the receiver using FSC.

Indistinguishability follows as in the prior corruption case of the sender since the one-sided non-
committing channel enables the simulator to “rewind” the simulation back, assuming that the sender
is corrupted before simulating its message. Therefore, the same simulation strategy as before, of
emulating the sender’s incoming message using an arbitrary bit σ works here as well.

REC is corrupted after Step 2. Upon corrupting the receiver, SIM obtains REC’s input and output
(sid, σ, xσ) from FOT. It then explains the receiver’s internal state as follows. It first explains SKσ as
the witness given to FLR and PK as the outcome of dGen(CRS, σ). Finally, it explains the output of
FSC as c0, c1, so that cσ is a valid encryption of xσ under PK and c1−σ is an encryption of an arbitrary
input.

Indistinguishability follows similarly to a static corruption case of the receiver.

Concrete instantiations. A DDH-based instantiation implies that the CRS is a Diffie-Hellman tuple
(g0, g1, h0, h1) and the trapdoor is logg0 g1. Moreover, the witness equivocal ZK PoK is realized with
the statement and witness relation

(
((g0h0, g

r
σh

r
σ), (g1h1, g

r
σh

r
σ)), r

)
such that PK = (grσ, h

r
σ), SK = r

and r ← Zp. An additional QR-based instantiation implies that the CRS is a quadratic residue y from Z∗N
whereas the trapdoor is s such that y = s2 mod N , where N is an RSA composite. Finally, the ZK PoK is
realized with the statement and witness

(
(y · PK, PK), r

)
such that PK = r2/yσ, SK = r and r ← Z∗N .
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5 One-Sided Adaptively Secure Computation

In the following we demonstrate the feasibility of one-sided adaptively secure protocols in the plain model
with overhead that grows linearly with the static communication complexity (Section 5.1) and in the pres-
ence of malicious adversaries in the UC setting (Section 5.2). Our generic compiler requires from the parties
to communicate with each other using non-committing secure channels that achieve one-sided security (as
formally modeled by FSC in Section 3.1). This transformation demonstrates the feasibility of semi-honest
(UC) security in the presence of one-sided attacks with the specified overhead. Moreover, in the plain model
our compiler implies one-sided malicious security with the same overhead. We recall that it is not clear
how to compile static maliciously secure protocols into the one-sided setting while preserving UC security,
which is due to the additional setup. We thus build a concrete maliciously one-sided secure construction
by modifying the [LP12] static Yao based protocol. Our construction is constant round UC secure which
requires a number of PKE operations that depends linearly on the circuit’s size times a statistical parameter.

5.1 From Static to One-Sided Security with no Setup

In this section we present a simple compiler that achieves one-sided adaptive security given a static protocol.
Loosely speaking, given a protocol Π our compiler encrypts the communication of Π using one-sided NCE.
The intuition behind the security proof follows from the fact that one-sided NCE allows to equivocate the
communication until the point corruption takes place. Specifically, whenever corruption occurs the simulator
can essentially “rewind” back to the outset of the execution and recompute the entire protocol transcript
using the corrupted party’s input, while pretending that this party was statically corrupted and that it follows
the protocol execution until the corruption point. It then presents the adversary the generated transcript.
As explained in [GWZ09], a subtlety arises in the malicious setting where it must hold that the simulator
submits to the ideal functionality the exact same input used by the corrupted party (whom we assume to
follow the protocol). This is because the ideal functionality cannot accept a different input, as it already
computed the outputs using the honest inputs. This property is denoted by input preserving; see [GWZ09]
for more details. We are now ready to prove the following theorem, our proof follows similarly to the proof
from [GWZ09] which demonstrates a compiler from semi-adaptive security into fully adaptive.

Theorem 5.1 Let f be a deterministic same-output functionality and let Π be a statically secure protocol
with input preserving simulation. Then protocol Π′, in which the parties run Π but only communicate with
each other using one-sided NCE is one-sided adaptively secure.

Proof: Let ADV be a malicious PPT adversary attacking Protocol Π. We construct a simulator SIM′

such that no PPT ENV distinguishes the real and the simulated views, i.e., the following computational
indistinguishability holds

{OIDEALf,SIM′,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {OREALΠ′,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN.

Simulator SIM′ internally invokes a copy of the real adversary ADV and externally interacts with the
ideal functionality f and environment ENV. We neglect static corruptions (since these are covered by the
statically secure protocol Π) and describe the strategy of SIM′ for the following two corruption cases: (1)
Simulation with no corruptions. (2) Simulation when the first adaptive corruption takes place. Our proof
follows in the FSC-hybrid model. As in the [GWZ09] proof, we assume that Π is a well-structured protocol.
Namely, a protocol execution should have the same number of messages, message lengths and order of
communication independent of the inputs or random tape of the participating parties. This technicality is
needed for simulating the communication of Π. As pointed out in [GWZ09] almost all known constructed
protocols for cryptographic tasks are well-structured and any protocol can be easily converted into a well-
structured protocol.
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Simulation with no corruptions. In case both parties are honest, simulator SIM′ initializes a copy of the
static simulator SIM that completes the setup phase (if required). Next, relying on the fact that Π is well-
structured, SIM′ simulates the communication between the parties by simply forwarding publicly known
data. Specifically, for wash round i, the simulator forwards the message (send, sid, Pbi , ki) to ADV on
behalf of FSC, where bi is the identity of the party that sends the message in round i and ki is its length.

Simulation for the first adaptive corruption. Denote the identity of the first corrupted party by P1 and
the other identity by P2. Then SIM′ receives from f the corrupted party’s input x1 and (possible) output y1.
Let ADV1 denote a PPT adversary that corrupts party P1 right after the setup phase, yet uses the real input
of P1 in the execution, and let SIM1 denote the simulator for that adversary. Then SIM′ invokes SIM1 until
party P1 is corrupted while playing the role of functionality f . Note that by the input preserving property
SIM1 can only submits the input x1. If it expects to receive an output, SIM′ forwards SIM1 the value y1.
Once the simulation reaches the point where P1 is corrupted, SIM′ takes the internal state of SIM1 and sets
it as the internal state of P1.

Indistinguishability follows easily since in the hybrid FSC-model the adversary’s views are identical.

One implication of our compiler is that it implies the feasibility of constant rounds one-sided security
with O(|C|) symmetric key operations and O(|C|) public key operations by applying our compiler to the
semi-honest two-party protocol from [Yao82, LP09]. More formally,

Theorem 5.2 (One-sided semi-honest) Let f be a deterministic same-output functionality, and assume the
assumptions specified in [LP09] and one-sided NCE. Then there exists a constant rounds protocol with
semi-honest one-sided adaptive security that UC realizes f with O(|C|) public key operations.

In addition, since our compiler is applied to any protocol in the plain model, even with malicious security,
by combining our result with [LP12] we obtain the following theorem,

Theorem 5.3 (One-sided malicious) Let f be a deterministic same-output functionality, and assume the
assumptions specified in [LP12] and one-sided NCE. Then there exists a constant rounds protocol with
malicious one-sided adaptive security that realizes f with O(s|C|) public key operations.

In the following section we present an alternative malicious two-party construction with one-sided se-
curity that is also based on [LP12] yet obtains UC security.

5.2 UC Security against Malicious Adversaries

As mentioned in the introduction it is insufficient to simply encrypt the communication using one-sided
NCE as in the semi-honest setting, due to the additional CRS setup which might be based on which party is
corrupted. Instead, we take a different approach and directly compile the [LP12] protocol (which is based on
the DDH hardness assumption) into a protocol that achieves one-sided malicious security in the UC setting,
proving the feasibility of UC constant round with malicious one-sided security. The [LP12] protocol relies
on a cut-and-choose technique for which P0 sends s garbled circuits and later open half of them (aka, check
circuits) by the choice of P1. This ensures that with very high probability the majority of the unopened
circuits (aka, evaluation circuits) are valid. The cut-and-choose OT primitive of [LP12] allows P1 to choose
a secret random subset J of size s/2 for which it learns both keys for each input wire that corresponds to
the check circuits, and the individual keys associated with its input with respect to the evaluation circuits.
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In order to ensure that P0 hands P1 consistent input keys for all the circuits, the [LP12] protocol en-
sures that the keys associated with P0’s input are obtained via a Diffie-Hellman pseudorandom synthe-
sizer [NR95]. Namely, P0 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
n , ga

1
n and gc1 , . . . , gcs , where n is the input/output

length, s is the cut-and-choose parameter and g is a generator of a prime order group G. So that the pair of
keys associated with the ith input of P0 in the jth circuit is (ga

0
i cj , ga

1
i cj ).3 Given values {ga0i , ga1i , gcj} and

any subset of keys associated with P0’s input, the remaining keys associated with its input are pseudoran-
dom by the DDH assumption. Furthermore, when the keys are prepared this way P0 can efficiently prove
that it used the same input for all circuits. P1 then evaluates the evaluation circuits and takes the majority
value for the final output. In Section 5.2.1 we demonstrate how to adapt the cut-and-choose OT protocol
into the one-sided setting using the building blocks introduced in this paper. This requires dealing with new
subtleties regarding the system parameters and the ZK proofs.

