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Abstract. We construct an innovative SVP(CVP) solver for ideal lat-
tices in case of any relative extension of number fields L/K of degree
n where L is real(contained in R). The solver, by exploiting the rela-
tionships between the so-called local and global number fields, reduces
solving SVP(CVP) of the input ideal A in field L to solving a set of
(at most n) SVP(CVP) of the ideals Ai in field Li with relative degree
1 ≤ ni < n and

∑
i ni = n. The solver’s space-complexity is polynomial

and its time-complexity’s explicit dependence on the dimension (rela-
tive extension degree n) is also polynomial. More precisely, our solver’s
time-complexity is poly(n, |S|, NPG, NPT , Nd, Nl) where |S| is bit-size of
the input data and NPG, NPT , Nd, Nl are the number of calls to some
oracles for relatively simpler problems (some of which are decisional).
This feature implies that if such oracles can be implemented by efficient
algorithms (with time-complexity polynomial in n), which is indeed pos-
sible in some situations, our solver will perform in this case with time-
complexity polynomial in n. Even if there is no efficient implementations
for these oracles, this solver’s time-complexity may still be significantly
lower than those for general lattices, because these oracles may be im-
plemented by algorithms with sub-exponential time-complexity

Keywords:Shortest Vector Problem(SVP); Closest Vector Problem(CVP);
ideal lattices; field valuations; non-Archimedean valuations; local field;
global field.

1 Introduction

Lattice problems take important roles in combinatorial optimization, public-key
cryptography and many other fields in computer science[1–5]. In the shortest
lattice vector problem (SVP), a non-zero lattice vector x in BZn is to be found
to minimize |x | on input the lattice basis matrix B with respect to some specific
norm || in Rn. In the closest lattice vector problem (CVP), a lattice vector x is
to be found to minimize |u −x | on input the basis matrix B and a target vector
u in Rn. In recent years, lots of innovative cryptographic schemes and protocols
have been devised with proofs of security under the assumption that there is
not (probabilistic and sometimes quantum) polynomial-time algorithm to solve
arbitrary instances of variants of SVP and CVP.

From a computational hardness perspective, SVP, CVP and other related
variants are NP-hard under deterministic (e. g.,CVP) or randomized (e. g.,SVP)
reductions[4]. Even some approximation variants of these problems are proven to
be NP-hard if the approximation factor is within some specific range. Despite of
these facts, finding new algorithms to solve lattice problems exactly are still in-
teresting and meaningful both because many applications (e. g., in mathematics
and communication theory) involve lattices in relatively small dimensions, and
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because approximation algorithms for high dimensional lattices for which the ex-
act solution is infeasible typically involve the exact solution of low dimensional
sub-problems.

Recently a sub-category of lattices, the ideal lattice, is discovered to have
indispensible values in innovative cryptography applications, e. g., the wonderful
fully homomorphic encryption scheme for secure cloud computing[2], stimulat-
ing lots of works in cryptography theory and practices. On the one hand, such
schemes are based-on some computational hardness hypothesis on some prob-
lems in ideal lattices, e. g., SVP or CVP’s hardness, on the other hand, few deep
knowledge is known on these points. Since the ideal lattice has plenty of rich
intrinsic algebraic properties the general lattice doesn’t have, it’s reasonable to
ask whether its related problems, e. g., SVP and CVP, are really as hard as those
of general lattices, or “how easy” are they in comparison with their counterparts
in general lattices? No matter what the answer (positive or negative) to this
question would be, it will have fundamental significance to ideal lattice theory
and applications.

In this paper we work on this question in case of SVP and CVP problems in
an algorithmic approach.
Roadmap In this paper we construct the generic algorithms for exactly solving
SVP and CVP of ideal lattices by exploiting the algebraic properties uniquely
owned by ideal lattices. Sect.2 briefly summarizes the current SVP and CVP
solvers for general lattices and an overview on the innovations in our work.
Sect.3 provide necessary foundations for our constructions. For logic clearness,
we provide a high level algorithm description in Sect.4 at first and then present
all low level technical details in Sect.5. Sect.6 concludes and points out some
future works.

2 Related Works

To find the exact solution to lattice problems, so far three main families of SVP
and CVP solvers exist which are listed in Table 1. With our knowledge, there’re
no generic algorithms for ideal lattice problems, except some ones modified from
the solvers for non-ideal lattices which doesn’t essentially exploit the ideal lat-
tice’s algebraic properties.

Among the solvers in Table 1, MV and Kannan algorithms are deterministic
while AKS algorithms are randomized. All algorithms work in `2-norm (AKS
algorithm can work in other norms, e. g., `∞). The core of MV algorithm[6] is to
compute the Voronoi cell of the lattice[1], whose knowledge facilitates the tasks
to solve SVP and CVP. Kannan algorithm[7] relies on a deterministic procedure
to enumerate all lattice vectors below a prescribed norm or within a prescribed
distance to the target vector. This procedure uses the Grahm-Schmidt orthogo-
nalization of the input lattice basis to recursively bound the integer coordinates
of the candidate solutions.The AKS algorithm[8] is the first single-exponential
time (random) algorithm for SVP.Recently this algorithm has been significant-
ly improved and the currently best time complexity is 22.465n+o(n)[3]. However,
the AKS variant solver for CVP only finds the (1+ε)-approximate solution for
arbitrary ε > 0 in time complexity bounded by (2 + 1/ε)O(n)[9, 10].

It’s already known that when the lattice dimension n is fixed, there are
polynomial time-complicated solvers for lattice problems, e. g.,SVP/CVP. i. e.,
lattice problem’s computational hardness only depends on dimension n(Tab.1).

Some related works show that there are important differences in computa-
tional complexity between the lattice problems of general and ideal lattices. For
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example, some decisional problems of the ideal lattice family with constant root
discriminant is in P while the counterparts of general lattice are NP-hard[11].
However, (with our knowledge) there is not search or optimization SVP/CVP
(see the concepts in Sect.3.1) solver exploiting the ideal lattice algebraic features
and performing significantly better than the best known solvers for general lat-
tices.

Overview on innovations of our approach: construction and perfor-
mance

Our algorithms constructed in this paper are to find the exact solutions to SVP
and CVP in ideal lattices.In this paper we only deal with the case of real number
field, i. e., the number field which the input ideal belongs to is contained in R.

Our solver works on the input (L/K,A) where L/K is a finite-degree ex-
tension of number field with degree n, A is an (fractional) ideal in L, K is
fixed and (L,A) is arbitrarily given. In other words, our solver can work for any
finite-degree relative extension, not only the special case of L/Q (where Q is the
rational number field).

In construction aspects, our solver, by exploiting the relationships between
the so-called local and global number fields, reduces solving SVP(CVP) of the
input ideal A in field L to solving a set of (at most n) SVP(CVP) of the ideals
Ai in field Li with relative degree 1 ≤ ni < n and

∑
i ni = n. Roughly speak-

ing, by tensor-producting L with a local field KP where P is an appropriately
selected (not unique) prime ideal in the ground field K, the tensor product (as
a n-dimensional vector space on the local field KP ) can be always decomposed
into a set of sub-spaces of dimension ni < n which are orthogonal each other
and

∑
i ni = n. Furthermore, this orthogonal decomposition is metric-preserving

and by constructing appropriate injective homomorphisms all operations in in-
termediate local fields can be replaced by those in some intermediate global
fields(i. e., ordinary number fields), so that the solution to the original problem
can be effectively reconstructed from the solutions to the sub-problems. This
procedure can proceed recursively down to a set of (at most n) sub-problems of
ideal lattices with dimensions as low as possible. In particular, in case of Galois
extension L/K, each recursion can decrease the problem’s dimension by at least
half.

