
One-Sided Adaptively Secure Two-Party Computation

Carmit Hazay∗ Arpita Patra†

Abstract

Adaptive security is a strong security notion that captures additional security threats that are not ad-
dressed by static corruptions. For instance, it captures real-world scenarios where “hackers” actively
break into computers, possibly while they are executing secure protocols. Studying this setting is inter-
esting from both theoretical and practical points of view. A primary building block in designing adap-
tively secure protocols is a non-committing encryption (NCE) that implements secure communication
channels in the presence of adaptive corruptions. Current constructions require a number of public key
operations that grows linearly with the length of the message. Furthermore, general two-party protocols
require a number of NCE calls that is dependent both on the circuit size and the security parameter.

In this paper we study the two-party setting in which at most one of the parties is adaptively corrupted,
which we believe is the right security notion in the two-party setting. We study the feasibility of (1) NCE
with constant number of public key operations for large message spaces. (2) Oblivious transfer with
constant number of public key operations for large sender’s input spaces, and (3) constant round secure
computation protocols with an overall number of public key operations that is linear in the circuit size.
Our study demonstrates that such primitives indeed exist in the presence of single corruptions, while this
is not known for fully adaptive security (where both parties may get corrupted).
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1 Introduction

1.1 Background

Secure two-party computation. In the setting of secure two-party computation, two parties with private
inputs wish to jointly compute some function of their inputs while preserving certain security properties
like privacy, correctness and more. In this setting, security is formalized by viewing a protocol execution
as if the computation is executed in an ideal setting where the parties send inputs to a trusted party that
performs the computation and returns its result (also known by simulation-based security). Starting with the
work of [Yao82, GMW87], it is by now well known that (in various settings) any polynomial-time function
can be compiled into a secure function evaluation protocol with practical complexity; see [BDOZ11, LP12,
DPSZ12, NNOB12] for a few recent works. The security proofs of these constructions assume that a party is
statically corrupted. Meaning, corruptions take place at the outset of the protocol execution and the identities
of the corrupted parties are fixed throughout the computation. Adaptive security is a stronger notion where
corruptions takes place at any point during the course of the protocol execution. That is, upon corruption
the adversary sees the internal data of the corrupted party which includes its input, randomness and the
incoming messages. This notion is much stronger than static security due to the fact that the adversary may
choose at any point which party to corrupt, even after the protocol is completed! It therefore models more
accurately real world threats.

Typically, when dealing with adaptive corruptions we distinguish between corruptions with erasures and
without erasures. In the former case honest parties are trusted to erase data if are instructed to do so by the
protocol, whereas in the latter case no such assumption is made. This assumption is often problematic since
it relies on the willingness of the honest parties to carry out this instruction without the ability to verify its
execution. In settings where the parties are distrustful it may not be a good idea to base security on such an
assumption. In addition, it is generally unrealistic to trust parties to fully erase data since this may depend
on the operating system. Nevertheless, assuming that there are no erasures comes with a price since the
complexity of adaptively secure protocols without erasures is much higher than the analogue complexity of
protocols that rely on erasures. In this paper we do not rely on erasures.

Adaptive security. It is known by now that security against adaptive attacks captures important real-
world concerns that are not addressed by static corruptions. For instance, such attacks capture scenarios
where “hackers” actively break into computers, possibly while they are running secure protocols, or when
the adversary learns from the communication which parties are worth to corrupt more than others. This later
issue can be demonstrated by the following example. Consider a protocol where some party (denoted by the
dealer) shares a secret among a public set of

√
n parties, picked at random from a larger set of n parties. This

scheme is insecure in the adaptive model if the adversary corrupts
√
n parties since it can always corrupt the

particular set of parties that share the secret. In the static setting the adversary corrupts the exact same set of
parties that share the secret with a negligible probability in n.

Other difficulties also arise when proving security. Consider the following protocol for transferring a
message: A receiver picks a public key and sends it to a sender that uses it to encrypt its message. Then,
security in the static model is simple and relies on the semantic security of the underlying encryption scheme.
However, this protocol is insecure in the adaptive model since standard semantically secure encryption binds
the receiver to a single message (meaning, given the public key, a ciphertext can only be decrypted into a
single value). Thus, upon corrupting the receiver at the end of the protocol execution it would not be possible
to “explain” the simulated ciphertext with respect to the real message. This implies that adaptive security is
much harder to achieve.
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Adaptively secure two-party computation. In the two-party setting there are scenarios where the system
is comprised from two devices communicating between themselves without being part of a bigger system.
For instance, consider a scenario where two devices share an access to an encrypted database that contains
highly sensitive data (like passwords). Moreover, the devices communicate via secure computation but do
not communicate with other devices due to high risk of breaking into the database. Thus, attacking one
of the devices does not disclose any useful information about the content of the database, while attacking
both devices is a much harder task. It is reasonable to assume that the devices are not necessarily statically
corrupted since they are protected by other means, while attackers may constantly try to break into these
devices (even while running secure computation).

In 2011, RSA secureID authentication products were breached by hackers that leveraged the stolen in-
formation from RSA in order to attack the U.S. defense contractor Lockheed Martin. The attackers targeted
SecurID data as part of a broader scheme to steal defense secrets and related intellectual property. Distribut-
ing the SecureID secret keys between two devices potentially enables to defend against such an attack since
in order to access these keys the attackers need to adaptively corrupt both devices, which is less likely to
occur. Many other applications face similar threats when attempt to securely protect their databases.

We therefore focus on a security notion that seems the most appropriate in this context. In this paper, we
study secure two-party computation with single adaptive corruptions in the non-erasure model where at most
one party is adaptively corrupted. To distinguish this notion from fully adaptive security, where both parties
may get corrupted, we denote it by one-sided adaptive security. Our goal in this work is to make progress
in the study of the efficiency of two-party protocols with one-sided security. Our measure of efficiency is
the number of public key encryption (PKE) operations. Loosely speaking, our primitives are parameterized
by a public key encryption scheme for which we count the number of key generation/encryption/decryption
operations. More concretely, these operations are captured by the number of exponentiations in several
important groups (e.g., groups where the DDH assumption is hard and composite order groups where the
assumptions DCR and QR are hard), and further considered in prior works such as [GWZ09]. Finally, our
proofs are given in the universal composable (UC) setting [Can01] with a common reference string (CRS)
setup. The reductions of our non-committing encryption and oblivious transfer with one-sided security are
tight. The reductions of our general two-party protocols are tighter than proofs in prior works; see more
details below. All our theorems are not known to hold in the fully adaptive setting.

1.2 Our Results

One-sided NCE with constant overhead. A non-committing encryption (NCE) scheme [CFGN96] im-
plements secure channels in the presence of adaptive corruptions and is an important building block in
designing adaptively secure protocols. In [DN00], Damgård and Nielsen presented a theoretical improve-
ment in the one-sided setting by designing an NCE under strictly weaker assumptions than simulatable
public key encryption scheme (the assumption for fully adaptive NCE). Nevertheless, all known one-
sided [CFGN96, DN00] and fully adaptive NCE constructions [DN00, CDSMW09a] require O(1) PKE
operations for each transmitted bit. It was unknown whether this bound can be reduced for one-sided NCEs
and even matched with the overhead of standard PKEs.

We suggest a new approach for designing NCEs secure against one-sided adaptive attacks. Our protocols
are built on two cryptographic building blocks that are non-committing with respect to a single party. We
denote these by NCE for the sender and NCE for the receiver. Non-committing for the receiver (NCER)
implies that one can efficiently generate a secret key that decrypts a simulated ciphertext into any plaintext.
Whereas non-committing for the sender (NCES) implies that one can efficiently generate randomness for
any plaintext for proving that a ciphertext, encrypted under a fake key, encrypts this plaintext. A core
building block in our one-sided construction is (a variant) of the following protocol, in which the receiver
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generates two sets of public/secret keys; one pair of keys for each public key system, and sends these public
keys to the sender. Next, the sender partitions its message into two shares and encrypts the distinct shares
under the distinct public keys. Finally, the receiver decrypts the ciphertexts and reconstructs the message.
Both NCES and NCER are semantically secure PKEs that are as efficient as standard PKEs. Informally, we
prove that,

Theorem 1.1 (Informal) Assume the existence of NCER and NCES with constant number of PKE operations
for message space {0, 1}q and simulatable PKE. Then there exists a one-sided NCE with constant number
of PKE operations for message space {0, 1}q, where q = O(n) and n is the security parameter.

Importantly, the security of this protocol only works if the simulator knows the identity of the corrupted
party since fake public keys and ciphertexts cannot be explained as valid ones. We resolve this issue by
slightly modifying this protocol using somewhat NCE [GWZ09] in order to encrypt only three bits. Namely,
we use somewhat NCE to encrypt the choice of having fake/valid keys and ciphertexts (which only requires
a single non-committing bit per choice). This enables the simulator to “explain” fake keys/ciphertext as
valid and vice versa using only a constant number of asymmetric operations. In this work we consider two
implementations of NCER and NCES. For polynomial-size message spaces the implementations are secure
under the DDH assumption, whereas for exponential-size message spaces security holds under the DCR
assumption. The NCER implementations are taken from [JL00, CHK05]. NCES was further discussed
in [FHKW10] and realized under the DDH assumption in [BHY09] using the closely related notion of lossy
encryption.1 In this paper we realize NCES under the DCR assumption.

One-sided oblivious transfer with constant overhead. We use our one-sided NCEs to implement 1-out-
of-2 oblivious transfer (OT) between a sender and a receiver. We consider a generic framework that abstracts
the statically secure OT of [PVW08] that is based on a dual-mode PKE primitive, while encrypting only a
small portion of the communication using our one-sided NCE. Our construction requires a constant number
of PKE operations for an input space {0, 1}q of the sender, where q = O(n). This is significantly better
than the fully adaptively secure OT of [GWZ09] (currently the most efficient fully adaptive construction),
that requires O(q) such operations. We prove that,

Theorem 1.2 (Informal) Assume the existence of one-sided NCE with constant number of PKE operations
for message space {0, 1}q and dual-mode PKE. Then there exists a one-sided OT with constant number of
PKE operations for sender’s input space {0, 1}q, where q = O(n) and n is the security parameter.

We build our one-sided OT based on the PVW protocol with the following modifications. (1) First, we
require that the sender sends its ciphertexts via a one-sided non-committing channel (based on our previous
result, this only inflates the overhead by a constant). (2) We fix the common parameters of the dual-mode
PKE in a single mode (instead of alternating between two modes as in the [GWZ09] protocol). To ensure
correctness, we employ a special type of ZK PoK which uses a novel technique; see below for more details.
Finally, we discuss two instantiations of ZK PoK based on the DDH and QR assumptions.

Constant round one-sided secure computation. Theoretically, it is well known that any statically secure
protocol can be transformed into a one-sided adaptively secure protocol by encrypting the entire commu-
nication using NCE. This approach, adopted by [KO04], implies that the number of PKE operations grows

1This notion differs from NCES by not requiring an efficient opening algorithm that enables to equivocate the ciphertext’s
randomness. We further observe that the notion of NCES is also similar to mixed commitments [DN02].
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linearly with the circuit size times a computational security parameter.2 A different approach in the OT-
hybrid model was taken in [IPS08] and achieved a similar overhead as well.

In this work we demonstrate the feasibility of designing better generic constant round protocols based
on Yao’s garbled circuit technique with one-sided security, tolerating semi-honest and malicious attacks.
Our main observation implies that one-sided security can be obtained if the keys corresponding to the in-
puts and output wires, as well as the garbled circuit are communicated via a one-sided adaptively secure
channel. Using our one-sided secure primitives we obtain protocols that outperform the constant round one-
sided constructions of [KO04, IPS08] and all known generic fully adaptively secure two-party protocols.
Specifically, we prove that

Theorem 1.3 (Informal) Under the assumptions of achieving statically secure two-party computation and
one-sided OT with constant number of PKE operations for sender’s input space {0, 1}q, where q = O(n)
and n is the security parameter, there exists a constant round one-sided semi-honest adaptively secure two-
party protocol that requires O(|C|) + |input|+ |output|) public key operations.

In order to obtain one-sided security against malicious attacks we adapt the cut-and-choose based pro-
tocol introduced in [LP12]. The idea of the cut-and-choose technique is to ask one party to send s garbled
circuits and later open half of them by the choice of the other party. This ensures that with very high prob-
ability the majority of the unopened circuits are valid. Proving security in the one-sided setting requires
dealing with new subtleties and requires a modified cut-and-choose OT protocol, since [LP12] defines the
public parameters of their cut-and-choose OT protocol in a way that precludes the equivocation of the re-
ceiver’s input. Our result in the malicious setting follows.

Theorem 1.4 (Informal.) Under the assumptions of achieving static security in [LP12], one-sided cut-and-
choose OT with constant number of PKE operations for sender’s input space {0, 1}q, where q = O(n) and n
is the security parameter, and simulatable PKE, there exists a constant round one-sided malicious adaptively
secure two-party protocol that requires O(s(|C| + |input|+ |output|)) public key operations where s is a
statistical parameter that determines the cut-and-choose soundness error.

Our protocols are simpler than the prior protocols [KO04, IPS08].

Witness equivocal UC ZK PoK for compound statements. As a side result, we demonstrate a technique
for efficiently generating statically secure UC ZK PoK for known Σ-protocols. Our protocols use a new
approach where the prover commits to an additional transcript which enables to extract the witness with a
constant overhead in the CRS setting. We further focus on compound statements (where the statement is
comprised of sub-statements for which the prover only knows a subset of the witnesses), and denote a UC ZK
PoK by witness equivocal if the simulator knows the witnesses for all sub-statements but not which subset is
known to the real prover. We extend our proofs for this notion to the adaptive setting as well. In particular,
the simulator must be able to convince an adaptive adversary that it does not know a different subset of
witnesses. This notion is weaker than the typical one-sided security notion (that requires simulation without
the knowledge of any witness), but is still meaningful in designing one-sided secure protocols. In this work,
we build witness equivocal UC ZK PoKs for a class of fundamental compound Σ-protocols, without relying
on NCE. Our protocols are round efficient and with a negligible soundness error and UC secure [Can01].

To conclude, our results may imply that one-sided security is strictly easier to achieve than fully adaptive
security, and for some applications this is indeed the right notion to consider. We leave open the efficiency of

2We note that this statement is valid regarding protocols that do not employ fully homomorphic encryptions (FHE). To this end,
we only consider protocols that do not take the FHE approach. As a side note, it was recently observed in [KTZ13] that adaptive
security is impossible for FHE satisfying compactness.
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constant round one-sided secure protocols in the multi-party setting. Currently, it is not clear how to extend
our techniques beyond the two-party setting (such as for the [BMR90] protocol). Another open problem
whether it is feasible is to achieve secure constructions with a number of PKE operations that is strictly less
than what we achieve here.

1.3 Prior Work

We describe prior work on NCE, adaptively secure OT and two-party computation.

Non-committing encryption. One-sided NCE was introduced in [CFGN96] which demonstrated feasi-
bility of the primitive under the RSA assumption. Next, NCE was studied in [DN00, CDSMW09a]. The
construction of [DN00] requires constant rounds on the average and is based on simulatable PKE, whereas
[CDSMW09a] presents an improved expected two rounds NCE based on a weaker primitive. [DN00] fur-
ther presented a one-sided NCE based on a weakened simulatable PKE notion. The computational overhead
of these constructions is O(1) PKE operations for each transmitted bit. An exception is the somewhat NCE
introduced in [GWZ09] (see Section 3.3 for more details). This primitive enables to send arbitrarily long
messages at the cost of log ` PKE operations, where ` is the equivocality parameter that determines the
number of messages the simulator needs to explain. This construction improves over NCEs for sufficiently
small `’s. Finally, in [Nie02] Nielsen proved that adaptively secure non-interactive encryption scheme must
have a decryption key that is at least as long as the transmitted message.

Adaptively secure oblivious transfer. [Bea97, CLOS02] designed semi-honest adaptively secure OT (us-
ing NCE) and then compiled it into the malicious setting using generic ZK proofs. More recently, in a
weaker model that assumes erasures, Lindell [Lin09] used the method of [WW06] to design an efficient
transformation from any static OT to a semi-honest composable adaptively secure OT. Another recent work
by Garay et al. [GWZ09] presented a UC adaptively secure OT, building on the static OT of [PVW08] and
somewhat NCE. This paper introduces an OT protocol with security under a weaker semi-adaptive notion,
that is then compiled into a fully adaptively secure OT by encrypting the transcript of the protocol using
somewhat NCE.3 Finally, [CDSMW09b] presented an improved compiler for a UC adaptively secure OT in
the malicious setting (using NCE as well).

Adaptively secure two-party computation. In the non-erasure model, adaptively secure computation has
been extensively studied [CLOS02, DN03, CDD+04, KO04, IPS08, Lin09, CDSMW09a, CDSMW09b,
GS12]. Starting with the work of [CLOS02], it is known by now how to adaptively compute any well-formed
two-party functionality. The followup work of [DN03] showed how to use a threshold encryption to achieve
UC adaptive security but requires honest majority. A generic compiler from static to adaptive security was
shown in [CDD+04] (yet without considering post-execution corruptions). The work by Katz and Ostro-
vsky [KO04] studied the round complexity in the one-sided setting. Their protocol is the first round efficient
construction, yet it takes the naive approach of encrypting the entire communication using NCE. Moreover,
the work of [IPS08] provided a one-sided adaptively secure protocol, given a honest majority adaptively
secure protocol (where the particular instantiation uses the constant rounds protocol from [DI05]), and the
overall number of PKE operations is O(s3|C|n) for a statistical and computational security parameter s
and n. Finally, a recent work by Garg and Sahai [GS12] shows adaptively secure constant round protocols
toleratingm−1 out ofm corrupted parties using a non-black box simulation approach. Their approach uses
the OT hybrid compiler of [IPS08].

In the erasure model, one of the earliest works by Beaver and Haber [BH92] showed an efficient
generic transformation from adaptively secure protocols with ideally secure communication channels, to

3We stress that the semi-adaptive notion is incomparable to the one-sided notion since the former assumes that either one party
is statically corrupted or none of the parties get corrupted.
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adaptively secure protocols with standard (authenticated) communication channels. A more recent work by
Lindell [Lin09] presents an efficient semi-honest constant round two-party protocol with adaptive security.

