
Modelling Time, or A Step Towards Reduction-based
Security Proofs for OTP and Kerberos

Jörg Schwenk
Horst Görtz Institute

Ruhr-University Bochum, Germany
joerg.schwenk@rub.de

ABSTRACT
The notion of time plays an important role in many practi-
cally deployed cryptographic protocols, ranging from One-
Time-Password (OTP) tokens to the Kerberos protocol. How-
ever, time is difficult to model in a Turing machine environ-
ment.

We propose the first such model, where time is modelled
as a global counter T . We argue that this model closely
matches several implementations of time in computer en-
vironments. The usefulness of the model is shown by giv-
ing complexity-theoretic security proofs for OTP protocols,
HMQV-like one-round AKE protocols, and a variant of the
basic Kerberos building block.

1. INTRODUCTION

Authentication.
Authentication is, besides key agreement, the most im-

portant security goal in cryptographic protocols. Loosely
speaking, an authentication protocol is secure if the prob-
ability that an active adversary breaks the protocol is the
same as for a passive adversary. For many cryptograhic pro-
tocols, authentication is of major importance: TLS is used
to authenticate the server (e.g. through EV certificates),
and One-Time-Password (OTP) schemes (e.g. SecureID) or
Kerberos (and WWW variants like OpenID or SAML) have
been designed as authentication protocols.

Authentication with nonces.
Replay attacks are one major threat for authentication

protocols, so the freshness of a message must be guaranteed.
In practical implementations, this is achieved by securely
including “new” values into some protocol messages: either
nonces chosen by the other party, or timestamps.

Nonces can easily be modelled in a Turing machine based
environment: They are either read from a random input
tape, or they are randomly generated by a probabilistic Tur-
ing machine. The security analysis then only has to take into

account the probability distribution of these values. How-
ever, for one-sided authentication, this implies at least two
messages, and for mutual authentication at least three mes-
sages, since each authenticating party has to receive back
the nonce chosen by itself, and returned by the authenti-
cated party.

Authentication with Timestamps.
Timestamps are more difficult to model, because time is

not measurable for a Turing machine after it finished its
computation, and waits for fresh input. (In practice, this
is comparable to the problem of using time in smartcard
computations: If the smart card is disconnected from power
supply, it is no longer able to even increase a local clock.)
However, timestamps enable us to design more efficient pro-
tocols, with less latency.

Reduction-based proofs in a Turing Machine model.
A Turing Machine (TM) is a mathematical model of a

(von Neumann) computer. The famous Church-Turing the-
sis states that any computable algorithm can be implemented
using a TM. Since a TM is a mathematical object, math-
ematical proof techniques can be applied, and these proofs
form the basis of all theoretical computer science. On the
other hand, subtle errors in the model may invalidate such
proofs [20].

Definition 1 (Turing Machine [20]). A Turing Ma-
chine M is a tuple M = (Q,Γ, b,Σ, δ, q0, F), where Q is a
finite, non-empty set of states, Γ is the tape alphabet, b ∈ Γ
is the blank symbol, Σ ⊆ Γ − {b} is the input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final or ac-
cepting states, and δ : (Q − F) × Γ → Q × Γ × {L,R} is
a partial function called the transition function. A Turing
machine is started by setting its internal state to q0, writ-
ing the input string on the (infinite) tape, and positioning
its read/write head on the first input symbol. As long as no
accepting state is reached, δ(s, q) = (s′, q′,m) is evaluated,
where s is the actual state of the TM, and q is the symbol
read by the read/write head from the tape. As a result of
this evaluation of δ, the internal state of M is set to s′,
the symbol q′ is written on the tape by overwriting q, anf the
read/write head either moves right (m = R) or left (m = L).

Variants of Turing machines include probabilistic TMs
(which in addition have a read-only random tape prefilled
with a randomly chosen string) and interactive TMs (which
in addition have a communication tape shared with another
TM). All these variants are mathematically sound.

In complexity theory, large classes of efficiently computable
(P) and efficiently decidable problems (NP) were defined by
giving polynomial reductions to some well-known problems
[18]. In cryptography, complex systems are shown to be se-
cure by giving a polynomial reduction to a well-studied as-
sumption (e.g. factoring of large integers, or P 6= NP). The
basis for this research was the formalization of all computa-
tional processes as (probabilistic) Turing Machines (TM).

Research on reduction-based proofs for cryptographic pro-
tocols started with the seminal paper of Bellare and Rog-
away [6] in 1993. Up to the best of our knowledge, random-
ness played an important role in all subsequent papers, but
time stamps were never investigated.

Modelling Time.
Time plays an important role in IT security: X.509 cer-

tificates and other security tokens have a validity period,
some One-Time-Password (OTP) systems need loosely syn-
chronized clocks between hardware token and server, GPS
Spoofing may only be detected by comparing internal clock
values with the time contained in GPS signals, and malware
may protect itself by querying external time sources.

However, running an internal (independent) clock always
means measuring some physical parameter: movements of
a pendulum, oscillation rate of a crystal, or an electronic
transition frequency. Thus the main problem with time is
that we simply cannot model “real” time in a Turing Machine
based model. All formal models claiming to be able to model
time must therefore be carefully checked if they satisfy all
restrictions imposed by Definition 1 or one of its variants.
If they deviate from this strict formalism, the results may
become invalid.

Instead, we have to find a suitable approximation for time,
which preserves the most important security guarantees of-
fered by “real” time. 1

If we look at one implementation of time, we get a mo-
tivation for the choice of our model: The Network Time
Protocol (NTP, [32]) delivers the actual time to an appli-
cation on request. Thus in our model we have chosen to
implement time as a global counter T , which is accessible
to all Turing machines in our computing environment. If
a fresh message has to be sent, the sending TM request a
timestamp ts = (t, aux) from T . Upon reception of such a
request, T first increases its local counter (t← t+ 1). Then
the actual value t is returned, optionally with auxiliary data
aux appended. This auxiliary data may e.g. be a digital sig-
nature, to prevent Denial-of-Service attacks by an adversary
who would issue large values like t+ 2k >> t.

One can easily derive variants of this model, for example:
Turing Machines may query T whenever they are activated,
or even on each computation step they make. Each query
may increase the counter, or a different pattern may be de-
signed to increase it. The channel between T and the pro-
cess oracles may be insecure, authentic, or even untappable
[27], the latter guaranteing that the adversary may never

1Please note that some usecases of time may cause addi-
tional moidelling problems. E.g. the lifetime of a public
key in an X.509 certificate is often limited, because with in-
finite lifetime, the adversary may compute the private key
in non-polynomial time. To include this in a formal model,
we would have to somehow couple the time value used in
the protocol with the number of computation steps of the
adversary.

influence the communication with the time source. From all
these variants, we have chosen what we believe to be the
simplest model, which however offers similar security guar-
antees than the other variants.

The Notion of Time-Security.
Our starting point is the definition of secure authentica-

tion protocols, given in the seminal paper by Bellare and
Rogaway [6]. They motivated their definitions by introduc-
ing a benign adversary, who forwards all messages faithfully.
They defined an authentication protocol to be secure if the
winning probability of any adversary is (up to a negligible
difference) equal to the winning probability of this benign
adversary. They showed that this condition is, for many
protocols using random nonces, equivalent to requiring that
both parties only accept if they have matching conversations
(cf. Definition 7). Our main goal is to find a replacement
for the concept of matching conversations, since in one- and
two-message protocols, this concept is not applicable: here
the responder oracle always has a matching conversation to
the initator oracle, but due to replay attacks active adver-
saries may influence the system significantly: With a benign
adevrsary, there is at most one responder oracle that will
accept on a single message; with an active adversary, there
may be arbitrary many.