Table 1: The existed families of SVP and CVP solvers for general lattices

Solvers
Time complexity Space complexity

Remarks
upper bound upper bound

Kannan nO(n) poly(n) deterministic;
[3, 7, 12] the O-constant is

improved as small as 1/2e

MV[3, 6] 22n+o(n) 2O(n) deterministic

AKS SVP: 22.465n+o(n) SVP: 21.325n+o(n) randomized;
[3, 8–10] CVP: (2 + 1/ε)O(n) CVP: (1 + 1/ε)O(n) solves (1 + ε)-CVP only

In performance aspects, our SVP(CVP) solver’s space-complexity is poly-
nomial. Its time-complexity’s explicit dependence on the dimension (relative
extension degree n of the number fields) is also polynomial. More precisely, our
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solver’s time-complexity is

poly(n, |S|, NPG, NPT , Nd, Nl)

where |S| is bit-size of the input data and NPG, NPT , Nd, Nl are the number
of calls to the oracles(Sect.5.5) for some relatively simpler problems (some of
them are decisional, e. g., ideal’s primality testing in the extended field L). This
feature implies that if such oracles can be implemented by efficient algorithms
(with time-complexity polynomial in n), which is really possible in some sit-
uations, our solver will perform in this case with time-complexity polynomial
in n. Even there is no efficient implementations for these oracles, this solver’s
time-complexity may still be significantly lower than those for general lattices
(e. g., Tab.1), because their implementations may be only sub-exponential in
time-complexity.

3 Preliminaries

In this section we present all basic notions and facts fundamental to our work
in this paper. For more details we refer readers to [4](for general theory on lat-
tices), [13–16](for algebraic number theory) and [17] (for abstract algebra, e. g.,
the general notions and facts on (Detekind) rings, ideals, unique factorization
domains, fields and Galois theory).

3.1 Lattices, SVP and CVP

The set of rational integers is denoted by Z and rational numbers by Q. A
lattice is a finitely generated discrete subset in Euclidean space. More explicitly,
in the Euclidean space Rn with a positive non-singular bilinear form <.,.>, a
n-dimensional rational lattice, denoted Λ(B) where B is a matrix of rank n with
column vectors (b1, . . . , bn), is the set of vectors {x1b1+. . .+xnbn : x1, . . . , xn ∈
Z} where the values < bi, bj > are all rational numbers. The lattice with basis
b1, . . . , bn is denoted Zb1 + . . .+ Zbn. A lattice is called integral if < bi, bj >
are all integers.

For any vector u = (u1, . . . , un) in Rn, its norm < u ,u >1/2 is denoted |u |.
It’s easy to verify that the squared norm of any lattice vector in an integral
lattice is always an integer.
Lattice Problems Given a lattice Λ(B) = Zb1 + . . .+ Zbn, let

λ1(Λ) ≡ min{|x | : x in Λ and non-zero} (3.1)

be the minimal value of the norms of non-zero lattice vectors in Λ(B). The
optimization shortest vector problem with respect to the norm || is to find λ1(Λ).
The search shortest vector problem is to find a lattice vector x in Λ such that
|x| = λ1(Λ). Given a lattice Λ(B) and a rational target vector u in Qn, let

dist(Λ;u) ≡ min{|x− u| : x in Λ} (3.2)

be the minimum distance between u and all lattice vectors in Λ. The optimization
closest vector problem with respect to the norm || is to find dist(Λ;u). The search
closest vector problem is to find a lattice vector x in Λ such that |x − u| =
dist(Λ;u).
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There are many other lattice-related problems[18, 19]. For example, the cov-
ering radius of a lattice, µ(Λ), is defined as the maximal distance between any
vector and the lattice. The covering radius problem is to find

µ(Λ) ≡ max{dist(Λ;u) : u in Qn} (3.3)

In this paper we focus on the algorithms to solve SVP and CVP. It has been
known that these problems are computationally hard[4, 19].We focus on con-
structing the algorithms for SVP and CVP (both in optimization and search
version) for ideal lattices, a sub-category of the general lattices with rich alge-
braic structures originating from number theory.

3.2 Number Fields and Ideal Lattices

A number field K = Q(α) is an extension of the rational number field Q, by
adding a root α of a polynomial f(x) ∈ Z[x]. f(x) is called α’s minimal poly-
nomial if it has the minimal degree among the polynomials in Z[x] with α as
a root. Such a polynomial is unique up to a constant factor in Z and is always
prime (irreducible) in Z[x]. The minimal polynomial f(x)’s degree is called the
degree of field extension K/Q and denoted by [K : Q].

As a subset in the real(R) or complex(C ) number field, the arithmetic oper-
ations a± b, ab, a/b in K can be simply understood as the operations in R or C.
Another helpful and equivalent (isomorphic) picture is to regard K as the quo-
tient set of K[x]/(f(x)) with its arithmetic operations as polynomial addition,
subtraction and multiplication modulo f(x) (dividing by g(x) 6= 0 mod f(x)
equals multiplying by G(x) where G(x)g(x) = 1modf(x)). In this setting, the
generator α in K corresponds to x in K[x]/(f(x)).

As in the general theory on finite-degree field extension, the number field K
can be regarded as a vector space on the ground field Q in dimension n = [K : Q].
As a result, we can introduce the trace and norm to any element in the number
field K, i. e., for any z in K we consider the linear operator T (z)x = zx: K → K
derived by z and define Tr(z) and N(z) as the trace and determinant of T (z)
respectively. An important fact is that both Tr(z) and N(z) fall in Q, and both
of them fall in Z when z is in OK which is defined in sequel.

Within the number field K, there is an important subset, called K ’s integral
ring, defined as

OK ≡ {z in K : there exist a0, . . . , an−1 in Z such that a0+a1z+. . .+an−1z
n−1+zn = 0}
(3.4)

OK is a ring with the following properties[14–17]:
(1)K is OK ’s fractional field, i. e., for any element u in K there is a and b in

OK such that u = a/b.
(2)For an (integral) ideal A in OK(including OK itself), there always exist a

set of Z -linear independent elements ω1, . . . , ωn in A where n = [K : Q], called
A’s integral basis, such that every element in A can be uniquely represented as
a Z -coefficient linear combination on ω1, . . . , ωn. This fact is denoted as A =
Zω1 + . . .+ Zωn.

For OK , such basis is called K ’s integral basis and the determinant of the
matrix Tr(ωiωj), denoted dK , is called the determinant of K, which is one of
the most important invariant of K.

(3)For number field K, there are exactly n = [K : Q] field embeddings (in-
jective homomorphisms) mapping K into C which are fixed in Q element-wise,
among which ρ1, . . . , ρr1 embed K into R and the other 2r2 ones τ1, . . . , τ2r2
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(where each τj is complex conjugate to τj+r2) embed K into C. Now comes one
of the central facts and notions in this paper:

Any ideal A is a discrete and finitely-generated subset in Rr1 ×Cr2 by map-
ping z in A to (ρ1(z), . . . , ρr1(z),
τ1(z), . . . , τ2r2(z)) in Rr1 ×Cr2 , or equivalently by mapping z to the real vector
(ρ1(z), . . . , ρr1(z), Reτ1(z), . . . ,
Reτr2(z), Imτ1(z), . . . , Imτr2(z)) inRn. As a result, the ideal A can be embedded
into Rn as a lattice of dimension n. When associating A with the positive-definite
and non-degenerate bilinear form

< x, y >≡ Tr(xȳ) where ȳ denotes y′s complex conjugation (3.5)

we call A(strictly speaking, its image under the above embedding) an ideal
lattice . In consequence, we can setup the same problems as in Sect.3.1, e. g.,
SVP and CVP for ideal lattices.