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible if for every polynomial p(·) there exists
a value N such that for all n > N it holds that µ(n) < 1

p(n) . We write PPT for probabilistic polynomial-
time. We denote the message spaces of our non-committing encryption schemes and the message space of
the sender in our OT protocols by {0, 1}q for q = O(n).

We specify the definitions of computational indistinguishability and statistical distance.

Definition 2.1 (Computational indistinguishability by circuits) LetX = {Xn(a)}n∈IN,a∈{0,1}∗ and Y =
{Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X ≈c Y , if for every family {Cn}n∈IN of polynomial-size circuits, there exists a negligible
function µ(·) such that for all a ∈ {0, 1}∗,

|Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

Definition 2.2 (Statistical distance) Let Xn and Yn be random variables accepting values taken from a
finite domain Ω ⊆ {0, 1}n. The statistical distance between Xn and Yn is

SD(Xn, Yn) =
1

2

∑
ω∈Ω

|Pr[Xn = ω]− Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤ ε(n). We say that
Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is negligible in n.

2.1 Public Key Encryption Scheme

We specify the definitions of public key encryption and IND-CPA.

Definition 2.3 (PKE) We say that Π = (Gen,Enc,Dec) is a public-key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).
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For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform probabilistic adversary
ADV = (ADV1,ADV2), we consider the following IND-CPA game:

(PK, SK)← Gen(1n).

(m0,m1, history)← ADV1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b ∈R {0, 1}.
b′ ← ADV2(c, history).

ADV wins if b′ = b.

Denote by AdvΠ,ADV(n) the probability that ADV wins the IND-CPA game.

Definition 2.4 (IND-CPA) A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform probabilistic adversary
ADV = (ADV1,ADV2) there exists a negligible function negl such that AdvΠ,ADV(n) ≤ 1

2 + negl(n).

We say that a protocol π realizes functionality F with t PKE operations (relative to Π) if the number of
calls π makes to either one of (Gen,Enc,Dec) is at most t. Importantly, this definition is not robust in the
sense that one might define an encryption algorithm Enc′ that consists of encrypting n times in parallel using
Enc. In this work we do not abuse this definition and achieve a single basic operation relative to algorithms
(Gen,Enc,Dec), which are implemented by O(1) group exponentiations in various group descriptions.

2.2 Simulatable Public Key Encryption

A simulatable public key encryption scheme is an IND-CPA secure PKE with four additional algorithms.
I.e., an oblivious public key generator G̃en and a corresponding key faking algorithm G̃en

−1
, and an obliv-

ious ciphertext generator Ẽnc and a corresponding ciphertext faking algorithm Ẽnc
−1

. Intuitively, the key
faking algorithm is used to explain a legitimately generated public key as an obliviously generated public
key. Similarly, the ciphertext faking algorithm is used to explain a legitimately generated ciphertext as an
obliviously generated one.

Definition 2.5 (Simulatable PKE [DN00]) A Simulatable PKE is a tuple of algorithms (Gen,Enc,Dec, G̃en,

G̃en
−1
, Ẽnc, Ẽnc

−1
) that satisfy the following properties:

• IND-CPA. (Gen,Enc,Dec) is IND-CPA secure as in Definition 2.4.

• Oblivious public key generation. Consider the experiment (PK, SK)← Gen(1n), r ← G̃en
−1

(PK)

and PK′ ← G̃en(r′). Then, (r, PK) ≈c (r′, PK′).

• Oblivious ciphertext generation. For any message m in the appropriate domain, consider the

experiment (PK, SK) ← Gen(1n), c ← EncPK(m), r ← Ẽnc
−1

(c), c′ ← ẼncPK(r′). Then
(PK, r, c) ≈c (PK, r′, c′).

The El Gamal PKE [Gam85] is one example for simulatable PKE.
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2.3 Dual-Mode PKE

A dual-mode PKE ΠDUAL is specified by the algorithms (Setup, dGen, dEnc, dDec,FindBranch,TrapKeyGen)
described below.

• Setup is the system parameters generator algorithm. Given a security parameter n and a mode µ ∈
{0, 1}, the algorithm outputs (CRS, t). The CRS is a common string for the remaining algorithms,
and t is a trapdoor value that is given to either FindBranch or TrapKeyGen, depends on the mode. The
setup algorithms for messy and decryption modes are denoted by SetupMessy and SetupDecryption,
respectively; namely SetupMessy := Setup(1n, 0) and SetupDecryption := Setup(1n, 1).

• dGen is the key generation algorithm that takes a bit α and the CRS as input. If α = 0, then it
generates left public and secret key pair. Otherwise, it creates right public and secret key pair.

• dEnc is the encryption algorithm that takes a bit β, a public key PK and a message m as input. If
β = 0, then it creates the left encryption of m, else it creates the right encryption.

• dDec decrypts a message given a ciphertext and a secret key SK.

• FindBranch finds whether a given public key (in messy mode) is left key or right key given the messy
mode trapdoor t.

• TrapKeyGen generates a public key and two secret keys using the decryption mode trapdoor t such
that both left encryption as well as the right encryption using the public key can be decrypted using
the secret keys.

Definition 2.6 (Dual-mode PKE) A dual-mode PKE is a tuple of algorithms described above that satisfy
the following properties:

1. Completeness. For every mode µ ∈ {0, 1}, every (CRS, t) ← Setup(1n, µ), every α ∈ {0, 1},
every (PK, SK) ← dGen(α), and every m ∈ {0, 1}`, decryption is correct when the public key type
matches the encryption type, i.e., dDecSK(dEncPK(m,α)) = m.

2. Indistinguishability of modes. The CRS generated by SetupMessy and SetupDecryption are com-
putationally indistinguishable, i.e., SetupMessy(1n) ≈c SetupDecryption(1n).

3. Trapdoor extraction of key type (messy mode). For every (CRS, t)← SetupMessy(1n) and every
(possibly malformed) PK, FindBranch(t, PK) outputs the public key type α ∈ {0, 1}. Encryption at
branch 1 − α is then message-lossy; namely, for every m0,m1 ∈ {0, 1}`, dEncPK(m0, 1 − α) ≈s
dEncPK(m1, 1− α).

4. Trapdoor generation of keys decrypt both branches (decryption mode). For every (CRS, t) ←
SetupDecryption(1n), TrapKeyGen(t) outputs (PK, SK0, SK1) such that for every α, (PK, SKα) ≈c
dGen(α).

2.4 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition 2.7 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G if for
all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(G, q, g, gx, gy, gz) = 1]− Pr [Cn(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),
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where (G, q, g)← G(1n) and the probabilities are taken over the choices of g and x, y, z ∈ Zq.

We require the DDH assumption to hold for prime order groups. In a few places we use a different version
of the DDH assumption: for random generators g, h ∈ G and for distinct but otherwise random a, b ∈ Zq,
the tuples (g, h, ga, ha) and (g, h, ga, hb) are computationally indistinguishable. This version of the DDH
assumption is equivalent to the common form discussed above.

Definition 2.8 (DCR) We say that the Decisional Composite Residuosity (DCR) problem is hard relative to
G if for all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr

[
Cn(N, z) = 1| z = yN mod N2

]
− Pr

[
Cn(N, z) = 1| z = (1 +N)r · yN mod N2

] ∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, r is chosen at random in ZN and the probabilities
are taken over the choices of N, y and r.

Definition 2.9 (QR) We say that the Quadratic Residuosity (QR) problem is hard relative to G if for all
polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(N, z) = 1| z ← QRN ]− Pr [Cn(N, z) = 1| z ← JN \QRN ]

∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, JN denote the group of Jacobi symbol (+1)
elements of Z∗N , QRN = {x2 : x ∈ Z∗N} denote JN ’s subgroup of quadratic residues and the probabilities
are taken over the choices of N, z.

2.5 Zero-knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behavior. We formally
define zero-knowledge and knowledge extraction as stated in [Gol01]. We then conclude with a definition
of a Σ-protocol which constitutes a zero-knowledge proof of a special type.

Definition 2.10 (Interactive proof system) A pair of PPT interactive machines (P,V) is called an inter-
active proof system for a language L if there exists a negligible function negl such that the following two
conditions hold:

1. COMPLETENESS: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L and every interactive PPTmachine B,

Pr[〈B,V〉(x) = 1] ≤ negl(|x|).

Definition 2.11 (Zero-knowledge) Let (P,V) be an interactive proof system for some language L. We
say that (P,V) is computational zero-knowledge if for every PPT interactive machine V∗ there exists a
PPT algorithm M∗ such that

{〈P,V∗〉(x)}x∈L ≈c {〈M∗〉(x)}x∈L
where the left term denote the output of V∗ after it interacts with P on common input x whereas, the right
term denote the output of M∗ on x.
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Definition 2.12 (Knowledge extraction) Let R be a binary relation and κ → [0, 1]. We say that an in-
teractive function V is a knowledge verifier for the relation R with knowledge error κ if the following two
conditions holds:

NON-TRIVIALITY: There exists an interactive machine P such that for every (x, y) ∈ R, (implying that
x ∈ LR), all possible interactions of V with P on common input x and auxiliary input y are accepting.

VALIDITY (WITH ERROR κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive function P, every x ∈ LR, and every machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by Px,y,r that uses randomness r (where the probability is
taken over the coins of V). If p(x, y, r) > κ(|x|), then, on input x and with access to oracle
Px,y,r, machine K outputs a solution s ∈ R(x) within an expected number of steps bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

Definition 2.13 (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin
protocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input w to P where (x,w) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs w such that (x,w) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPTalgorithm M∗ such that{
〈P(x,w),V(x, e)〉

}
x∈LR

≈c
{
M(x, e)

}
x∈LR

whereM(x, e) denotes the output ofM upon input x and e, and 〈P(x,w),V(x, e)〉 denotes the output
transcript of an execution between P and V, where P has input (x,w), V has input x, and V’s random
tape (determining its query) equals e.

2.6 Security Definitions

In the following, we formalize the notion of UC one-sided adaptive security [Can01]. Formally, a two-
party computation protocol is cast by specifying the participating parties P0 and P1 and a function f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f0, f1) mapping pairs of inputs to pairs of outputs
(one for each party). That is, for every pair of inputs x0, x1 ∈ {0, 1}n the output pair is a random vari-
able (f0(x0, x1), f1(x0, x1)) ranging over pair of strings. The first party with input x0 wishes to receive
f0(x0, x1), while the second party with input x1 wishes to obtain f1(x0, x1).

2.6.1 One-sided Adaptive Security

In the two-party setting, a real execution of some protocol Πf that implements f is run between two parties
P0 and P1 in the presence of an adversary ADV and an environment ENV (that is given an input z, a random
tape rENV and a security parameter n), and is modeled as a sequence of activations of the entities. ENV
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is activated first and generates the inputs for the other entities. Then the protocol proceeds by having the
parties communicating with each other, and ADV exchanges messages with ENV. Upon completing the real
execution ENV outputs a bit.

In the ideal model, the computation involves an incorruptible trusted third party Ff which receives the
parties’ inputs, computes the function f on these inputs and returns to each party its respective output.
The parties are replaced by dummy parties that do not communicate with each other, such that whenever a
dummy party is activated it sends its input to the ideal functionality. Upon completing the ideal execution
ENV outputs a bit. We say that a protocol Πf UC realizes functionality Ff if for any real world adversary
ADV there is a ideal world adversary SIM such that no ENV can tell with non-negligible probability whether
it is interacting with ADV and the parties running Πf in a real execution or with SIM and the dummy parties
in an ideal execution. Details follow.

Execution in the real model. We now proceed with a real world execution, where a real two-party proto-
col is executed. Whenever ENV is activated, it first fixes input xi ∈ {0, 1}∗ for party Pi. Each party Pi then
starts the execution with an input xi ∈ {0, 1}∗, a random tape ri and a security parameter n. A one-sided
adversary ADV is a probabilistic polynomial-time interactive Turing machine that is given a random tape
rADV and a security parameter n. At the outset of the protocol, ADV receives some initial information from
ENV. Then the computation proceeds in rounds such that in each round ADV sees all the messages sent
between the parties. At the beginning of each round, ADV may choose to corrupt Pi∗ for i∗ ∈ {0, 1}. Upon
corrupting Pi∗ , ADV learns its input and the random tape, and obtains some auxiliary information from
ENV. In case ADV is malicious Pi∗ follows ADV’s instructions from the time it is corrupted. At the end of
the protocol execution the honest parties locally compute their outputs and output the value specified by the
protocol, whereas the corrupted party outputs a special symbol ⊥. The adversary ADV outputs an arbitrary
function of its internal state that includes, rADV, the messages received from ENV and the corrupted party’s
view. Next, a post-execution corruption process begins where ENV first learns the outputs. Then, ADV and
ENV interact in at most one additional round. If none of the parties is corrupted yet, ENV can ask ADV to
corrupt Pi∗ for i∗ ∈ {0, 1}, receiving back the state of this party. At the end ENV outputs a bit.

Let f be as specified above and Πf be a two-party protocol that computes f . We denote by the vari-
able OREALΠf ,ADV,ENV(n, x0, x1, z, ~r) the output of ENV on input z, random tape rENV and a security
parameter n upon interacting with ADV and parties P0, P1 that engage in protocol Πf on inputs rADV and
(x0, r0), (x1, r1), respectively, where ~r = (rENV, rADV, r0, r1). Let OREALΠf ,ADV,ENV(n, x0, x1, z) de-
note a random variable describing OREALΠf ,ADV,ENV(n, x0, x1, z, ~r) where the random tapes are chosen
uniformly. Let OREALΠf ,ADV,ENV denote the distribution ensemble:

{OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN.

Execution in the ideal model. A one-sided ideal world adversary SIM is a probabilistic polynomial-time
interactive Turing machine that is given a random tape rSIM and a security parameter n. The ideal process is
defined with respect to a trusted party that implements functionality Ff as follows:

First corruption phase: SIM receives some auxiliary information from ENV. Next, SIM may decide
whether to corrupt party Pi∗ for i∗ ∈ {0, 1}. Upon corrupting party Pi∗ , SIM learns its input xi∗ .
In addition, ENV hands some auxiliary information to SIM.

Computation phase: In the semi-honest setting, each party forwards its input to the trusted party. In the
malicious settings, the corrupted party hands Ff the values handed to it by SIM. The trusted party
computes (y0, y1) = f(x0, x1) and hands each Pi the value yi. SIM receives the output of the cor-
rupted party.
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Second corruption phase: SIM continues to another corruption phase, where it might choose to corrupt
Pi∗ for i∗ ∈ {0, 1} (in case it did not corrupt any party in the first corruption phase), where this choice
is made based on SIM’s random tape and all the information gathered so far. Upon corrupting Pi∗ ,
SIM learns its input xi∗ . ENV hands SIM some auxiliary information.

Output: The uncorrupted party P1−i∗ outputs y1−i∗ and the corrupted party outputs ⊥. SIM outputs an
arbitrary efficient function of its view. ENV learns all the outputs.

Post-execution corruption phase: After the outputs are generated, SIM proceeds with ENV in at most
one round of interaction, where ENV can instruct SIM to corrupt Pi∗ for i∗ ∈ {0, 1} (if none of the
parties are corrupted yet). SIM generates some arbitrary answer and might choose to corrupt Pi∗ . The
interaction continues until ENV halts with an output.

We denote by OIDEALFf ,SIM,ENV(n, x0, x1, z, ~r) the output of ENV on input z, random tape rENV and
security parameter n upon interacting with SIM and parties P0, P1, running an ideal process with inputs rSIM

and x0, x1, respectively, where ~r = (rENV, rSIM). Let OIDEALFf ,SIM,ENV(n, x0, x1, z) denote a random
variable describing OIDEALFf ,SIM,ENV(n, x0, x1, z, ~r) when the random tapes rENV and rSIM are chosen
uniformly. Let OIDEALFf ,SIM,ENV denote the distribution ensemble:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

Then we define security as follows.

Definition 2.14 Let Ff and Πf be as defined above. Protocol Πf UC realizes Ff in the presence of one-
sided semi-honest/malicious adversaries if for every non-uniform probabilistic polynomial-time one-sided
semi-honest/malicious adversary ADV, there exists a non-uniform probabilistic polynomial-time ideal ad-
versary SIM such that:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

≈c {OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

where |x0| = |x1|.

Composition. In order to simplify our security proofs we consider a hybrid setting where the parties
implement some functionalities using ideals calls. We rely on the composition theorem introduced by
Canetti [Can01] in the adaptive setting. (Note that we are only interested in cases where the same party
is corrupted with respect to all composed protocols.)

2.6.2 Concrete Functionalities

We specify the definition of three important functionalities for this work.

Secure communication (SC). We define the functionality FSC : (m,−) 7→ (−,m) for securely commu-
nicating a message m from P0 to P1.

Oblivious transfer (OT). The 1-out-of-2 oblivious transfer functionality is defined byFOT : ((x0, x1), σ)) 7→
(−, xσ). In a bit OT x0, x1 ∈ {0, 1}, whereas in a string OT x0, x1 ∈ {0, 1}n.
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Zero-knowledge proofs of knowledge (ZK PoK). LetNP relationR associated with the languageLR =
{x| ∃w s.t. (x,w) ∈ R}. Then, we define the ZK PoK functionality for R by FRZKPoK : ((x,w), x) 7→
(−, (x, b)) where b = Accept ifR(x,w) = 1 and b = Reject ifR(x,w) = 0.

3 Different Notions of Non-Committing Encryptions (NCE)

3.1 NCE for the Receiver

An NCE for the receiver is a semantically secure PKE with an additional property that enables generating
a secret key that decrypts a simulated (i.e., fake) ciphertext into any plaintext. Specifically, the scheme
operates in two modes. The “real mode” enables to encrypt and decrypt as in the standard definition of PKE.
The “simulated mode” enables to generate simulated ciphertexts that are computationally indistinguishable
from real ciphertexts. Moreover, using a special trapdoor one can produce a secret key that decrypts a fake
ciphertext into any plaintext. Intuitively, this implies that simulated ciphertexts are generated in a lossy
mode where the plaintext is not well defined given the ciphertext and the public key. This leaves enough
entropy for the secret key to be sampled in a way that determines the desired plaintext. We continue with a
formal definition of NCE for the receiver.

