
Towards Optimal Leakage Exploitation Rate in
Template Attacks

Guangjun Fan1, Yongbin Zhou2, Hailong Zhang2, Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences
guangjunfan@163.com , feng@tca.iscas.ac.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences
{zhouyongbin,zhanghailong}@iie.ac.cn

Abstract. Under the assumption that one has a reference device iden-
tical or similar to the target device, and thus be well capable of char-
acterizing power leakages of the target device, Template Attacks are
widely accepted to be the most powerful side-channel attacks. However,
the question of whether Template Attacks are really optimal in terms of
the leakage exploitation rate is still unclear. In this paper, we present a
negative answer to this crucial question by introducing a normalization
process into classical Template Attacks. Specifically, our contributions
are two folds. On the theoretical side, we prove that Normalized Tem-
plate Attacks are better in terms of the leakage exploitation rate than
Template Attacks; on the practical side, we evaluate the key-recovery
efficiency of Normalized Template Attacks and Template Attacks in the
same attacking scenario. Evaluation results show that, compared with
Template Attacks, Normalized Template Attacks are more effective. We
note that, the computational price of the normalization process is of ex-
tremely low, and thus it is very easy-to-implement in practice. Therefore,
the normalization process should be integrated into Template Attacks as
a necessary step, so that one can better understand practical threats of
Template Attacks.

Keywords: Side-Channel Attacks, Power Analysis Attacks, Template
Attacks, Leakage Exploitation Rate.

1 Introduction

Power Analysis Attacks are the most widely used side-channel attacks. Power
Analysis Attacks exploit the fact that the instantaneous power consumption of
a device depends on the data it processes and the operations it performs. As
an important method of Power Analysis Attacks, Template Attacks were firstly
proposed by S. Chari et al. in 2002 [1]. Under the assumption that one has
a reference device identical or similar to the target device, and thus be well
capable of characterizing power leakages of the target device, Template Attacks

are widely accepted to be the strongest side-channel attacks from an information
theoretic point of view [1].

Principally, Template Attacks consist of two stages. The first stage is the
profiling stage and the second stage is the extraction stage. In the profiling stage,
one can accurately characterize signals and noises in different time samples and
builds templates for each key-dependent operation with the reference device. In
the extraction stage, one can exploit a small number of power traces measured
from the target device and the templates to classify the correct (sub)key. We note
that, Template Attacks are important tools to evaluate the physical security of
a cryptographic device.

In many real world settings, one can not classify the correct (sub)key with
only a single trace in the extraction stage due to noises and accuracy of tem-
plates. Therefore, one needs more than one trace to classify the correct (sub)key.
According to the attack scenarios, one may apply maximum likelihood approach
on the product or the sum of the conditional probabilities to classify the correct
(sub)key. Below are the two cases and some specific examples.

Case 1: When the traces are statistically independent, one will apply max-
imum likelihood approach on the product of conditional probabilities [2]. For
convenience, we call classical Template Attacks in this case as “Template At-
tacks for Case 1”. Example for Case 1 : When one can attack the output of the
S-boxes in the first round of AES-128 with random message inputs chosen by
himself, he will apply maximum likelihood approach on the product of condi-
tional probabilities. Because the outputs of the S-boxes are random, the traces
are statistically independent.

Case 2: When the traces are not statistically independent, one may apply
maximum likelihood approach on the sum of conditional probabilities when the
key-dependent operations in different traces are the same [3]. For convenience,
we call classical Template Attacks in this case as “Template Attacks for Case 2”.
Example for Case 2 : If one tries to recover a fixed secret value, he will obtain a
number of traces corresponding to the fixed secret value. Since every block cipher
contains some sort of key scheduling mechanism which processes the secret key,
this case is likely to exist.

1.1 Motivations

In the extraction stage of Template Attacks, one directly applies maximum like-
lihood approach on the product or the sum of the conditional probabilities to
classify the correct (sub)key. However, it is unknown that whether this simple
way of exploiting traces and templates optimizes the leakage exploitation rate
even if templates are accurately built in the profiling stage. Therefore, an impor-
tant question is whether or not there exists a more powerful way in the extraction
stage which has a higher leakage exploitation rate than classical Template At-
tacks? In this paper, we try to answer this important question.