5.2.1 One-sided Single Choice Cut-and-Choose OT

We describe next the single choice cut-and-choose OT functionality FCCOT from [LP12] and present a
protocol that implements this functionality with UC one-sided malicious security. In Section 5.2.2 we briefly
describe our batch single choice cut-and-choose OT construction using a single choice cut-and-choose OT,
which is used as a building block in the two-party protocol. Formally, FCCOT is defined as follows,

1. Inputs:

(a) SEN inputs a vector of pairs {(xj0, x
j
1)}sj=1.

(b) REC inputs a bit σ and a set of indices J ⊂ [s] of size exactly s/2.

2. Output: If J is not of size s/2, then SEN and REC receive ⊥ as output. Otherwise,

(a) For all j ∈ J , REC obtains the pair (xj0, x
j
1).

(b) For all j 6∈ J , REC obtains xjσ .

This functionality is implemented in [LP12] using s instances of the DDH-based OT from [PVW08],
where the receiver generates the system parameters in a decryption mode for the s/2 indices that correspond
to J whereas the remaining system parameters are generated in a messy mode. Specifically, the decryption
mode trapdoor enables the receiver to learn both of the sender’s inputs for the instances within J . This idea
is coupled with two proofs that ensure the correctness of the receiver’s computations. Our first step towards
making the [LP12] construction one-sided adaptively secure is to invoke s instances of our one-sided OT
where all system parameters are generated in a decryption mode.

Similarly to [LP12], our construction includes two phases: a setup phase and a transfer phase. In the
setup phase, the receiver generates the system parameters in a decryption mode for the s/2 instances that
correspond to indices in J , while the remaining system parameters are generated in the same mode but in a
way that does not allow REC to learn the trapdoor. This is obtained by fixing two random generators g0, g1

in the CRS, so that the CRS for all one-sided OT instances j 6∈ J include g0 and a power of g1, whereas the
CRS for OT instances j ∈ J include g0 and an element that is a power of g0. This ensures that REC does
not know logg0 g1 which is the decryption mode trapdoor for j 6∈ J . To ensure correctness, REC proves
that it knows the discrete logarithm of the second element with respect to g1 of at least s/2 pairs. We denote
this relation byRDL,COMP(s,s/2) and present discuss more details in Section 6.

In the transfer phase, the receiver uses these system parameters to create a public/secret key pair for the
OT instances not in J . For the rest of the OT executions the receiver invokes the TrapKeyGen algorithm of

3The actual key pair used in the circuit garbling is derived from (ga
0
i cj , ga

1
i cj ) using an extractor. A universal hash function is

used in [LP12] for this purpose, where the seeds for the function are picked by P0 before it knows J .
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the dual-mode PKE and obtains a public key together with a pair of secret keys that enable it to decrypt both
of the sender’s inputs. The receiver then proves that it used the same input σ for all OT instances using a re-
lation denoted byRDH,OR(s). Formally, let the DDH based dual-mode PKE of [PVW08] be specified by the
set of algorithms ΠDUAL = (SetupMessy, SetupDecryption, dGen, dEnc, dDec,FindBranch,TrapKeyGen).
We denote our one-sided OT by ΠCCOT and present it in the (FSC,FDL,COMP(s,s/2),FDH,OR(s))-hybrid model
(whereFDL,COMP(s,s/2),FDH,OR(s) ideally implement the corresponding relationsRDL,COMP(s,s/2),RDH,OR(s)).

Protocol 3 (One-sided adaptive single choice cut-and-choose OT (ΠCCOT))

• Inputs: SEN inputs a vector of pairs {(xi0, xi1)}si=1 and REC inputs a bit σ and a set of indices J ⊂ [s] of
size exactly s/2.

• Auxiliary Inputs: Both parties hold a security parameter 1n and G, p, where G is an efficient representation
of a group of order p and p is of length n.

• CRS: The CRS consists of a pair of random group elements g0, g1 from G.

• Setup phase:

1. REC chooses a random xj ∈ Zp and sets gj1 = g
xj

0 for all j ∈ J and gj1 = g
xj

1 otherwise.

For all j, REC chooses a random yj ∈ Zp and sets CRSj =
(
g0, g

j
1, h

j
0 = (g0)yj , hj1 = (gj1)yj

)
.

Finally, for all j ∈ J , REC stores trapdoor tj = xj . It then sends {CRSj}sj=1 to SEN.

2. REC calls FDL,COMP(s,s/2) with ({g1, g
j
1}sj=1, {xj}j∈J ) to prove the knowledge of the discrete loga-

rithms of s/2 values within the second element in {CRSj}j and with respect to g1.

• Transfer phase (repeated in parallel for all j):

1. For all j 6∈ J , REC computes (PKj , SKj) = ((gj , hj), rj)← dGen(CRSj , σ).
For all j ∈ J , REC computes (PKj , SK0

j , SK1
j ) = ((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj).

Finally, REC sends the set {PKj}sj=1 and stores the secret keys.

2. REC callsFDH,OR(s) with input (({(g0, h
j
0, gj , hj)}sj=1, {(g

j
1, h

j
1, gj , hj)}sj=1), {rj}sj=1) to prove that all

the tuples in one of the sets {(g0, h
j
0, gj , hj)}sj=1 or {(gj1, h

j
1, gj , hj)}sj=1 are DH tuples.

3. For all j, SEN generates cj0 ← dEncPKj (xj0, 0) and cj1 ← dEncPKj (xj1, 1). Let cj0 = (cj00, c
j
01) and

cj1 = (cj10, c
j
11). SEN calls FSC with (send, sid, SEN, cj01) and (send, sid, SEN, cj11) and sends cj00, c

j
10

to REC.

• Output: Upon receiving (send, sid, SEN, cj01) and (send, sid, SEN, cj11) from FSC, and cj00, c
j
10, REC defines

ciphertexts cj0 = (cj00, c
j
01) and cj1 = (cj10, c

j
11) for all j /∈ J .

1. REC outputs xjσ ← dDecSKj
(cjσ).

2. REC outputs (xj0, x
j
1)← (dDecSK0

j
(cj0), dDecSK1

j
(cj1)).

Theorem 5.4 Assume that the DDH assumption is hard in G. Then Protocol 3 UC realizes FCCOT in the
(FSC,FDL,COMP(s,s/2),FDH,OR(s))-hybrid model in the presence of one-sided malicious adversaries.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol 3 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality of a single choice
cut-and-choose oblivious transfer FCCOT such that no environment ENV distinguishes with a non-negligible
probability whether it is interacting with ADV in the hybrid setting or with SIM in the ideal setting. We
recall that SIM interacts with the ideal functionality and the environment ENV. We refer to the interaction
of SIM with the ideal functionality FCCOT and ENV as the external interaction. The interaction of SIM with
the simulated ADV is the internal interaction. We describe the simulator’s strategy for all corruption cases.
SIM begins by creating a CRS (g0, g1) and storing x = logg0 g1. It then proceeds as follows:
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Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

The sender is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
receiver as follows. In the setup phase it picks s system parameters in a decryption mode in which it
knows their trapdoors. Namely for each j ∈ [s], it creates CRSj = (g0, g

j
1, h

j
0, h

j
1) where gj1 = (g0)xj ,

hj0 = (g0)yj and hj1 = (gj1)yj = (g
xj
0 )yj for random xj’s and yj’s, and records the trapdoor tj = xj .

The simulator further computes x′j = logg1 g
j
1 for all j using the knowledge of x = logg0 g1. It then

sends the adversary the system parameters, chooses an arbitrary set J ′ of size s/2 and sends Accept
to ADV on behalf of FDL,COMP(s,s/2) for the statement {g1, g

j
1}sj=1. Note that the simulator knows the

discrete logarithms for each pair (g1, g
j
1) within the statement.