Definition 3.1 (NCE for the receiver (NCER)) An NCE for the receiver encryption scheme is a tuple of
algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified in Definition 2.3.

– Enc∗, given the public key PK output a ciphertext c∗ and a trapdoor tc∗ .

– Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m, output SK∗ such that m ←
DecSK∗(c

∗).

Definition 3.2 (Secure NCER) An NCE for the receiver ΠNCR = (Gen,Enc,Dec,Enc∗,Equivocate) is
secure if it satisfies the following properties:

• Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition 2.4.

• The following ciphertext indistinguishability holds for any plaintextm: (PK, SK∗, c∗,m) and (PK, SK,
c,m) are computationally indistinguishable, for (PK, SK) ← Gen(1n), (c∗, tc∗) ← Enc∗(PK),
SK∗ ← Equivocate(SK, c∗, tc∗ ,m) and c← EncPK(m).

We now review two implementations of NCER under the DDH and DCR assumptions.

NCER under the DDH assumption for polynomial-size message spaces. NCER for polynomial mes-
sage space can be constructed under the DDH assumption [JL00, CHK05]. For simplicity we consider a
binary plaintext space. Let (g0, g0, p) ← G(1n) be an algorithm that given a security parameter n, re-
turns a group description G = Gg0,g1,p specified by its generators g0, g1 and its order p. Then define
ΠDH

NCER = (Gen,Enc,Enc∗,Dec,Equivocate) as follows.

– Gen, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x, y ← Z2
p and

compute h = gx0g
y
1 . Output the secret key SK = (x, y) and the public key PK = (g0, g1, h).

– Enc, given the public key PK and a plaintext m ∈ G, choose a uniformly random r ← Z∗p. Output the
ciphertext (gr0, g

r
1, g

m
0 · hr).
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– Enc∗, given the public key PK choose uniformly random r1, r2, r3 ← Z∗p. Output the fake ciphertext
(gr10 , g

r2
0 , g

r3
0 ) and trapdoor tc∗ = (r1, r2, r3).

– Dec, given the secret key (x, y) and a ciphertext (c0, c1,Φ), output Φ · (cx0c
y
1)
−1.

– Equivocate, given (x, y), a simulated ciphertext c∗, trapdoor tc∗ = (r1, r2, r3) and a plaintext m ∈ G
output SK∗ = (x∗, y∗) by solving the system of linear equations induced by the exponents of the
public key and ciphertext c∗ = (gr10 , g

r2
0 , g

r3
0 ).4

Proposition 3.1 ([JL00, CHK05]) Assume that the DDH assumption is hard in G. Then ΠDH
NCER is a secure

NCER.

It is easy to verify that real and simulated ciphertexts are computationally indistinguishable under the
DDH assumption since the only difference is with respect to the first two group elements, the third group
element induces a linear combination of the first two elements and the secret key in the exponent.

NCER under the DCR assumption for exponential-size message spaces. NCER for exponential mes-
sage space can be constructed under the DCR assumption [CHK05]. Let (p′, q′) ← G(1n) be an algorithm
that given a security parameter n returns two random n bit primes p′ and q′ such that p = 2p′ + 1 and q =
2q′+ 1 are also primes. Let N = pq and N ′ = p′q′. Define ΠDCR

NCER = (Gen,Enc,Enc∗,Dec,Equivocate) as
follows.

– Gen, given the security parameter n, run (p′, q′) ← G(1n) and set p = 2p′ + 1, q = 2q′ + 1, N = pq
and N ′ = p′q′. Choose random x0, x1 ← ZN2/4 and a random g′ ∈ Z∗N2 and compute g0 = g′2N ,
h0 = gx0 and h1 = gx1

0 . Output public key PK = (N, g0, h0, h1) and secret key SK = (x0, x1).

– Enc, given the public key PK and a plaintext m ∈ ZN , choose a uniformly random t← ZN/4 and output
ciphertext

c← EncPK(m; t) =
(
gt0 mod N2, (1 +N)mht0 mod N2, ht1 mod N2

)
.

– Enc∗, given the public key PK choose uniformly random t← Zφ(N)/4, compute the fake ciphertext

c∗ ← (c∗0, c
∗
1, c
∗
2) =

(
(1 +N) · gt0 mod N2, (c∗0)x0 mod N2, (c∗0)x1 mod N2

)
.

– Dec, given the secret key (x0, x1) and a ciphertext (c0, c1, c2), check whether c2x1
0 = (c2)2; if not output

⊥. Then set m̂ = (c1/c
x0
0 )N+1. If m̂ = 1 +mN for some m ∈ ZN , then output m; else output ⊥.

– Equivocate, given N ′, (x0, x1), a ciphertext (c0, c1, c2) and a plaintext m ∈ ZN , output SK∗ = (x∗0, x1),
where x∗0 ← ZNN ′ is the unique solution to the equations x∗0 = x mod N ′ and x∗0 = x0−m mod N .
These equations have a unique solution due to the fact that gcd(N,N ′) = 1 and the solution can be
obtained employing Chinese Remainder Theorem.

It can be verified that the secret key SK∗ matches the public key PK and also decrypts the ‘simulated’
ciphertext to the required message m. The first and third component of PK remains the same since

4In order to compute such a secret key the Equivocate algorithm has to know logg0 g1 and logg0 m. The requirement of
knowing logg0 m makes this scheme work only for messages from polynomial-size spaces.
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x1 has not been changed. Now gx
∗
0 = gx

∗
0 mod N ′ = gx0 mod N ′ = gx0 = h0. Using the fact that the

order of (1 +N) in Z∗N2 is N , we have(
c1

c
x∗0
0

)N+1

=

(
(1 +N)x0gtx0

0

(1 +N)x
∗
0g
tx∗0
0

)N+1

=
(

(1 +N)x0−x∗0 mod N
)N+1

= (1 +N)m = (1 +mN).

Proposition 3.2 ([CHK05]) Assume that the DCR assumption is hard in Z∗N2 . Then ΠDCR
NCR is a secure

NCER.

It is easy to verify that real and simulated ciphertexts are computationally indistinguishable under the
DCR assumption since the only difference is with respect to the first element (which is an 2N th power in a
real ciphertext and not an 2N th power in a simulated ciphertext). The other two elements are powers of the
first element. Furthermore SK = (x0, x1) and SK∗ = (x∗0, x1) are statistically close since x0 ← ZN2/4 and
x∗0 ← ZNN ′ and the uniform distribution over ZNN ′ and ZN2/4 is statistically close.

3.2 NCE for the Sender

NCE for the sender is a semantically secure PKE with an additional property that enables generating a
fake public key, such that any ciphertext encrypted under this key can be viewed as the encryption of any
message together with the matched randomness. Specifically, the scheme operates in two modes. The “real
mode” that enables to encrypt and decrypt as in standard PKEs and the “simulated mode” that enables to
generate simulated public keys and an additional trapdoor, such that the two modes keys are computationally
indistinguishable. In addition, given this trapdoor and a ciphertext generated using the simulated public key,
one can produce randomness that is consistent with any plaintext. We continue with a formal definition.

Definition 3.3 (NCE for the sender (NCES)) An NCE for the sender encryption scheme is a tuple of algo-
rithms (Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified in Definition 2.3.

– Gen∗ generates public key PK∗ and a trapdoor tPK∗ .

– Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plaintext m, output r such
that c∗ ← Enc(m; r).

Definition 3.4 (Secure NCES) An NCE for the sender ΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) is se-
cure if it satisfies the following properties:

• Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition 2.4.

• The following public key indistinguishability holds for any plaintext m: (PK∗, r∗,m, c∗) and (PK, r,
m, c) are computationally indistinguishable, for (PK∗, tPK∗) ← Gen∗(1n), c∗ ← EncPK∗(m

′; r′),
r∗ ← Equivocate(c∗, tPK∗ ,m) and c← EncPK(m; r).

We review the DDH based implementation from [BHY09] and then present our DCR based implementation.

15



NCES under the DDH assumption for polynomial-size message spaces. For simplicity we consider a
binary plaintext space. Let (g0, g1, p) ← G(1n) be an algorithm that given a security parameter n returns
a group description G = Gg0,g1,p specified by its generators g0, g1 and its order p. Then define ΠDH

NCES =
(Gen,Gen∗,Enc,Dec,Equivocate) as follows.

– Gen, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x ← Zp and
compute hi = gxi for all i ∈ {0, 1}. Output the secret key SK = x and the public key PK =
(g0, g1, h0, h1).

– Gen∗, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x0, x1 ← Z2
p

and hi = gxii for all i ∈ {0, 1}. Output the trapdoor tPK∗ = (x0, x1) and the public key PK∗ =
(g0, g1, h0, h1).

– Enc, given the public key PK (or PK∗) and a plaintext m ∈ G, choose a uniformly random s, t ← Zp.
Output the ciphertext

(
gs0g

t
1, g

m
0 · (hs0ht1)

)
.

– Dec, given the secret key x and a ciphertext (gc, hc), output hc · (gxc )−1.

– Equivocate, given the fake key PK∗ = (g0, g1, h0, h1), trapdoor tPK∗ , a ciphertext c∗ = EncPK∗(m; (s′, t′))
and a plaintextm, output (s, t) such that c∗ ← Enc(m; (s, t)) by solving the system of linear equations
induced by the exponents of the two elements in ciphertext.5

Proposition 3.3 Assume that the DDH assumption is hard in G. Then ΠDH
NCES is a secure NCES.

Proof: It is easy to verify that real and simulated public keys are computationally indistinguishable under
the DDH assumption even in the presence of the randomness of the encryption. Proving indistinguishability
of a real and simulated public key in the presence of the randomness used for encryption is sufficient since a
ciphertext is a linear combination of the public key using the randomness for encryption both in the real as
well as in the simulated world. The proof follows by a reduction to the DDH assumption as follows. Given a
tuple (g0, g1, h0, h1) adversary ADVDH that attempts to decide whether the given tuple is a DH tuple or not,
fixes this tuple as the public key, encrypts a message m under this key and output the public key, ciphertext,
m and the randomness it used to generate the ciphertext. It then invokes the adversary ADVDH

NCES for our
scheme that can tell apart (with non-negligible probability) a simulated public key from a valid public key.
ADVDH outputs what ADVDH

NCES outputs. Clearly, ADVDH can decide if a given tuple is a DH tuple.

NCES under the DCR assumption for exponential-size message spaces. In what follows, we intro-
duce a new NCE for the sender based on the security of the DCR assumption. This allows us to fix
the composite as part of the CRS when appropriate. Our scheme is based on the PKE from [CHK05],
building on earlier work by Cramer and Shoup [CS02]. Let N = pq be an RSA modulus, then define
ΠDCR

NCES = (Gen,Gen∗,Enc,Dec,Equivocate) an NCES as follows.

– Gen, given the security parameter n, generate an RSA modulus N = pq with p = 2p′+1 and q = 2q′+1
where p, q, p′, q′ are primes. Pick g′ ← Z∗N2 and α ← ZN2/4 and set g0 = g′2N mod N2 and
h0 = gα0 mod N2. Choose a random r ← ZN/4 and compute g1 = gr0 mod N2, h1 = ((1 + N) ·
hr0) mod N2. Output PK = (N, g0, h0, g1, h1) and secret key SK = α.

– Gen∗, given the security parameter n, generateN, g0, h0 as in Gen. Choose a random r ← ZN/4 and com-
pute g1 = gr0 mod N2, h1 = hr0 mod N2. Output PK∗ = (N, g0, h0, g1, h1) and trapdoor tPK∗ = r.

5In order to compute such randomness the Equivocate algorithm has to know logg0 g1 and logg0 m. The requirement of
knowing logg0 m makes this scheme work only for messages from polynomial-size spaces.
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– Enc, given the public key PK = (N, g0, h0, g1, h1) (or PK∗) and a message m ∈ ZN , choose a random
t← ZN/4 and output the ciphertext

c← Enc(m; t) =
(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
.

– Dec, given the public key PK = (N, g0, h0, g1, h1), secret key SK = α and ciphertext c = (gc, hc),
compute m̂ as follows and output m ∈ ZN such that m̂ = 1 +mN .

m̂ = (hc/g
α
c )N+1 = [(1 +N)m]N+1 = (1 +N)m.

– Equivocate, given Φ(N), the fake key PK∗ = (N, g0, h0, g1, h1), trapdoor tPK∗ = r, a ciphertext c∗ ←
EncPK∗(m; t) = (gc, hc) and a message m′, output t′ = (rm+ t− rm′) mod Φ(N)/4. It is easy to
see that

EncPK∗(m
′; t′) =

(
(gm

′
1 gt

′
0 ), hm

′
1 ht

′
0 )
)

=
(

(grm
′

0 g
(rm+t−rm′)
0 ), (hrm

′
0 h

(rm+t−rm′)
0 )

)
= c.

Next, we show that this scheme meets Definitions 3.4.

Proposition 3.4 Assume that the DCR assumption is hard in Z∗N2 . Then ΠDCR
NCES is a secure NCES.

Proof: Given the public key PK = (N, g0, h0, g1, h1) and two messages m,m′ ∈ ZN , we show that en-
cryptions of m and m′ are computationally close. Namely tuples, (1)

(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
and (2)

(
(gm

′
1 gt0) mod N2, (hm

′
1 ht0) mod N2

)
are computationally close. This follows immediately from

the IND-CPA security proof for the modified scheme in [DJ03] (cf. Theorem 2 of [DJ03]).
The fact that fake and valid public keys are computationally indistinguishable follows from the IND-

CPA security of [CHK05] and [CS02] and the former proof (for the DDH based scheme). As the former key
is an encryption of zero whereas the latter key is an encryption of one.

3.3 Somewhat Non-Committing Encryption [GWZ09]

The idea of somewhat NCE is to exploit the fact that it is often unnecessary for the simulator to explain
a fake ciphertext for any plaintext. Instead, in many scenarios it suffices to explain a fake ciphertext with
respect to a small set of size ` determined in advance (where ` might be as small as 2). Therefore there are
two parameters that are considered here: a plaintext of bit length l and an equivocality parameter ` which
is the number of plaintexts that the simulator needs to explain a ciphertext for (namely, the non-committed
domain size). Note that for fully NCE ` = 2l. Somewhat NCE typically improves over fully NCE whenever
` is very small but the plaintext length is still large, say O(n) for n the security parameter.

[GWZ09] design somewhat NCE using three primitives: simulatable PKE (cf. Definition 2.2), NCE (for
the purpose of sending a short index of length log `), and a secret key encryption (SKE). Let (Gen,Enc,Dec,

G̃en, G̃en
−1
, Ẽnc, Ẽnc

−1
) be a simulatable PKE and (GenSKE,EncSKE,DecSKE) be an SKE in which the

ciphertexts are indistinguishable from uniformly random strings of the same length. In more details,

Setup Phase.

• SEN sends a random index i ∈ [`] using NCE.

• SEN generates ` public keys. For j ∈ {1, . . . , `} \ {i}, the keys PKj ← G̃en(1n) are generated oblivi-
ously while (PKi, SKi)← Gen(1n). SEN sends the keys PK1, . . . , PK` and stores SKi.
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• REC generatesK ← GenSKE(1n) and computes ci ← EncPKi
(K). REC also generates cj ← ẼncPKi

(1n)
obliviously for j ∈ {1, . . . , `} \ {i}. Finally it sends ciphertexts c1, . . . , c`.

• SEN decrypts the key K ← DecSKi(ci). Both parties store K, i.

Transfer Phase.

• SEN computes Ci ← EncSKE

K (m) and chooses Cj for j ∈ {1, . . . , `} \ {i} uniformly at random of the
appropriate length. S sends (C1, . . . , C`).

• REC ignores everything other than Ci and decrypts m← DecSKE

K (Ci).

In case of no corruptions the simulator simulates both parties as follows: it first generates the keys and the
ciphertexts in the setup phase using Gen and Enc, and generates ` keys for a symmetric key encryption.
In the transfer phase the simulator uses these symmetric keys to encrypt all ` plaintexts. Assume that the
adversary corrupts a party at the end of this phase then the simulator obtains the message m, say the kth
element in [`]. It then explains the index of this element via the NCE and uses the key and ciphertext faking
algorithms to explain the other public key/ciphertext pairs as being obliviously generated. Given that the
kth simulatable PKE ciphertext encrypts the secret key K, it holds that the kth SKE ciphertext encrypts the
message m. This simulation strategy works for corruption at any point of the execution.

4 One-sided Adaptively Secure NCE

In this section we design one-sided NCE, building on NCE for the sender (NCES) and NCE for the receiver
(NCER). Namely, NCER implies that for any plaintext there exists an efficiently generated secret key that
decrypts a fake ciphertext into that plaintext (see Definition 3.1). Furthermore, NCES implies that for any
plaintext there exists efficiently generated randomness for proving that a ciphertext, encrypted under a fake
key, encrypts that plaintext (see Definition 3.3).

The idea of our protocol is to have the receiver create two public/secret key pairs where the first pair
is for NCES and the second pair is for NCER. The receiver sends the public keys and the sender encrypts
two shares of its message m, each share with a different key. Upon receiving the ciphertexts the receiver
recovers the message by decrypting the ciphertexts. Therefore, equivocality of the sender’s input can be
achieved if the public key of the NCES is fake, whereas, equivocality of the receiver’s input can be achieved
if the ciphertext of the NCER is fake. Nevertheless, this idea only works if the simulator is aware of the
identity of the corrupted party prior to the protocol execution in order to decide whether the keys or the
ciphertexts should be explained as valid upon corruption (since it cannot explain fake keys/ciphertext as
valid). We resolve this problem using somewhat NCE in order to commit to the choice of having fake/valid
keys and ciphertexts. Specifically, it enables the simulator to “explain” fake keys/ciphertext as valid and vice
versa using only a constant number of asymmetric operations, as each such non-committing bit requires an
equivocation space of size 2. (An overview of somewhat NCE is given in Section 3.3.)