It is well known that leakage exploitation rate of Template Attacks is mainly
affected by noises and accuracy of templates in power traces. However, how
noises and accuracy of templates affect leakage exploitation rate of Template

2

Attacks has not been established. In this paper, we try to find some quantitative
factors in the extraction stage which reduce leakage exploitation rate of Template
Attacks.

1.2 Contributions

The main contributions of this paper are two-fold as follows. Although Template
Attacks are widely accepted to be the strongest side-channel attacks from an in-
formation theoretic point of view, we first prove that the leakage exploitation
rate of classical Template Attacks is not optimal. This observation is obtained
by introducing a normalization process into classical Template Attacks yielding
Normalized Template Attacks. In the extraction stage, Normalized Template
Attacks have higher leakage exploitation rate than classical Template Attack-
s. Second, we find a quantitative factor which affects the leakage exploitation
rate of classical Template Attacks. This quantitative factor gives us a better
understanding of Template Attacks in theory.

1.3 Related Work

Template Attacks were firstly introduced in [1]. In [3], C. Rechberger et al. pro-
vided answers to some basic and practical issues of Template Attacks, such as
how to select interesting points in an efficient way and how to preprocess noisy
data. Template Attacks for Case 2 were also presented in [3] (Amplified Template
Attacks). PCA-Based Template Attacks were investigated in [4]. However, this
kind of Template Attacks is inefficient due to its high computational require-
ments [3] and may not improve the classification performance [5]. Therefore,
PCA-Based Template Attacks are not used widely in practice. In [6], Template
Attacks were used to attack a masking protected implementation of a block
cipher. In [7], an efficient leakage characterization method was introduced to
efficiently characterize power leakages of the target device. Recently, a simple
pre-processing technique of Template Attacks, normalizing the sample values
using the means and variances was evaluated for various sizes of test data [5].
In [8], the assumption of Template based DPA was relaxed with machine learn-
ing techniques. Also, the paper [9] relaxed the assumption made in Template
Attacks by using a method based on a semi-supervised learning strategy. How-
ever, the important discoveries in this paper are not considered or neglected in
the previous papers.

1.4 Organization of This Paper

The rest of this paper is organized as follows. In section 2, we review Template
Attacks. In section 3, we introduce Normalized Template Attacks and prove
that they have higher higher leakage exploitation rate than classical Template
Attacks. Normalized Template Attacks are verified by experiments in section 4.
In section 5, we conclude the whole paper.

3

2 Preliminaries

In this section, we briefly review Template Attacks. We will introduce the two
stages of Template Attacks in the following.

2.1 The Profiling Stage

In the profiling stage, one has a reference device identical or similar to the
target device. One can use power traces measured from the reference device to
characterize power leakages of the target device.

Let us assume that there exist K different (sub)keys keyi, i = 0, 1, . . . ,K − 1
which need to be classified. Also, there exist K different key-dependent oper-
ations Oi, i = 0, 1, . . . ,K − 1. Usually, one will generate K templates, one for
each key-dependent operation Oi. One can exploit advanced techniques [3, 10]
to choose N interesting points (P1, P2, . . . , PN). Each template is composed of a
mean vector and a covariance matrix. Specifically, the mean vector is used to esti-
mate the data-dependent portion of side-channel leakages. It is the average signal
Mi = (Mi[P1], . . . ,Mi[PN]) for each one of the key-dependent operations. The
covariance matrix is used to estimate the probability density of the noises at dif-
ferent interesting points. It is assumed that noises at different interesting points
approximately follow the multivariate normal distribution. A N dimensional
noise vector ni(S) is extracted from each trace S = (S[P1], . . . , S[PN]) represent-
ing the template’s key dependency Oi as ni(S) = (S[P1]−Mi[P1], . . . , S[PN]−
Mi[PN]). One computes the (N × N) covariance matrix Ci from these noise
vectors. The probability density of the noises occurring under key-dependent
operation Oi is given by the N dimensional multivariate Gaussian distribution
pi(·), where the probability of observing a noise vector ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C

−1
i ni(S)

T
)

ni(S) ∈ RN . (1)

In equation (1), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse.