It’s easy to see that for any ideal A in OK , the ideal lattice is always integral.
(4)For any ideal A in OK , the quotient ring OK/A is always finite and its

cardinality is denoted N(A). In fact, let A = Zω1 + . . .+Zωn, then N(A)2dK =
det(Tr(ωiωj))=the squared volume of the fundamental domain in the ideal lat-
tice A.

(5)An ideal P (6= OK) is called prime, if xy in P then always at least one of x
and y is in P. For number field K, every prime ideal P in OK is maximal, i. e.,
it is not contained in any ideal other than OK .

Prime ideals are construction stones for number field arithmetic. For any
prime ideal P, the quotient ring OK/P is actually always a finite field with
cardinality pf where p is a prime integer and (p) ≡ pZ = P ∩ Z. As a result,
N(A) = pf and OK/P is a f -degree extension of Fp.

(6)Every ideal A in OK can be uniquely decomposed as the multiplication
of a finite set of prime ideals, i. e., for any ideal A there exist finite prime ideals
P1, . . . , PN and positive rational integers e1, . . . , eN such that (in the sense of
ideals multiplication)

A = P e11 . . . P eNN

where both P1, . . . , PN and e1, . . . , eN are uniquely determined by A.
(7)For a subset A in K, if a ± b is always in A for both a, b in A and za is

always in A for any z in OK , then A is called a fractional ideal. For a fractional
ideal A, there always exists (not unique) some rational integer m such that mA
is in OK , i. e., mA is an integral ideal.

For two (integral or fractional) ideals A and B, if there exists an integral ideal
C such that A = BC, we denote B|A. Otherwise we denote B - A. A useful fact
is that B|A iff A ⊂ B.

With the same embeddings specified in (3) and the bilinear form in (3.5)
associated with a fractional ideal A, A also becomes a lattice in Rn, so all the
lattice problems, e. g., SVP and CVP, are meaningful to fractional ideals.
Note: Hereafter we interchangeably use the terminology “ideal” and “ideal lat-
tice” .

With the viewpoint of extension from Q to K, one of the most subtle phe-
nomena is when and how a prime number p (irreducible in Z ) becomes reducible
in the extended number field K. Such phenomena is used as a critical tool in
our approach and we briefly present the facts about it in next section in a more
general viewpoint.
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3.3 More General Model: Relative Extension and Prime Ideal
Decomposition

The theory sketched in Sect.3.2 can be deepen to notions and principles in a
more general model. Let K be a number field with its integral ring OK(or more
generally, a fractional field of a Dedekind domain OK [16, 17]), L = K(α) is an
extension of K by adding a root α of a polynomial f(x) ∈ OK [x]. f(x) is called
α’s minimal polynomial if it has the minimal degree among the polynomials in
OK [x] with α as a root. Such a polynomial is unique up to a constant factor in
OK and is prime (irreducible) in OK [x]. The minimal polynomial f(x)’s degree
is called the degree of field extension L/Kand denoted by [L : K].

L/K is called relative extension from the ground field K. The theory in
Sect.3.2 is only about the case where the ground field is Q. As in the case of
K/Q, an equivalent (isomorphic) picture about the arithmetic in L is to regard it
as the quotient set of OK [x]/(f(x)) with the operations as polynomial addition,
subtraction and multiplication modulo f(x).

Regarding L as a vector space on K with dimension n = [L : K], we can
introduce the relative trace and norm for any element z in L as what is done
in 3.2 and denote these as TrL/K(z) and NL/K(z) respectively[14–16]. For any
relative extension L/M/K, an important fact is that:

TrL/K(z) = TrM/K(TrL/M (z))

NL/K(z) = NM/K(NL/M (z))
(3.6)

for any z in L.
Given z ’s minimal polynomial g(t) = (−1)mg0 + g1z + . . . + gm−1t

m−1 +
tm in K[t](hence m|n), z ’s trace and norm can be computed by

TrL/K(z) = −(n/m)gm−1, NL/K(z) = g
n/m
0 (3.7)

For relative extension L/K, there is an important subset, called OK ’s integral
closure in L, defined as:

OL ≡ {z in L : there exist a0, . . . , an−1 in OK such that a0+a1z+. . .+an−1z
n−1+zn = 0}

(3.8)
OL is a ring with the following important properties[11, 14–16]:

(1)L is OL’s fractional field.
(2)For an (integral) ideal A in OL(including OL itself), there may not exist

any set of OK-linear independent elements ω1, . . . , ωn in A where n = [K : Q]
such that every element in A can be uniquely represented as a OK-coefficient
linear combination on ω1, . . . , ωn, unless when OK is the so-called principal ideal
ring.

(3)For any relative extension L/K of degree n, there are exactly n field
(relative) embeddings (injective homomorphisms) mapping L into C which are
fixed in K element-wise, among which ρ1, . . . , ρr1 embed L into R and the other
2r2 ones τ1, . . . , τ2r2 (where each τj is complex conjugate to τj+r2) embed L into
C.

With these n K -embeddings σ1, . . . , σn, the trace and norm of an element
can be computed by

TrL/K(z) = σ1(z) + . . .+ σn(z), NL/K(z) = σ1(z) . . . σn(z) (3.9)

As long as K is a number field, L is also a number field with degree [L : Q] =
[L : K][K : Q] and OL defined in (3.8) is exactly the set of {z in L: there
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exist a0, . . . , am−1 in Z such that a0 + a1z + . . .+ am−1z
m−1 + zm = 0} where

m = [L : Q]. Therefore any ideal A in OL can be regarded, by the number
field L’s embeddings into C, as a lattice of dimension [L : Q] in R[L:Q] with the
positive-definite and non-degenerate bilinear form

< x, y >≡ TrL/Q(xȳ) where ȳ denotes y′s complex conjugation (3.10)

Because L is a number field, as a result, every prime ideal M in OL is maximal
and OL/M is a (finite) field. The important property of the unique factorization
on prime ideals is certainly also true for any ideal in OL.

(4)Let P be a prime ideal in OL , generally the ideal POL may be no longer
prime in OL . As an ideal in OL , there is the following law about POL’s de-
composition:

For any prime ideal P inOK , there exist a finite set of prime idealsM1, . . . ,Mr
in OL such that M1 ∩ OK = . . . = Mr ∩ OK = P and POL decomposes into
prime ideals multiplication on and only on these M1, . . . ,Mr:

POL = Me1
1 . . .Mer

r (3.11)

Furthermore, e1f1 + . . . + erfr = [L : K] where fi = [OL/Mi : OK/P ]=the
degree of the extension from the finite field OK/P to OL/Mi. Integers e1, . . . , er
are called ramification indices for P on M1, . . . ,Mr (or M1, . . . ,Mr on P).
Remarks on Galois Extension: When L/K is a Galois extension, the de-
composition law (3.11) can be further refined. In this case we always have
e1 = . . . = er ≡ e and f1 = . . . = fr ≡ f . Furthermore, Galois group GL/K
is transitive on M1, . . . ,Mr, i. e., for any Mi, Mj there exists g in GL/K such
that Mi = g(Mj).

3.4 Valuations, p-adic Completions and Local-Global Relations

Section 3.2-3.3 presented number theory on the so-called global field. Now we
turn to number theory on the so-called local field.