In the transfer phase the simulator invokes TrapKeyGen for all j ∈ [s] and computes (PKj , SK0
j ,

SK1
j ) = ((gj , hj), rj , rj/tj) ← TrapKeyGen(CRSj , tj) for j ∈ [s], and sends the public keys to

SEN. It further sends Accept to ADV on behalf of FDH,OR(s). Upon receiving ADV’s message,
SIM extracts the sender’s input (xj0, x

j
1) using SK0

j , SK1
j for every j ∈ [s] and sends it to the ideal

functionality FCCOT.

Note that the adversary’s views differ only with respect to the ZK statements, since in a decryption
mode the receiver’s bit is perfectly hidden as well as the subset picked by the receiver. Now, since the
proofs are run via ideal calls the simulated and hybrid views are statistically close.

The receiver is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
honest sender as well as the ideal functionalities FDL,COMP(s,s/2) and FDH,OR(s). It extracts J and
σ from the inputs to these functionalities and sends them to FCCOT, receiving back (xj0, x

j
1) for all

j ∈ J and xjσ for all j 6∈ J . SIM chooses an arbitrary xj1−σ for all j 6∈ J and emulates the role of
SEN using inputs (xj0, x

j
1) for all j ∈ [s].

Note that the difference between the simulated and hybrid views is with respect to inputs xj1−σ for all
j 6∈ J for which the simulator uses arbitrary values. Indistinguishability is implied by the privacy of
the dual-mode PKE when a left ciphertext is computed with a right key (or vice versa).

If none of the parties get corrupted at the onset of the protocol execution SIM plays the role of the hon-
est receiver in the setup phase using an arbitrary subset J ′, and FDL,COMP(s,s/2). Note that SIM knows all
the witnesses for the proof in the setup phase (i.e., the discrete logarithms of {gj1}sj=1 with respect to g1

for all j values). It can thus later equivocate the proof with respect to the real set J . SIM further plays
the role of the honest receiver in the transfer phase using an arbitrary σ′, and FDH,OR(s). Specifically the
simulator simulates the receiver by invoking TrapKeyGen for all j ∈ [s], computing (PKj , SK0

j , SK1
j ) =

((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj). It then sends the public keys to SEN and an Accept mes-
sage on behalf of FDH,OR(s). Note that SIM knows witnesses for both sub statements {(g0, h

j
0, gj , hj)}sj=1

and {(gj1, h
j
1, gj , hj)}sj=1, which equal {rj}sj=1 for the first set and {rj/tj}sj=1 for the second set.

The sender is corrupted between Steps 2 and 3. Upon corrupting SEN, SIM explains the internal state
of the sender by honestly presenting the randomness used so far on the sender’s behalf. Finally, SIM

completes the execution in the transfer phase by playing the role of the receiver using an arbitrarily
chosen σ′. Indistinguishability follows due to the same argument as in the previous corruption case
since the simulator follows the same strategy relative to the sender.
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The receiver is corrupted between Steps 2 and 3. Upon corrupting REC, SIM receives J and σ from
FCCOT, as well as (xj0, x

j
1) for all j ∈ J and xjσ for all j 6∈ J . It then explains the internal state

of REC as follows. It first explains the witness for the ZK PoK functionality FDL,COMP(s,s/2) as the
discrete logarithms of {gj1}sj 6∈J with respect to g1. It also explains the witness for FDH,OR(s) as the
witness for the σth set. Finally, it plays the role of the sender as in the previous corruption case.
Indistinguishability follows similarity to the previous corruption case due to the security of the dual-
mode PKE and the fact that the simulator follows the same strategy.

If none of the parties is corrupted until now, SIM plays the role of the sender in the transfer phase using
arbitrary (x′j0 , x

′j
1 ) for all j ∈ [s].

The sender is corrupted after Step 3 is concluded. Upon corrupting SEN, SIM receives (xj0, x
j
1) for all

j ∈ [s] from FCCOT. It then explains the internal state of SEN as in the previous corruption case,
and further explains the inputs to FSC as ciphertexts that encrypt the real inputs. Indistinguishability
follows from the fact that the receiver’s input is statistically hidden given the public keys.

The receiver is corrupted after Step 3 is concluded. Upon corrupting REC, SIM receives J , σ, from
FCCOT as well as (xj0, x

j
1) for all j ∈ J and xjσ for all j 6∈ J . It then explains the internal state of

REC as in the previous corruption case, and further explains the messages received from FSC as the
encryptions of {xj0, x

j
1}j∈J and {xjσ}j 6∈J . Indistinguishability follows as above.

5.2.2 Malicious One-Sided Adaptively Secure Two-Party Computation

First, we remark that the single choice cut-and-choose protocol from Section 5.2.1 is executed for every
input bit of P1 in the main two-party protocol, but with respect to the same set J . In order to ensure that
the same J is indeed used the parties engage in a batch single choice cut-and-choose OT where a single
setup phase is run first, followed by n parallel invocations of the transfer phase. Note that CRS and the
set J are fixed in the setup phase and remain the same for all n parallel invocations of the transfer phase.
The same modifications can be carried out relative to our single choice one-sided OT. We denote the batch
functionality by FBATCH

CCOT . Next, in order to achieve one-sided malicious security we modify the [LP12] two-
party protocol by using our batch single choice cut-and-choose OT with one-sided security as a building
block. In addition, we use our one-sided NCE from Section 3.1 in order to encrypt the garbled circuits, as
well as the input keys that depend on P0’s inputs. We are now ready to formally describe our protocol ΠMAL

f .

Protocol 4 (One-sided adaptively secure malicious Yao (ΠMAL

f ))

• Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x1
0, . . . , x

n
0 and x1 = x1

1, . . . , x
n
1 .

• Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) = f(x, y) where f :
{0, 1}n × {0, 1}n → {0, 1}n. Furthermore, we assume that C is such that if a circuit-output wire leaves some
gate, then the gate has no other wires leading from it into other gates (i.e. no circuit-output wire is also a
gate-output wire). Likewise, a circuit-input wire that is also a circuit-output wire enters no gates.
Convention: Unless specified differently, i ∈ [n]. We further assume that the gates of circuit C induce a
topological sort.

• The Protocol:

1. Garbled circuit computation. P0 constructs s independent garbled circuits for C as follows:

(a) P0 picks n pairs of random values ((a0
1, a

1
1), . . . , (a0

n, a
1
n)) ∈ Zq and c1, . . . , cs ∈R Zq .
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(b) Let w1, . . . , wn be the input wires corresponding to P0’s input in C, and denote by wi,j the instance
of wire wi in the jth garbled circuit. Further let, kbi,j denotes the key associated with bit b on wire
wi,j . Then P0 sets the keys for its input wires to (k0

i,j = H(ga
0
i cj ), k1

i,j = H(ga
1
i cj )), where H is a

randomness extractor such as a universal hash function [JC79, HILL99, DGH+04].
(c) P0 constructs s independent garbled circuits for C, denoted as GC1, . . . , GCs, using random keys

except for the wires w1, . . . , wn for which the keys are as above.

2. Oblivious transfers. The parties call FBATCH
CCOT with their respective inputs and obtain outputs as follows:

(a) P0 defines vectors z1, . . . , zn, where zi contains the s pairs of random symmetric keys associated
with P1’s ith input bit xi1 in all garbled circuits GC1, . . . , GCs.

(b) P1 inputs a random subset J ⊂ [s] of size s/2 and the bits x1
1, . . . , x

n
1 .

(c) P1 receives from FBATCH
CCOT all the keys that are associated with its input wires for the circuits GCi

with i ∈ J (denoted as the check circuits). In addition, it receives the keys that correspond to its
input for the remaining circuits (denoted the evaluation circuits).

3. Sending garbled circuits and commitments. P0 transfers P1 s encrypted copies of the garbled circuit
using FSC, and the values ((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)) along with the “seed” of the hash

function H which constitutes the commitments to the input keys on the wires associated with P0’s input.4

4. Revealing J . P1 reveals J and proves that it used this subset in the cut-and-choose OT protocol by
sending the pair of keys associated with P1’s first input bit in each check circuit i.e. for every GCi with
i ∈ J . Note that P1 knows the key pair only for the check circuits. If the values received from P1 are
wrong, then P0 aborts.