In this paper we only consider cryptographic protocols
consisting of one or two messages. (If we have three mes-
sages, we can use random nonces, and achieve better security
goals.) Thus there always is one oracle (responder) that has
to decide whether to accept or reject after receiving a single
message, and before (or without) sending a message. We
will consider a protocol to be time-secure, if for each ini-
tiator oracle that has sent a message there is at most one
responder oracle that accepts, and that this responder ora-
cle will accept only if the message was forwarded unmodified
by the adversary. The second goal can be achieved by using
cryptographic primitives like message authentication codes
or signature schemes, but for the first goal we need times-
tamps.

For two-message protocols, we can additionally base the
acceptance condition for initiator oracles (which send and
receive one message) on the classical notion of matching con-
versations (if a nonce is used, which is however not the case
in all previously proposed two-message protocols), or we can
also apply the notion of time-security here.

Scope of our results.
The results presented in this paper are directly applicable

to OTP schemes based on counters, e.g. all OTP schemes
based on the HOTP algorithm [34], which is the basis for
many commercially deployed OTP schemes. HOTP uses an
8 Byte counter, a shared key between initiator and respon-
der, and HMAC-SHA-1 as the MAC algorithm. The counter
value at the initiator is incremented with every OTP gener-
ation, whereas the counter at the server is only incremented
after a successful authentication, to the counter value used
in the OTP. This exactly mirrors our time model. However,
usability considerations have lead to the introduction of a
truncation function, which reduces the entropy of the OTP
significantly, and thus a throttling scheme must be used to
prevent exhaustive MAC searches. These usability enhance-
ments are out-of-scope here.

OTP schemes using loosely synchronized clocks (e.g. RSA

SecureID or TOTP [35]) are based on clock counters, the
main difference to HOTP being that the responder counter
is increased independantly. We could modify the acceptance
condition and the communication with T at the responder
to include this in our model (see Appendix); however, in
oder to get similar security properties, we would also have
to add a second counter at the responder, in order to prevent
replay attacks of OTPs within one given time step (default
value is 30 seconds).

For two-message protocols, our results can be used to de-
vise new protocols which may achieve explicit authentication
for both initiator and responder, in addition to authenti-
cated key exchange. With respect to the latter property, the
model presented here is “weak” in the sense that it does not
consider queries like RevealDHExponent or RevealState
[16]; again, this is in order to keep the model (and the proofs)
simple.

One important motivation for considering a hybrid def-
inition of explicit authentication (using nonces and times-
tamps) was the fact that the two-party two-message build-
ing blocks of the Kerberos protocol (cf. Section 7) are of this
type. In our model, we can show that these building blocks
are authentication protocols, but we cannot cover the key
exchange part of Kerberos: here a suitable theory for Single-
Sign-On protocols is still missing.

Contribution.
The contributions of this paper are as follows:

• We propose the first theoretically consistent model for
timestamps in cryptograhic protocols, which covers all
Turing Machine-based implementations.

• We give a security definition for explicit authentication
extending [6], applicable to a wide range of protocols.

• We show the usefulness of our definition by giving ex-
amples of secure one and two message protocols, to-
gether with formal security proofs.

• We sketch modified versions of the basic building block
of the well-known Kerberos protocol (with time stamps,
but without validity time ranges), for which security
proofs (for authentication only) are possible in our
model.

2. RELATED WORK

Timestamps.
An overview on usage and security problems of times-

tamps can be found in [29]. (See [19] for an updated version.)
Motran et al. [33] use a different model for timestamping
documents: they assume that a unique random string is
broadcasted in each time period. An actual overview on
hash-then-publish timestamping can be found in [11]. [26]
shows that if malleable encryption (e.g. a streamcipher) is
used, timestamp based authentication protocols may fail.
[38] covers one-time passwords, but in the different context
of password-based authenticated key exchange (PAKE).

Authenticated Key Exchange.
Reasearch on formal security models for two-party authen-

tication and authenticated key exchange (AKE) protocols
started with the seminal paper of Bellare and Rogaway [6].

In [7], 3-party session key distribution protocols were inves-
tigated, but authentication was omitted.

In the following years, research on cryptographic protocols
focused either on authenticated group key exchange [28], or
the higly efficient two-message protocols (see below). Ex-
plicit authentication was difficult to achieve in these proto-
cols, thus variants of the AKE model introduced by Canetti
and Krawczyk [13] were used.

Authenticated Key Exchange with Timestamps.
In a paper whose goals are closest to our work, Barbosa

and Farshin [2] introduce two different models (one based
on Canetti-Krawczyk and one following Bellare-Rogaway)
to model AKE with timestamps, and a total of 6 theorems.

In [2], time is modeled as a local clock LocalTime, which
is incremented by sending TICK requests. In comparison to
our work (we use a global clock), [2] has a couple of draw-
backs:

• There is no executional model which describes how
local clocks are incremented and kept synchronized.
Since desynchronization of local clocks is a major issue
in practice, this is an important omission. (We use the
global counter and received messages to synchronize.)

• In a secure authenticated key exchange protocol, the
success probabilities of active and passive adversaries
are roughly the same. For 3-message protocols using
nonces, this was formalized using ”matching conversa-
tions” in [6]. [2] tries to reformulate these definitions to
the 1-message settings, but the important partnering
definition is flawed: An active adversary may simply
send a message generated by piiA to pijB and pij+1

B .
Then according to [2], Definition 5, the three oracles
are not partnered, thus the adversary may ask RE-
VEAL to pijB and at the same time TEST to piiA, and
thus always win the security game.

• The adversary is allowed to increment the local clock.
This is counterintuitive: to name an extreme example,
GPS spoofing can only be detected if a reliable local
clock is available, despite all cryptographic protection
mechanisms [41].

• Finally, the proof of Theorem 6, which looks simi-
lar to the results in our paper, doesn’t make use of
timestamps at all: The same security guarantees can
be achieved if timestamps are replaced with sequence
numbers, because sychronizity of local clocks is not
modeled.

Two-message protocols.
In 1986, Matsumoto et al. [30] first studied implicitly

authenticated Diffie-Hellman protocols, which results in a
line of research generated many protocols. Research on this
topic was re-initiated by the introduction of the MQV [31,
24], KEA1 [5] and HMQV [22] protocols. The latter is for-
mally proven secure in a modified CK [13] model, where no
explicit authentication is defined (only authenticated key ex-
change). A short overview on the employed models is given
in [14].

Kerberos.
The Kerberos protocol [37] was introduced to the aca-

demic community in [39, 21]. First informal security inves-
tigations were published in [8, 17].

Formal analysis in Dolev-Yao-style models was started
in [4, 3, 12]. Cremers and Mauw [15] analyzed protocols
which were generalizations of the public-key and private-
key Needham-Schroeder protocol [36], which was the model
for Kerberos. Recently, Backes et al. [1] gave an analysis
of the authentication and key secrecy properties of Keberos,
and Li [25] gave an analysis of Kerberos in the Hoare logic.