General Notions and Facts Let K be a field, R+ be the set of all non-
negative real numbers, a (multiplicative) valuation on K is a mapping |.|: K →
R+ with the following properties:

|xy| = |x||y|; |x| = 0 iff x = 0; |x+ y| ≤ |x|+ |y| for any x and y in K

When |n| ≤ 1 for all n = 0,±1,±2,±3, . . ., |.| is called non-Archimedean valu-
ation, otherwise called Archimedean. For non-Archimedean valuation, the third
property in the above is equivalent to the inequality

|x+ y| ≤ max(|x|, |y|) for any x and y in K
Or equivalently |x+ y| = max(|x|, |y|) for any x and y in K and |x| 6= |y|

(3.12)

An equivalent non-Archimedean valuation model is the index valuation, i. e., a
mapping w : |.|:K → R satisfying w(xy) = w(x) + w(y);w(x) = +∞ iff x =
0;w(x + y) ≥ min(w(x), w(y)) for any x and y in K. Obviously, for any a >
1 w(x) = − loga |x| gives the correspondance between these two models.
Note: Hereafter we freely interchange the use of these two valuation models at
convenience.
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Two (multiplicative) valuations |.|1 and |.|2 on filed K is called equivalent
if there exists a positive real number a > 0 such that |x|1 = |x|a2 for all x in
K. For two non-Archimedean valuations |.|1 and |.|2, this definition equals the
statement that |x|1 ≤ 1 iff |x|2 ≤ 1 for any x in K.

A valuation |.| is called discrete if the image of |.| is discrete in R.
Given a non-Archimedean valuation |.|(or its equivalent index valuation w)

on field K, the subset

JK ≡ {x in K : |x| ≤ 1} = {x in K : w(x) ≥ 0} (3.13a)

is a ring with the unique maximal ideal[13, 16]:

MK ≡ {x in K : |x| < 1} = {x in K : w(x) > 0} (3.13b)

The field JK/MK is called the valuation’s residue class field.
For number field K/Q with degree n = [K : Q] we have the following impor-

tant general facts about valuations on it[13]:
(1)Each (real or complex) Q-embedding σj : K → C (r.f. Sect.3.2(3)) derives

an Archimedean (multiplicative) valuation on K by |x|j ≡ |σj(x)| where the

latter |.| is the ordinary complex valuation |z| = ((Rez)2 + (Imz)2)1/2. Further-
more, two derived Archimedean valuations |.|j and |.|i are equivalent iff σj(.)
and σi(.) are complex conjugate each other.

(2)Each prime ideal P in OK derives a discrete non-Archimedean (index)
valuation on K by

wP (x) ≡ e where P e|(x) and P e+1 - (x)(r.f. notations in Sect.3.2(7))

This is called the P -adic valuation. Furthermore, different prime ideals Pi, Pj
derive distinct (inequivalent) P -adic valuations wPi , wPj .

(3)The valuations presented in (1) and (2) enumerates all valuations on
the number field K. As a result, there are finite (exactly r1 + r2) number of
Archimedean valuations and infinite distinct non-Archimedean valuations, each
corresponding to a prime ideal.
Example On rational number field Q, the only Archimedean valuation |.| is the
ordinary absolute value and each non-Archimedean valuation is corresponding
to a prime number p, i. e., the p-adic valuation. For example, with the standard
p-valuation we have, for any integer m:

|m|p = p−e if pe|m but pe+1 - m

In particular, |m|p = 1 iff m and p are co-prime.
Completeness and Local Field Let K be a field with a (Archimedean or non-
Archimedean) valuation |.|. Since |.| derives a metric on K by d(x, y) ≡ |x− y|,
the standard metric-completion procedure derives a |.|-completion on K, denoted
K||, which is also a field with K as a dense subfield in it.

Let K be a number field. The completion by anyone of its Archimedean
valuations is R or C, depending on whether K is a subfield in R or not. Let P
be a prime ideal in OK , the P -adic completion of K, denoted KP and called K ’s
localization on P (local field), has the following properties[13, 16]:

(1)KP is a complete and discrete valued field. Further more, KP /Qp is a
finite-degree extension where p is a prime number such that (p) ≡ pZ = P ∩ Z
and Qp is the p-adic completion of the field of rational numbers Q.
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(2)For KP ’s valuation ring (r.f., (3.13a)) we have

JK,P ≡{x in KP : |x|P ≤ 1} ≡ {x in KP : wP (x) ≥ 0}
={x in KP : there exist a0, . . . , an−1 in Qp such that wp(ai) ≥ 0 for all i

and a0 + a1x+ . . .+ an−1x
n−1 + xn = 0}

(3.14a)

Furthermore JK,P is a principal ideal domain with the unique maximal ideal:

MK,P = {x in KP : |x|P < 1} = {x in KP : wP (x) > 0} (3.14b)

Hence there exists a element π, called KP ’s prime element, such that MK,P =
(π). Actually π can be any element in MK,P with the greatest |.|P -value.

(3)Given an ideal B in JK,P , there exists a unique integer m ≥ 0 such
that B = Mm

K,P . In consequence, all integral ideals in JK,P constitute a chain

. . . ⊂M4
K,P ⊂M3

K,P ⊂M2
K,P ⊂MK,P .

(4)The residue class field of KP , i. e., JK,P /MK,P , is a finite field with char-
acteristic p (the p specified in (1)) and isomorphic to OK/P .

(5)There is a homomorphism Ω mapping the ideals in OK to ideals in JK,P ,
defined as:

Ω(A) = Me
K,P , if P

e|A but P e+1 - A; Ω(A) = JK,P if P and A are co-prime
(3.15)

It’s easy to verify that Ω(AB) = Ω(A)Ω(B) and Ω can be easily prolonged
onto the multiplicative group of fractional ideals on K. Ω “localizes” an ideal
A in global field K to a (principal) ideal Ω(A) in KP and this localization is
non-trivial iff P is a prime factor of A.
Local-Global Relations Now back to Sect.3.3(4), let both L and K be number
fields and L/K a field extension of degree n = [L : K], P a prime ideal in
OK . There exist a finite set of prime ideals M1, . . . ,Mr in OL and integers
e1, . . . , er ≥ 1 such that :

M1 ∩OK = . . . = Mr ∩OK = P

POL = Me1
1 . . .Mer

r

e1f1 + . . .+ erfr = n

(3.16)

where fi = [OL/Mi : OK/P ]=the degree of the extension from the finite field
OK/P to OL/Mi.

Let LMj
be the Mj-adic completion of L with its valuation ring denoted

by JMj
, prime element ηj(i. e.,JMj

= (ηj)), j = 1, . . . , r, KP be the P -adic
completion of K with its valuation ring denoted by JK,P and prime element π,
now we can state more important and deep details about this decomposition
law[13]:

(1)Each LMj is an extension of KP and [LMj : KP ] = ejfj , j = 1, . . . , r. In
particular, each LMj is a vector space on local field KP in dimension ejfj .

(2)For each j, the residue class field of LMj
is an extension of the residue

class field of KP with degree fj , i. e., [JMj/(ηj) : JK,P /(π)] = fj .
(3)For each j, the ground field prime element is decomposed in the extended

local field with ramification index ej , i. e., (π) = (ηj)
ej in JMj .
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(4)For each j, there is a prolongation from the P -adic valuation on KP to
LMj

specified by

|y|Mj
= |NLMj/KP (y)|1/ejfjP for any y in LMj

. (3.17)

where |.|P denotes the P -adic multiplicative valuation on KP . It’s easy to see
that |y|Mj

= |y|P when y is in KP . Furthermore, |y|Mj
in (3.17) is the only

prolongation of |.|P onto LMj
.