5. Decommitting P0’s input keys. In order to let P1 know the keys for the input wires of P0 within the
check circuits, P0 sends cj for all j ∈ J . P1 computes the key pair (H(ga

0
i cj ), H(ga

1
i cj )).

6. Verifying the check circuits. P1 verifies the validity of the check circuits using all the keys associated
with their input wires. This ensures that the evaluation circuits are correct with high probability.

7. Sending the garbled inputs for the evaluation circuits. In order to complete the evaluation phase P1

is given the keys for the input wires of P0. P0 must be forced to give the keys that are associated with the
same input for all circuits. Specifically, the following code is executed for all input bits of P0:

(a) For every evaluation circuit GCj , P0 transfers τi,j = ga
xi
0

i cj using FSC, where xi0 is the ith input bit
of P0.

(b) P0 then proves that ax
i
0
i is in common for all keys associated with the ith input bit, which is reduced

to showing that either the set {(g, ga
xi
0

i , gcj , τi,j)}sj=1 or the set {(g, ga
1−xi

0
i , gcj , τi,j)}sj=1 is com-

prised of DH tuples. Notably, it is sufficient to use a single UC ZK proof for the simpler relation
RDH,OR since the above statement can be compressed into a compound statement of two DH tuples
as follows: P0 first chooses s random values γ1, . . . , γs ∈ Zp and sends them to P1. Both parties

compute g̃ =
∏s
j=1(gcj )γj , τ̃ =

∏s
j=1(τi,j)

γj , of which P0 proves that either (g, ga
xi
0

i , g̃, τ̃) or

(g, ga
1−xi

0
i , g̃, τ̃) is a DH tuple. Thus, P0 invokes FDH,OR with

∑s
j=1 cjγj as the witness.

8. Circuit evaluation. Upon receiving Accept from FDH,OR, P1 completes the evaluation of the circuits
and sets the majority of these values as the output y.

9. Output communication. P1 sends y using FSC.

Informally, to ensure the one-sided security of ΠMAL
f we realize the functionalities used in the protocol as

follows: (1) FBATCH
CCOT is realized in Step 2 using our one-sided batch single choice cut-and-choose OT. This

implies the equivocation of P1’s input. (2) Moreover, recall that the statement for the relation RDH,OR is
encrypted in Step 7(a) using one sided NCE. Thus, it is sufficient to employ a standard static proof to
realize RDH,OR where the prover sends the third message of the proof using one-sided NCE. This implies
the equivocation of P0’s input. Next, we prove

4At this point P0 is committed to all the keys associated with the s circuits.
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Theorem 5.5 (One-sided malicious) Let f be a deterministic same-output functionality and assume that
the encryption scheme for garbling has indistinguishable encryptions under chosen plaintext attacks, an
elusive and efficiently verifiable range, and that the DDH and DCR assumptions are hard in the respective
groups. Then Protocol ΠMAL

f UC realizes Ff in the presence of one-sided malicious adversaries using only
O(s|C|) private key operations and O(s(|C|)) public key operations where s is a statistical parameter that
determines the cut-and-choose soundness error.

We recall that the DDH and DCR hardness assumptions imply a cut-and-choose OT with constant number
of PKE operations for large sender’s input spaces (where DCR is required in order to implement the ideal
functionalities (FSC,FDL,COMP(s,s/2),FDH,OR(s))). In addition, we recall the [LP12] protocol is secure under
the DDH assumption and IND-CPA symmetric key encryption scheme with the above special properties.

Proof: Our proof is shown in the (FSC,FBATCH
CCOT ,FDH,OR)-hybrid model. Let ADV be a probabilistic

polynomial-time malicious adversary attacking Protocol 4 by adaptively corrupting one of the parties. We
construct an adversary SIM for the ideal functionality Ff such that no environment ENV distinguishes with
a non-negligible probability whether it is interacting with ADV in the real setting or with SIM in the ideal
setting. We recall that SIM interacts with the ideal functionality Ff and the environment ENV. We refer
to the interaction of SIM with Ff and ENV as the external interaction. The interaction of SIM with the
simulated ADV is the internal interaction. We now explain the actions of the simulation for the following
corruption cases: (1) No corruption takes place; (2) Corruption takes place at the outset; (3) Corruption
takes place between Steps 2 and 3; (4) Corruption takes place between Steps 3 and 7 (5) Corruption takes
place between Steps 7 and 9; (6) Corruption takes place at the end. We describe a simulator for all these
cases considering the corruption of each party. These cases cover all potential cases of corruption.

No corruption. When no corruption takes place the simulator simulates both P0 and P1 as follows:

1. Garbled circuit construction. No communication is carried out in this step. SIM internally picks n
pairs of random values (a0

1, a
1
1), . . . , (a0

n, a
1
n)← Zq×Zp and c1, . . . , cs ← Zq (which define the keys

for P0’s input). It further picks a pair of random keys that correspond to each input bit of P1.

2. Oblivious transfers. No communication is carried out in this step due to the ideal call to FBATCH
CCOT .

SIM internally chooses a random subset J on the behalf of P1.

3. Sending garbled circuits and commitments. No communication is carried out with respect to
the garbled circuit due to the ideal call to FSC. SIM emulates the honest P0 sending the values
((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)).

4. Revealing J . SIM emulates the honest P1 and sends J together with the pair of keys that are associ-
ated with P1’s first input bit for each check circuit.

5. Decommitting P0’s input keys. SIM emulates the honest P0 and sends cj for all j ∈ J .

6. Verifying the check circuits. No communication is carried out in this step.

7. Sending the garbled inputs for the evaluation circuits. No communication is carried out in this
step as it involves calling the two ideal functionalities FSC and FDH,OR.

8. Circuit evaluation. No communication is carried out in this step.

9. Output communication. No communication is carried out in this step due to the ideal call to FSC.

28



Note that the simulated the hybrid executions are statistically close. Specifically, communication takes place
only in Steps 3,4, and 5 independently of the parties’ inputs and outputs. Therefore, indistinguishability
follows trivially for this case.

Corruption at the outset of the protocol execution.

• P0 is corrupted. In Step 2 SIM emulates FBATCH
CCOT , receiving the input of ADV for this functionality.

Namely, the key pairs that correspond to all the input wires of the circuit. In Step 3, SIM receives s
garbled circuits from ADV on the behalf of FSC and the commitments to the key pairs that correspond
to ADV’s input. In Step 4, the simulator sends a random subset J and the pairs of the input keys that
are associated with P1’s first input wire in each check circuit GCi for which i ∈ J (recall that SIM

knows all the input keys in Step 2). In Step 5 the simulator receives cj for all j ∈ J from ADV. In
Step 6 the simulator verifies the check circuits just as the honest P1 would do, and aborts if a problem
is detected. In Step 7 the simulator receives the keys {τi,j}i∈{1,...,n},j 6∈J as well as the statement and
its corresponding witness for the ideal call of FDH,OR. If the witness is verified correctly then SIM

extracts ADV’s input as follows. For some fixed j /∈ J , SIM extracts the ith bit of ADV’s input x′0 by
applying the hash function H on τi,j and then checking whether the result matches either H(ga

0
i cj )

which implies that x′i0 = 0, or H(ga
1
i cj ) which implies that x′i0 = 1. SIM sends x′0 to Ff and receives

the output y′. Next it sends y′ to ADV on behalf of FSC in Step 9 and concludes the simulation.

• P1 is corrupted. SIM mimics the [LP12] simulation that is designed for the static case, building fake
circuits that always compute y′ = f(x0, x

′
1) for x′1 the input of ADV. Specifically, in Step 1 SIM

emulates P0 as in the no corruption case, i.e., it picks key pairs that correspond to the input wires
of both parties. In Step 2, SIM emulates FBATCH

CCOT and receives ADV’s input x′1 and the subset J and
returns the adversary’s output. It then sends x′1 to Ff and receives back the output y′. Then in Step 3
SIM constructs s/2 correct circuits that correspond to indices from J and additional s/2 fake circuits
that always output y′ irrespective of the input. It then sends this set of correct and fake garbled circuits
to ADV on behalf of FSC. It further sends the commitments to the correct key pairs that correspond
to the inputs wires of P0. In Step 4 the simulator receives J and the key pairs that correspond to the
first input bit of ADV for all the circuits GCi such that i ∈ J . If ADV sends invalid keys, or the set
J does not match the set SIM obtains in Step 2 during the simulation of the ideal cut-and-choose OT,
then SIM aborts. In Step 5 SIM correctly decommits cj such that j ∈ J . In Step 7 SIM plays the role
of the honest P0 with input 0n. Following that, SIM emulates the ideal functionality for FDH,OR and
sends Accept to ADV. In Step 9 the simulator receives output y′′ from ADV via FSC. If y′′ is not
equal y′ then SIM aborts.