Blanchetet al. [9] presents a proof on Kerberos that is
somehow a mixture between Dolev-Yao and reduction-based
proofs: they use assumptions from reduction based cryptog-
raphy (e.g. IND-CCA2) to show that a set of ad-hoc security
properties is fulfilled. However their proof is not a reduction
in the sense that ‘if one of these security properties is vio-
lated, then at least one of the assumptions can be broken”.

Boldyreva and Kumar [10] provide valuable insights into
the encryption schemes employed in Kerberos v5 by showing
that under reasonable assumptions, a “modified general pro-
file” can be shown to be IND-CCA and INT-TXT secure.

3. DEFINITIONS
Notation We use ∅ to denote the empty string, and [n] =
[1, n] = {1, . . . , n} ⊂ N for the set of integers between 1

and n. If A is a set, then we use a
$← A to denote that a

is drawn uniformly random from A. In case A is a proba-

bilistic algorithm a
$← A is used to denote that A returns

a when executed with fresh random coins. We use κ to de-
note the security parameter. x

$← A(y) denotes the output
x of the probabilistic algorithm A when run on input y and
randomly chosen coins.

Digital Signature Schemes A digital signature scheme is a
triple SIG = (SIG.Gen, SIG.Sign,SIG.Vfy), consisting of the

key generation algorithm (sk, pk)
$← SIG.Gen(1κ) generating

a (public) verification key pk and a secret signing key sk
on input of the security parameter κ, the signing algorithm

σ
$← SIG.Sign(sk,m) generating a signature for message m,

and the verification algorithm SIG.Vfy(pk, σ,m) returning 1,
if σ is a valid signature for m under key pk, and 0 otherwise.
Security is formalized in the following security game that is
played between a challenger C and an adversary A.

1. The challenger generates an asymmetric key pair (sk, pk)
$← SIG.Gen(1κ) and the public key pk is given to the

adversary.

2. The adversary may adaptively query q messages mi

with i ∈ [q] of his choice to the challenger. The chal-
lenger responds to each of these queries with a signa-
ture σi = SIG.Sign(sk,mi) on mi.

3. The adversary outputs a message/signature pair (m,σ).

Definition 2. We say that SIG is (t, ε, q)-secure against
existential forgeries under adaptive chosen-message attacks
(EUF-CMA), if for all adversaries A that run in time t mak-
ing at most q queries it holds that

Pr[(m,σ)
$← AC(1κ, pk) such that

SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}] ≤ ε.

Symmetric Encryption Schemes A symmetric encryption (SE)
scheme is a pair SE = (SE.Enc, SE.Dec), consisting of the
encryption algorithm SE.Enc(k,m) generating a ciphertext
c for message m under key k, and the deterministic decryp-
tion algorithm SE.Dec(k, c) returning m, if c is a valid en-
cryption and the error symbol ⊥ otherwise. Security against
chosen ciphertext attacks is formalized in the following se-
curity game that is played between a challenger C and an
adversary A.

1. The adversary may adaptively query the challenger for
encryptions SE.Enc(k,m) of arbitrary plaintexts m,
and for decryptions SE.Dec(k, c) of arbitrary cipher-
texts c.

2. The adversary outputs two (fresh) messages m0 and
m1 of the same length.

3. The challenger tosses coin b
$← {0, 1}. It then sets

c = SE.Enc(k,mb) and sends c to the adversary.

4. The adversary may again adaptively query plaintexts
m and ciphertexts c′ of his choice, with the restriction
that m /∈ {m0,m1} and c′ 6= c.

5. Finally the adversary outputs a bit b′.

Definition 3. We say that SE is (t, ε, q)-secure under
chosen ciphertext attacks (CCA), if all adversaries A that
run in time t making at most q encryption queries have ad-
vantage of at most ε to distinguish the ciphertext of m0 from
that of m1, i.e. ∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
Public Key Encryption Schemes A public key encryption
(PKE) scheme is a triple PKE = (PKE.Gen,PKE.Enc,
PKE.Dec), consisting of the key generation algorithm (sk, pk)
$← PKE.Gen(1κ) generating a (public) encryption key pk and

a secret decryption key sk on input of the security parameter
κ, the probabilistic encryption algorithm PKE.Enc(pk,m)
generating a ciphertext c for message m, and the determin-
istic decryption algorithm PKE.Dec(sk, c) returning m, if c
is a valid encryption and the error symbol ⊥ otherwise. Se-
curity is formalized in the following security game that is
played between a challenger C and an adversary A.

1. The challenger generates an asymmetric key pair

(sk, pk)
$← PKE.Gen(1κ) and the public key pk is given

to the adversary.

2. The adversary may adaptively query the challenger for
decryptions of arbitrary ciphertexts c. The challenger
responds to each of these queries with the output of
PKE.Dec(sk, c).

3. The adversary outputs a message m∗.

4. The challenger tosses coin b
$← {0, 1}. It then sets

c0 = PKE.Enc(pk,m∗) and c1 = PKE.Enc(pk, r) for a
uniformly random message r that is of the same size
as m∗ and sends cb to the adversary.

5. The adversary may again adaptively query ciphertexts
c of his choice, now with the restriction that c 6= cb.
The challenger responds to each of these queries with
the output of PKE.Dec(sk, c).

6. Finally the adversary outputs a bit b′.

Definition 4. We say that PKE is (t, ε, q)-secure under
adaptive chosen ciphertext attacks (CCA), if all adversaries
A that run in time t making at most q decryption queries
have advantage of at most ε to distinguish the ciphertext of
m∗ from that of a truly random value, i.e.∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
Message Authentication Codes A message authentication code
is an algorithm MAC. This algorithm implements a de-
terministic function w = MAC(Kmac,m), taking as input
a (symmetric) key Kmac ∈ {0, 1}κ and a message m, and
returning a string w.

Consider the following security experiment played between
a challenger C and an adversary A.

1. The challenger samples Kmac
$← {0, 1}κ uniformly ran-

dom.

2. The adversary may query arbitrary messages mi to
the challenger. The challenger replies to each query
with wi = MAC(Kmac,mi). Here i is an index, ranging
between 1 ≤ i ≤ q for some q ∈ N. Queries can be
made adaptively.

3. Eventually, the adversary outputs a pair (m,w).

Definition 5. We say that MAC is a (t, ε, q)-secure mes-
sage authentication code, if for all adversaries A that run in
time t and queries at most q messages holds that

Pr[(m,w)
$← AC(1κ) :

w = MAC(Kmac,m) ∧m 6∈ {m1, . . . ,mq}] ≤ εMAC.

4. FORMAL MODEL
In this section, we describe the execution environment,

where we try to model normal protocol execution, the ad-
versarial capabilities, which describe against which type of
adversary our protocol should be secure, and the security
model which describes security games where the winning
events correspond to a security breach of the protocol.

4.1 Execution Environment

Parties and process oracles.
We distinguish between parties {P1, . . . , Pn} and process

oracles πsi , i ∈ {1, . . . , l}, run by party Pi. These process
oracles and the party itself are modelled as Turing machines.
Oracles can be initialized, can send and receive messages
according to the protocol specification, and terminate either
in finished, accept or reject state2. The complete set of
states for oracles is Λ = {not initialized, wait, finished,
accept, reject}. In addition, we have two special parties T
and A.

Each party Pi has two local variables: A local time counter
Ti, and a long-lived key ki. This long-lived key is either a
public key pair, or a list of n−1 symmetric keys shared with
the other parties.

2We need an additional final finished state for one-message
protocols because initiator oracles always have to reach a fi-
nal state, but this can be no winning event for the adversary.