2.2 The Extraction Stage

In the extraction stage, one tries to classify the correct (sub)key with a small
number of traces obtained from the target device. Usually, due to noises and
accuracy of templates, one can not recover the correct (sub)key with only one s-
ingle trace. When one can obtain more than one trace in the extraction stage, one
can classify the correct (sub)key by applying the maximum likelihood approach
on the product or the sum of conditional probabilities.

Assume one obtains t traces (denoted by S1, S2, . . . , St) in the extraction
stage. When the traces are statistically independent, one will apply maximum
likelihood approach on the product of conditional probabilities [2], i.e.

keyck = argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

4

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a key-
dependent operation. For example, when the output of the first S-box (denoted
by Sbox) in the first round of AES-128 is chosen as the target intermediate value,
one builds templates for each output of the S-box. In this case, f(Sj , keyi) =
Sbox(mj⊕keyi), where mj is the plaintext corresponding to the power trace Sj .

When the traces are not statistically independent, one may applies maximum
likelihood approach on the sum of conditional probabilities [3], i.e.

keyck = argmaxkeyi

{ t∑
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

where Pr(Sj |keyi) = pf(keyi)(nf(keyi)(Sj)). The keyck is considered to be the
correct (sub)key. The output of the function f(keyi) is the index of a key-
dependent operation. In this case, the output of f(keyi) only depends on keyi.
For example, when the output of a S-box in the key expansion algorithm of
AES-128, f(keyi) = Sbox(keyi) is chosen as the target intermediate value.

3 Normalized Template Attacks

In this section, we first introduce the main idea of Normalized Template At-
tacks. Then, we explain why Normalized Template Attacks have higher leakage
exploitation rate compared with Template Attacks.

Main Idea: We introduces a normalization process in the extraction stage and
does not change the profiling stage. The normalization process helps improve
the leakage exploitation rate of Template Attacks. The reason is that it reduces
the effects of noises in each trace and inaccuracy of templates by exploiting
normalized conditional probability instead of conditional probability.

Now, we show Normalized Template Attacks for Case 1. We call this method
as “Normalized Template Attacks for Case 1”, which is summarized as Algorithm
1. The profiling stage of Normalized Template Attacks for Case 1 is the same as
classical Template Attacks. Therefore, we ignore the profiling stage here and only
show the extraction stage. For simplicity, we rewrite Pr(Sj |keyi) as P (i, j), i =
0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 1-Step 3 in Algorithm 1 are called the normalization process. We note
that, the computational cost of the normalization process is extremely low. In the
following, we explain why Normalized Template Attacks have a higher leakage
exploitation rate compared with classical Template Attacks.

For each trace Sj (j = 1, 2, . . . , t), we compute maxln(j). Clearly, for each
conditional probability P (i, j), i = 0, 1, . . . ,K − 1 obtained from a single trace
Sj (j = 1, 2, . . . , t), there exists a real number α(i,j) ∈ (0, 1], i = 0, 1, . . . ,K − 1
such that α(i,j) = maxln(j)/H(i, j). Note that the number α(i,j) is proportional
to P (i, j) for a fixed trace Sj . Let

V (i, j) = e
maxln(j)
H(i,j) = eα(i,j) , i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

5

Algorithm 1 Normalized Template Attacks for Case 1

Input: P (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t
Output: a candidate key keyck, ck ∈ {0, 1, . . . ,K − 1}

Step 1 Computes the natural logarithm of each conditional probability P (i, j), i.e.

H(i, j) = lnP (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 2 Computes

maxln(j) = max{H(0, j), H(1, j), . . . , H(K − 1, j)}

for each traces Sj , j = 1, 2, . . . , t.
Step 3 Computes normalized conditional probability V (i, j) for each traces:

V (i, j) = exp

(
maxln(j)

H(i, j)

)
, i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 4 Applying maximum likelihood approach on
∏t

j=1 V (i, j). Let

keyck = argmaxi

{ t∏
j=1

V (i, j), i = 0, 1, . . . ,K − 1

}
.

Step 5 Return keyck.