We note that in the (FSC,FBATCH
CCOT ,FDH,OR)-hybrid execution, corruption at the onset of the protocol

is proven similarly to the static proof provided in [LP12]. Specifically, the only difference between
the proofs is that some parts of the communication of our protocol are transferred via FSC (where this
communication is sent non encrypted in [LP12]). Therefore, when corruption takes place later in the
protocol, the simulator can pretend that the computation was carried out correctly and consistently
with the corrupted party’s input. Specifically, the adaptive security reduces to static security.

Corruption between Steps 2 and 3.

• P0 is corrupted. SIM simulates P0 and P1 in Steps 1 and 2 as in the no corruption case. Then,
whenever P0 is corrupted SIM constructs s garbled circuits correctly using the keys that were picked
in Step 1. It then discloses the circuits and the input keys to the adversary. It further explains the
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internal state of P0 so that its input to the OT functionality FBATCH
CCOT is consistent with the above input

keys. Finally, SIM emulates the honest P1 exactly as in the case when P0 is corrupted at the outset.

Note that the adversary’s views in case P0 is corrupted at the outset of the protocol execution and in
case P0 is corrupted between Steps 2 and 3 is identical since P0 does not use its input yet at this point,
and thus the simulation in both corruption cases is essentially the same.

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1 and 2 as in the no corruption case. Then,
whenever P1 is corrupted SIM receives its input and output (x1, y). SIM explains the internal state of
P1 such that the input of P1 to theFBATCH

CCOT functionality is x1 and a random subset J . It then discloses
the keys that P1 should have received upon entering x1 and J to FBATCH

CCOT in Step 2. SIM completes
the simulation by simulating P0 exactly as in the case when P1 is corrupted at the outset.

Note that in the hybrid setting the adversary’s views in case P1 is corrupted at the outset of the protocol
execution and in case P1 is corrupted between Steps 2 and 3 is identical since the simulator can
equivocate P1’s input to FBATCH

CCOT . This implies that the adversary’s internal state until corruption takes
place is identically distributed to the real internal state of the honest P1. Moreover, the simulation
proceeds exactly as in the static case.

Corruption between Steps 3 and 7.

• P0 is corrupted. SIM simulates P0 and P1 in Step 1-3 as in the no corruption case. Then, whenever
P0 is corrupted SIM constructs s garbled circuits correctly using the keys that were picked in Step 1.
It then discloses the circuits and the input keys to the adversary. It further explains the internal state
of P0 so that its inputs to FBATCH

CCOT in Step 2 and to FSC in Step 3 are consistent with garbled circuits
constructed above. SIM completes the simulation by simulating P1 exactly as in the case when P0 is
corrupted at the outset.

Note that in this corruption case P0 does not use its input yet and thus the indistinguishability argument
is as in the prior corruption case.

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1-3 as in the no corruption case. Then, whenever
P1 is corrupted SIM receives its input and output (x1, y). SIM explains the internal state of P1 such
that the input of P1 to the FBATCH

CCOT functionality is x1 and a random subset J . It further discloses the
input keys that P1 should have received upon entering inputs x1 and J to FBATCH

CCOT in Step 2. Next,
SIM constructs s/2 correct circuits that correspond to indices from J and s/2 additional fake circuits
that always output y. It then explains the internal state of P1 such that P1 has received the garbled
circuits constructed as above (so that the correct circuits are the check circuits). SIM concludes the
simulation by simulating P0 exactly as in the case when P1 is corrupted at the outset.

The adversary’s view is distributed as in the static corruption case relying on security of FSC that
transfers the garbled circuits. In the static corruption case, SIM sends a set of garbled circuits contain-
ing s/2 fake circuits and s/2 good circuits on behalf of FSC. No equivocation is required since SIM

knows P1 is corrupted at the outset. In the current scenario, SIM equivocates and explains to ADV

that such a set is delivered by FSC. In FSC-hybrid model, the security reduces to the security of static
corruption case.

Corruption between Steps 7 and 9.

• P0 is corrupted. SIM simulates P0 and P1 in Steps 1-7 as in the no corruption case. Then, whenever
P0 is corrupted SIM receives its input and output (x0, y) and explains the internal state of P0 until Step
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7 as in the prior corruption case. Next, SIM explains the inputs of P0 to the ideal call of FSC in Step
7 so that they are consistent with the input x0. Namely, the ith input wire of P0 in the jth evaluation

circuit is explained as ga
xi0
i cj . It further explains the witness to FDH,OR correctly as

∑s
j=1 cjγj (recall

that γ1, . . . , γs are random elements that enable to combine s proofs into a single proof). The simulator
concludes by simulating the honest P1 exactly as in the case when P0 is corrupted at the outset.

In the hybrid setting, indistinguishability follows easily as above since the privacy of P1 follows from
the privacy of the OT protocol. Moreover, all the messages sent by P0 are emulated as being sent by
the honest P0 therefore security is reduced to the static corruption case.

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1-7 as in the no corruption case. Then, whenever
P1 is corrupted SIM receives its input and output (x1, y) and explains the internal state of P1 until
Step 7 as in the prior corruption case. Next, SIM explains the internal state of P1 in Step 7 using the
garbled inputs keys of P0 that are consistent with 0n as the keys received from FSC. Namely, the ith
input wire of P0 in the jth evaluation circuit is explained as ga

0
i cj . Finally, the simulator explains the

message Accept as being received from the ZK functionality and concludes the simulation as above.

The proof for this corruption case is identical to the prior case since P1 already used its input in
the cut-and-choose OT phase, and the additional simulated messages only correspond to the garbled
inputs for the check circuits transferred from P0.

Post execution corruption.

• P0 is corrupted. SIM simulates P0 and P1 during all the steps as in the no corruption case. The
internal state of P0 is explained as above except that in Step 9 SIM explains y as the output received
via the ideal call of FSC.

• P1 is corrupted. SIM simulates P0 and P1 during all the steps as in the no corruption case. The
internal state of P0 is explained as above except that in Step 9 SIM explains y as the input entered to
the ideal call of FSC.

Security in the hybrid model is proven exactly as above since the messages that are sent via FSC can be
equivocated relative the correct output value. This concludes the proof.

6 Efficient Statically Secure and Witness Equivocal UC ZK PoKs

We present two results in this section. The first (side) result illustrates a technique for generating efficient
statically secure UC ZK PoK for various Σ-protocols. Our protocols take a new approach where the prover
commits to an additional transcript which enables witness extraction without using rewinding, and enable to
achieve UC ZK PoK constructions that incur constant overhead with a negligible soundness error. Prior to
that, Σ-protocols were complied into the UC setting using UC commitments [CF01].

Next, we define a new notion denoted by witness equivocal UC ZK PoK for compound statements
[CDS94] (where the statement is comprised of several sub-statements that are associated using an OR rela-
tion). The additional feature that witness equivocal UC ZK PoK offers over static security is that it allows
the simulator to equivocate the simulated proof upon adaptively corrupting the prover. Specifically, this
notion implies that the simulator knows the witnesses for all sub-statements, but not which subset is used by
the real prover. Furthermore, the simulator is able to convince the corrupted prover that it indeed knows the
correct subset of witnesses. Note that this notion is weaker than one-sided UC ZK PoK where the simulator
is required to simulate the proof obliviously of the witness, and later prove consistency with respect to the
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real witness. In this work, we build efficient witness equivocal UC ZK PoKs for a class of fundamental
compound Σ-protocols. Our protocols are constant rounds and overhead, with a negligible soundness error.