Long-lived keys of party Pi can be accessed for crypto-
graphic operations, and the counter values ti of Pi can be in-
creased, by all process oracles (or oracles, for short) π1

i , ..., π
l
i

of this party. Computed nonces, intermediate state values,
and session keys are only known to a single oracle. If a ses-
sion key is computed by an oracle πsi , the value k is stored
in a variable K when the oracle enters accept or finished

state. The current state of each oracle is stored in variable
Λ, and the transcript of all messages sent and received (in
chronological order) in variable Ti,s.

There is one special party T , which has a local counter
T with actual state t; on request, this party increases the
value of t by 1 and returns the actual value of t as a message
ts = (t, aux) over the network.

The adversary A is another special party which imple-
ments, as a Turing machine, a strategy to break the cryp-
tographic protocol. The event(s) which define a protocol
break are modelled as winning events in different games de-
fined below.

Initiator and responder oracles.
Our security definition is focused on protocols with one

and two messages; for protocols with three and more mes-
sages nonces can be used instead of timestamps, and the
classical definitions and results from the Bellare-Rogaway
and Canetti-Krawczyk models apply. For our security defi-
nitions, we need to distinguish between initiator and respon-
der oracles.

Definition 6. An oracle who sends the first message in
a protocol is called initiator, and an oracle who receives the
first message is called responder.

Increase local time on message reception.
Each party Pi has a local timer Ti with actual state ti.

Each time a message with a valid timestamp ts = (t, aux) is
received by some oracle πsi , the value t is compared to the
actual state ti. If t ≤ ti, the message is rejected. If t > ti,
the message is validated further, and ti is replaced by the
(greater) value t: ti ← t. (This is how many smartcards
handle time.) Only after this update of the local timer Ti,
πsi may accept or send a message (if required by the protocol
specification).

Retrieve actual time when sending a message.
When trying to send a message to Pj , π

s
i has no knowledge

about the local time tj . Therefore the oracle requests an
(authenticated) new timestamp ts = (t, aux) from T , and
compares it with Ti. If t > Ti, this value is securely included
in the protocol message.

Remark: Without any interference from an active adver-
sary, t is guaranteed to be strictly greater than all local
time values. However, an active adversary controlling the
network may replay old time values.

Non-authenticated Time.
In practice, timestamps may be signed, or they may be

sent unauthenticated. For our model, we have chosen that
timestamps are not authenticated. The reason for this is
simple: The only attack that signed timestamps would pre-
vent is a Denial-of-Service (DoS) attack, where the adversary
would intercept the time request of an oracle, and return a

large time value t∗ = t + 2k. All parties receiving a valid
message containing this time value will be blocked for 2k

time periods.
However, our model uses an active adversary with com-

plete control on the network. Thus he can always perform
DoS attacks, e.g. disconnect some party for 2k time periods
from the network. Thus the power of our adversary is not
increased by omitting signatures.

In a weaker adversarial model however, e.g. where the ad-
versary controls only well-defined parts of a communication
network, authenticated timestamps may make sense.

Local states of oracles.
An initiator oracle πsi will, after being initiated, retrieve

the actual time value t, prepare and send a message of the
form3 (Pi, Pj , t, n

s
i ,m, σ) where Pj denotes the identity of

the intended receiving party, nsi a nonce chosen randomly
by πsi , m the actual message, and σ the cryptographic pro-
tection of the message.

In a one-message protocol, πsi will immediately switch to
finished state, and can no longer be activated; here the
nonce may be omitted. A responder oracle πtj will be acti-
vated by a protocol message, which will be checked according
to the protocol specification. If the check succeeds, πtj will
switch to accept state.

In a two-message protocol, after sending the first message,
an initiator oracle πsi will switch to a wait state to wait for
a response message, and can also no longer be activated to
send messages. A responder oracle πtj will be activated by
a message, which will be checked according to the protocol
specification. If the check succeeds, πtj will prepare a re-
sponse message which includes the nonce from the received
message, send this message, and switch to accept mode.
Upon reception of a message from some responder, an ini-
tiator oracle will check if this message contains the nonce
from the first message, and if the message is valid according
to the protocol specification. If both criteria are fulfilled, it
will switch to accept mode.

Matching Conversations.
Bellare and Rogaway [6] have introduced the notion of

matching conversations in order to define correctness and
security of an AKE protocol precisely. We adapt this notion
and use it accordingly to define secure authentication for all
following protocol types.

Recall, that Ti,s consists of all messages sent and received
by πsi in chronological order (not including the initialization-
symbol >). We also say that Ti,s is the transcript of πsi . For
two transcripts Ti,s and Tj,t, we say that Ti,s is a prefix of
Tj,t, if Ti,s contains at least one message, and the messages
in Ti,s are identical to and in the same order as the first
|Ti,s| messages of Tj,t.

Definition 7 (Matching conversations). We say that
πsi has a matching conversation to πtj, if

• Tj,t is a prefix of Ti,s and πsi has sent the last mes-
sage(s), or

• Ti,s = Tj,t and πtj has sent the last message(s).

3The exact structure of the message is specified for each
protocol separately.

We say that two processes πsi and πtj have matching conver-
sations if πsi has a matching conversation to process πtj, and
vice versa.

4.2 Adversarial Capabilities
We assume that the adversary completely controls the net-

work, including access to the time oracle T . He may learn
session keys, and he may learn some long-lived keys.

All this is modelled through queries. The Send query mod-
els that the adversary completely controls the network: All
messages are sent to A, who may then decide to drop the
message, to store and replay it, or to alter and forward it.
Thus messages received through a Send query are handled
by the process oracles exactly like real protocol messages:
They may be rejected, they may be answered, or they may
start or terminate a protocol session. The Send message en-
ables the adversary to initiate and run an arbitrary number
of protocol instances, sequential or in parallel.

The Reveal and Corrupt queries model real world attacks:
Brute force key searches or malware attacks on PC systems
in case of the Reveal query, and e.g. sidechannel of fault
attacks on smartcards in the case of the Corrupt query.

Finally the Test query is one important building block in
defining security of a protocol (more precisely: key indistin-
guishability).

Formally stated:

• Send(πsi ,m): The adversary can use this query to send
any message m of his own choice to oracle πsi . The ora-
cle will respond according to the protocol specification,
depending on its internal state. If m = > consists of a
special symbol >, then πsi will respond with the first
protocol message.

• Reveal(πsi): Oracle πsi responds to a Reveal-query with
the contents of variable K. Note that we have k 6= ∅
only if Λ ∈ {accept, finished}.

• Corrupt(Pi): This query is used in a public key setting.
Oracle π1

i responds with the private key ski from the
long-term key pair ki = (pki, ski) of party Pi. Then
the party and all its oracles are marked as corrupted.

• Corrupt(Pi, j): This query is used in symmetric key
settings. Oracle π1

i responds with the long-term secret
key ki,j shared between party Pi and party Pj . Then
this key is marked as corrupted.

• Test(πsi): This query may only be asked once through-
out the game. Oracle πsi handles this query as follows:
If the oracle has state K = ∅, then it returns some fail-
ure symbol ⊥. Otherwise it flips a fair coin b, samples

a random elem‘ent k0
$← K, sets k1 = k to the ’real’

session key, and returns kb.

Definition 8. An oracle is called corrupted if it is marked
as corrupted (public key case), or if it uses a corrupted long-
term key in its computations (symmetric case).