We call V (i, j) the normalized conditional probability.
We note that the probability that the following two inequalities (inequal-

ity (3) and inequality (4)) happen simultaneously is extremely low. The rea-
son is that for the correct key keyck and most traces Sj (j = 1, 2, . . . , t), the
value α(ck,j) is much closer to 1 than α(i,j) for all the wrong keys keyi, ∀i ∈
{0, 1, . . . ,K − 1}\ck with high probability.

t∏
j=1

V (ck, j) ≤
t∏

j=1

V (i, j),∃i ∈ {0, 1, . . . ,K − 1}\ck. (3)

t∏
j=1

P (ck, j) >

t∏
j=1

P (i, j), ∀i ∈ {0, 1, . . . ,K − 1}\ck. (4)

Now, we assume for the correct key keyck, it holds that

t∏
j=1

V (ck, j) >
t∏

j=1

V (i, j),∀i ∈ {0, 1, . . . ,K − 1}\ck.

If
t∏

j=1

P (ck, j) >

t∏
j=1

P (i, j), ∀i ∈ {0, 1, . . . ,K − 1}\ck,

6

Template Attacks for Case 1 will return the correct key keyck. However, when
noises are large and/or templates are not very accurate, classical Template At-
tacks may return a wrong key keywk, wk ∈ {0, 1, . . . ,K − 1}\ck. We will show
the reasons why classical Template Attacks return a wrong key in the following.

We divide the t traces {S1, S2, . . . , St} into two sets. In the first set Set1,
there are u samples {Si1 , . . . , Siu} satisfy

P (ck, i1) > P (wk, i1), . . . , P (ck, iu) > P (wk, iu).

In the second set Set2, there are t− u samples {Sj1 , . . . , Sjt−u} satisfy

P (ck, j1) ≤ P (wk, j1), . . . , P (ck, jt−u) ≤ P (wk, jt−u).

Let P1ck =
∏u

k=1 P (ck, ik), P2ck =
∏t−u

k=1 P (ck, jk), P1wk =
∏u

k=1 P (wk, ik),

and P2wk =
∏t−u

k=1 P (wk, jk). Let V 1ck =
∏u

k=1 V (ck, ik), V 2ck =
∏t−u

k=1 V (ck, jk),

V 1wk =
∏u

k=1 V (wk, ik), and V 2wk =
∏t−u

k=1 V (wk, jk). According to the defini-
tion, we have P1ck > P1wk, P2ck ≤ P2wk, V 1ck > V 1wk, and V 2ck ≤ V 2wk.
Due to

t∏
j=1

V (ck, j) = V 1ckV 2ck > V 1wkV 2wk =

t∏
j=1

V (wk, j),

we further have
V 1ck
V 1wk

>
V 2wk

V 2ck
. (5)

However, if classical Template Attacks (Template Attacks for Case 1) return
keywk as the output, it holds that

t∏
j=1

P (ck, j) = P1ckP2ck < P1wkP2wk =

t∏
j=1

P (wk, j).

Therefore, we have
P1ck
P1wk

<
P2wk

P2ck
. (6)

We know that the value ofmaxln(j) falls in the interval (−∞, 0). The value of
maxln(j) is different for different traces even with the same operation and data
due to noises in each trace and accuracy of templates. For different traces with
the same operation and different data, the above fact still holds. For example,
we try to attack the output of the first S-box in the first round of AES-128 in
simulated attacking scenario (The signals are assumed to follow the Hamming
Weight leakage model. The standard deviation of the Gauss noises added into
the simulated power traces is 4.). Table 1 in Appendix A shows the variance of
maxln(j) of 100 simulated power traces with the same operation and data for
different number of simulated power traces used in the profiling stage. Table 1
shows that, the variance of maxln(j) is not small and reduces with the increase
of the number of simulated power traces used in the profiling stage.

7

Now, we assume V (ck, S) and V (wk, S) are two fixed values and V (ck, S) >
V (wk, S) for some trace S. When maxln(S) is large (i.e. The value maxln(S) is
close to 0.), the value of exp(H(ck, S))−exp(H(wk, S)) is large. Whenmaxln(S)
is small (i.e. The value maxln(S) is far from 0.), the value of exp(H(ck, S)) −
exp(H(wk, S)) is small even if V (ck, S) and V (wk, S) are two fixed values. This
property induces inequality (5) and inequality (6) hold simultaneously and will
reduce leakage exploitation rate of classical Template Attacks when one directly
computes conditional probabilities and applies maximum likelihood approach on
the produce or the sum of conditional probabilities in the extraction stage.