Let ΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) and ΠNCER = (Gen,Enc,Enc∗,Dec,Equivocate) de-
note secure NCES and NCER for a message space {0, 1}q. Consider the following one-sided protocol to
realize the message communication functionality FSC : (m,−) 7→ (−,m).

Protocol 1 (One-sided NCE (ΠOSC))

• Inputs: Sender SEN is given input message m ∈ {0, 1}q . Both parties are given security parameter 1n.

• The Protocol:

1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains two public/secret
key pairs (PK0, SK0) and (PK1, SK1), respectively. REC sends PK1 on clear and PK0 using somewhat
NCE with equivocality parameter ` = 2.
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2. Message from the sender. Upon receiving PK0 and PK1, SEN creates two shares of m, m0 and m1,
such that m = m0 ⊕m1. It then encrypts each mi using PKi, creating ciphertext ci, and sends c0 and
c1 using two instances of somewhat NCE with equivocality parameter ` = 2.

3. Output. Upon receiving c0, c1, REC decrypts ci using SKi and outputs the bitwise XOR of the decrypted
plaintexts.

Note that the message space of our one-sided NCE is equivalent to the message space of the NCES/NCER
schemes, where q can be as large as n. Therefore, our protocol transmits q-bits messages using a constant
number of PKE operations, as opposed to fully adaptive NCEs that require O(q) such operations. We pro-
vide two instantiations for the above protocol. One for polynomial-size message spaces using DDH based
NCES and NCER, and another for exponential-size message spaces using DCR based NCES and NCER.
We conclude with the following theorem and the complete proof.

Theorem 4.1 Assume the existence of NCER and NCES with constant number of PKE operations for mes-
sage space {0, 1}q and simulatable PKE. Then Protocol 1 UC realizes FSC in the presence of one-sided
adaptive malicious adversaries with constant number of PKE operations for message space {0, 1}q, where
q = O(n) and n is the security parameter.

Intuitively, security follows due to the fact that the simulator is not committed to either valid keys or
valid ciphertexts. Thus, upon corrupting one of the parties it is able to explain that party’s internal state,
while equivocating the communication and make it consistent with message m. For instance, if the sender
is corrupted after the simulator sends the message on the sender’s behalf, the simulator can explain PK0 as
a fake key. Thus, the ciphertext encrypted under this key can be explained with respect to any plaintext.
Details follow.

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking Protocol 1 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FSC such that no
environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in the
real setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality FSC

and the environment ENV. We refer to the interaction of SIM with FSC and ENV as the external interaction.
The interaction of SIM with the simulated ADV is the internal interaction. We explain the strategy of the
simulation for all corruption cases.

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by the environment ENV).

SEN is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the honest
receiver by sending ADV, PK0 using the somewhat NCE and PK1 in clear as the honest receiver would
do. Upon receiving two ciphertexts c0 and c1 from ADV, SIM extracts m by computing DecSK0(c0)⊕
DecSK1(c1). SIM externally forwards m to the ideal functionality FSC. Since corruption takes place
at the onset of the protocol execution the simulator is able to perfectly emulate the sender’s view.

REC is corrupted at the onset of the protocol. SIM begins by activating ADV and obtains REC’s output
m from FSC. SIM invokes ADV and receives PK0 from ADV via the somewhat NCE and PK1 in
clear. Next, SIM completes the execution playing the role of the honest sender on input m. Note that
it does not make a difference whether REC generates valid or invalid public keys since SIM knows m
and thus perfectly emulates the receiver’s view.
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If none of the parties is corrupted as above, SIM emulates the receiver’s message as follows. It creates
public/secret key pair (PK1, SK1) for ΠNCER and sends the public key in clear. It then creates a valid
public/secret key pair (PK0, SK0) and a fake public key with a trapdoor (PK∗0, tPK∗0) for ΠNCES (using Gen
and Gen∗, respectively). SIM sends (PK0, PK∗0) using somewhat NCE. Namely, the simulator does not send
the valid PK0 as the honest receiver would do, rather it encrypts both valid and invalid keys within the
somewhat NCE.

SEN is corrupted between Steps 1 and 2. Since no message was sent yet on behalf of the sender, SIM

completes the simulation exactly as it does in the previous case when SEN was corrupted at the outset.

REC is corrupted between Steps 1 and 2. Upon receiving m, SIM explains the receiver’s internal state
which is independent of the message m so far. Specifically, it reveals the randomness for generating
PK0, SK0 and PK1, SK1 and presents the randomness for the valid key PK0 being the message sent
by the somewhat NCE. SIM plays the role of the honest sender with input m as the message.

In these cases the only difference between the real and simulated executions is with respect to the
somewhat NCE channel that delivers the public key of NCES. Specifically, in the real execution this
channel always delivers a valid public key and the rest of the computation is computed honestly,
whereas in the simulated execution it delivers both valid and fake keys (for which later it is decided
which key will be used). Therefore the difference between the real and simulated views is reduced
to the difference between two invocations of somewhat NCE channel and security follows from the
security of this channel. Using the construction from [GWZ09], security is reduced to the security of
the underlying simulatable PKE and SKE (with ciphertexts that are indistinguishable from uniformly
random strings). The proof is straightforward and thus omitted.

If none of the above corruption cases occur, SIM emulates the sender’s message as follows. It first chooses
two random shares m′0,m

′
1 and generates a pair of ciphertexts (c′0, c

∗
0) for ΠNCES that encrypts m′0 using

PK0 and PK∗0. It then generates a pair of ciphertexts (c′1, c
∗
1) for ΠNCER such that c′1 is a valid encryption of

m′1 using the public key PK1, and c∗1 is a fake ciphertext generated using Enc∗ and PK1. SIM sends (c′0, c
∗
0)

and (c∗1, c
′
1) via two instances of somewhat NCE.

SEN is corrupted after Step 2 is concluded. Upon receiving a corruption instruction from ENV, SIM cor-
rupts the ideal SEN and obtains SEN’s inputm. It then explains the sender’s internal state as follows.
It explains PK∗0 for being the public key sent by the receiver using the somewhat NCE. Furthermore,
it presents the randomness for c∗0 and c′1 being the ciphertexts sent via the somewhat NCE. Finally, it
computes r′′ ← Equivocate(c∗0, tPK∗0 ,m

′′
0) for m′′0 such that m = m′′0 ⊕ m′1, and presents r′′ as the

randomness used to generate c∗0 that encrypts m′′0 . The randomness used for generating c′1 is revealed
honestly.

Consider the adversary’s view which is comprised from three invocations of somewhat non-committing
channel and a public key PK1 that was honestly generated. The message received from the receiver
via the first channel is a fake public key PK∗0. Moreover, the remaining two invocations of the some-
what NCE are regarding sending the ciphertexts encrypted under keys PK∗0 and PK1. We can reduce
the security of this case to the security of ΠNCES and somewhat NCE.

Let H0 denote the simulation. Then, define a sequence of three hybrid games {Hi}3i=1 where in Hi
simulator SIMi invokes the first i executions of the somewhat NCE channel as in the real execution,
whereas the remaining 3 − i invocations are computed as in the simulation. Specifically, in the first
hybrid game the simulator SIM1 sends a valid public key PK0 using the first somewhat NCE channel
and two pairs of ciphertexts (c′0, c

∗
0), (c′1, c

∗
1) using the last two executions of the somewhat NCE.

Moreover, the only difference in the second hybrid game is that the simulator SIM2 sends c0 encrypted
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under PK0 within the second execution of the somewhat NCE. Finally, in the third hybrid game the
difference is that the simulator SIM3 sends c1 using the somewhat NCE channel. The messages
encrypted in c0 and c1 when xored result in the real message m.

Note that the difference with respect to the adversary’s view in games H0 and H1 is due to the
messages sent within the somewhat NCE channel. That is, in game H0 the simulator sends a pair of
keys (PK0, PK∗0) such that one is valid and the other one is fake, through this channel and reveals
the latter key, whereas in game H1 the simulator sends just a valid key PK0. Security follows due to
the security of the somewhat NCE channel and the indistinguishability property of ΠNCES. To prove
that, we consider an intermediate game H′ for which the simulator SIM′ sends a pair of valid keys
(PK0, PK′0) rather than (PK0, PK∗0) (as done in game H0). We first show that the adversary’s view
within this game is indistinguishable from its view in gameH0. Here the difference boils down to the
key indistinguishability property of ΠNCES. Givenm and a tuple of one of these forms (PK∗, r∗, m̃, c∗)
or (PK, r, m̃, c) for an arbitrary m̃, as specified in Definition 3.4, a distinguisher AdvNCES continues
as follows. Say it was given (PK′, r′, m̃, c′), then AdvNCES encrypts PK′ together with a valid key
PK0 using somewhat NCE and sends a valid key PK1 in the clear. It then sends, using somewhat NCE,
c′ together with another ciphertext c0 that encrypts m̃ under PK0. Finally, it sends, using somewhat
NCE, a valid and a fake ciphertext (c′1, c

∗
1) that encrypt m ⊕ m̃ under PK1. The distinguisher then

explains the adversary’s internal state as in game H0 explaining that PK′0 has been received while
using r′ to explain the randomness used for computing c′. Clearly, any advantage in distinguishing
the views generated in gamesH0 andH′ can be reduced to breaking the indistinguishability of ΠNCES

since AdvNCES generates a view that is distributed according to one of these games.

Next, we prove indistinguishability relative to games H′ and H1. Here the difference boils down
to the difference relative to the unopened (symmetric key) ciphertexts within the somewhat NCE
channel (where the adversary plays the role of the receiver). This is because the adversary receives
in both executions a valid key, yet in game H′ the simulator sends two valid keys PK0, PK′0 while
in the latter game the simulator sends just one valid key over the somewhat NCE channel honestly.
Security here follows immediately due to the security of the channel. A similar argument holds for
the indistinguishability between gamesH1 andH2, and gamesH2 andH3 (where here the adversary
is the sender via the somewhat NCE channel). This concludes the proof since gameH3 is identical to
the real execution.

REC is corrupted after Step 2 is concluded. Upon receiving a corruption instruction from ENV, SIM

corrupts the ideal REC and obtains REC’s output m. It then explains the receiver’s internal state as
follows. It presents the randomness for PK0 for being the public key sent via the somewhat NCE and
presents the randomness for generating (PK0, SK0). It then explains c0 and c∗1 for being received via
the somewhat NCE. Finally, it generates a secret key SK∗1 so that m′′1 ← DecSK∗1(c∗1) and m′′1 ⊕m′0 =
m. That is, it explains (PK1, SK∗1) as the other pair of keys generated by the receiver.

Security is proven similarly to the case the sender is corrupted at the end. Namely, the receiver’s view
is comprised from three invocations of the somewhat NCE channel and ciphertexts c0, c

∗
1. Security

follows due to the security of somewhat NCE and ΠNCER, where a distinguisher AdvNCER that wishes
to distinguish between a fake and a real ciphertext receives either (PK, SK∗1, c

∗
1,m

′′
1) or (PK, SK,

c1,m
′′
1).
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5 One-Sided Adaptively Secure OT

FOT : ((x0, x1), σ) 7→ (−, xb) is one of the fundamental functionalities in secure computation. A common
approach to design an adaptive OT [Bea98, CLOS02] is by having the receiver generate two public keys
(PK0, PK1) such that it only knows the secret key associated with PKσ. The sender then encrypts x0, x1

under these respective keys so that the receiver decrypts the σth ciphertext. The security of this protocol in
the adaptive setting holds if the underlying encryption scheme is an augmented non-committing encryption
scheme [CLOS02]. In this section we follow the approach from [GWZ09] and build one-sided OT based on
the static OT from [PVW08], which is based on a primitive called dual-mode PKE.

The [PVW08] OT. Dual-mode PKE is an IND-CPA secure encryption scheme that is initialized with
system parameters of two types. For each type one can generate two types of public/secret key pair, labeled
by the left key pair and the right key pair. Similarly, the encryption algorithm generates a left or a right
ciphertext. Moreover, if the key label matches the ciphertext label (i.e., a left ciphertext is generated under
the left public key), then the ciphertext can be correctly decrypted. (A formal definition of dual-mode PKE
is given in Section 2.3.) This primitive was introduced in [PVW08] which demonstrates its usefulness in
designing efficient statically secure OTs under various assumptions. First, the receiver generates a left key
if σ = 0, and a right key otherwise. In response, the sender generates a left ciphertext for x0 and a right
ciphertext for x1. The receiver then decrypts the σth ciphertext.

The security of dual-mode PKE relies on the two indistinguishable modes of generating the system pa-
rameters: messy and decryption mode. In a messy mode the system parameters are generated together with
a messy trapdoor. Using this trapdoor, any public key (even malformed ones) can be labeled as a left or as a
right key. Moreover, when the key type does not match the ciphertext type, the ciphertext becomes statisti-
cally independent of the plaintext. The messy mode is used to ensure security when the receiver is corrupted
since it allows to extract the receiver’s input bit while hiding the sender’s other input. On the other hand, the
system parameters in a decryption mode are generated together with a decryption trapdoor that can be used
to decrypt both left and right ciphertexts. Moreover, left public keys are statistically indistinguishable from
right keys. The decryption mode is used to ensure security when the sender is corrupted since the decryp-
tion trapdoor enables to extract the sender’s inputs while statistically hiding the receiver’s input. [PVW08]
instantiated dual-mode PKE and their generic OT construction based on various assumptions, such as DDH,
QR and lattice-based assumptions. We recall their instantiation based on DDH in Appendix A. In a fol-
lowup work [GWZ09], Garay et al. extended the dual-mode definition into enhanced dual-model PKE in
order to enable equivocation of the sender’s input relative to the ciphertext that encrypts x1−σ in a messy
mode. Our protocol implies equivocation for the sender via our one-sided NCE which implies that we can
use the simpler dual-mode primitive.

Our construction. We build our one-sided OT based on the PVW protocol considering the following
modifications. (1) First, we require that the sender sends its ciphertexts using one-sided NCE (see Section 4).
(2) We fix the system parameters in a decryption mode, which immediately implies extractability of the
sender’s input and equivocality of the receiver’s input. We further achieve equivocality of the sender’s input
using our one-sided NCE. In order to ensure extractability of the receiver’s input we employ a special type
of ZK PoK. Namely, this proof exploits the fact that the simulator knows both witnesses for the proof yet it
does not know which witness will be used by the real receiver, since this choice depends on σ. Specifically,
it allows the simulator to use both witnesses and later convince the adversary that it indeed used a particular
witness. In addition, it enables to extract σ since the real receiver does not know both witnesses. We denote
these proofs for compound statements by witness equivocal and refer to Section 7.2 for more details.

Our construction is one-sided UC secure in the presence of malicious adversaries, and uses a number of
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non-committed bits that is independent of the sender’s input size or the overall communication complexity.
We formally denote the dual-mode PKE of [PVW08] by ΠDUAL = (SetupMessy, SetupDecryption, dGen,
dEnc, dDec,FindBranch,TrapKeyGen) and describe our construction in the (FSC,FRLR

ZKPoK)-hybrid model,
where FSC is instantiated with one-sided NCE. Furthermore, the latter functionality is required to ensure the
correctness of the public key and is defined for a compound statement that is comprised from the following
two relations,

RLEFT =
{

(PK, r0) | (PK, SK)← dGen(CRS, 0; r0)
}
,

where CRS are the system parameters. Similarly, we defineRRIGHT for the right keys. Specifically, FRLR
ZKPoK

receives a public key PK and randomness rσ for σ ∈ {0, 1} and returns Accept if either σ = 0 and
PK = dGen(CRS, 0; r0), or σ = 1 and PK = dGen(CRS, 1; r1) holds. Security is proven by implementing
this functionality using a witness equivocal ZK PoK that allows the simulator to equivocate the witness
during the simulation (i.e., explaining the proof transcript with respect to either r0 or r1). We consider two
instantiations of dual-mode PKE (based on the DDH and QR assumptions). For each implementation we
design a concrete ZK PoK, proving that the prover knows rσ with respect to σ ∈ {0, 1}; see details below.

We define our OT protocol as follows,

Protocol 2 (One-sided OT ( ΠOT))

• Inputs: Sender SEN has x0, x1 ∈ {0, 1}q and receiver REC has σ ∈ {0, 1}.

• CRS: CRS such that (CRS, t)← SetupDecryption.

• The Protocol:

1. REC sends SEN PK, where (PK, SK)← dGen(CRS, σ; rσ). REC calls FRLR
ZKPoK with (PK, rσ).

2. Upon receiving Accept from FRLR
ZKPoK and PK from REC, SEN generates c0 ← dEncPK(x0, 0) and

c1 ← dEncPK(x1, 1). SEN calls FSC twice with inputs c0 and c1, respectively.

3. Upon receiving (c0, c1), REC outputs dDecSK(cσ).

Theorem 5.1 Assume the existence of one-sided NCE with constant number of PKE operations for message
space {0, 1}q and dual-mode PKE. Then Protocol 2 UC realizes FOT in the (FSC,FRLR

ZKPoK)-hybrid model
in the presence of one-sided adaptive malicious adversaries with constant number of PKE operations for
sender’s input space {0, 1}q, where q = O(n) and n is the security parameter.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol 2 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FOT such that
no environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in
the real setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality
FOT and the environment ENV. We refer to the interaction of SIM with FOT and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction. Upon computing
(CRS, t)← SetupDecryption(1n), SIM proceeds as follows:

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and emulates the receiver
by running (PK, SK0, SK1) ← TrapKeyGen(t). It then sends PK and an Accept message to ADV

on behalf of FRLR
ZKPoK. Whenever ADV returns c0, c1 via FSC, SIM extracts SEN’s inputs x0, x1 by

23



invoking dDecSK0(c0) and dDecSK1(c1) as in static case. It then sends x0, x1 to FOT and completes
the execution playing the role of the receiver using an arbitrary σ.

Note that, in contrast to the hybrid execution where the receiver uses its real input σ to dGen in or-
der to create public/secret keys pair, the simulator does not know σ and thus creates the keys using
TrapKeyGen. Nevertheless, when the CRS is set in a decryption mode the left public key is statisti-
cally indistinguishable from right public key. Furthermore, the keys (PK, SKi) that are generated by
TrapKeyGen are statistically close to the keys generated by dGen with input bit i. This implies that
the hybrid and simulated executions are statistically close.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and receives its public key
PK and a witness rσ on behalf of FRLR

ZKPoK. Given rσ, SIM checks if PK is the left or the right key and
use it to extract the receiver’s input σ. If the adversary’s message is invalid then SIM aborts, sending
⊥ to the trusted party. Otherwise, it sends σ to FOT, receiving back xσ. Finally, SIM computes the
sender’s message using xσ and an arbitrary x1−σ.