(5)For each j, LMj ’s valuation ring JMj is exactly the integral closure of KP ’s
valuation ring JK,P , i. e.,

JMj
≡ {y in LMj

: |y|Mj
≤ 1} ≡ {y in LMj

: wMj
(y) ≥ 0}

= {y inLMj
: there exist a0, . . . , am−1 such that wP (ai) ≥ 0(i. e., in JK,P )

for all i and a0 + a1x+ + am−1y
m−1 + ym = 0}

(3.18)

(6)Let L = Kω1 + . . . + Kωn and w.l.o.g., all ωi’s are in OK . Denote the
vector space KPω1 + . . . + KPωn on field KP by KP ⊗K L (tensor product on
K ) and denote the direct summation between vector spaces by ⊕, there is a
KP -linear isomorphism ψ between KP ⊗L and LM1

⊕ . . .⊕LMr
where each LMi

is a (distinct) vector space on KP in dimension ejfj :

ψ : KP ⊗K L ∼= LM1
⊕ . . .⊕ LMr

(3.19)

Furthermore, denote the element corresponding in (3.19) as y ∼= (y1, . . . , yr)
then for any y in L we have

TrL/K(y) = TrLM1
/KP (y1) + . . .+ TrLMr/KP (yr) (3.20a)

NL/K(y) = NLM1
/KP (y1) . . . NLMr/KP (yr) (3.20b)

Let y(1) ∼= (y
(1)
1 , . . . , y

(1)
r ) and y(2) ∼= (y

(2)
1 , . . . , y

(2)
r ), at element level the

isomorphism has:

y(1) ± y(2) ∼= (y
(1)
1 ± y

(2)
1 , . . . , y(1)r ± y(2)r ) (3.21a)

y(1)y(2) ∼= (y
(1)
1 y

(2)
1 , . . . , y(1)r y(2)r ) (3.21b)

Combined with (3.20a) and (3.21a) we have

TrL/K(xy) = TrLM1
/KP (x1y1) + . . .+ TrLMr/KP (xryr) (3.22)

for L’s any element x ∼= (x1, . . . , xr) and y ∼= (y1, . . . , yr). In other words, (3.19)
presents an orthogonal decomposition of the KP -vector space KP ⊗K L.

(7)Let A be any (integral or fractional) ideal in L, then A is a finitely gener-
ated module on the Dedekind domain. There exist L’s K -basis ω1, . . . , ωn and a
set of K ’s ideals I1, . . . , In such that[17, 20]

A = I1ω1 + . . .+ Inωn (3.23)

Such ω1, . . . , ωn are called A’s pseudo-basis and in general they are not in A.
Different pseudo-basis share the same cardinality n and it is known how to
transform from one pseudo-basis to another[20].
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Let A has a pseudo-basis representation in (3.23), define JK,P ⊗K A ≡
I
(1)
P ω1 + . . . + I

(n)
P ωn where I

(i)
P = Ii’s image under the localization mapping

Ω in (3.15) in K. Let Ωj be the localization mapping in (3.15) in LMj
, i. e.,

mapping the ideals in L to ideals in LMj
, then we have the following fact.

Theorem 3.1. [21] If A’s pseudo-basis ω1, . . . , ωn are in OL, then the KP -
linear isomorphism ψ in (3.19) deduces:

ψ : JK,P ⊗K A ∼= Ω1(A)⊕ . . .⊕Ωr(A) (3.24)

4 Local-Global Algorithm to Solve SVP and CVP in
Ideal Lattices: High Level Descriptions

In this section we construct our algorithms to solve SVP and CVP in ideal
lattices. Only the search version is considered because the optimization version
can be solved in exactly the same way. Furthermore, we only focus on SVP
because the same approach can be easily applied to CVP.

4.1 Problem

The search shortest vector problem in ideal lattice is presented in the following.
Instead of only dealing with the case K/Q, our algorithm works for any finite-
degree relative extension L/K where K is fixed and L is arbitrary, both are
number fields.

Parameter: A number field K.
Input: K ’s extended field L = K(α) with the generator α’s minimal
polynomial f(t) = tn + a1t

n−1 + . . . + an−1t + a0 in OK [t], and an ideal
A in L.
Note: In this paper we only deal with the case of real number field, i. e.,
L is contained in R.

For the ideal A on input, we always assume a given pseudo-basis
representation, i. e., a set of L’s K -basis ω1, . . . , ωn in OL and a set of K ’s
ideals I1, . . . , In such that A = I1ω1 + . . .+ Inωn.
Output: An element y∗ in A such that

TrL/K(y∗2) = min{TrL/K(y2) : all non-zero y’s in A}

Problem SVP(A,L/K )

4.2 High Level Algorithm

Before going to the technically involved solver construction, we briefly present
the motivation. The idea comes from a simple fact that, although lattice prob-
lems (e. g., SVP, CVP, CRP, etc) are computationally hard in general cases, a
subset of them, in particular the problems of the orthogonal lattice family, can
be always solved with polynomial-complexity algorithms. Of course for a general
lattice in Rn neither it is always orthogonal nor it can be even decomposed to a
set of sub-lattices orthogonal each other, however, for ideal lattices originating
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from number field, (3.19)-(3.24) shows that there exists some “orthogonal de-
composition” structure exploitable to develop a solver more efficient than those
of general lattice problems. Doing such exploitations as far as possible is exactly
what will proceed in this paper.

Now we present the whole algorithm’s logic at a high level, then working out
all technical details in sequel. In the following, all notations are inherited from
Sect.3 and “s.t.” means “such that”. By “global field” we mean any number field
and “local field” means the completion of a number field under some of its prime
ideal induced valuation.

(1)Given L and A on input, find a prime ideal P in OK such that:

POL is not prime in OL; (4.1a)

P is unramified in OL, i. e., (4.1b)

all its ramification indices e1 = . . . = er = 1;

P - ](OL/OK [α]). (4.1c)

(2)Given L and P obtained from last step, find the local field-
s LM1 , . . . , LMr associated with P ’s all decomposition prime ideals
M1, . . . ,Mr in OL, integers f1, . . . , fr ≥ 1 s.t. :

POL = M1 . . .Mr

fi = [OL/Mi : OK/P ] =[LMi ’s residue class field : KP ’s residue class field]

Secondly, find KP -linear isomorphism ψ and its component mappings
ψ1, . . . , ψr in (3.19)-(3.21) where each ψi : L→ LMi , i. e., y ∼= (y1, . . . , yr)
means ψ(y) = (ψ1(y), . . . , ψr(y)).

(3)Given L, P and LM1 , . . . , LMr , integers f1, . . . , fr ≥ 1 obtained
from last step, find K ’s extended fields L1, . . . , Lr and field embeddings
ϕ1, . . . , ϕr with ϕi : ψi(L)→ Li, s.t.:

Each Li is a global field with extension degree [Li : K] = fi; (4.2a)

For each i and y in L : TrLi/K(ϕiψi(y)) = TrLMi/KP (ψi(y)); (4.2b)

(4)Given all the results obtained, for each i set λi ≡ ϕiψi : L → Li and
Ai ≡ λi(A) which is an ideal in Li. Do:

For each i = 1, . . . , r find a non-zero x∗i in Ai s.t.

TrLi/K(x∗2i ) = min{TrLi/K(x2) : all non-zero x ’ s in Ai} (4.3)

ie, solve the SVP for ideal lattice Ai in field Li in a strictly lower dimension
fi(< n);

Find a x∗m among x∗1, . . . , x
∗
r s.t.