4.3 Security Model 1: One-message Protocols
One-message protocols like OTP are used for explicitly

authenticating a party. Thus we have to find a definition for
secure authentication taking into account the ideas from [6],
and the pecularities of our definition of time.

A benign adversary A is an adversary that forwards mes-
sages without modifying them. We would like to define a
secure authentication protocol as a protocol where the win-
ning probability of any adversary equals, up to a negligible
difference, the winning probability of a benign adversary.

Freshness vs. validity time periods.
One major difference to [6], due to our definition of time,

is the fact that even with a benign adversary there are situ-
ations where the responder oracle may not accept: Assume
there are two different initiator oracles πs1A1

and πs2A2
, who

both intend to send a message to party B. They retrieve two
time values t1, t2 from T , with t2 = t1 +1. Now if πs2A2

is the
first oracle who actually sends a message to B, then some
responder oracle πtB will accept this message, and increase
TB := t2. If now πs1A1

sends its message, it will be rejected to
to the fact that t1 < TB . Please note that this may happen
even if a benign adersary also forwards all messages in the
same order as received.

Real-world protocols avoid this problem by defining valid-
ity time periods: A message will be accepted if it is not older
than, say, 5 minutes, or if it was received at a time that is
within the timeframe explicitely mentioned in the message.
However, including validity time periods in the model poses
different problems: either replay attacks will become possi-
ble during the validity time frame and we must change our
security definitions, or we have to introduce an additional
counter at each party for each other party to exclude these
replay attacks (see Appendix).

Thus, for the sake of clarity, we decided to keep the model
of time simple, and to accept the consequence that even with
benign adversaries, responder oracles may not accept.

Replay attacks.
The main class of attack we want to protect against is

replay attacks. In a replay attack, Amay intercept a message
sent by a sending oracle, and forward it to two or more
receiving oracles. We would like to call a protocol secure if
at most one of these receiving oracles accepts, because this
is exactly what we can expect from a benign adversary. To
achive this goal across several parties, we have to include
the identity of the receiving party in the first message.

Security Game GA−1. In this game, the challenger C
sets up a protocol environment with n parties P1, ..., Pn,
and prepares l protocol oracles π1

i , ..., π
l
i for each party.

If initiated by the adversary by a special start message,
these oracles act as initiator oracles, and if initiated with
a normal protocol message, they act as responder oracles.
C generates long-lived keys (or long-lived key pairs, resp.)
for each party (for each pair of parties, resp.), and simu-
lates the time oracle T . T and all counters Ti, i ∈ {1, ..., n}
are initialized to 0.
A may now ask up to q Send and Corrupt queries. A wins
the game if there are at least two responder oracles that
accept the same message, or if there is a responder ora-
cle that accepts a message from an uncorrupted expected
sender which has not been issued by any sender oracle.

Definition 9. A protocol Π is a (τ, q, ε) time-secure au-
thentication protocol, if for each adversary A that runs in
time τ and asks at most q queries, with probability at least
1− ε we have that

1. for each responder oracle that accepts, there is exactly

one uncorrupted finished initiator oracle, and

2. for each finished initiator oracle, there is at most one
responder oracle that accepts.

Authenticated Key Exchange.
We will now extend the definition to key exchange. Here

each session key should be indistinguishable from a ran-
domly chosen key, for any adversary.

Security Game GAKE−1. The setup of this game is the
same as in GA−1. In addition, the adversary is allowed to
ask upt to q − 1 Reveal queries, and one Test query to an
oracle πsi , subject to the following conditions:

• If πsi is an initiator, then no Reveal query may be
asked to any responder oracle receiving the message
from πsi .

• If πsi is an responder, then no Reveal query may be
asked to the unique initiator oracle that has sent the
message, and the party of this initiator oracle ust be
uncorrupted.

At the end of the game, A issues a bit b′ and wins the game
if b = b′, where b is the bit chosen by πsi in answering the
Test query.

Definition 10. A one-message protocol Π is a (τ, q, ε)
time-secure authenticated key exchange protocol, if Π is a
(τ, q, ε) time-secure authentication protocol in the sense of
Definition 9, and if for each adversary A that runs in time
τ and asks at most q queries, we have that that

AdvA = |Pr(b = b′)− 1/2| ≤ ε

in Game GAKE−1.

4.4 Security Model 2: Two-message Protocols
With the publication of HMQV [23] research on one-round

key agreement protocols intensified. However, since the re-
sponder is always subject to replay attacks, the notion of
authentication protocol developed in [6] was given up, and
was replaced by a new definition for authenticated key ex-
change proposed by Canetti and Krawczyk [13].

In this section, we try to give a new definition of a se-
cure authentication protocol, by combining timestamps and
nonces. We use this hybrid approach since this is a building
block of the Kerberos protocol, where several two-message
protocols of this kind are combined.4

Remark: Please note that this definition does not apply to
two-message protocols currently discussed in the literature,
because most of them neither use timestamps nor nonces.

Authentication.

4It should be clear that we also can achive mutual authenti-
cation by simply applying the one-message protocol of Sec-
tion 5 in both directions, using the model for authentication
proposed there.

Security Game GA−2. In this game, the setup is iden-
tical to Game GA−1.
A may now ask up to q Send and Corrupt queries. A wins
the game if there are at least two responder oracles that
accept the same message, if there is a responder oracle that
accepts a message from an uncorrupted expected sender
which has not been issued by any sender oracle, or if there
is a initiator oracle that accepts without having a matching
conversation with a responder.

Definition 11. A two-message protocol Π is a (τ, q, ε)
time-nonce-secure authentication protocol, if for each adver-
sary A that runs in time τ and asks at most q queries, with
probability at least 1− ε we have that

1. for each responder oracle that accepts, there is exactly
one uncorrupted finished initiator oracle,

2. for each finished initiator oracle, there is at most one
responder oracle that accepts, and

3. for each initiator oracle that accepts, there is exactly
one responder oracle that has a matching conversation.

Authenticated Key Exchange.
We will again extend the definition to key exchange. Here

each session key should be indistinguishable from a ran-
domly chosen key, for any adversary.

Security Game GAKE−2. The setup of this game is the
same as in GA−1. In addition, the adversary is allowed to
ask up to q − 1 Reveal queries, and one Test query to an
uncorrupted oracle πsi , subject to the following conditions:

• If πsi is an initiator, then no Reveal query may be
asked to any responder oracle receiving the message
from πsi , and all responder oracles must be uncor-
rupted.

• If πsi is an responder, then no Reveal query may be
asked to the unique initiator oracle that has sent the
message, and the party of this initiator oracle must
be uncorrupted.

At the end of the game, A issues a bit b′ and wins the game
if b = b′, where b is the bit chosen by πsi in answering the
Test query.

Definition 12. A two-message protocol Π is a (τ, q, ε)
time-nonce-secure authenticated key exchange protocol, if Π
is a (τ, q, ε) time-nonce-secure authentication protocol in the
sense of Definition 11, and if for each adversary A that runs
in time τ and asks at most q queries, we have that

AdvA = |Pr(b = b′)− 1/2| ≤ ε

in Game GAKE−2.

5. ONE-TIME-PASSWORDS
In a One-Time-Password (OTP) protocol, an initiator (party

A) wants to authenticate against a responder (party B). To
achieve this goal, A requests a timestamp from T , and ap-
pends a cryptographic checksum to the message consisting of
the identifiers of A and B, and the timestamp t. Typically,
symmetric cryptography is used in OTP protocols. Thus in

our example, we assume that a message authentication code
MAC is used for this purpose. The OTP protocol is defined
in Figure 5.