Unlike in the hybrid execution, the simulator uses an arbitrary x1−σ instead of the real x1−σ. How-
ever, a decryption mode implies computational privacy of x1−σ. This follows from the same proof
in [PVW08]. Therefore, the hybrid view is also computationally indistinguishable from the simulated
view as in the static setting.

If none of the above corruption cases occur SIM invokes (PK, SK0, SK1)← TrapKeyGen(t) and sends PK
to the sender. Note that the simulator knows a witness r0 such that PK = dGen(CRS, 0; r0) and a witness
r1 such that PK = dGen(CRS, 1; r1).

SEN is corrupted between Steps 1 and 2. SIM trivially explains the sender’s internal state since SEN did
not compute any message so far. The simulator completes the simulation by playing the role of REC
using an arbitrary bit σ as in the case when the sender is corrupted at the outset of the execution.

Indistinguishability for this case follows similarly to the prior corruption case when SEN is corrupted
at the outset of the execution since the simulator uses the same simulation strategy as above. Namely,
the adversary’s simulated view is identically distributed in both simulation cases. This is because this
view only contains the public key which is statically independent of σ is a decryption mode.

REC is corrupted between Steps 1 and 2. Upon corrupting the receiver SIM obtains σ, xσ from FOT and
explains the receiver’s internal state as follows. It first explains rσ as the witness given to FRLR

ZKPoK and
PK as the outcome of dGen(CRS, σ; rσ). The simulator completes the simulation playing the role of
the honest sender with xσ and an arbitrary x1−σ.

Indistinguishability for this case follows similarly to the prior corruption case since the simulator did
not emulate the sender’s message yet.

If none of the above corruption cases occur then SIM chooses two arbitrary inputs x′0, x
′
1 for the sender and

encrypts them using the dual-mode encryption. Denote these ciphertexts by c′0, c
′
1. SIM emulates the sender

that sends these ciphertexts using FSC.

SEN is corrupted after Step 2. Upon corrupting the sender, SIM obtains (x0, x1) from FOT. It then
explains the sender’s internal state as follows. It first computes c0, c1 that respectively encrypt x0 and
x1. It then explains c0 and c1 as being sent to the receiver using FSC.

Indistinguishability follows as in the prior corruption case of the sender since the one-sided non-
committing channel enables the simulator to “rewind” the simulation back, assuming that the sender
is corrupted before simulating its message. Therefore, the same simulation strategy as before, of
emulating the sender’s incoming message using an arbitrary bit σ works here as well.
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REC is corrupted after Step 2. Upon corrupting the receiver, SIM obtains REC’s input and output (σ, xσ)
from FOT. It then explains the receiver’s internal state as follows. It first explains rσ as the witness
given to FRLR

ZKPoK and PK as the outcome of dGen(CRS, σ; rσ). Finally, it explains the output of FSC

as c0, c1, so that cσ is a valid encryption of xσ under PK and c1−σ is an encryption of an arbitrary
input computed as in the real execution.

Indistinguishability follows similarly to a static corruption case of the receiver since the simulator
forces the second message from the sender to be simulated using an arbitrary x1−σ right as in the
former receiver corruption.

Concrete instantiations. In the DDH-based instantiation the CRS is a Diffie-Hellman tuple (g0, g1, h0, h1)

and the trapdoor is logg0
g1. Moreover, the concrete ZK PoK functionality isFRDL,OR

ZKPoK which is invoked with
the statement and witness

(
((g0h0, g

r
σh

r
σ), (g1h1, g

r
σh

r
σ)), r

)
, such that PK = (grσ, h

r
σ), SK = r and r ← Zp.

(See Appendix A for the DDH based OT of [PVW08]).
In the QR-based instantiation the CRS is a quadratic residue y and the trapdoor is s such that y =

s2 mod N and N is an RSA composite. The concrete ZK PoK functionality is FRQR,OR
ZKPoK which is invoked

with the statement and witness
(
(y · PK, PK), r

)
, such that PK = r2/yσ, SK = r and r ← Z∗N .

6 Constant Round One-Sided Adaptively Secure Computation

In the following we demonstrate the feasibility of one-sided adaptively secure two-party protocols in the
presence of semi-honest and malicious adversaries. Our constructions are constant round UC secure, and
use a number of non-committed bits that depends on the input and output lengths, as well as the circuit size.

6.1 A High-Level Overview of Yao’s Garbling Technique

We briefly describe the garbling technique of Yao as described by Lindell and Pinkas in [LP09]. In this
construction, the desired function f is represented by a boolean circuit C that is computed gate by gate
from the input wires to the output wires. In the following, we distinguish four different types of wires used
in a given boolean circuit: (a) circuit-input wires; (b) circuit-output wires; (c) gate-input wires (that enter
some gate g); and (d) gate-output wires (that leave some gate g). The underlying idea is to associate every
wire w with two random values, say k0

w, k
1
w, such that k0

w represents the bit 0 and k1
w represents the bit

1. The garbled table for each gate maps random input values to random output values, with the property
that given two input values it is only possible to learn the output value that corresponds to the output bit.
This is accomplished by viewing the four potential inputs to the gate k0

1, k
1
1 (values associated with the

first input wire) and k0
2, k

1
2 (values associated with the second input wire), as encryption keys. So that the

output key values k0
3, k

1
3 are encrypted under the appropriate input keys. For instance, let g be a NAND

gate. Then, k1
3 (that corresponds to bit 1) is encrypted under the pair of keys associated with the values

(0, 0), (0, 1), (1, 0). Whereas, k0
3 is encrypted under the pair of keys associated with (1, 1) which yields

the following four ciphertexts

Enck0
1
(Enck0

2
(k1

3)), Enck0
1
(Enck1

2
(k1

3)), Enck1
1
(Enck0

2
(k1

3)) and Enck1
1
(Enck1

2
(k0

3)),

where (Gen,Enc,Dec) is a private key encryption scheme that has chosen double encryption security and
an elusive efficiently verifiable range; see [LP09] for the formal definitions. These ciphertexts are randomly
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permuted in order to obtain the garbled table for gate g. Then, given the input wire keys kα1 , k
β
2 that cor-

respond to the bits α and β and the garbled table containing the four encryptions, it is possible to obtain
the output wire key kg(α,β)

3 . The description of the garbled circuit is concluded with the output decryption
tables, mapping the random values on the circuit output wires back to their corresponding boolean values.

A useful lemma. Next, we state a useful lemma regarding garbled circuits taken verbatim from [LP07]
and further stated in [Lin09, LP12]. The lemma states that it is possible to build a fake garbled circuit that
outputs a fixed value y = f(x0, x1) which is indistinguishable relative to an adversary who has only a single
set of keys that corresponds to the inputs x0, x1. We rely on this lemma in our one-sided security proofs
when P1 is corrupted. Formally,

Lemma 6.1 Given a circuit C and an output value y (of same length as the output of C) it is possible to
construct a garbled circuit G̃C such that:

1. The output of G̃C is always y, regardless of the garbled values that are provided for the input wires
of P0 and P1, and

2. If y = f(x0, x1), then no non-uniform PPT adversary ADV can distinguish between the distribution
ensemble of G̃C and a single arbitrary garbled value for every input wire, and the distribution en-
semble consisting of a real garbled version of C, together with garbled values that correspond to x0

for P0’s input wires and to x1 for P1’s input wires.

6.2 One-Sided Yao for Semi-Honest Adversaries

Our first construction adapts the semi-honest two-party protocol [Yao82, LP09] into the one-sided adaptive
setting at a cost of O(|C|) private key operations and O(|input|+ |output + |C|) public key operations.
Namely, we show that one-sided security can be obtained by communicating the keys that correspond to the
input/output wires and the garbled circuit via a one-sided non-committing channel.

Informally, the input keys that correspond to P0’s input are transferred to P1 using one-sided NCE6,
whereas P1’s input keys are sent using one-sided OT. Moreover, the garbled circuit is sent to P1 using
one-sided NCE. P1 then evaluates the garbled circuit and computes its output. Finally, P1 sends P0 the
output using one-sided NCE. We note that obtaining the input and output via one-sided primitives is crucial
to our proof since it means that P0 is not committed to these values ahead of time. In addition, we were
able to prove indistinguishability between a real and a simulated executions when P1 is corrupted, only if
the garbled circuit is not committed (since the standard reductions to the security of the encryption scheme
for garbling do not work in the adaptive setting). For simplicity we only consider deterministic and same-
output functionalities. This can be further generalized using the reductions specified in [Gol04]. The formal
description of our one-sided semi-honest protocol ΠSH

f is given below in the {FSC,FOT)-hybrid model.

Protocol 3 (One-sided adaptively secure semi-honest Yao (ΠSH
f ))

• Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x1
0, . . . , x

n
0 and x1 = x1

1, . . . , x
n
1 .

• Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) = f(x, y) where f :
{0, 1}n × {0, 1}n → {0, 1}n. Furthermore, we assume that C is such that if a circuit-output wire leaves some
gate, then the gate has no other wires leading from it into other gates (i.e. no circuit-output wire is also a
gate-output wire). Likewise, a circuit-input wire that is also a circuit-output wire enters no gates.

6The keys can be transferred via somewhat NCE with equivocality parameter ` = 2 to improve the exact efficiency of the two
party computation protocol. Since the asymptotic complexity does not change, we prefer to use one-sided NCE to simplify the
security proof.
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Convention: Unless specified differently, i ∈ [n]. We further assume that the gates of circuit C induce a
topological sort.

• The Protocol:

1. Setup and garbled circuit computation. P0 constructs garbled circuitG(C) as described in Section 6.1
subject to the constraint that the keys corresponding to each circuit-output wire have a distinct most
significant bit.

2. Transferring the garbled circuit and input keys to P1. Let (k0
i , k

1
i ) be the key pair corresponding to

the circuit-input wire that takes the ith bit of x0 and let (k0
n+i, k

1
n+i) be the key pair corresponding to the

circuit-input wire that takes the ith bit of x1. Then,

(a) For all i ∈ [1, . . . , n], P0 sends kx
i
0
i by making an ideal call to FSC.

(b) For all i ∈ [1, . . . , n], P0 and P1 call FOT with input (k0
n+i, k

1
n+i) and xi1, respectively. Let kx

i
1
n+i

denotes P1’s ith output.
(c) P0 sends P0 the garbled circuit G(C) via FSC.

3. Circuit evaluation. P1 evaluates G(C) on the above input keys and obtains its output y = f(x0, x1).

4. Output communication. P1 sends y via FSC.

Theorem 6.1 (One-sided semi-honest) Let f be a deterministic same-output functionality and assume that
the encryption scheme for garbling has indistinguishable encryptions under chosen plaintext attacks, and
an elusive and efficiently verifiable range. Furthermore, assume that FOT is realized in the presence of one-
sided semi-honest adversaries with constant number of PKE operations for sender’s input space {0, 1}q,
where q = O(n) and n is the security parameter. Then Protocol 3 UC realizes Ff in the presence of one-
sided semi-honest adversaries at a cost of O(|C|) private key operations and O(|input|+ |output| + |C|)
public key operations.

It is important to note that a simpler variant of static OT can be used in our protocol. In particular, the
only input to the OT that is needed to be equivocated in Yao’s protocol is P1’s input. This is because in our
simulation P0 always enters the correct input keys. Therefore, the [PVW08] OT protocol can be used here
when the CRS is set in a decryption mode (which ensures the equivocation of the receiver’s input), together
with a ZK proof of knowledge that allows extraction; see Section 5 for further details. Nevertheless, a
different simulation strategy may require the stronger security notion with the ability to equivocate either
one of the parties.

Proof: Our proof is shown in the (FSC,FOT)-hybrid model. Let ADV be a probabilistic polynomial-
time semi-honest adversary attacking Protocol 3 by adaptively corrupting one of the parties. We construct
an adversary SIM for the ideal functionality Ff such that no environment ENV distinguishes with a non-
negligible probability whether it is interacting with ADV in the real setting or with SIM in the ideal setting.
We recall that SIM interacts with the ideal functionality Ff and the environment ENV. We refer to the
interaction of SIM with Ff and ENV as the external interaction. The interaction of SIM with the simulated
ADV is the internal interaction. We now explain the actions of the simulation for the following corruption
cases: (1) No corruption takes place; (2) Corruption takes place at the outset. (3) Corruption takes place
between Steps 2 and 3. (4) Corruption takes place at the end. We now describe the simulator for all these
cases considering the corruption of each party. These cases cover all potential cases of corruption.

No corruption. When no corruption takes place the simulator simulates both P0 and P1 as follows:

1. Setup and garbling circuit C. No communication is carried out in this step. Internally, SIM chooses
2n random keys for P0’s input denoted by k0

1, k
1
1, . . . , k

0
n, k

1
n, 2n random keys for P1’s input denoted

by k0
n+1, k

1
n+1, . . . , k

0
2n, k

1
n and 2n random keys for the output denoted by k0

2n+1, k
1
2n+1, . . . , k

0
3n, k

1
3n.
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2. Transferring the garbled circuit and input keys to P1. No communication is carried out, since
ideal calls to FSC are made for sending the garbled inputs of P0 and the garbled circuit.

3. Circuit evaluation. No communication is carried out in this phase.

4. Output. No communication is carried out since an ideal call to FSC is made for sending the output.

Note that when the simulator simulates the parties in the ideal calls to FOT,FSC, the simulator merely needs
to inform ADV about the invocations taking place. The adversary sees nothing during the simulation of such
steps. It is simple to verify that an eavesdropper does not learn anything meaningful about the parties’ inputs
since in the hybrid setting the adversary does not see any communication at all.

Corruption at the outset of the protocol execution.

• P0 is corrupted. SIM receives P0’s input x0 and its output y. It then plays the role of P1 as in the no
corruption case except that in the final step SIM simulates P1 sending y via FSC.

• P1 is corrupted. SIM receives P1’s input x1 and its output y. It then mimics the [LP09] simulation
that is proven for the static case, building and sending a fake circuit that always computes y on the
behalf of FSC.

Security in this case is proven as in the static setting and is identical to the [LP09] proof. (The proof of
security when P1 is corrupted relies on Lemma 6.1.) Specifically, the only difference is that the communi-
cation is transferred via non-committing channels. Nevertheless, the elements that are transferred via these
channels are as in the static simulation.

Corruption between Steps 2 and 3.

• P0 is corrupted. The simulator simulates the parties’ actions as in the first two steps of the no
corruption case. Upon corrupting P0 the simulator receives P0’s input x0 and its output y. It then
explains the internal state of P0 until Step 2 as follows: SIM completes the construction of the garbled
circuit G(C) for C as the honest P0 would do using the keys picked in step 1 why simulating P0. It
then explains the keys and the garbled circuit construction. Moreover, P0’s input to the ith FOT call
are explained as the pair of input keys {(k0

n+i, k
1
n+i)}. Finally, P0’s input to the ith invocation of FSC

is explained as kx
i
0
i where xi0 is the ith bit of x0. SIM completes the simulation playing the role of P1

as in the case when P0 is corrupted in the outset.

In FOT and FSC hybrid model, the view of ADV for this corruption case is identically distributed to
its view when corrupting P0 in the outset.

• P1 is corrupted. SIM simulates the parties’ actions as in the first two steps of the no corruption case.
Upon corrupting P1 the simulator receives P1’s input x1 and its output y. It then explains the internal
state of P1 as follows. P1’s input and output pair for the ith FOT call are explained as (xi1, k

xi1
n+i).

Moreover, the outcome from the ith call to FSC for transferring P0’s input keys is explained as k0
i (the

key corresponding to bit 0), whereas the outcome from the instance of FSC that carries the garbled
circuit is explained as a fake garbled circuit G̃C that always outputs y, exactly as in the simulation
of [LP09]. This implies that the proof can be reduced to the proof of [LP09] for the case that P1 is
statically corrupted since the adversary’s view in the hybrid execution is identical to its view in [LP09].
Then SIM completes the simulation playing the role of P0 as in the case when P1 is corrupted in the
outset. Finally, SIM outputs whatever the adversary does.
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In more details, let H0 denote the simulated game where the simulator explains that the fake circuit
G̃C (that always outputs y) as being sent to P1 via FSC. Moreover, letH1 denote the hybrid execution
where the circuit is garbled correctly. Since the garbled circuit and its inputs are transferred using
ideal calls to FOT and FSC (and so the adversary does not see any communication), the difference
between the above two hybrids games relative to the adversary’s point of view is regarding the way
the circuit is garbled as well as the garbled inputs keys that are associated with the input of P0.
The indistinguishability of the above two hybrids executions can be immediately proven relying on
Lemma 6.1. This concludes the proof for the current corruption case.

Post execution corruption. The simulator completes the simulation as in the no corruption case. Upon
corrupting one of the parties the simulator explains the adversary’s internal state as in the previous corruption
case after receiving the input and the output of the corrupted party. Finally, the simulator explains that P1

has sent y via FSC in the case P1 is corrupted. Similarly, the simulator explains that P0 has received y in the
last step in the case P0 is corrupted. Since y is transferred throughFSC, the above does not make a difference
between the current two corruption cases and the cases considering the corruption occurs between steps 2
and 3 when we are in FSC hybrid model. Therefore the security for this case can be easily achieved given
the previous proof.

6.3 Security against Malicious Adversaries

Next, we modify ΠSH
f and adapt the cut-and-choose OT protocol introduced in [LP12] in order to achieve

security against malicious adversaries. The idea of the cut-and-choose technique is to ask P0 to send s
garbled circuits and later open half of them (aka, check circuits) by the choice of P1. This ensures that
with very high probability the majority of the unopened circuits (aka, evaluation circuits) are valid. The
cut-and-choose OT primitive of [LP12] allows P1 to choose a secret random subset J of size s/2 for which
it learns both keys for each input wire that corresponds to the check circuits, and the keys associated with its
input with respect to the evaluation circuits. As in the semi-honest setting, the garbled circuits are encrypted
using one-sided NCE.