TrLm/K(x∗2m ) = min{TrLi/K(x∗2i ) : i = 1, . . . , r};

Find y∗ in A such that

λm(y∗) = x∗m and λi(y
∗) = 0 for all i 6= m; (4.4)

Output(y*).

Algorithm for SVP(A,L/K): High-Level
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Such obtained y∗ is indeed the solution because

min{TrL/K(y2) : all non-zero y ’s in A}
= min{TrLM1

/KP (y21) + . . .+ TrLMr/KP (y2r) : any yi in ψi(A)

and yi = 0 doesn’t hold simultaneously} by(3.20), (3.21)and(3.24)

= min{TrL1/K(x21) + . . .+ TrLr/K(x2r) : any xi in Ai

and xi = 0 doesn’t hold simultaneously} by(4.2)

= min
1≤i≤r

min{TrLi/K(x2i ) : any xi in Ai and non-zero}

= min
1≤i≤r

TrLi/K(x∗2i )

Note that in step]2 we don’t need P ’s decomposition prime ideals per se,
but just some information about their local fields LM1

, . . . , LMr
where each

LMi
= KP [t]/(fi(t)) with some irreducible polynomial fi(t) in KP [t]. In the

low-level constructions it can be seen that even fi(t) is not needed but just the
polynomial hi(t) = fi(t) mod P in K[t] instead

In conclusion, this algorithm reduces an ideal lattice SVP instance of dimen-
sion n to a set of r(≤ n) ideal lattice SVP instances of strictly lower dimensions.
It’s already known that lattice problem’s computational hardness is only domi-
nated by its dimension n (in other words, there are known algorithms in polyno-
mial time and space complexity to solve lattice problems like SVP and CVP for
any fixed dimension[3–5, 7–9, 22]), this feature of our algorithm is significantly
helpful to raise the solver’s efficiency in solving ideal lattice SVP.

For all those derived sub-instances the ground field are all K, the same as
that in the original SVP instance, so (4.3) in step]4 can be recursively solved
by this algorithm down to some appropriately lower dimensions, calling some
existed solver at these levels or continue the recursion down to 1-dimensional
SVP sub-instances.
Remarks:
(1)For CVP of ideal lattices, i. e., on input the extended (real) field L = K(α),
ideal A in L and an element z in L, to find y∗ in A s.t.

TrL/K((z − y∗)2) = min{TrL/K((z − y)2) : all y′s in A}

Because:

min{TrL/K((z − y)2) : all non-zero y’s in A}
= min{TrLM1

/KP ((z − y1)2) + . . .+ TrLMr/KP ((z − yr)2) :

any yi in ψi(A)} by(3.20), (3.21), (3.24)

= min{TrL1/K((λ1(z)− x1)2) + . . .+ TrLr/K((λr(z)− xr)2) :

any xi in Ai} by(4.2)

= min
1≤i≤r

min{TrLi/K((λi(z)− xi)2) : any xi in Ai}

= min
1≤i≤r

TrLi/K((λi(z)− x∗i )2)

solving the CVP of ideal lattices can be done by a similar algorithm following
the logics of that for SVP. For this reason, we will only focus on solving SVP
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hereafter.
(2)In the first step, if such a prime ideal P is found that completely splits in the
extended field L, i. e., POL = M1 . . .Mn, then solving the SVP instance in this
case is reduced to solving n 1-dimensional SVP instances of some ideals in K.
(3)In case of Galois extension L/K, the decomposition law (4.1) will have e1 =
. . . = er ≡ e = 1 and f1 = . . . = fr ≡ f . Since ref = n and r ≥ 2, we always
have f = n/r ≤ n/2, i. e., each reduction can decrease the instance’s dimension
by at least half and at most O(log n) recursions are needed.

For example, supposing that each recursion reduces the dimensions (the in-
termediate fields’ extension degrees on K) by half, then after m recursions the
original n-dimensional SVP instance will be decomposed to 2m number of n/2m-
dimensional SVP instances. As a result, the time complexity would be at most
2m2O(n/2m) by calling some single-exponential time-complexity generic solvers
on these n/2m-dimensional SVP instances(e. g., the elegant solver in [6]), sub-
stantially more efficient than the time-complexity of 2O(n) if the n-dimensional
original instance is directly solved.
(4)In the case of Galois extension L/K, the fact that Galois group GL/K is tran-
sitive on M1, . . . ,Mr in (4.1), i. e., for any Mi, Mj there exists g in GL/K such
that Mi = g(Mj), can significantly simplify lots of details in our algorithm’s
construction.
(5)In general cases (L/K may not be Galois), to make the sub-instances’ di-
mensions as low as possible at each recursion, it’s helpful to find a prime ideal
P in OK not only satisfying those requirements in step]1 but also the objective
that maxj=1,...,r fj is as small as possible, where r, f1, . . . , fr are those integers
appearing in step]2.

5 Low Level Details in the Algorithm

Now we turn from the high-level descriptions to low-level technical details, each
step discussed in a subsection. We begin with the relatively easy step]2, ]3 and
]4 and finally end with step]1.

5.1 Solving Subproblems in Step]2

In this step we solve such problems: Given L = K(α) with α’s minimal mon-
ic polynomial f(t) ∈ K[t] and unramified prime ideal P in OK where P -
](OL/OK [α]), firstly, find irreducible polynomials h1(t), . . . , hr(t) ∈ K[t] s.t.
hi(t) = fi(t) mod P where LMi

= KP [t]/(fi(t))’s are local fields associated with
P ’s all decomposition prime ideals M1, . . . ,Mr ⊂ OL. Note that in this situation
naturally (i. e.,due to P ’s unramification) each deghi(t) = degfi(t) = [OL/Mi :
OK/P ]=[LMi

’s residue class field : KP ’s residue class field ]. Secondly, find KP -
linear isomorphism ψ and its component mappings ψ1, . . . , ψr in (3.19)-(3.21)
where each ψi : L→ LMi

, i. e., y ∼= (y1, . . . , yr) means ψ(y) = (ψ1(y), . . . , ψr(y)).

Decompose f(t) mod P by calling any appropriate polynomial fac-
torization algorithm modulo the prime ideal(e. g., those in [20, 23, 24]),i. e.,
to compute distinct monic irreducible polynomials h1(t), . . . , hr(t) ∈
(OK/P )[t](hence irreducible in K[t]) s.t.

f(t) = h1(t), . . . , hr(t) mod P (5.1)

Solution to the 1st sub-problem:
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Proof of the solution’s correctness: Suppose in KP [t] there is the factorization of
f(t):

f(t) = f1(t) . . . fs(t) (5.2)

where f1(t), . . . , fs(t) ∈ KP [t] are distinct monic irreducible polynomials. By the
famous Hensel’s lemma [13](and OK/P is the residue class field of KP ) it follows
that r = s and hi(t) = fi(t) mod P for i = 1, . . . , r and since hi(t)’s and fi(t)’s
are all monic, we have degfi(t) = deghi(t).

In addition, under the condition P - ](OL/OK [α]) we have [23, 24]:

POL = M1 . . .Mr

where each prime ideal factor Mi = (P, hi(α)) in OL. In particular, each Mi-adic
local field LMi

= KP [t]/(fi(t)) and [LMi
: KP ] = degfi(t) = deghi(t).

Remark on Complexity of the Polynomial Factorization Algorithm for
(5.1):

(5.1) can be solved via lots of algorithms, for example, the algorithm in [24]
is a good solver which time-complexity is polynomial in the degree n and the
number of basic arithmetic operations in the (finite) field OK/P . It’s also an
elegant random algorithm which successful probability is at least 4/9.