6.1 Statically Secure UC ZK PoK with Constant Overhead

We briefly describe our technique for generating efficient UC ZK PoK for Σ-protocols. Recall that in order
to obtain a UC secure ZK PoK in the CRS model for a Σ-protocol it suffices to build a straight line simulator
and witness extractor. A straight line simulator can be obtained by using standard techniques of committing
the challenge of the verifier at the onset of the proof using UC commitments [DN02]. In what follows, we
will focus on designing straight line extractors. We begin with a generalization of our UC ZK PoKs for
Σ-protocols for relations of the form RΓ =

{
((G̃, H̃, y), x)| y = Γ(x)

}
defined with respect to a one-way

homomorphic mapping Γ : G̃ → H̃ from a source group (G̃,⊕) to a target group (H̃,�). (Where Γ is
homomorphic if Γ(x0 ⊕ x1) = Γ(x0) � Γ(x1)).5 Loosely speaking, given a Σ-protocol ΠΓ for RΓ we
define a new proof Π′Γ by instructing the prover to send two responses z, z′ to a pair of distinct challenges
c, c′ queried by the verifier. Specifically, the former response z is sent on clear and publicly verified as
specified in ΠΓ, whereas the latter response z′ is encrypted using a homomorphic PKE with plaintext space
G̃. Moreover, the validity of z′ is carried out by a (Σ-protocol) UC ZK proof ΠΣ for consistency. Observe
that an extractor can be easily constructed for Π′Γ by placing a public key for the homomorphic PKE in the
CRS, of which the extractor knows the corresponding secret key. Clearly, the efficiency of our new proof
depends heavily on the overhead of ΠΣ. For simplicity, we describe our protocols for a honest verifier;
standard techniques can be used to achieve full security. We discuss two concrete implementations below.

6.1.1 UC Secure ZK PoK for Discrete Logarithm

We illustrate our technique on the Σ-protocol for proving the knowledge of a discrete logarithm (DL) in
a prime order group G. We instantiate (G̃,⊕) with (Zp,+) for operation + denoting addition in Zp, and
(H̃,�) with (G, ·) for operation · denoting multiplication in G. Furthermore, the one-way group homomor-
phism is defined by Γ(x) = EXP(x) = gx where g is a generator of G and induces the relation,

RDL = {((G, g, h), x)| h = gx} .

We apply our technique on the Σ-protocol due to [Sch89] and instantiate the additively homomorphic PKE
within ΠΣ with Paillier [Pai99], that is defined by EncPK(x; r) = (1 + N)x · rN mod N2 where N is an
RSA composite and is IND-CPA secure under the DCR hardness assumption. Formally,

Protocol 5 (UC ZK PoK of DL (ΠDL))

• CRS: A public key PK for Paillier PKE.

• Joint statement: The description of a group G of prime order p and a generator g, and the public statement h.

• Auxiliary input for the prover: x ∈ Zp such that h = gx.

• The Protocol:

1. Prover P picks a random r ← Zp and sends the verifier a = gr.

2. Verifier V returns random challenges c, c′ ← Zp.

3. P sends z ← r+ cx mod p and encrypts z′ ← r+ c′x mod p using PK, generating ciphertext e. P sends
z and e to V and proves in UC ZK that the plaintext of e and the discrete log of ahc

′
are the same.

5This notation covers many basic relations such as discrete logarithm and quadratic residuosity.
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4. V accepts if the ZK proof is verified correctly and gz = ahc.

The proof used in Step 3 is obtained from a Σ-protocol for the following relation,

R1 =
{

((N, PK, e,G, g, h), (x, α))| e = (1 +N)xαN mod N2 ∧ h = gx
}
.

Namely, the goal is to prove consistency of discrete logarithms with respect to two different group orders
with generators (1 + N) and g, respectively. This can be achieved by combining the proof of knowl-
edge of discrete logarithms over the integers [DJN10] and the proof of plaintext knowledge for Pailler
(we note that [DJN10] shows a proof for consistent exponents, i.e., for Diffie-Hellman tuples, but the
same proof technique works here as well). Namely, the prover selects at random y and β, computes
e′ = (1 + N)yβN mod N2 and h′ = gy and sends e′, h′ to the verifier, who returns a random challenge
c ∈ Zp. The prover then replies with z = y + cx (over integers) and γ = αβc mod N . However, to ensure
the privacy of x within y + cx, y must be chosen so that its length is at least |c| + |x| + κ, where κ is a
statistical parameter. The verifier then accepts if (1 + N)zγN mod N2 = e′ec mod N2 and gz = h′hc.
We further note that the above proof requires a special care since it must ensure that the exact same value
x is encrypted under Paillier rather than x + ip, for p the order of G and i some integer. Nevertheless, an
extractor that decrypts and learns x+ ip can still find x. Thus our extractor first learns z′ by decrypting the
Paillier ciphertext and then extracts x from z and z′. Finally, the above Σ-protocol and the PoK presented in
Protocol 5 are proven in the UC framework using standard techniques of committing the verifier’s challenge
at the beginning of the proof using UC commitment scheme [GK96].

Proposition 6.1 Assume that the DCR and DDH assumptions are hard in the respective groups. Then
Protocol 5 UC realizesRDL with negligible soundness error and constant overhead.

Proof Sketch: Informally, the proof follows by having the extractor pick a pair of keys (PK, SK) and place
PK in the CRS. Then, whenever receiving ciphertext e from the prover, the extractor decrypts it using SK
and extracts the witness from z and z′. From the security of the ZK proof of discrete logarithms consistency,
it holds that the prover must encrypt with overwhelming probability the correct value of z′. This implies
that the extractor can extracts the witness correctly. Furthermore, the zero-knowledge property is implied by
the zero-knowledge of the original proof forRDL and the ZK proof of consistency. Specifically, a simulator
for ΠDL will compute the first message and z as in the original simulation of [Sch89]. It then obliviously
samples a ciphertext e rather than encrypting the real message z′, and employs the simulator for the ZK
proof of consistency ΠΣ (which is a proof for relation R1 in Protocol 5). Note that the simulator can also
encrypt an arbitrary value instead of obliviously sampling the ciphertext. Nevertheless, we stick to the
former description since it simplifies the description of our protocol for the adaptive setting. It is simple to
verify that the simulated view is computationally indistinguishable from a real view since the only difference
is relative to the ciphertext e and the simulated view of ΠΣ. Finally, the overhead of the protocol is constant
since the overhead of the internal ZK proof is constant.

Consistency of discrete logarithms. Next, we consider a UC PoK for the following relation,

RDH = {((G, g0, g1, h0, h1), x)| h0 = gx0 ∧ h1 = gx1} .

Here (G̃,⊕) is instantiated with (Zp,+) and (H̃,�) with (G×G, ·). We further define by Γ(x) = (gx0 , g
x
1 )

where g0, g1 are two generators in G. As above, we use Paillier PKE to encrypt the second reply of the
prover. The proof is an immediate extension of the Protocol 5 and the standard Σ-protocol for RDH. The
underlying ZK proof for proving the correctness of the plaintext encrypted by the prover is an extension of
the proof for the relation used in Protocol 5. Specifically, the relation for the underlying ZK proof is,

R2 =
{

((N, PK, e,G, g0, g1, h0, h1), (x, α))| e = (1 +N)xαN mod N2 ∧ h0 = gx0 ∧ h1 = gx1
}
.
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6.1.2 UC Secure PoK for N th Root and Quadratic Residuosity

Finally, we demonstrate our technique for the proof of knowledge of an N th root formally defined by,

RNR =
{

((u,N), v)| u = vN mod N2
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (Z∗N2 , ·), where multiplication is computed in the re-
spective group. Furthermore, Γ(x) = xN mod N2. Note that in order to encrypt the message of the
prover we need to use a multiplicative PKE, and we therefore consider a variant of El Gamal PKE that
operates in Z∗N for a message space QRN where N = pq is an RSA composite such that (p − 1)/2
and (q − 1)/2 are relatively primes. Specifically, encrypting a message m ∈ QRN is computed by
(e1, e2) = (gr mod N,m · hr mod N) where g is a random element in QRN , h = gx mod N with a
secret key x ∈ Zφ(N)/4 and randomness r ← Zφ(N)/4. The security of this scheme is based on the com-
posite DDH assumption [DJ03] in Z∗N (defined below). In the proof below, the verifier is required to ensure
that z′N = au2c′ . This is achieved by raising the ciphertext e = (e1, e2) encrypting z′ to the power of N
component-wise modulo N2, and then have the prover prove that eN1 , e

N
2 /au

2c′ is a Diffie-Hellman tuple in
Z∗N2 . Such a ZK proof is provided in [DJN10]. Namely, we use 2c′ instead of c′ to ensure that z′ is in QRN .