In order to ensure that P0 hands P1 consistent input keys for all the circuits, the [LP12] protocol en-
sures that the keys associated with P0’s input are obtained via a Diffie-Hellman pseudorandom synthe-
sizer [NR95]. Namely, P0 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
n , ga

1
n and gc1 , . . . , gcs , where n is the input/output

length, s is the cut-and-choose parameter and g is a generator of a prime order group G. So that the pair of
keys associated with the ith input of P0 in the jth circuit is (ga

0
i cj , ga

1
i cj ).7 Given values {ga0

i , ga
1
i , gcj} and

any subset of keys associated with P0’s input, the remaining keys associated with its input are pseudoran-
dom by the DDH assumption. Furthermore, when the keys are prepared this way P0 can efficiently prove
that it used the same input for all circuits. P1 then evaluates the evaluation circuits and takes the majority
value for the final output. In Section 6.3.1 we demonstrate how to adapt the cut-and-choose OT protocol
into the one-sided setting using the building blocks introduced in this paper. This requires dealing with new
subtleties regarding the system parameters and the ZK proofs.

6.3.1 One-sided Single Choice Cut-and-Choose OT

We describe next the single choice cut-and-choose OT functionality FCCOT from [LP12] and present a
protocol that implements this functionality with UC one-sided malicious security. In Section 6.3.2 we briefly

7The actual key pair used in the circuit garbling is derived from (ga
0
i cj , ga

1
i cj ) using an extractor. A universal hash function is

used in [LP12] for this purpose, where the seeds for the function are picked by P0 before it knows J .
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describe our batch single choice cut-and-choose OT construction using a single choice cut-and-choose OT,
which is used as a building block in our two-party protocol. Formally, FCCOT is defined as follows

1. Inputs:

(a) SEN inputs a vector of pairs {(xj0, x
j
1)}sj=1.

(b) REC inputs a bit σ and a set of indices J ⊂ [s] of size exactly s/2.

2. Output: If J is not of size s/2, then SEN and REC receive ⊥ as output. Otherwise,

(a) For all j ∈ J , REC obtains the pair (xj0, x
j
1).

(b) For all j 6∈ J , REC obtains xjσ .

This functionality is implemented in [LP12] by invoking the DDH based [PVW08] OT s times (see
Appendix A for the complete details), where the receiver generates the system parameters in a decryption
mode for s/2 indices corresponding to J and the remaining system parameters are generated in a messy
mode. The decryption mode trapdoor enables the receiver to learn both sender’s inputs for the instances
corresponding to J . This idea is coupled with two proofs that are run by the receiver: (i) a ZK PoK for
proving that half of the system parameters set is in a messy mode which essentially boils down to a ZK PoK
realizing functionality FRDH,COMP(s,s/2)

ZKPoK (namely, the statement is a set of s tuples and the prover proves
the knowledge of s/2 Diffie-Hellman tuples within this set). (ii) A ZK PoK to ensure that the same input
bit σ has been used for all s instances which boils down to a ZK proof realizing functionality FRDH,OR(s)

ZKPoK

(namely, the statement contains two sets of tuples, each of size s, for which the prover proves that one of the
sets contains DH tuples). See Section 7.2 for more details on the ZK PoK functionalities.

Our first step towards making the [LP12] construction one-sided adaptively secure is to invoke our
one-sided OT scheme s times with all system parameters in a decryption mode. Notably, we cannot use the
messy mode for the s/2 instances not in J as in the static settings since that would preclude the equivocation
of the receiver’s bit. Similarly to [LP12], our constructions have two phases; a setup phase and a transfer
phase. In the setup phase, the receiver generates the system parameters in a decryption mode for the s/2 OTs
corresponding to indices in J , while the remaining system parameters are generated in the same mode but in
a way that does not allow REC to learn the trapdoor. This is obtained by fixing two random generators g0, g1,
so that the receiver sets the first component of every CRS from the system parameters to be g0. Moreover,
the second component in positions j 6∈ J is a power of g1, else this element is a power of g0. Note that
REC does not know logg0

g1 which is the decryption mode trapdoor for j 6∈ J . To ensure correctness, REC
proves that it knows the discrete logarithm of the second element with respect to g1 of at least s/2 pairs.
This is achieved using a witness equivocal proof for functionality FRDL,COMP(s,s/2)

ZKPoK described in Section 7.2.
In the transfer phase, the receiver uses these system parameters to create a public/secret key pair for

each OT execution, for keys not in the set J . For the rest of the OT executions the receiver invokes the
TrapKeyGen algorithm of the dual-mode PKE and obtains a public key and two secret keys that enable it to
decrypt both of the sender’s inputs. In order to ensure that the receiver uses the same input bit σ for all OTs
the receiver proves its behavior using the proof specified above. Finally, we prove the equivocality of the
sender’s input and the receiver’s output based on our one-sided NCE.

Formally, let the DDH based dual-mode PKE of [PVW08] be specified by ΠDUAL = (SetupMessy,
SetupDecryption, dGen, dEnc, dDec,FindBranch,TrapKeyGen). We denote our one-sided OT by ΠCCOT

and present it in the (FSC,F
RDL,COMP(s,s/2)
ZKPoK ,FRDH,OR(s)

ZKPoK )-hybrid model.

Protocol 4 (One-sided adaptive single choice cut-and-choose OT (ΠCCOT))

• Inputs: SEN inputs a vector of pairs {(xi0, xi1)}si=1 and REC inputs a bit σ and a set of indices J ⊂ [s] of
size exactly s/2.
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• Auxiliary Inputs: Both parties hold a security parameter 1n and G, p, where G is an efficient representation
of a group of order p and p is of length n.

• CRS: The CRS consists of a pair of random group elements g0, g1 from G.

• Setup phase:

1. REC chooses a random xj ∈ Zp and sets gj1 = g
xj

0 for all j ∈ J and gj1 = g
xj

1 otherwise.

For all j, REC chooses a random yj ∈ Zp and sets CRSj =
(
g0, g

j
1, h

j
0 = (g0)yj , hj1 = (gj1)yj

)
.

Finally, for all j ∈ J , REC stores trapdoor tj = xj . It then sends {CRSj}sj=1 to SEN.

2. REC calls FRDL,COMP(s,s/2)
ZKPoK with ({g1, g

j
1}sj=1, {xj}j∈J ) to prove the knowledge of the discrete loga-

rithms of s/2 values within the second element in {CRSj}j and with respect to g1.

• Transfer phase (repeated in parallel for all j):

1. For all j 6∈ J , REC computes (PKj , SKj) = ((gj , hj), rj)← dGen(CRSj , σ).
For all j ∈ J , REC computes (PKj , SK0

j , SK1
j ) = ((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj).

Finally, REC sends the set {PKj}sj=1 and stores the secret keys.

2. REC calls FRDH,OR(s)
ZKPoK with input (({(g0, h

j
0, gj , hj)}sj=1, {(g

j
1, h

j
1, gj , hj)}sj=1), {rj}sj=1) to prove that

all the tuples in one of the sets {(g0, h
j
0, gj , hj)}sj=1 or {(gj1, h

j
1, gj , hj)}sj=1 are DH tuples.

3. For all j, SEN generates cj0 ← dEncPKj
(xj0, 0) and cj1 ← dEncPKj

(xj1, 1). Let cj0 = (cj00, c
j
01) and

cj1 = (cj10, c
j
11). SEN calls FSC with cj01 and cj11.

• Output: Upon receiving (cj01, c
j
11) from FSC,

1. REC outputs xjσ ← dDecSKj (cjσ) for all j /∈ J .

2. REC outputs (xj0, x
j
1)← (dDecSK0

j
(cj0), dDecSK1

j
(cj1)) for all j ∈ J .

Theorem 6.2 Assume that the DDH assumption is hard in G. Then Protocol 4 UC realizes FCCOT in the
(FSC,F

RDL,COMP(s,s/2)
ZKPoK ,FRDH,OR(s)

ZKPoK )-hybrid model in the presence of one-sided malicious adversaries.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol 4 by that
adaptively corrupting one of the parties. We construct an adversary SIM for the ideal functionality of a
single choice cut-and-choose oblivious transfer FCCOT such that no environment ENV distinguishes with
a non-negligible probability whether it is interacting with ADV in the real setting or with SIM in the ideal
setting. We recall that SIM interacts with the ideal functionality and the environment ENV. We refer to the
interaction of SIM with the ideal functionality FCCOT and ENV as the external interaction. The interaction
of SIM with the simulated ADV is the internal interaction. We describe the simulator’s strategy for all
corruption cases. SIM begins by creating a CRS (g0, g1) and storing x = logg0

g1. It proceeds as follows:

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

The sender is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
receiver as follows. In the setup phase it picks s system parameters in a decryption mode in which
it knows their trapdoors. Namely for each j = 1, . . . , s, it creates CRSj = (g0, g

j
1, h

j
0, h

j
1) where

gj1 = (g0)xj , hj0 = (g0)yj and hj1 = (gj1)yj = (g
xj
0 )yj for random xj’s and yj’s, and records the

trapdoor tj = xj . The simulator further computes x′j = logg1
gj1 for all j using the knowledge of

x = logg0
g1. It then chooses an arbitrary set J ′ of size s/2 and sends Accept to ADV on behalf
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of FRDL,COMP(s,s/2)
ZKPoK for the statement {g1, g

j
1}sj=1. Note that the simulator knows the discrete log for

each pair of (g1, g
j
1) in the statement.

SIM also emulates REC by sending the adversary the system parameters.

In the transfer phase the simulator invokes TrapKeyGen for all j = 1, . . . , s and computes (PKj , SK0
j ,

SK1
j ) = ((gj , hj), rj , rj/tj) ← TrapKeyGen(CRSj , tj) for j = 1, . . . , s, and sends the public keys

to SEN. It further sends Accept to ADV on behalf of FRDH,OR(s)
ZKPoK . Upon receiving ADV’s message,

SIM extracts the sender’s input (xj0, x
j
1) using SK0

j , SK1
j for every j = 1, . . . , s and sends it to the

ideal functionality FCCOT.

Note that the adversary’s views differ only with respect to the ZK statements, since in a decryption
mode the receiver’s bit is perfectly hidden as well as the subset picked by the receiver. Now, since the
proofs are run via ideal calls the simulated and hybrid views are statistically close.

The receiver is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
sender by receiving the witnesses on the behalf of the ZK PoK functionalities in the setup and transfer
phases. It extracts J and σ and sends them to FCCOT, receiving back (xj0, x

j
1) for all j ∈ J and xjσ

for all j 6∈ J . SIM chooses an arbitrary xj1−σ for all j 6∈ J and emulates the role of SEN using inputs
(xj0, x

j
1) for all j = 1, . . . , s.

The difference between the simulated and hybrid views is with respect to inputs xj1−σ for all j 6∈ J
for which the simulator uses arbitrary values. Indistinguishability is implied by the privacy of the
dual-mode PKE when a left ciphertext is computed with a right key (or vice versa), just as in the static
setting proof.

If none of the parties gets corrupted at the onset of the protocol execution SIM plays the role of the re-
ceiver in the setup phase using an arbitrary subset J ′ for the receiver. Note that SIM knows all the wit-
nesses for the proof in the setup phase (i.e., the discrete logarithms of {gj1}sj=1 with respect to g1 for
all j values). It can thus equivocate the proof with respect to the real set J . SIM further plays the
role of the receiver in the transfer phase using an arbitrary σ′ for the receiver. Specifically the simula-
tor simulates the receiver by invoking TrapKeyGen for all j = 1, . . . , s, computing (PKj , SK0

j , SK1
j ) =

((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj). It then sends the public keys to SEN and an Accept mes-

sage on behalf of FRDH,OR(s)
ZKPoK . Note that SIM knows witnesses for both sub statements {(g0, h

j
0, gj , hj)}sj=1

and {(gj1, h
j
1, gj , hj)}sj=1, which equal {rj}sj=1 for the first set and {rj/tj}sj=1 for the second set.

The sender is corrupted between Steps 2 and 3. Upon corrupting SEN, SIM explains the internal state
of the sender by honestly presenting the randomness used so far on the sender’s behalf. Finally, SIM

completes the execution in the transfer phase by playing the role of the receiver using an arbitrarily
chosen σ′. Indistinguishability follows due to the same argument as in the previous corruption case
since the simulator follows the same strategy.

The receiver is corrupted between Steps 2 and 3. Upon corrupting REC, SIM receives J and σ from
FCCOT, as well as (xj0, x

j
1) for all j ∈ J and xjσ for all j 6∈ J . It then explains the internal state of

REC as follows. Namely, it first explains the witness for the ZK PoK functionality FRDL,COMP(s,s/2)
ZKPoK

as the discrete logarithms of {gj1}sj 6∈J with respect to g1. It also explains the witness for FRDH,OR(s)
ZKPoK

as the witness for the σth set. Finally, it plays the role of the sender as in the previous corruption
case. Indistinguishability follows similarity to the previous corruption case due to the security of the
dual-mode PKE and the fact that the simulator follows the same strategy.
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If none of the parties is corrupted until now, SIM plays the role of the sender in the transfer phase using
arbitrary (x′j0 , x

′j
1 ) for all j = 1, . . . , s.

The sender is corrupted after Step 3 is concluded. Upon corrupting SEN, SIM receives (xj0, x
j
1) for all

j = 1, . . . , s fromFCCOT. It then explains the internal state of SEN as in the previous corruption case,
and further explains the inputs to FSC as ciphertexts that encrypt the real inputs. Indistinguishability
follows from the fact that the receiver’s input is statistically hidden given the public keys.

The receiver is corrupted after Step 3 is concluded. Upon corrupting REC, SIM receives J , σ, from
FCCOT as well as (xj0, x

j
1) for all j ∈ J and xjσ for all j 6∈ J . It then explains the internal state of

REC as in the previous corruption case, and further explains the messages received from FSC as the
encryptions of {xj0, x

j
1}j∈J and {xjσ}j 6∈J . Indistinguishability follows as above.

6.3.2 Malicious One-Sided Adaptively Secure Two-Party Computation

First, we remark that the single choice cut-and-choose protocol is executed for every input bit of P1 in the
main two-party computation protocol, but with respect to the same set J . In order to ensure that the same
J is indeed used the parties engage in a batch single choice cut-and-choose OT where a single setup phase
is run first, followed by n parallel invocations of the transfer phase. We note that CRS and the set J are
fixed in the setup phase and remain the same for all n parallel invocations of the transfer phase. We denote
the batch functionality by FBATCH

CCOT and the protocol by ΠBATCH
CCOT . We are now ready to formally describe our

protocol ΠMAL
f that computes any functionality f on inputs x0 and x1.

Protocol 5 (One-sided adaptively secure malicious Yao (ΠMAL

f ))

• Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x1
0, . . . , x

n
0 and x1 = x1

1, . . . , x
n
1 .

• Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) = f(x, y) where f :
{0, 1}n × {0, 1}n → {0, 1}n. Furthermore, we assume that C is such that if a circuit-output wire leaves some
gate, then the gate has no other wires leading from it into other gates (i.e. no circuit-output wire is also a
gate-output wire). Likewise, a circuit-input wire that is also a circuit-output wire enters no gates.

Convention: Unless specified differently, i ∈ [n]. We further assume that the gates of circuit C induce a
topological sort.

• The Protocol:

1. Garbled circuit computation. P0 constructs s independent garbled circuits for C as follows:

(a) P0 picks n pairs of random values ((a0
1, a

1
1), . . . , (a0

n, a
1
n)) ∈ Zq and c1, . . . , cs ∈R Zq .

(b) Let w1, . . . , wn be the input wires corresponding to P0’s input in C, and denote by wi,j the instance
of wire wi in the jth garbled circuit. Further let, kbi,j denotes the key associated with bit b on wire
wi,j . Then P0 sets the keys for its input wires to (k0

i,j = H(ga
0
i cj ), k1

i,j = H(ga
1
i cj )), where H is a

randomness extractor such as a universal hash function [JC79, HILL99, DGH+04].
(c) P0 constructs s independent garbled circuits for C, denoted as GC1, . . . , GCs, using random keys

except for the wires w1, . . . , wn for which the keys are as above.

2. Oblivious transfers. The parties call FBATCH
CCOT with their respective inputs and obtain outputs as follows:

(a) P0 defines vectors ~z1, . . . , ~zn, where ~zi contains the s pairs of random symmetric keys associated
with P1’s ith input bit xi1 in all garbled circuits GC1, . . . , GCs.

(b) P1 inputs a random subset J ⊂ [s] of size s/2 and the bits x1
1, . . . , x

n
1 .
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(c) P1 receives from FBATCH
CCOT all the keys that are associated with its input wires for the circuits GCi

with i ∈ J (denoted as the check circuits). In addition, it receives the keys that correspond to its
input for the remaining circuits (denoted the evaluation circuits).

3. Sending garbled circuits and commitments. P0 sends P1 s copies of the garbled circuit, encrypted
using one-sided NCE and the values ((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)) along with the “seed”

of the hash function H which constitutes the commitments to the input keys on the wires associated with
P0’s input.8

4. Revealing J . P1 reveals J and proves that it used this subset in the cut-and-choose OT protocol by
sending the pair of keys associated with P1’s first input bit in each check circuit i.e. for every GCi with
i ∈ J . Note that P1 knows the key pair only for the check circuits. If the values received from P1 are
wrong, then P0 aborts.

5. Decommitting P0’s input keys. In order to let P1 know the keys for the input wires of P0 within the
check circuits, P0 sends cj for all j ∈ J . P1 computes the key pair (H(ga

0
i cj ), H(ga

1
i cj )).

6. Verifying the check circuits. P1 verifies the validity of the check circuits using all the keys associated
with their input wires. This ensures that the evaluation circuits are correct with high probability.

7. Sending the garbled inputs for the evaluation circuits. In order to complete the evaluation phase P1

is given the keys for the input wires of P0. P0 must be forced to give the keys that are associated with the
same input for all circuits. Specifically, the following code is executed for all input bits of P0:

(a) For every evaluation circuit GCj , P0 sends τi,j = ga
xi
0

i cj using an instance of FSC
9, where xi0 is the

ith input bit of P0.