For any y(t) ∈ KP [t]/(f(t)) = KP ⊗K L, set ψ(y) =
(ψ1(y), . . . , ψr(y)) where

ψi(y(t)) ≡ y(t) mod fi(t) (5.3)

Solution to the 2nd sub-problem:

Proof of the solution’s correctness: ByKP⊗KL = KP⊗KK[t]/(f(t)) = KP [t]/(f(t))
and (5.2), it follows from the Chinese Remainder Theorem that there is isomor-
phism

KP ⊗K L ∼= KP [t]/(f1(t))⊕ . . .⊕KP [t]/(fr(t)) = LM1 ⊕ . . .⊕ LMr

where the KP -linear isomorphism ψ’s components ψi(y(t)) ≡ y(t) mod fi(t),
i = 1, . . . , r and obviously ψi(y ± z) ≡ ψi(y) ± ψi(z), ψi(yz) ≡ ψi(y)ψi(z)
in LMi for any y = y(t), z = z(t) in LMi and i. Furthermore, T (y)z ≡ yz =
y1z1⊕. . .⊕yrzr = T (y1)z1⊕. . .⊕T (yr)zr, i. e., there is always the diagonalization
T (y) = T (y1) ⊕ . . . ⊕ T (yr) so (3.20) holds (but (3.20b) is not needed). In
particular, each ψi’s restriction on L can be computed by:

ψi(y(t)) ≡ y(t) mod hi(t), for any y(t) ∈ K[t]/(f(t)) = L (5.4)

and ψi(L) = Li.

5.2 Solving Subproblems in Step]3

Given L, unramified prime ideal P in OK and local fields associated with POL’s
all prime factors M1, . . . ,Mr in OL, ı.e., LM1

, . . . , LMr
each with an irreducible

polynomial hi(t) in K[t] s.t. hi(t) = fi(t) mod P and LMi
= KP [t]/(fi(t)),

integers f1, . . . , fr ≥ 1, we need to find K’s extended fields L1, . . . , Lr and field
embeddings ϕ1, . . . , ϕr satisfying (4.2). We solve this for each i = 1, . . . , r(r ≤ n)
so the sub-problem is re-specified as:
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Given L, unramified prime ideal P in OK and a local field associated with one
of POL’s prime factor M in OL, i. e., LM with an irreducible polynomial hM (t)
in K[t] s.t. hM (t) = fM (t) mod P and LM = KP [t]/(fM (t)) of extension degree
f ≥ 1, find K ’s extended (global) field L∗of degree [L∗ : K] = [LM : KP ] and
a field embedding ϕM : ψM (L) → LM where ψM denotes the ψ’s component-
mapping on LM s.t. TrL∗/K(ϕMψM (y)) = TrLM/KP (ψM (y)) for any y in L∗.

Set L∗ ≡ K[t]/(hM (t)) and ϕM = id. (5.5)

Solution:

Proof of the solution’s correctness: Obviously L∗ is global because hM (t) ∈ K[t].
Now prove L∗ is dense in LM and [L∗ : K] = [LM : KP ]. Since LM =
KP [t]/(fM (t)) is a unramified (local field) extension with extension degree f =
degfM (t) and fM (t) is irreducible in KP [t] with leading coefficient 1, hM (t) =
fM (t) mod P so by Hensel lemma hM (t) is irreducible in (OK/P )[t] with the
same degree f and leading coefficient 1. In consequence[13, Chapter 14; 16,
Chapter2], this unramified extension LM/KP induces a finite field extension
OL/M = (OK/P )[t]/(hM (t)) of the same degree f and vice versa, a one-to-one
correspondence up to isomorphism.

As a result, we have KP [t]/(fM (t)) = KP [t]/(hM (t)) and in particular hM (t)
is irreducible in K[t] so [L∗ : K] = f = [LM : KP ]. By definition L∗ =
K[t]/(hM (t)) we have that LM is densely contained in the field KP [t]/(hM (t)) =
KP [t]/(fM (t)) = LM . Furthermore,KP⊗KL∗ = KP [t]/(hM (t)) = KP [t]/(fM (t)) =
LM so TrL∗/K(y) = TrLM/KP (y) for any y in L∗ by (3.19).

Finally, ψM (L) = L∗ so ϕM = id.

Remark: If L is contained in R, so is L∗. In fact, L is real so for L’s any prime
ideal M,

√
−1 is not in the M -adic completeness of L, i. e.,

√
−1 is not in LM .

As a result,
√
−1 is not in L∗ which is dense in LM , i. e., L∗ is real.

5.3 Solving subproblems in Step]4

In step]4 we need to solve two sub-problems. Firstly, given an ideal A (with its
pseudo-basis) in L and a surjective homomorphism ψm : L→ Lm, compute the
ideal ψm(A) in Lm. Secondly the sub-problem (4.4), i. e., given x∗(t) in Lm =
K[t]/(hm(t)) find y∗(t) in L s.t.

y∗(t) = x∗(t) mod hm(t), y∗(t) = 0 mod hj(t) for all j 6= m (5.6)
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(Ideal’s homomorphism image).On input an ideal A with the pseudo-basis
representation,i. e., a set of L’ s K -basis ω1, . . . , ωn in OL and a set of
K ’s ideals I1, . . . , In such that A = I1ω1 + . . .+ Inωn, do:

Compute bi = ψm(ωi), i = 1, . . . , n.

Find the maximal subset of K -linear independent members, w.l.o.g.,
denoted b1, . . . , bdm where dm = [Lm : K], and the integers β, λij in OK

s.t.
βbi =

∑
1≤j≤dm

λijbj i = dm + 1, . . . , n

(e. g., this step can be accomplished by Gauss elimination algorithm
regarding the bi’s as vectors in the dm-dimensional K -linear space Lm);

Compute the ideal Jj = βIj +
∑

1+dm≤i≤n λijIi for each
j = 1, . . . , dm;

Compute and output the ideal

ψm(A) =
∑

1≤j≤dm

Jjbj/β.

Solution to the 1st sub-problem

Proof of the solution’s correctness: Since A = I1ω1 + . . . + Inωn and ψm is a
K -homomorphism, we have ψm(A) = I1b1 + . . .+ Inbn so

βψm(A) = βI1b1 + . . .+ βIdmbdm + Idm+1βbdm+1 + . . .+ Inβbn

= βI1b1 + . . .+ βIdmbdm + Idm+1

∑
1≤j≤dm

λdm+1,jbj + . . .+ In
∑

1≤j≤dm

λn,jbj

=
∑

1≤j≤dm

(βIj +
∑

1+dm≤i≤n

λijIi) =
∑

1≤j≤dm

Jjbj .

and note that bi’s are all in OLm since ωi’s are all in OL.

Find g∗(t) in K[t] s.t.

g∗(t) = x∗(t) mod hm(t), g∗(t) = 0 mod hj(t) for all j 6= m

by the standard algorithm derived from Chinese Remainder Theorem.
Then set y∗(t) ≡ g∗(t) mod f(t)

Solution to the 2nd sub-problem:

The solution’s correctness can be verified by direct calculations.

5.4 Solving Subproblems in Step]1

Now we turn to this problem: given L and A on input, find a prime ideal P in
OK such that:

POL is not prime in OL; (5.7a)
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P is unramified in OL, i. e., all its (5.7b)

ramification indices e1 = . . . = er = 1;

P - ](OL/OK [α]). (5.7c)

Before constructing the solver, we specify the following oracles at first.
Oracle-PGK where K is a number field: Generates a prime ideal at random

in OK . The input is void and each output is probabilistically independent of any
others.