The Composite DDH Assumption. Let N = pq be an RSA modulus and g is an element of QRN the group
of squares in Z∗N . Then values a and b are chosen uniformly at random in Zφ(N)/4 and the value y is either
random in QRN or satisfies y = gab mod N . Finally, the assumption asserts that for any polynomial-time
algorithm, the advantage in guessing which way y was sampled when given (N, g, ga mod N, gb mod N, y)
is negligibly close to 1/2.

Protocol 6 (UC ZK PoK forRNR (ΠNR))

• Joint statement: u ∈ Z∗N2 .

• Auxiliary input for the prover: v ∈ Z∗N such that u = vN mod N2.

• CRS: A composite N and a public key PK = (G, h = gx) for El Gamal PKE in Z∗N .

• The Protocol:

1. Prover P picks a random r′ ← Z∗N and sends verifier V the value a where a = rN mod N2 where
r ← r′2 mod N .

2. V returns random challenges c, c′ ← Z∗N .

3. P sets z ← rvc mod N and z′ ← rv2c′ mod N , and encrypts z′ using PK (note that z′ ∈ QRN ). Denote
the generated ciphertext by e = (e1, e2). P sends V values z and e and proves in UC ZK that the decryp-
tion of eN mod N2 corresponds to au2c′ mod N2. That is, P proves that (Z∗N2 , g, h, eN1 , e

N
2 /au

2c′) is a
Diffie-Hellman tuple in Z∗N2 using the proof from [DJN10].

4. V accepts if it accepts the ZK proof and if zN = auc mod N2.

Proposition 6.2 Assume that the DCR and composite DDH assumptions are hard in the respective groups.
Then Protocol 6 UC realizesRNR with negligible soundness error and constant overhead.

Finally, we consider a proof of knowledge for the square root relation that is formally defined by,

RQR =
{

((u,N), v)| u = v2 mod N
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (QRN , ·), where multiplication is computed in the
respective groups. Furthermore, Γ(x) = x2 mod N . Following a similar technique used for the ZK PoK of
RNR we design a proof forRQR based on the QR and composite DDH assumptions. Formally,

Proposition 6.3 Assume that the QR and composite DDH assumptions are hard in the respective groups.
Then there exists a protocol that UC realizesRQR with negligible soundness error and constant overhead.
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6.2 Witness Equivocal UC ZK PoK for Compound Statements

The proof technique discussed above cannot be used in the adaptive setting since it does not allow witness
equivocation when the prover is adaptively corrupted. Fortunately, in this work we only need to consider
proofs of consistency for compound statements for which the simulator knows all witnesses but not which
one is used by the real prover, since this choice depends on the prover’s input. Consider the simple case
of compound two statements for Σ-protocols, where the prover separates the verifier’s challenge c into two
values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that the prover does not have a witness for the
first statement, then it always chooses c1 in which it knows how to complete the proof (similarly to what
the simulator does), and uses its witness for the other statement to complete the second proof on a given
challenge c2. Note that the verifier cannot distinguish whether the prover knows the first or the second
witness (or both); see [CDS94] for more details. This type of compound statements generalizes to s sub-
statements for which the prover proves the knowledge of witnesses of some subset t.

Our next step is to design proofs for compound statements that are secure in the presence of adaptive
attacks. Specifically, we design a weaker primitive for which the simulator knows the witnesses for all sub-
statements, but not the correct subset. Note first that by simply allowing the simulator to use all potential
witnesses is insecure in the adaptive setting, since an adversary that corrupts the prover can detect a simulated
execution by simply computing the multiple witnesses. In order to resolve this difficulty we instruct the
prover to obliviously sample the ciphertexts for the statements it does not know the witnesses, that are then
used as the statements for the internal proof of consistency ΠΣ. More concretely, assume a binary compound
statement (the more general case follows easily). Then the prover encrypts a valid response with respect to
the relation for which the witness is known, as discussed in Section 6.1. In addition, it obliviously picks
the ciphertext for the statement it does not know the witness. Finally, the prover proves that one of these
ciphertexts was computed correctly using an OR relation for ΠΣ. We note that both homomorphic PKEs
discussed in Section 6.1 support oblivious ciphertext sampling.

Formally, we describe our protocol for compound statements that are defined relative to relationsR0 and
R1 (following the ideas from [CDS94]). We denote by Π0 and Π1 the respective UC ZK PoK Σ-protocols
forR0 andR1 and by ΠΣ the proof of consistency (we implicitly assume that ΠΣ is associated with a PKE).

Protocol 7 (UC ZK PoK forR0 andR1 (ΠOR))

• Joint statement: x0 ∈ L0 and x1 ∈ L1.

• Auxiliary input for the prover: ωi for i ∈ {0, 1} such that (xi, ωi) ∈ Ri.

• CRS: A CRS for ΠΣ.

• The Protocol:

1. Prover P computes the first message as follows.
It first invokes the simulator SIM1−i for Π1−i on x1−i and arbitrary challenge c̃, and obtains message
m1−i.6

It then invokes the real prover Pi for Πi on (xi, ωi) and obtains message mi.
P sends messages (m0,m1) to the verifier.

2. V returns two random challenges c, c′ from the appropriate space.

3. P computes its response as follows. It first invokes simulator SIM1−i on x1−i and arbitrary challenge
c̃, and receives a prover’s response z1−i for Π1−i. P then computes an obliviously sampled ciphertext
e1−i. Next, P invokes Pi on (xi, ωi),mi, c⊕ c̃ and receives a prover’s response zi for Πi. P then invokes
Pi on (xi, ωi),mi, c

′ and receives a prover’s response z′i for Πi. Let ei denote a ciphertext that encrypts
z′i Finally, P engages with V in an execution of an OR relation for the proof ΠΣ, proving that either

6Note that the simulator returns the entire view for the proof from which we extract the first message.
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ei encrypts a valid response for Πi or ei−1 encrypts a valid response for Πi−1 relative to challenge
c′ /∈ {c̃, c⊕ c̃}.
P further sends the verifier the messages z0, z1.

4. V invokes the verifiers for Π0 and Π1 and accepts if they both accept the messages z0, z1, if the two
challenges received from the prover are valid shares of c and if the proof for the OR relation of ΠΣ is
verified correctly.

We conclude with the following theorem.

Theorem 6.1 Assume the existence of homomorphic PKE with respect to a group H and operation � that
supports oblivious and invertible sampling of ciphertexts, and that Γ : G̃ → H̃ is a one-way group ho-
momorphism. Then, Protocol 7 is a witness equivocal UC ZK Σ-protocol for relations R0 and R1 with
negligible soundness error and constant overhead.

Proof Sketch: Proving PoK follows easily using the trapdoor from the CRS and the soundness of ΠΣ, which
allows the extractor to decrypt the ciphertext ei and extract the witness. We next prove that the protocol is
ZK. Note that standard simulation follows from the ZK property of each sub-protocol and the [CDS94]
proof. We recall next that our protocols only consider simulators that know both witnesses ω0 and ω1, but
do not know which one is used by the real prover. Simulation in this case is trivial since the simulator simply
uses its two witnesses. By the IND-CPA security of the homomorphic encryption scheme and the security
of Π1−i, the simulated view (when using two witnesses) and the real view (when using only one witness)
are computationally indistinguishable. We now show that the protocol is witness equivocal. Recall that this
property implies that the simulator must explain the internal state of the simulated prover with respect to the
real prover’s witness. Say the real prover knows ωi, then the view for Πi can be easily explained as if the
real prover generated it since the simulator used ωi in its simulation. In addition, the simulated proof for
x1−i differs from the real view by (1) honestly encrypting message z′1−i rather than obliviously sampling the
ciphertext and (2) running the real prover for Π1−i rather than the simulated one. Witness equivocal follows
from the ciphertext simulatability of the PKE and the fact that the real view of Π1−i can be explained as a
simulated view. Namely, the simulator for Protocol 7 can claim that the honestly generated ciphertext e1−i
was obliviously sampled, and that the real view generated for ΠΣ relative to statement e1−i is a simulated
view (since ΠΣ is a Σ-protocol with perfect simulation; see Definition A.9).