(b) P0 then proves that ax
i
0
i is in common for all keys associated with the ith input bit, which is reduced

to showing that either the set {(g, ga
xi
0

i , gcj , τi,j)}sj=1 or the set {(g, ga
1−xi

0
i , gcj , τi,j)}sj=1 is com-

prised of DH tuples. Notably, it is sufficient to use a single UC ZK proof for the simpler relation
RDH,OR since the above statement can be compressed into a compound statement of two DH tuples
as follows: P0 first chooses s random values γ1, . . . , γs ∈ Zp and sends them to P1. Both parties

compute g̃ =
∏s
j=1(gcj )γj , τ̃ =

∏s
j=1(τi,j)

γj , of which P0 proves that either (g, ga
xi
0

i , g̃, τ̃) or

(g, ga
1−xi

0
i , g̃, τ̃) is a DH tuple. Thus, P0 invokes FRDH,OR

ZKPoK with
∑s
j=1 cjγj as the witness.

8. Circuit evaluation. Upon receiving Accept from FRDH,OR
ZKPoK , P1 completes the evaluation of the circuits

and sets the majority of these values as the output y.

9. Output communication. P1 sends y using an instance of FSC.

Informally, to ensure the one-sided security of ΠMAL
f we realize the functionalities used in the protocol as

follows: (1) FBATCH
CCOT is realized in Step 2 using our one-sided batch single choice cut-and-choose OT. This

implies the equivocation of P1’s input. (2) The statement of FRDH,OR
ZKPoK is transferred in Step 7.(a) via one

sided NCE or a somewhat NCE with ` = 2. Note that in order to obtain a witness equivocal proof for
functionality FRDH,OR

ZKPoK (invoked in Step 7.(b)), it is sufficient to employ a standard static proof realizing
this ZK functionality where the prover sends the third message of the proof using a one-sided NCE or a
somewhat NCE with ` = 2 (this is due to the fact that we anyway send the statement using a one-sided NCE
or a somewhat NCE). Specifically, a statically secure proof is sufficient whenever both the statement and
the third message of the (Σ-protocol) proof can be equivocated. This implies the equivocation of P0’s input.
Next, we prove

Theorem 6.3 (One-sided malicious) Let f be a deterministic same-output functionality and assume that
the encryption scheme for garbling has indistinguishable encryptions under chosen plaintext attacks, an

8At this point P0 is committed to all the keys associated with the s circuits.
9The exact efficiency of the protocol can be further improved if somewhat NCE with ` = 2 is used instead.
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elusive and efficiently verifiable range, and that the DDH and DCR assumptions are hard in the respective
groups. Then Protocol ΠMAL

f UC realizes Ff in the presence of one-sided malicious adversaries at a cost
of O(s|C|) private key operations and O(s(|C| + (|input|+ |output|)) public key operations where s is a
statistical parameter that determines the cut-and-choose soundness error.

The DDH+DCR assumptions imply a cut-and-choose OT with constant number of PKE operations for large
sender’s input spaces. In addition, the original [LP12] protocol is secure under the DDH assumption.

Proof: Our proof is shown in the (FSC,FBATCH
CCOT ,FRDH,OR

ZKPoK )-hybrid model. Let ADV be a probabilistic
polynomial-time malicious adversary attacking Protocol 5 by adaptively corrupting one of the parties. We
construct an adversary SIM for the ideal functionality Ff such that no environment ENV distinguishes with
a non-negligible probability whether it is interacting with ADV in the real setting or with SIM in the ideal
setting. We recall that SIM interacts with the ideal functionality Ff and the environment ENV. We refer
to the interaction of SIM with Ff and ENV as the external interaction. The interaction of SIM with the
simulated ADV is the internal interaction. We now explain the actions of the simulation for the following
corruption cases: (1) No corruption takes place; (2) Corruption takes place at the outset; (3) Corruption
takes place between Steps 2 and 3; (4) Corruption takes place between Steps 3 and 7 (5) Corruption takes
place between Steps 7 and 9; (6) Corruption takes place at the end. We describe a simulator for all these
cases considering the corruption of each party. These cases cover all potential cases of corruption.

No corruption. When no corruption takes place the simulator simulates both P0 and P1 as follows:

1. Garbled circuit construction. No communication is carried out in this step. SIM internally picks n
pairs of random values (a0

1, a
1
1), . . . , (a0

n, a
1
n)← Zq×Zp and c1, . . . , cs ← Zq (which define the keys

for P0’s input). It further picks a pair of random keys corresponding to each input bit of P1.

2. Oblivious transfers. No communication is carried out in this step since an ideal call to FBATCH
CCOT is

made. SIM internally chooses a random subset J on the behalf of P1.

3. Sending garbled circuits and commitments. No communication is carried out with respect to the
garbled circuit since an ideal call to FSC is made. SIM emulates the honest P0 and sends the values
((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)).

4. Revealing J . SIM emulates the honest P1 and sends J together with the pair of keys that are associ-
ated with P1’s first input bit in each check circuit, that is, for every GCi for which i ∈ J .

5. Decommitting P0’s input keys. SIM emulates the honest P0 and sends cj for all j ∈ J .

6. Verifying the check circuits. No communication is carried out in this step.

7. Sending the garbled inputs for the evaluation circuits. No communication is carried out in this
step as it involves calling the two ideal functionalities FSC and FRDH,OR

ZKPoK .

8. Circuit evaluation. No communication is carried out in this step.

9. Output communication. No communication is carried out in this step since an ideal call to FSC is
made.

Note that the simulated the hybrid executions are statistically close. Specifically, communication takes place
only in Steps 3,4, and 5. This communication is independent of the parties’ inputs and outputs. Therefore,
security follows trivially for this case.
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Corruption at the outset of the protocol execution.

• P0 is corrupted. In Step 2 SIM emulates FBATCH
CCOT , receiving the input of ADV for this functionality.

Namely, the key pairs that correspond to all the input wires of the circuit. In Step 3, SIM receives s
garbled circuits from ADV on the behalf of FSC and the commitments to the key pairs that correspond
to ADV’s input. In Step 4, the simulator sends a random subset J and the pairs of the input keys that
are associated with P1’s first input wire in each check circuit GCi for which i ∈ J (recall that SIM

knows all the input keys in Step 2). In Step 5 the simulator receives cj for all j ∈ J from ADV. In
Step 6 the simulator verifies the check circuits just as the honest P1 would do, and aborts if a problem
is detected. In Step 7 the simulator receives the keys {τi,j}i∈{1,...,n},j 6∈J as well as the statement and

its corresponding witness for the ideal call of FRDH,OR
ZKPoK . If the witness is verified correctly then SIM

extracts ADV’s input as follows. For some fixed j /∈ J , SIM extracts the ith bit of ADV’s input x′0 by
applying the hash function H on τi,j and then checking whether the result matches either H(ga

0
i cj )

which implies that x′i0 = 0, or H(ga
1
i cj ) which implies that x′i0 = 1. SIM sends x′0 to Ff and receives

the output y′. Next it sends y′ to ADV on behalf of FSC in Step 9 and concludes the simulation.

• P1 is corrupted. SIM mimics the [LP12] simulation that is designed the static case, building fake
circuits that always compute y′ = f(x0, x

′
1) for x′1 the input of ADV. Specifically, in Step 1 SIM

emulates P0 as in the no corruption case, i.e., it picks key pairs that correspond to the input wires
of both parties. In Step 2, SIM emulates FBATCH

CCOT and receives ADV’s input x′1 and the subset J and
returns the adversary’s output. It then sends x′1 to Ff and receives back the output y′. Then in Step 3
SIM constructs s/2 correct circuits that correspond to indices from J and additional s/2 fake circuits
that always output y′ irrespective of the input. It then sends this set of correct and fake garbled circuits
to ADV on behalf of FSC. It further sends the commitments to the correct key pairs that correspond
to the inputs wires of P0. In Step 4 the simulator receives J and the key pairs that correspond to the
first input bit of ADV for all the circuits GCi such that i ∈ J . If ADV sends invalid keys, or the set
J does not match the set SIM obtains in Step 2 during the simulation of the ideal cut-and-choose OT,
then SIM aborts. In Step 5 SIM correctly decommits cj such that j ∈ J . In Step 7 SIM plays the role
of the honest P0 with input 0n. Following that, SIM emulates the ideal functionality for FRDH,OR

ZKPoK and
sends Accept to ADV. In Step 9 the simulator receives output y′′ from ADV via FSC. If y′′ is not
equal y′ then SIM aborts.

We note that in the (FSC,FBATCH
CCOT ,FRDH,OR

ZKPoK )-hybrid execution corruption at the onset of the protocol
is proven similarly to the static proof provided in [LP12]. Specifically, the only difference between
the proofs is that some parts of the communication of our protocol are transferred via FSC. However
the information sent using FSC is exactly what is sent by the simulator of [LP12] on clear. When cor-
ruption takes place later in the protocol, the functionalities allow to pretend that computation done at
the corrupted parties end was carried out correctly and consistently with the input and communication
done so far. The simulator simulates the honest party exactly the way it does so in the no corruption
case. So the security for the cases where corruption occurs later in the protocol reduces to the security
of the case where corruption happens at the outset.

Corruption between Steps 2 and 3.

• P0 is corrupted. SIM simulates P0 and P1 in Steps 1 and 2 as in the no corruption case. Then,
whenever P0 is corrupted SIM constructs s garbled circuits correctly using the keys that were picked
in Step 1. It then discloses the circuits and the input keys to the adversary. It further explains the
internal state of P0 so that its input to the OT functionality FBATCH

CCOT is consistent with the above input
keys. Finally, SIM emulates the honest P1 exactly as in the case when P0 is corrupted at the outset.
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Note that the adversary’s views in case P0 is corrupted at the outset of the protocol execution and in
case P0 is corrupted between Steps 2 and 3 is identical since P0 does not use its input yet at this point,
and thus the simulation in both corruption cases is essentially the same.

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1 and 2 as in the no corruption case. Then,
whenever P1 is corrupted SIM receives its input and output (x1, y). SIM explains the internal state of
P1 such that the input of P1 to theFBATCH

CCOT functionality is x1 and a random subset J . It then discloses
the keys that P1 should have received upon entering x1 and J to FBATCH

CCOT in Step 2. SIM completes
the simulation by simulating P0 exactly as in the case when P1 is corrupted at the outset.

Note that in the hybrid setting (where the OT executions are computed using an ideal call to the cut-
and-choose OT), the adversary’s views in case P1 is corrupted at the outset of the protocol execution
and in case P1 is corrupted between Steps 2 and 3 is identical since the simulator can equivocate
P1’s input to FBATCH

CCOT . This implies that the adversary’s internal state until corruption takes place is
distributed as the internal state of the honest P1, and the simulation can proceed exactly as in the static
corruption case from [LP12].

Corruption between Steps 3 and 7.

• P0 is corrupted. SIM simulates P0 and P1 in Step 1-3 as in the no corruption case. Then, whenever
P0 is corrupted SIM constructs s garbled circuits correctly using the keys that were picked in Step 1.
It then discloses the circuits and the input keys to the adversary. It further explains the internal state
of P0 so that its inputs to FBATCH

CCOT in Step 2 and to FSC in Step 3 are consistent with garbled circuits
constructed above. SIM completes the simulation by simulating P1 exactly as in the case when P0 is
corrupted at the outset.

Note that in this corruption case P0 does not use its input yet and thus the indistinguishability argument
is as in the prior corruption case

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1-3 as in the no corruption case. Then, whenever
P1 is corrupted SIM receives its input and output (x1, y). SIM explains the internal state of P1 such
that the input of P1 to the FBATCH

CCOT functionality is x1 and a random subset J . It further discloses the
input keys that P1 should have received upon entering inputs x1 and J to FBATCH

CCOT in Step 2. Next,
SIM constructs s/2 correct circuits that correspond to indices from J and s/2 additional fake circuits
that always output y. It then explains the internal state of P1 such that P1 has received the garbled
circuits constructed as above (so that the correct circuits are the check circuits). SIM concludes the
simulation by simulating P0 exactly as in the case when P1 is corrupted at the outset.

The adversary’s view is distributed as in the static corruption case relying on security of FSC that
transfers the garbled circuits. In the static corruption case, SIM sends a set of garbled circuits contain-
ing s/2 fake circuits and s/2 good circuits on behalf of FSC. No equivocation is required since SIM

knows P1 is corrupted at the outset. In the current scenario, SIM equivocates and explains to ADV

that such a set is delivered by FSC. In FSC-hybrid model, the security reduces to the security of static
corruption case.

Corruption between Steps 7 and 9.

• P0 is corrupted. SIM simulates P0 and P1 in Steps 1-7 as in the no corruption case. Then, whenever
P0 is corrupted SIM receives its input and output (x0, y) and explains the internal state of P0 until Step
7 as in the prior corruption case. Next, SIM explains the inputs of P0 to the ideal call of FSC in Step
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7 so that they are consistent with the input x0. Namely, the ith input wire of P0 in the jth evaluation

circuit is explained as ga
xi0
i cj . It further explains the witness to FRDH,OR

ZKPoK correctly as
∑s

j=1 cjγj
(recall that γ1, . . . , γs are random elements that enable to combine s proofs into a single proof). The
simulator concludes by simulating the honest P1 exactly as in the case when P0 is corrupted at the
outset.

In the hybrid setting, indistinguishability follows easily as above since the privacy of P1 follows from
the privacy of the OT protocol. Moreover, all the messages sent by P0 are emulated as being sent by
the honest P0 therefore security is reduced to the static corruption case.

• P1 is corrupted. SIM simulates P0 and P1 in Steps 1-7 as in the no corruption case. Then, whenever
P1 is corrupted SIM receives its input and output (x1, y) and explains the internal state of P1 until
Step 7 as in the prior corruption case. Next, SIM explains the internal state of P1 in Step 7 using the
garbled inputs keys of P0 that are consistent with 0n as the keys received from FSC. Namely, the ith
input wire of P0 in the jth evaluation circuit is explained as ga

0
i cj . Finally, the simulator explains the

message Accept as being received from the ZK functionality and concludes the simulation as above.

The proof for this corruption case is identical to the prior case since P1 already used its input in the
OT phase, and the additional simulated messages only correspond to the garbled inputs for the check
circuits transferred from P0.

Post execution corruption.

• P0 is corrupted. SIM simulates P0 and P1 during all the steps as in the no corruption case. The
internal state of P0 is explained as above except that in Step 9 SIM explains y as the output received
via the ideal call of FSC.

• P1 is corrupted. SIM simulates P0 and P1 during all the steps as in the no corruption case. The
internal state of P0 is explained as above except that in Step 9 SIM explains y as the input entered to
the ideal call of FSC.

Security in the hybrid model is proven exactly as above since the non-committing channel can be equiv-
ocated to the correct output value. This concludes the proof.

7 Efficient Statically Secure and Witness Equivocal UC ZK PoKs

We present two results in this section. First, we show a technique for generating efficient statically secure
UC ZK PoK for various Σ-protocols. Our protocols take a new approach where the prover commits to an
additional transcript which, in turn, enables witness extraction without using rewinding. Our instantiations
imply UC ZK PoK constructions that incur constant overhead with a negligible soundness error.

Next, we show how to generate efficient witness equivocal UC ZK PoK for compound statements. The
additional feature that witness equivocal UC ZK PoK offers over static security is that it allows the simulator
to equivocate the simulated proof upon corrupting the prover. In this work, we build witness equivocal
UC ZK PoKs for a class of fundamental compound Σ-protocols without relying on NCE. Our approach
yields proofs where the simulator knows the witnesses for all sub-statements (but not which one is the real
witness). This notion is weaker than the notion of one-sided UC ZK PoK where the simulator is required
to simulate the proof obliviously of the witness and later prove consistency with respect to the real witness.
Our protocols are constant rounds and overhead, with a negligible soundness error.
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We briefly describe our technique for generating efficient UC ZK PoK for Σ-protocols. Recall that in
order to obtain a UC secure ZK PoK for a Σ-protocol it suffices to build a straight line simulator and witness
extractor in the CRS model. A straight line simulator can be obtained by using standard techniques of
committing the challenge of the verifier at the onset of the proof using UC commitments [DN02]. In what
follows, we will focus on designing straight line extractors. We begin with a generalization of our UC ZK
PoKs for Σ-protocols for relations of the form RΓ =

{
((G̃, H̃, y), x)| y = Γ(x)

}
defined with respect to a

one-way homomorphic mapping Γ : G̃→ H̃ from a source group (G̃,⊕) to a target group (H̃,�). (Where
Γ is homomorphic if Γ(x0⊕ x1) = Γ(x0)�Γ(x1)).10 Loosely speaking, given a Σ-protocol ΠΓ forRΓ we
define a new proof Π′Γ by instructing the prover to send two responses z, z′ to a pair of distinct challenges
c, c′ queried by the verifier. Specifically, the former response z is sent on clear and publicly verified as
specified in ΠΓ, whereas the latter response z′ is encrypted using a homomorphic PKE with plaintext space
G̃. Moreover, the validity of z′ is carried out by a (Σ-protocol) UC ZK proof ΠΣ of consistency. Observe
that an extractor can be easily constructed for Π′Γ by placing a public key for the homomorphic PKE in
the CRS, of which the extractor knows the corresponding secret key. Our technique also generalizes to
proofs for compound statements [CDS94]. Clearly, the efficiency of our new proof depends heavily on the
overhead of ΠΣ; we discuss two implementations below. For simplicity, we describe our protocols for a
honest verifier. Standard techniques can be used to achieve full security.

7.1 Efficient Statically Secure UC ZK PoK for Σ-Protocols

DL-based UC secure ZK PoK. We continue with illustrating our technique on the Σ-protocol for proving
the knowledge of a discrete logarithm in a prime order group G. We instantiate (G̃,⊕) with (Zp,+) for
operation + denoting addition in Zp, and (H̃,�) with (G, ·) for operation · denoting multiplication in G.
Furthermore, the one-way group homomorphism is defined by Γ(x) = EXP(x) = gx where g is a generator
of G and induces the relation

RDL = {((G, g, h), x)| h = gx} .