Theorem 1. If MAC is a (τMAC , εMAC , qMAC) secure
message authentication code, then ΠOTP is a (τ, q, ε) time-
secure authentication protocol with τMAC ≈ τ , qMAC ≈ q,
and

ε ≤ n2 · εMAC .

Proof. The proof is modelled as a short sequence of
games. Game G0 is the original game, where our adversary
tries to force an oracle to accept with otp∗ which is either
faked, or has already been accepted by a different oracle.
Thus we have

ε0 = ε.

In G1, we guess the initiator party A, and the receiver
party B. They share a common symmetric key kAB . Our
guess is that the adversary will succeed in making one re-
ceiver oracle πtB accept either a fake OTP otp∗, or that two

oracles πtB and πt
′
B will accept the same OTP otp. If our

guess is wrong, we abort the game, and the adversary looses.
Thus his winning probability is reduced by a factor n2.

n2 · ε1 = ε0.

In G2, we abort the game if the adversary A forges a
valid message authentication code MAC for key kAB . This
may happen only with probability εMAC , since we could use
such an adversary to break the security of the MAC scheme:
The simulator replaces all MAC computations involving the
key kAB with calls to a MAC challenger CMAC which uses a
randomly chosen MAC key k; if A forges a valid message
authentication code mac for a fresh otp message which has
not been queried from the MAC challenger, then we have
broken the MAC challenge. Thus we have

ε1 ≤ ε2 + εMAC.

Since we have excluded MAC forgeries in this game, we
are left with OTPs otp = (C, S, ts,MAC(kCS , C.S.ts)) which
were generated by non-corrupted oracles, where only the
value ts may be influenced by the adversary. Thus condition
1 of Definition 9 is always true (i.e. holds with probability
1), and we are left with condition 2.

If A tries to send otp to any oracle of a party T 6= S, T
will not accept because the target identity is different. If
A tries to send otp to oracle πsC , but otp has already been
accepted by πtC , πsC will not accept because ts ≤ tC . Thus
also condition 2 is always fulfilled (i.e. holds with probability
1) we have

ε2 = 0.

6. ONE-ROUND AUTHENTICATION PRO-
TOCOLS

We first give an example of a two-message mutual authen-
tication protocol without key exchange, to exemplify the use
of our model. In the second part of this section, we will ex-
tend this to authenticated key exchange, where the session
key is chosen by the responder. This special choice is made
to closely match the building blocks of Kerberos, and can
easily be extended to other key exchange methods.

A
(kAB , . . .), tA

πsA

B
(kAB , . . .), tB

πtB

request t from T
tA := t

macsA := MAC(kAB , A|B|t)

−
otp = (A,B, t,macsA)
−−−−−−−−−−−−−−−−−→

If macsA 6= MAC(kAB , A|B|t) reject
If t ≤ tB reject

tB := t
accept

Figure 1: The One-message Authentication protocol ΠOTP .

A
(kAB , . . .), tA

πsA

B
(kAB , . . .), tB

πtB

request t from T
tA := t

choose nA
macsA := MAC(kAB , A|B|t|nA)

−
A,B, t, nA,mac

s
A

−−−−−−−−−−−−−−−−−→
If macsA 6= MAC(kAB , A|B|t|nA) reject

If t ≤ tB reject
tB := t

mactB := MAC(kAB , B|A|nA)
accept

←−
B,A, nA,mac

t
B

−−−−−−−−−−−−−−−−−
If mactB 6= MAC(kAB , B|A|nA) reject

If nA is not correct reject
accept

Figure 2: The Two-message Authentication protocol ΠH2A.

6.1 Authentication

Theorem 2. If MAC is a (τMAC , εMAC , qMAC) secure
message authentication code, then the ΠH2A protocol de-
fined in Figure 6.1 is a (τ, q, ε) time-nonce-secure authenti-
cation protocol with respect to Definition 11 with τ ≈ τMAC ,
q ≈ qMAC , and

ε ≤ n2 · εMAC + n2l · ((nl)2

2λ
+ εMAC).

Proof. Adversary A can win the game by either making
an initiator oracle accept, or a responder oracle, or both.
Thus we have

ε ≤ εI + εR.

Since we can apply the proof of Theorem 1 to the respon-
der oracle, we have εR ≤ n2 · εMAC .

Thus we are left with the proof for the initiator oracle.
The proof is modelled as a short sequence of games. Game
G0 is the original game, but the adversary only wins this
game if an initiator oracle to accepts. Thus we have

ε0 = εI .

In G1, we guess the initiator oracle πsA that will accept,
and the responder party B. They share a common sym-
metric key kAB . If our guess is wrong, we abort the game,
and the adversary looses. Thus his winning probability is
reduced by a factor l · n2.

l · n2 · ε1 = ε0.

In G2, the simulator replaces all computations with the
key kAB with a MAC oracle. We abort the game if the
adversaryA forges a valid message authentication code MAC
for this oracle. Thus we have

ε1 ≤ ε2 + εMAC.

In G3, we abort the game if two oracles choose the same

nonce. The probability for this is bounded above by (nl)2

2λ
.

Thus we have

ε2 ≤ ε3 +
(nl)2

2λ
.

Since we have excluded MAC forgeries and nonce colli-
sions, A can only make an initiator oracle accept if he for-
wards a message from one of the (possibly many) responder
oracles that have received the message from the initator or-
acle containing the chosen nonce. Thus there is a matching
conversation, and we have

ε3 = 0.

6.2 Authenticated Key Exchange
The novel authenticated key exchange protocol presented

in Figure 6.2 is modelled after the building blocks of the
Kerberos protocol: authentication and session key encryp-
tion are based on symmetric cryptography, and the session
key is chosen by the responder (the Kerberos server). Vari-
ants of this protocol are used three times sequentially in
Kerberos, with the same initiator (the Kerberos client), but
different responders (Ticket Granting Ticket Server, Ticket
Server, Server).

Theorem 3. If MACis a (τ, εMAC , qMAC) secure mes-
sage authentication code, and SE is a (τ, εSE , qSE) secure
symmetric encryption scheme, then the ΠORAKEl protocol
defined in Figure 6.2 is a (τ, q, ε) time-secure authented key
exchange protocol with respect to Definition 12 with

ε ≤ n2 · εMAC + ln2(
(nl)2

2λ
+ εMAC) + n2 · εSE .

Proof. Adversary A can win the game by either break-
ing the acceptance condition, or key indistinguishability, or
both. Thus we have

ε ≤ εA + εKE .

Since we can apply the proof of Theorem 2 to the respon-

der oracle, we have εA ≤ n2 · εMAC + ln2((nl)2

2λ
+ εMAC).

Thus we are left with the proof for key indisinguishability.
In Game G1, we first have to guess the symmetric key keAB
that will be used to encrypt the session key for the test
oracle. If we guessed wrong, the adversary loses the game.
Thus we loose a factor n2 in this game.

In Game G2, we replace all computations involving the
key keAB with our SE-challenger. Since A is not allowed to
corrupt the key used in the test session, we can still simulate
all protocol messages. Now if A is able to distinguish real
from random keys, our SE-challenger is able to break the
CCA-security of the symmetric encryption scheme.