Our constructions for the malicious setting make use of compound relations defined as follows. We
denote by RΓ,OR a compound OR relation of two sub-statements where both statements correspond to the
same relationRΓ. We further denote byRΓ,OR(s) a relation for which the statement is a combination of two
sub-statements, each contains a tuple of s elements. Specifically, we consider a proof of knowledge for the
relation RDH,OR(s) of which only one of the two sets is comprised from Diffie-Hellman tuples. Finally, we
consider a relationRΓ,COMP(s,t) where the statement consists s sub-statements for relationRΓ for which the
prover proves the knowledge of only t sub-statements out of s (for some t < s).
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[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption

and multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[Bea97] Donald Beaver. Plug and play encryption. In CRYPTO, pages 75–89, 1997.

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against dynamic adver-
saries. In EUROCRYPT, pages 307–323, 1992.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT, pages 1–35, 2009.

36



[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (ex-
tended abstract). In STOC, pages 503–513, 1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.
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A Standard Security Notions

A.1 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition A.1 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G if for
all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(G, q, g, gx, gy, gz) = 1]− Pr [Cn(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where (G, q, g)← G(1n) and the probabilities are taken over the choices of g and x, y, z ∈ Zq.

We require the DDH assumption to hold for prime order groups. In a few places we use a different version
of the DDH assumption: for random generators g, h ∈ G and for distinct but otherwise random a, b ∈ Zq,
the tuples (g, h, ga, ha) and (g, h, ga, hb) are computationally indistinguishable. This version of the DDH
assumption is equivalent to the common form discussed above.

Definition A.2 (DCR) We say that the Decisional Composite Residuosity (DCR) problem is hard relative
to G if for all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr

[
Cn(N, z) = 1| z = yN mod N2

]
− Pr

[
Cn(N, z) = 1| z = (1 +N)r · yN mod N2

] ∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, r is chosen at random in ZN and the probabilities
are taken over the choices of N, y and r.

Definition A.3 (QR) We say that the Quadratic Residuosity (QR) problem is hard relative to G if for all
polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(N, z) = 1| z ← QRN ]− Pr [Cn(N, z) = 1| z ← JN \QRN ]

∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, JN denote the group of Jacobi symbol (+1)
elements of Z∗N , QRN = {x2 : x ∈ Z∗N} denote JN ’s subgroup of quadratic residues and the probabilities
are taken over the choices of N, z.
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A.2 Public Key Encryption Scheme

We specify the definitions of public key encryption and IND-CPA.

Definition A.4 (PKE) We say that Π = (Gen,Enc,Dec) is a public key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform probabilistic adversary ADV =
(ADV1,ADV2), we consider the following IND-CPA game:

(PK, SK)← Gen(1n).

(m0,m1, history)← ADV1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b ∈R {0, 1}.
b′ ← ADV2(c, history).

ADV wins if b′ = b.

Denote by AdvΠ,ADV(n) the probability that ADV wins the IND-CPA game.

Definition A.5 (IND-CPA) A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform probabilistic adversary
ADV = (ADV1,ADV2) there exists a negligible function negl such that AdvΠ,ADV(n) ≤ 1

2 + negl(n).

We say that a protocol π realizes functionality F with t PKE operations (relative to Π) if the number of calls
π makes to either one of (Gen,Enc,Dec) is at most t. Importantly, this definition is not robust in the sense
that one might define an encryption algorithm Enc′ that consists of calling Enc, n times in parallel. In this
work we do not abuse this definition and consider algorithms (Gen,Enc,Dec) for a single basic operation,
which are implemented by O(1) group exponentiations in various group descriptions.

A.3 Zero-knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behavior. We formally
define zero-knowledge and knowledge extraction as stated in [Gol01]. We then conclude with a definition
of a Σ-protocol which constitutes a zero-knowledge proof of a special type.

Definition A.6 (Interactive proof system) A pair of PPT interactive machines (P,V) is called an inter-
active proof system for a language L if there exists a negligible function negl such that the following two
conditions hold:
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1. COMPLETENESS: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L and every interactive PPTmachine B,

Pr[〈B,V〉(x) = 1] ≤ negl(|x|).

Definition A.7 (Zero-knowledge) Let (P,V) be an interactive proof system for some language L. We
say that (P,V) is computational zero-knowledge if for every PPT interactive machine V∗ there exists a
PPT algorithm M∗ such that

{〈P,V∗〉(x)}x∈L ≈c {〈M∗〉(x)}x∈L
where the left term denote the output of V∗ after it interacts with P on common input x whereas, the right
term denote the output of M∗ on x.

Definition A.8 (Knowledge extraction) Let R be a binary relation and κ → [0, 1]. We say that an inter-
active function V is a knowledge verifier for the relation R with knowledge error κ if the following two
conditions holds:

NON-TRIVIALITY: There exists an interactive machine P such that for every (x, y) ∈ R, (implying that
x ∈ LR), all possible interactions of V with P on common input x and auxiliary input y are accepting.

VALIDITY (WITH ERROR κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive function P, every x ∈ LR, and every machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by Px,y,r that uses randomness r (where the probability is
taken over the coins of V). If p(x, y, r) > κ(|x|), then, on input x and with access to oracle
Px,y,r, machine K outputs a solution s ∈ R(x) within an expected number of steps bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

Definition A.9 (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin pro-
tocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input w to P where (x,w) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs w such that (x,w) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPTalgorithm M∗ such that{
〈P(x,w),V(x, e)〉

}
x∈LR

≈c
{
M(x, e)

}
x∈LR

whereM(x, e) denotes the output ofM upon input x and e, and 〈P(x,w),V(x, e)〉 denotes the output
transcript of an execution between P and V, where P has input (x,w), V has input x, and V’s random
tape (determining its query) equals e.
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B A High-Level Overview of Yao’s Garbling Technique

We briefly describe the garbling technique of Yao as described by Lindell and Pinkas in [LP09]. In this
construction, the desired function f is represented by a boolean circuit C that is computed gate by gate
from the input wires to the output wires. In the following, we distinguish four different types of wires used
in a given boolean circuit: (a) circuit-input wires; (b) circuit-output wires; (c) gate-input wires (that enter
some gate g); and (d) gate-output wires (that leave some gate g). The underlying idea is to associate every
wire w with two random values, say k0

w, k
1
w, such that k0

w represents the bit 0 and k1
w represents the bit

1. The garbled table for each gate maps random input values to random output values, with the property
that given two input values it is only possible to learn the output value that corresponds to the output bit.
This is accomplished by viewing the four potential inputs to the gate k0

1, k
1
1 (values associated with the

first input wire) and k0
2, k

1
2 (values associated with the second input wire), as encryption keys. So that the

output key values k0
3, k

1
3 are encrypted under the appropriate input keys. For instance, let g be a NAND

gate. Then, k1
3 (that corresponds to bit 1) is encrypted under the pair of keys associated with the values

(0, 0), (0, 1), (1, 0). Whereas, k0
3 is encrypted under the pair of keys associated with (1, 1) which yields

the following four ciphertexts

Enck01(Enck02(k1
3)), Enck01(Enck12(k1

3)), Enck11(Enck02(k1
3)) and Enck11(Enck12(k0

3)),

where (Gen,Enc,Dec) is a private key encryption scheme that has chosen double encryption security and
an elusive efficiently verifiable range; see [LP09] for the formal definitions. These ciphertexts are randomly
permuted in order to obtain the garbled table for gate g. Then, given the input wire keys kα1 , k

β
2 that cor-

respond to the bits α and β and the garbled table containing the four encryptions, it is possible to obtain
the output wire key kg(α,β)

3 . The description of the garbled circuit is concluded with the output decryption
tables, mapping the random values on the circuit output wires back to their corresponding boolean values.

A useful lemma. Next, we state a useful lemma regarding garbled circuits taken verbatim from [LP15]
and further stated in [Lin09, LP12]. The lemma states that it is possible to build a fake garbled circuit that
outputs a fixed value y = f(x0, x1) which is indistinguishable relative to an adversary who has only a single
set of keys that corresponds to the inputs x0, x1. We rely on this lemma in our one-sided security proofs
when P1 is corrupted. Formally,

Lemma B.1 Given a circuit C and an output value y (of same length as the output of C) it is possible to
construct a garbled circuit G̃C such that:

1. The output of G̃C is always y, regardless of the garbled values that are provided for the input wires
of P0 and P1, and

2. If y = f(x0, x1), then no non-uniform PPT adversary ADV can distinguish between the distribution
ensemble of G̃C and a single arbitrary garbled value for every input wire, and the distribution en-
semble consisting of a real garbled version of C, together with garbled values that correspond to x0

for P0’s input wires and to x1 for P1’s input wires.
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