We first apply our technique on the Σ-protocol due to [Sch89] and instantiate the additively homomorphic
PKE within ΠΣ with Paillier [Pai99], that is defined by EncPK(x; r) = (1 +N)x · rN mod N2 where N is
an RSA composite. Formally,

Protocol 6 (UC ZK PoK of DL (ΠDL))

• CRS: A public key PK for Paillier PKE.

• Joint statement: The description of a group G of prime order p and a generator g, and the public statement h.

• Auxiliary input for the prover: x ∈ Zp such that h = gx.

• The Protocol:

1. Prover P picks a random r ← Zp and sends the verifier a = gr.

2. Verifier V returns random challenges c, c′ ← Zp.

3. P sends z ← r+cx mod p and encrypts z′ ← r+c′x mod p using PK, generating ciphertext e. P sends
z and e to V and proves in UC ZK that the plaintext of e and the discrete log of ahc

′
are the same.

4. V accepts if the ZK proof is verified correctly and gz = ahc.

10This notation covers many basic relations such as discrete logarithm and quadratic residuosity.
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The proof used in Step 3 is obtained from a Σ-protocol for the following relation

R1 =
{

((N, PK, e,G, g, h), (x, α))| e = (1 +N)xαN mod N2 ∧ h = gx
}
.

Namely, the goal is to prove consistency of discrete logarithms with respect to two different group orders
with generators (1 + N) and g, respectively. This can be achieved by combining the proof of knowledge
of discrete logarithms over the integers [DJN10] and the proof of plaintext knowledge for Pailler (we note
that [DJN10] shows a proof for consistent exponents, i.e., for DH tuples, but the same proof technique
works here as well). Namely, the prover selects at random y and β, computes e′ = (1 + N)yβN mod N2

and h′ = gy and sends e′, h′ to the verifier, who returns a random challenge c ∈ Zp. The prover then replies
with z = y + cx (over integers) and γ = αβc mod N . However, to ensure the privacy of x within y + cx,
y must be chosen so that its length is at least |c| + |x| + κ, where κ is a statistical parameter. The verifier
then accepts if (1 +N)zγN mod N2 = e′ec mod N2 and gz = h′hc. We further note that the above proof
requires a special care since it must ensure that the exact same value x is encrypted under Paillier rather than
x + ip, for p the order of G and i some integer. Nevertheless, an extractor that decrypts and learns x + ip
can still find x. Thus our extractor first learns z′ by decrypting the Paillier ciphertext and then extracts x
from z and z′. Finally, the above Σ-protocol and the PoK presented in Protocol 6 are proving in the UC
framework using standard techniques of committing the verifier’s challenge at the beginning of the proof
using UC commitment scheme [GK96]. We denote the UC ZK PoK forRDL by ΠDL.

Proposition 7.1 Assume that the DCR and DDH assumptions are hard in the respective groups. Then
Protocol 6 UC realizes FRDL

ZKPoK with a negligible soundness error and constant overhead.

Proof Sketch: Informally, the proof follows by having the extractor pick a pair of keys (PK, SK) and place
PK in the CRS. Then, whenever receiving ciphertext e from the prover, the extractor decrypts it using SK
and extracts the witness from z and z′. From the security of the ZK proof of discrete logarithms consistency,
it holds that the prover must encrypt with overwhelming probability the correct value of z′. This implies
that the extractor can extracts the witness correctly. Furthermore, the zero-knowledge property is implied by
the zero-knowledge of the original proof forRDL and the ZK proof of consistency. Specifically, a simulator
for ΠDL will compute the first message and z as in the original simulation of [Sch89]. It then obliviously
samples a ciphertext e rather than encrypting the real message z′, and employs the simulator for the ZK
proof of consistency ΠΣ (which is a proof for relation R1 in Protocol 6). Note that the simulator can also
encrypt an arbitrary value instead of obliviously sampling the ciphertext. Nevertheless, we stick to the
former description since it simplifies the description of our protocol for the adaptive setting. It is simple to
verify that the simulated view is computationally indistinguishable from a real view since the only difference
is relative to ciphertext e and the simulated view of ΠΣ. Finally, the overhead of the protocol is constant
since the overhead of the internal ZK proof is constant.

Consistency of discrete logarithms. Next, we consider a UC PoK for the following relation

RDH = {((G, g0, g1, h0, h1), x)| h0 = gx0 ∧ h1 = gx1} .

Here (G̃,⊕) is instantiated with (Zp,+) and (H̃,�) with (G×G, ·). We further define by Γ(x) = (gx0 , g
x
1 )

where g0, g1 are two generators in G. As above, we use Paillier PKE to encrypt the second reply of the
prover. The proof is an immediate extension of the Protocol 6 and the standard Σ-protocol for RDH. The
underlying ZK proof for proving the correctness of the plaintext encrypted by the prover is an extension of
the proof for the relation used in Protocol 6. Specifically, the relation for the underlying ZK proof is:

R2 =
{

((N, PK, e,G, g0, g1, h0, h1), (x, α))| e = (1 +N)xαN mod N2 ∧ h0 = gx0 ∧ h1 = gx1
}
.
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UC PoKs for N th root and quadratic residuosity. The proof we consider here is a proof of knowledge
of an N th root formally defined by,

RNR =
{

((u,N), v)| u = vN mod N2
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (Z∗N2 , ·), where multiplication is computed in the re-
spective group. Furthermore, Γ(x) = xN mod N2. Note that in order to encrypt the message of the
prover we need to use a multiplicative PKE, and we therefore consider a variant of El Gamal PKE that
operates in Z∗N for a message space QRN where N = pq is an RSA composite such that (p − 1)/2
and (q − 1)/2 are relatively primes. Specifically, encrypting a message m ∈ QRN is computed by
(e1, e2) = (gr mod N,m · hr mod N) where g is a random element in QRN , h = gx mod N with a
secret key x ∈ Zφ(N)/4 and randomness r ← Zφ(N)/4. The security of this scheme is based on the com-
posite DDH assumption [DJ03] in Z∗N (defined below). In the proof below, the verifier is required to ensure
that z′N = au2c′ . This is achieved by raising the ciphertext e = (e1, e2) encrypting z′ to the power of N
component-wise modulo N2, and then have the prover prove that eN1 , e

N
2 /au

2c′ is a Diffie-Hellman tuple in
Z∗N2 . Such a ZK proof is provided in [DJN10]. Namely, we use 2c′ instead of c′ to ensure that z′ is in QRN .

The Composite DDH Assumption. Let N = pq be an RSA modulus and g is an element of QRN the group
of squares in Z∗N . Then values a and b are chosen uniformly at random in Zφ(N)/4 and the value y is either
random in QRN or satisfies y = gab mod N . Finally, the assumption asserts that for any polynomial-time
algorithm, the advantage in guessing which way y was sampled when given (N, g, ga mod N, gb mod N, y)
is negligibly close to 1/2.

Protocol 7 (UC ZK PoK forRNR (ΠNR))
• Joint statement: u ∈ Z∗N2 .

• Auxiliary input for the prover: v ∈ Z∗N such that u = vN mod N2.

• CRS: A composite N and a public key PK = (G, h = gx) for El Gamal PKE in Z∗N .

• The Protocol:

1. Prover P picks a random r′ ← Z∗N and sends verifier V the value a where a = rN mod N2 where
r ← r′2 mod N .

2. V returns random challenges c, c′ ← Z∗N .

3. P sets z ← rvc mod N and z′ ← rv2c′ mod N , and encrypts z′ using PK (note that z′ ∈ QRN ). Denote
the generated ciphertext by e = (e1, e2). P sends V values z and e and proves in UC ZK that the decryp-
tion of eN mod N2 corresponds to au2c′ mod N2. That is, P proves that (Z∗N2 , g, h, eN1 , e

N
2 /au

2c′) is a
Diffie-Hellman tuple in Z∗N2 using the proof from [DJN10].

4. V accepts if it accepts the ZK proof and if zN = auc mod N2.

Proposition 7.2 Assume that the DCR and composite DDH assumptions are hard in the respective groups.
Then Protocol 7 UC realizes FRNR

ZKPoK with a negligible soundness error and constant overhead.

Finally, we consider a proof of knowledge of a square root that is formally defined by,

RQR =
{

((u,N), v)| u = v2 mod N
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (QRN , ·), where multiplication is computed in the
respective groups. Furthermore, Γ(x) = x2 mod N . Following a similar technique used for the ZK PoK of
RNR we design a proof for FRQR

ZKPoK based on the QR and composite DDH assumptions.

Proposition 7.3 Assume that the QR and composite DDH assumptions are hard in the respective groups.
Then there exists a protocol ΠQR that UC realizes FRQR

ZKPoK with a negligible soundness error and constant
overhead.
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7.2 Efficient Witness Equivocal UC ZK PoK for Compound Statements

The proof technique discussed above cannot be used in the adaptive setting since it does not allow witness
equivocation. Fortunately, in this work we only need to consider compound statements for which the simula-
tor knows all witnesses but does not know which one to use during the simulation, since this choice depends
on the input of the real prover. In compound statements for Σ-protocols the prover separates the challenge c
that is given by the verifier into two values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that the prover
does not have a witness for the first statement, then it always chooses c1 in which it knows how to complete
the proof (similarly to what the simulator does), and uses its witness for the other statement to complete the
second proof on a given challenge c2. Note that the verifier cannot distinguish whether the prover knows the
first or the second witness (or both); see [CDS94] for more details.

This type of compound statements generalizes to s sub-statements for which the prover proves the
knowledge of witnesses of some subset. For this general case, [CDS94] suggested to split the challenge
using a perfect secret sharing scheme, e.g. Shamir’s secret sharing scheme. First, the sub-statements are
divided into two sets such that the prover knows the witnesses for the statements in set J , but not the wit-
nesses for the statements in J̄ . The prover then creates challenges ci for the sub-statements in J̄ . Finally,
the set {cj}j∈J̄ and the verifier’s challenge c are respectively interpreted as |J̄ | shares and the secret rela-
tive to a secret sharing scheme, with s participants and a threshold |J̄ |+ 1. Thus, the values c and {cj}j∈J̄
completely define all the s shares. In the proof, the prover runs the honest verifier zero-knowledge simulator
for the sub-statements in J̄ using challenges {cj}j∈J̄ . For the sub-statements in J it defines the challenges
as defined by the shares {cj}j∈J̄ for the secret c and generates a response using its witnesses. The prover
also sends the s shares of c to the verifier who checks that indeed the shares define c with threshold |J̄ |+ 1.

Nevertheless, allowing the simulator to use all potential witnesses in the adaptive setting is not equivocal
as well, since an adversary that corrupts the prover can detect a simulated execution by simply computing
multiple witnesses when given the prover’s internal state. In order to resolve this difficulty we instruct the
prover to obliviously sample the ciphertexts for the statements it does not know the witness for within the
internal proof of consistency ΠΣ, i.e., sampling a ciphertext without knowing the corresponding plaintext.
This property holds with respect to both homomorphic PKEs used in our proofs above in order to encrypt
the response for the second challenge. We formally describe our protocol for a compound statement that is
defined relative to relations R0 and R1 (following the ideas from [CDS94]), a general description for any
number of statements follows easily. We denote by Π0 and Π1 the respective UC ZK PoK Σ-protocols for
R0 andR1.

Protocol 8 (UC ZK PoK forR0 andR1 (ΠOR))

• Joint statement: x0 ∈ L0 and x1 ∈ L1.

• Auxiliary input for the prover: ωi for i ∈ {0, 1} such that (xi, ωi) ∈ Ri.

• CRS: A CRS for ΠΣ.

• The Protocol:

1. Prover P computes the first message as follows.
It first invokes the simulator SIM1−i for Π1−i on x1−i and arbitrary challenge c̃, and obtains message
m1−i.11

It then invokes the prover Pi for Πi on (xi, ωi) and obtains message mi.
P sends messages (m0,m1) to the verifier.

2. V returns a random challenge c from the appropriate space.

11The simulator actually returns the entire view for the proof but for simplicity we only consider the first message in this step.
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3. P computes the third message as follows.
It first invokes simulator SIM1−i on x1−i and arbitrary challenge c̃, and receives a third message for Π1−i
which includes message m′1−i, an obliviously sampled ciphertext e1−i and a simulated view view1−i for
the ZK proof ΠΣ.
It then invokes Pi on (xi, ωi),mi, c ⊕ c̃ and receives a third message for Π1−i which includes message
m′1−i, a ciphertext ei and a real view viewi for the ZK proof ΠΣ.
P sends the verifier ((m′1−i, e1−i, view1−i, c̃), (m

′
i, ei, viewi, c⊕ c̃)).

4. V invokes the verifiers for Π0 and Π1 and accepts if they both accept and if the two challenges received
from the prover are shares of c.

We conclude with the following theorem.

Theorem 7.1 Assume the existence of homomorphic PKE with respect to a group H and operation � that
supports oblivious and invertible sampling of ciphertexts, and that Γ : G̃ → H̃ is a one-way group ho-
momorphism. Then, Protocol 8 is a witness equivocal UC ZK Σ-protocol for relations R0 and R1 with a
negligible soundness error and constant overhead.

Proof Sketch: Proving PoK follows easily using the trapdoor from the CRS. We now prove that the protocol
is ZK. Note that standard simulation follows from the ZK property of each sub-protocol and the [CDS94]
proof. We recall next that our protocols only consider simulators that know both witnesses ω0 and ω1, but
do not know which one is used by the real prover. Simulation in this case is trivial since the simulator
simply uses its two witnesses. By the IND-CPA security of the homomorphic encryption scheme and the
security of Π1−i, the simulated view (when using two witnesses) and the real view (when using only one
witness) are computationally indistinguishable. We now show that the protocol is witness equivocal. Recall
that this property implies that the simulator must explain the internal state of the simulated prover with
respect to the real prover’s state. Say the real prover knows ωi, then the view for Πi can be easily explained
as if the real prover generated it since the simulator used ωi in its simulation. In addition, the simulated
proof for x1−i differs from the real view by (1) honestly encrypting message z′ rather than obliviously
sampling the ciphertext and (2) running the real prover for Πi rather than the simulated one. Witness
equivocal follows from the simulatability of the PKE and the fact that the real view of Πi can be explained
as simulated. Namely, the simulator for Protocol 8 can claim that the honestly generated ciphertext was
obliviously sampled, and that the real view generated for ΠΣ is a simulated view (since ΠΣ is a Σ-protocol
and view viewi is identically distributed to the real view; see Definition 2.13).

We denote by ΠΓ,OR a compound proof where both statements are in LΓ, and by FRΓ,OR
ZKPoK the ideal

functionality for ΠΓ,OR. We denote by ΠDH,OR(s) a proof for which the statement is a combination of two
sub-statements, each contains s tuples. Specifically, we consider a proof of knowledge of which one of the
two sets comprised from DH tuples. We also consider a proof ΠΓ,COMP(s,t) where the statement consists of
s sub-statements of LΓ and the prover proves the knowledge of t sub-statements out of s (for some t < s).
We make use of these protocols in Section 6.3.
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A The DDH-Based OT from [PVW08]

In this section we recall the DDH-based PVW OT construction [PVW08]. We begin with their DDH-based
dual-mode PKE ΠDUAL that is specified by algorithms (SetupMessy,SetupDecryption, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) described below.

• SetupMessy and SetupDecryption are two algorithms that generate the system parameters in a messy
and decryption mode, respectively. Both choose G = Gg,p specified by a generator g and its prime
order p. Specifically,

SetupMessy(1n): Choose (g0, g1, h0, h1) such that g0, g1 are random generators in G and hi = gyii
for y0, y1 ∈ Zp. The CRS is (g0, g1, h0, h1) and the decryption trapdoor t is (y0, y1).

SetupDecryption(1n): Choose (g0, g1, h0, h1) such that g0 is a random generator in G and g1 = gx0
for x ∈ Zp and hi = gyi for y ∈ Zp. The CRS is (g0, g1, h0, h1) and the decryption trapdoor t is x.

• dGen is the key generation algorithm that takes a bit α and the CRS as input. If α = 0, then it generates
left public and secret key pair. Otherwise, it creates right public and secret key pair. Specifically,

dGen(α): Choose r ← Zp and let g = grα and h = hrα, then PK = (g, h) and SK = r.

• dEnc is the encryption algorithm that takes a bit β, a public key PK = (g, h) and a message m as
input. If β = 0, the it creates the left encryption of m, else it creates the right encryption. Given β, it
chooses u, v and computes ciphertext c← ((gβ)u(hβ)v, guhum).

• dDec decrypts a message given a ciphertext and a secret key SK. Namely, given c = (c0, c1) the
algorithm outputs c1/(c0)SK.

• FindBranch(t, PK) finds whether a given public key (in a messy mode) is a left key or right key given
the messy mode trapdoor t = (y0, y1), such that y0 6= y1. Namely, given a public key PK = (g, h)
created when the CRS is in messy mode the algorithm decides that PK is a left key if h = gy0 and a
right key otherwise.

• TrapKeyGen(t) generates a public key and two secret keys using the decryption mode trapdoor t such
that both left and right encryptions under this public key can be decrypted using these secret keys.
Namely, given a decryption mode trapdoor t it picks a random t ∈ Zp, computes PK = (gr0, h

r
0) and

outputs PK, r, r/t.

The complete security definition is found in [PVW08]. We continue with the OT protocol description.

Protocol 9 (UC static malicious OT)

• Inputs: Sender SEN has x0, x1 ∈ {0, 1} and receiver REC has σ ∈ {0, 1}.

• Auxiliary Input: A group description G = Gg,p specified by a generator g and its prime order p.

• CRS: (g0, g1, h0, h1) generated either by SetupMessy or SetupDecryption.

• The Protocol:
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1. Message from the receiver. REC sends SEN PK where (PK, SK)← dGen(σ).

2. Message from the sender. Upon receiving two elements PK = (g, h), SEN generates c0 ← dEncPK(x0, 0)
and c1 ← dEncPK(x1, 1) and sends (c0, c1) to REC.

3. Output. Upon receiving (c0 = (c00, c01), c1 = (c10, c11)), REC outputs dDecSK(cσ).

Theorem A.1 ([PVW08]) Protocol 9 securely realizes FOT with UC security in the presence of static ma-
licious adversaries.
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