7. KERBEROS
It remains unclear why the three message pairs in Ker-

berso (see Appendix B) should have a different structure.
Thus we will give a modified two-party building block in
Figure 7 which can be substituted for any two-party block
in the original Kerberos protocol, without changing the pro-
tocol flow or the initial key setup.

We are able to prove that this modified building-block
consists of a one-message time-secure key exchange protocol,
and a two-message time-nonce-secure authentication proto-
col. By concatenating these building blocks, the Kerberos
protocol can be shown to be secure.

Theorem 4. The one-message protocol consisting of mes-
sage mK only is a time-secure authenticated key exchange
protocol between K and S in the sense of Definition 10.

Proof. (Sketch) The MAC construction guarantees that
for each accepting oracle, there must be exactly one uncor-
rupted oracle that has sent the message. The timestamp
guarantees that there is at most one accepting S-oracle, and
the encryption prevents the adversary from getting any in-
formation on the ciphertext.

Theorem 5. If executed after the reception of message
mK by K, the two-message protocol consisting of messages
mC and mS is a time-nonce-secure authentication protocol
between C and S in the sense of Definition 11.

Proof. (Sketch) The proof is similar to the proof of The-
orem 2.

8. CONCLUSION AND FUTURE WORK
In this paper we have presented a first simple formal model

to prove the security of timestamp-based authentication pro-
tocols, with reduction-based proofs, in a Turing Machine

A
(kAB = (keAB , k

m
AB), . . .), tA

πsA

B
(kAB = (keAB , k

m
AB), , . . .), tB

πtB

request t from T
tA := t

choose nA
macsA := MAC(kmAB , A|B|t|nA)

−
A,B, t, nA,mac

s
A

−−−−−−−−−−−−−−−−−→
If macsA 6= MAC(kmAB , A|B|t|nA) reject

If t ≤ tB reject
tB := t

choose k
ctB := SE.Enc(keAB , k)

mactB := MAC(kmAB , B|A|nA|ctB)
accept

←−
B,A, nA, c

t
B ,mac

t
B

−−−−−−−−−−−−−−−−−
If mactB 6= MAC(kmAB , B|A|nA|ctB) reject

If nA is not correct reject
k := SE.Dec(keAB , c

t
B)

accept

Figure 3: The One-Round Authenticated Key Exchange (ORAKE1) protocol.

K k = (ke, km), kC = (keC , k
m
C), tK

C kC = (keC , k
m
C), tC

S k = (ke, km), tS
πsKK request t from T ; tK := t

cK := SE.Enc(ke, kC)
macK := MAC(km,K||S||tK ||C||cK)
mK := (K,S, tK , C, cK ,macK)

πsKK → πsCC mK

πsCC request t from T ; tC := t
choose nC
macC := MAC(kmC , C||S||tC ||nC)
mC := (C, S, tC , nC ,macC)

πsCC → πsSS mK ,mC

πsSS check macK on mk

if tK ≤ tS reject; tS := tK
kC := SE.Dec(ke, cK)
check macC on mC with kmC
if tC ≤ tS reject; tS := tC
accept
macS := MAC(kmC , S||C||nC)
mS := (S,C, nC ,macS)

πsSS ← πsCC mS

πsSS check macS on mS with kmC
if nC incorrect reject
accept

Figure 4: A Generic Kerberos bulding block.

environment. We tried to formalize the security goal that
replay attacks are prevented by timestamps.

This model can be exended in various directions: (1) Most
time-based security infrastructures or protocols use validity
time frames, which can be modelled by allowing the respon-
der to query the time oracle T on reception of a message.
However, precautions must be taken to disallow replay at-
tacks. (2) If time is involved, the power of an active ad-
versary should be restricted to get more realistic security
models: currently, DoS attacks by the adversary cannot be
prevented.

The analysis of a building block of Kerberos given here
is far from being a complete reduction based proof for Ker-
beros. Here a model is needed that formalizes the role of the
trusted third Kerberos party in each basic three-party step,
a model that may be useful in analyzing the varient of SSO
protocols being proposed today.

9. REFERENCES
[1] Michael Backes, Iliano Cervesato, Aaron D. Jaggard,

Andre Scedrov, and Joe-Kai Tsay. Cryptographically
sound security proofs for basic and public-key
kerberos. pages 362–383, 2006.

[2] Manuel Barbosa and Pooya Farshim. Security analysis
of standard authentication and key agreement
protocols utilising timestamps. In Bart Preneel, editor,
AFRICACRYPT, volume 5580 of Lecture Notes in
Computer Science, pages 235–253. Springer, 2009.

[3] Giampaolo Bella and Lawrence C. Paulson. Kerberos
version 4: Inductive analysis of the secrecy goals. In
Jean-Jacques Quisquater, Yves Deswarte, Catherine
Meadows, and Dieter Gollmann, editors, ESORICS,
volume 1485 of Lecture Notes in Computer Science,
pages 361–375. Springer, 1998.

[4] Giampaolo Bella and Elvinia Riccobene. Formal

analysis of the kerberos authentication system. J.
UCS, 3(12):1337–1381, 1997.

[5] Mihir Bellare and Adriana Palacio. The
knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. pages 273–289, 2004.

[6] Mihir Bellare and Phillip Rogaway. Entity
authentication and key distribution. pages 232–249,
1994.

[7] Mihir Bellare and Phillip Rogaway. Provably secure
session key distribution: The three party case. pages
57–66, 1995.

[8] Steven M. Bellovin and Michael Merritt. Limitations
of the kerberos authentication system. In USENIX
Winter, pages 253–268, 1991.

[9] Buno Blanchet, Aaron D. Jaggard, Andre Scedrov,
and Joe-Kai Tsay. Computationally sound mechanized
proofs for basic and public-key Kerberos. pages 87–99,
2008.

[10] Alexandra Boldyreva and Virendra Kumar. Extended
abstract: Provable-security analysis of authenticated
encryption in kerberos. pages 92–100, 2007.

[11] Ahto Buldas and Margus Niitsoo. Optimally tight
security proofs for hash-then-publish time-stamping.
In Steinfeld and Hawkes [40], pages 318–335.

[12] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard,
and Andre Scedrov. A formal analysis of some
properties of kerberos 5 using msr. In CSFW, pages
175–. IEEE Computer Society, 2002.

[13] Ran Canetti and Hugo Krawczyk. Analysis of
key-exchange protocols and their use for building
secure channels. pages 453–474, 2001.

[14] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne
Hitchcock. Examining indistinguishability-based proof
models for key establishment protocols. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture
Notes in Computer Science, pages 585–604. Springer,
2005.

[15] Cas Cremers and Sjouke Mauw. A family of
multi-party authentication protocols - extended
abstract. In Proc. 1st Benelux Workshop on
Information and System Security (WISSEC) 2006,
2006. http://www.cosic.esat.kuleuven.be/
wissec2006/papers/9.pdf.

[16] Cas J. F. Cremers. Session-state reveal is stronger
than ephemeral key reveal: Attacking the naxos
authenticated key exchange protocol. In Michel
Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS, volume 5536 of
Lecture Notes in Computer Science, pages 20–33, 2009.

[17] Bryn Dole, Steven W. Lodin, and Eugene H. Spafford.
Misplaced trust: Kerberos 4 session keys. In NDSS.
IEEE Computer Society, 1997.