Orcale-PTL(M) where L is a number field: on input any ideal M in OL,
tests whether M is prime or not.

Oracle-dK(L): On input any L where L/K is a number field extension of
finite degree, outputs the relative discriminant dL/K , an integral ideal in OK
which is the greatest common divisor of det(TrL/K(aiaj)) of all K-linear inde-
pendent integers a1, . . . , an in OL.

Oracle-lK(L,α): On input any L = K(α) where L/K is a number field
extension with finite degree n, outputs ](OL/OK [α]), the cardinality of the finite
quotient set OL/OK [α].

(I) Compute the relative discriminant dL/K= Oracle-dK(L);
Compute l=Oracle-lK(L,α):

(II) Do{
P=Oracle-PGK ; /*generate prime ideal P in OK*/

}while ( P |dL/K or P |l);
/*equivalently, dL/K is a subset of P or l ∈ P .*/

(III) If Orcale-PTL(POL) is true /*i. e., P is prime in OL */
Then goto II;
output(P);

Solution

Proof of the solution’s correctness By general algebraic number theory, a prime
ideal P in OK is ramified in the integral closure OL of the field extension L/K
iff it divides the relative discriminant dL/K [13, 14, 16]. As a result, the output
prime ideal P is unramified in OL and obviously satisfies all other requirements
in (5.7).
Remarks on implementation of the oracles: In general, how to implement
all the above oracles is not completely clear with our best knowledge. However,
in the important case that L = Q(α) ∼= Q[t]/(f(t)) where the polynomial f(t)
is monic and irreducible in Z[t], K = Q (hence OK = Z), we can have further
arguments about their implementations.
(1)Oracle-lQ(L,α) can be completely implemented by Oracle-dQ(L). If fact,
in this case there is the formula

](OL/Z[α]) = |NL/Q(f ′(α))/dL/Q|1/2 (5.8)

where |.| is the ordinary absolute value.

Proof. When L = Q(α) ∼= Q[t]/(f(t)), (due to the fact that OK = Z is a
principal ideal domain) there exist a set of integral basis ξ1, . . . , ξn s.t. OL =
Zξ1 + . . . + Zξn and the determinant dL/Q = det(TrL/Q(ξiξj)), i. e., |dL/Q| is
the squared volume of the lattice OL’s fundamental domain. Note that Z[α] =
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Z + Zα + Zα2 + . . . + Zαn−1 (α ∈ OL) is a sub-lattice in OL so its squared
fundamental domain’s volume’s squared

|det(TrL/Q(αi−1αj−1))| = ](OL/Z[α])2|dL/Q|

On the other hand, |det(TrL/Q(αi−1αj−1))| = |det(α(i)j−1)|2=the square of the

Vandermond determinant of α’s conjugates α(1), α(2), . . . , α(n−1) = |
∏

1≤i<j≤n(α(i)−
α(j))|2 = |f ′(α(1)) . . . f ′(α(n))| = |NL/Q(f ′(α))|, which proves (5.8).

(2) Oracle-dQ(L): In this case there exist the algorithms to compute OL’s in-
tegral basis ξ1, , ξn and the determinant dL/Q, e. g., the algorithm 6.1.8 in [25].
It’s worthwhile to note that the performance-dominating step in this algorithm
is to factorize the rational integer[25] which bit-size in our algorithm’s context
is poly(n), as a result, this oracle’s intrinsic complexity maybe only as hard as
integer factorization.

For elative extension L/K where K 6= Q, it’s worthwhile to mention the
special case dL/K = OK (which can never happen if K is Q) and hence dLj/K =
OK for all the intermediate fields Lj during the algorithm’s recursion, e. g., K ’s

Hilbert class field L = K(µ1/q) where q divides K ’s class number h(K). In this
situation the oracle-dK(.) is trivial and the decision P |dL/K (always false) can
be simply omitted from the algorithm. As a result, the algorithm’s complexity
can be significantly reduced (r.f., Sect.5.5).
(3) Orcale-PTL(M): On input any ideal M in OL, decide whether M is prime
or not. For this oracle’s counterpart in rational number field Q, i. e., rational
integer’s primality testing, there are not only practically efficient but also de-
terministic polynomial time-complexity algorithms [26, 27]. Although so far it’s
unknown how to efficiently implement Orcale-PTL(.) in arbitrary number field
L, it’s reasonable to expect that it’s complexity would be lower than SVP/CVP.

(4) Oracle-PGQ: Generates a prime number at random in Z, a problem with
known efficient solvers.

5.5 Computational Complexity

Let |S| denote the input size of the ideal lattice Problem SV P (A,L/K), NPG,
NPT , Nd and Nl denote the number of callings to Oracle-PGK , Orcale-PTL,
Oracle-dK and Oracle-lK in the algorithm. From the constructions in Sect.4 and
Sect.5, it’s easy to see that all the subroutines and operations in the algorithm
are only those with time and space complexity polynomial in the input size,
except the above four oracles which intrinsic computational complexity may be
non-polynomial. Furthermore, the recursion depth of the (high level) algorithm
is only O(n) where n = [L : K]=the dimension of the input ideal lattice A. In
summary, we can have the following conclusions.

Theorem 5.1. (1)Given any number field K, there exists the algorithm to solve
(exactly) SVP on input any extended field L and ideal A in OL with time com-
plexity

poly(n, |S|, NPG, NPT , Nd, Nl) (5.9)

and space complexity poly(n, |S|) where n = [L : K]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.
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Corollary 5.2 (1)Given any number field K, there exists the algorithm to solve
(exactly) SVP on input any extended field Lµ and ideal Aµ in OLµ from the fam-
ily {(Lµ, Aµ) : dLµ/K = OK} with time complexity poly(nµ, |S|, NPG, NPT , Nl)
and space complexity poly(nµ, |S|) where nµ = [Lµ : K]. (2)For CVP of ideal
lattices, we have exactly the same conclusion.

Remark: It is known that there exists the infinite family (e. g.the Hilbert class
field extension tower) {(Lµ, Aµ) : dLµ/K = OK} which extension degree nµ is
upper-boundless. For such input family, the algorithm constructed in this paper
would be efficient (polynomial in time) as long as the Oracle-PGK , Orcale-PTL
and Oracle-lK can be implemented efficiently, which possiblity seems positive.

Now back to the case of L/Q, because there exist efficient algorithms to
implement Oracle-PGQ, i. e., to efficiently generate prime integers, we have:

Corollary 5.3 (1)There exists the algorithm to solve (exactly) SVP on input
any number field L and ideal A in OL with time complexity

poly(n, |S|, NPT , Nd, Nl)

and space complexity poly(n, |S|) where n = [L : K]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.

6 Conclusions and Future Works

We construct an innovative SVP(CVP) solver for ideal lattices in case of any
relative extension of number fields L/K of degree n where L = K(α) is real.
By this construction, solving SVP/CVP of ideal lattices is efficiently reduced to
solving SVP/CVP of strictly lower dimensional ideal lattices and the problems
of generating prime ideals in the ground field K, testing the ideal’s primali-
ty in the extended field L, calculating the relative discriminant dL/K and the
cardinality of OL/OK [α]. The solver’s space-complexity is polynomial and its
time-complexity’s explicit dependence on the dimension n is also polynomial.

As a result, the first open problems are to construct the algorithms to im-
plement the above oracles, which also have independent values in theory and
applications. The second and more interesting open problem is that, for some of
the oracles computationally hard to implement, whether its hardness can be stil-
l preserved against the quantum computing model. An answer to this problem
will imply whether the ideal lattice problems’ hardness is solid for post-quantum
cryptography.
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