[18] M. R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[19] Stuart Haber and Henri Massias. Time-stamping. In
Henk C. A. van Tilborg and Sushil Jajodia, editors,
Encyclopedia of Cryptography and Security (2nd Ed.),
pages 1299–1303. Springer, 2011.

[20] John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 3rd edition, 2006.

[21] John T. Kohl. The use of encryption in kerberos for
network authentication. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 35–43. Springer, 1989.

[22] Hugo Krawczyk. Hmqv: A high-performance secure
diffie-hellman protocol. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 546–566. Springer, 2005.

[23] Hugo Krawczyk. HMQV: A high-performance secure
diffie-hellman protocol. pages 546–566, 2005.

[24] Laurie Law, Alfred Menezes, Minghua Qu, Jerome A.
Solinas, and Scott A. Vanstone. An efficient protocol
for authenticated key agreement. Des. Codes
Cryptography, 28(2):119–134, 2003.

[25] Qin Li, Fan Yang, Huibiao Zhu, and Longfei Zhu.
Formal modeling and analyzing kerberos protocol. In
Proc. 2009 WRI World Congress on Computer
Science and Information Engineering, volume 7, pages
813–819. IEEE, 2009.

[26] Zhan Liu and Mi Lu. Authentication protocols with
time stamps: – encryption algorithm dependent. In
Hamid R. Arabnia, editor, International Conference
on Internet Computing, pages 81–86. CSREA Press,
2006.

[27] Emmanouil Magkos, Mike Burmester, and Vassilios
Chrissikopoulos. Receipt-freeness in large-scale
elections without untappable channels. In Beat
Schmid, Katarina Stanoevska-Slabeva, and Volker
Tschammer, editors, I3E, volume 202 of IFIP
Conference Proceedings, pages 683–694. Kluwer, 2001.

[28] Mark Manulis. Provably secure group key exchange,
2007.

[29] Henri Massias, X. Serret Avila, and Jean-Jacques
Quisquater. Timestamps: Main issues on their use and
implementation. In WETICE, pages 178–183. IEEE
Computer Society, 1999.

[30] Tsutomu MATSUMOTO, Youichi TAKASHIMA, and
Hideki IMAI. On seeking smart public-key-distribution
systems. IEICE TRANSACTIONS, E69-E
No.2:pp.99–106, 1986/02/20.

[31] Alfred Menezes, Minghua Qu, and Scott A. Vanstone.
Some new key agreement protocols providing mutual
implicit authentication. SecondWorkshop on Selected
Areas in Cryptography (SAC 95), 1995.

[32] D. Mills, J. Martin, J. Burbank, and W. Kasch.
Network Time Protocol Version 4: Protocol and
Algorithms Specification. RFC 5905 (Proposed
Standard), June 2010.

[33] Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma.
Non-interactive timestamping in the bounded-storage
model. J. Cryptology, 22(2):189–226, 2009.

[34] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache,
and O. Ranen. HOTP: An HMAC-Based One-Time
Password Algorithm. RFC 4226 (Informational),
December 2005.

[35] D. M’Raihi, S. Machani, M. Pei, and J. Rydell.
TOTP: Time-Based One-Time Password Algorithm.
RFC 6238 (Informational), May 2011.

[36] Roger M. Needham and Michael D. Schroeder. Using
encryption for authentication in large networks of

http://www.cosic.esat.kuleuven.be/wissec2006/papers/9.pdf
http://www.cosic.esat.kuleuven.be/wissec2006/papers/9.pdf

computers. Communications of the ACM,
21(21):993–999, December 1978.

[37] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
Kerberos Network Authentication Service (V5). RFC
4120 (Proposed Standard), July 2005. Updated by
RFCs 4537, 5021, 5896, 6111, 6112, 6113, 6649, 6806.

[38] Kenneth G. Paterson and Douglas Stebila.
One-time-password-authenticated key exchange. In
Steinfeld and Hawkes [40], pages 264–281.

[39] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I.
Schiller. Kerberos: An authentication service for open
network systems. In USENIX Winter, pages 191–202,
1988.

[40] Ron Steinfeld and Philip Hawkes, editors. Information
Security and Privacy - 15th Australasian Conference,
ACISP 2010, Sydney, Australia, July 5-7, 2010.
Proceedings, volume 6168 of Lecture Notes in
Computer Science. Springer, 2010.

[41] Nils Ole Tippenhauer, Christina Pöpper,
Kasper Bonne Rasmussen, and Srdjan Capkun. On
the requirements for successful gps spoofing attacks.
In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM Conference on Computer and
Communications Security, pages 75–86. ACM, 2011.

APPENDIX
A. MODELING VALIDITY TIME INTERVALS

To be able to model validity time intervals, the model can
be modified as follows.

Retrieve actual time when sending a message.
When trying to send a message to Pj , π

s
i requests a new

timestamp ts = (t, aux) from T , and compares it with Ti.
If t > ti, the oracle calculates another value texp := t +
nexp. Both t and texp are securely included in the protocol
message.

Increase local time on message reception.
Each party Pi has a local timer Ti with actual state ti.

Each time a message with a timestamp tj is received from
some oracle πtj , the oracle πsi receiving this message com-
pares the value tj to the actual state ti of Ti. If tj ≤ ti, the
message is rejected. If tj > ti, ti is replaced by the (greater)
value tj : ti ← tj , and the message is validated further. Now
πsi requests a new timestamp ts = (t, aux) from T , and com-
pares it with texp from the message. If texp ≤ t, the message
is rejected, else ti ← t and the message is validated further.

B. KERBEROS OVERVIEW
The Kerberos protocol is a four-party protocol, executed

between a client C, a Key Distribution Center KDC, a
Ticket Granting Service TGS, and a server S. All mes-
sages exchanged between these parties are relayed through
the client C.

The protocol flow, depicted in Figure B can be divided
in three two-message flows, which follow nearly the same
pattern: The initiator (always the client C) sends a message
to the responder (KDC resp. TGS resp. S, in this order)
containing the ID of the client, the ID of the next responder,
a nonce, and in the last two cases an encrypted authenticator
(which contains a timestamp).

The responder answers with two ciphertexts, the one to be
decrypted by the initiator containing a nonce, and the one
to be forwarded to the next responder containing another
timestamp.

C
kKC

KDC
kKC

TGS S

choose n1
C

−
C, TGS, n1

C
−−−−−−−−−−→

choose kTC
c1 := EkK

C
(kTC , n

1
C)

c2 := EkK
T

(TTC)

←−−
c1, c2
−−−−−−−−

choose n2
C

c3 := EkT
C

(ATC)

−−−−−−−−−−−
c3, c2, S, n

2
C

−−−−−−−−−−−−−−−−−−−→
choose kC,S

c4 := EkT
C

(kSC , n
2
C)

c5 := EkS
K

(TSC)

←−−−−−−−−−−−−
c4, c5
−−−−−−−−−−−−−−−−−−

choose n3
C

c6 := EkS
C

(ASC)

−−−−−−−−−−−−−−−−−−−−
c5, c6
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 5: The Kerberos protocol: Overview.

	Introduction
	Related work
	Definitions
	Formal model
	Execution Environment
	Adversarial Capabilities
	Security Model 1: One-message Protocols
	Security Model 2: Two-message Protocols

	One-Time-Passwords
	One-Round Authentication protocols
	Authentication
	Authenticated Key Exchange

	Kerberos
	Conclusion and Future work
	References
	Modeling Validity Time Intervals
	Kerberos Overview