−10 −9 −8 −7 −6 −5 −4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 1. The Function f(x) = ex for x ∈ [−10,−4]

For example, Figure 1 shows the function f(x) = ex for x ∈ [−10,−4]. We
assume one obtains two traces {S1, S2} in the extraction stage and computes

maxln(S1) = −4,H(ck, 1) = −4, H(wk, 1) = −6.4,

maxln(S2) = −6,H(wk, 2) = −6,H(ck, 2) = −9.23.

Normalized Template Attacks for Case 1 will return the correct key ck because

V (ck, 1)V (ck, 2) = exp(1)exp(0.65)

> V (wk, 1)V (wk, 2) = exp(0.625)exp(1).

However, classical Template Attacks will return wk as the answer because

exp(H(ck, 1))exp(H(ck, 2)) = exp(−4)exp(−9.23)

< exp(H(wk, 1))exp(H(wk, 2)) = exp(−6.4)exp(−6).

To sum up, Normalized Template Attacks exploit normalized conditional
probabilities which are more effective and accurate than traditional condition-
al probabilities of classical Template Attacks. Therefore, we expect Normalized

8

Template Attacks to have a higher leakage exploitation rate than classical Tem-
plate Attacks.

We know that V (i, j) ∈ [e0, e] and P (i, j) = eH(i,j) = V (i, j)H
2(i,j)/maxln(j), i

= 0, 1, . . . ,K − 1, j = 1, 2, . . . , t. Consequently, the value H2(i, j)/maxln(j) will
reduce leakage exploitation rate of classical Template Attacks.

Normalized Template Attacks for Case 2 are identical to Normalized Tem-
plate Attacks for Case 1 except that they apply maximum likelihood approach
on

∑t
j=1 V (i, j) to determine the correct key, namely

keyck = argmaxi

{ t∑
j=1

V (i, j), i = 0, 1, . . . ,K − 1

}
in Step 4.

4 Experiments

An attack method with a higher leakage exploitation rate will has a higher
success rate [11]. Therefore, in this section, we will experimentally evaluate the
success rates of Normalized Template Attacks and classical Template Attacks
for both Case 1 and Case 2.

For the implementation of cryptographic algorithms with countermeasures,
one usually first use some method to delete the countermeasures and then tries
to attack the implementation using classical attacks (Such as Template Attacks).
For example, if one has traces with random delays, he may first use the method
proposed in [12] to remove the random delays and then use classical attacks to
recover the correct key. Therefore, we take unprotected AES-128 implementation
as example for Case 1 and Case 2 of Template Attacks. The real power traces
of all the practical experiments were sampled from PowerSuite 4.0 which is a
software benchmark evaluation board designed and developed by ourselves. The
CPU of this board is an typical 8-bit microcontroller STC89C58RD+. The real
power traces were acquired with a sampling rate of 50MS/s from this board. The
average number of real power traces during the sampling process was 10 times.
The leakage function of our device approximates the Hamming-Weight leakage
function. In all the practical experiments, we chose the interesting points using
CPA based method [13] with the properties introduced in [3].

For simplicity, let np denote the number of traces used in the profiling stage
and let ne denote the number of traces used in the extraction stage. Different
numbers of traces used in the profiling stage means that the templates have dif-
ferent level of accuracy. Different numbers of traces used in the extraction stage
represents different amounts of information can be exploited. In each figure, Nor-
malized Template Attacks (such as Normalized Template Attacks for Case 1 or
Normalized Template Attacks for Case 2) are denoted by “Normalized TA” and
classical Template Attacks (such as Template Attacks for Case 1 or Template
Attacks for Case 2) are denoted by “Classical TA”. We will introduce practical
experiments about Case 1 at first. Then, practical experiments about Case 2

9

will be shown. In fact, we also executed simulated experiments and the obser-
vations obtained from simulated experiments are similar to those of practical
experiments.

4.1 Case 1

We tried to attack the output of the first S-box in the first round of unprotected
AES-128 software implementation over PowerSuite 4.0 as an example. We used
5,000, 6,000, and 7,000 real power traces to build the 256 templates respectively.
The three groups of real power traces were generated with a fixed main key
and random plaintext inputs. We generated additional 100,000 real power traces
with another fixed main key and random plaintext inputs. The 100,000 real power
traces were used in the extraction stage. We tested the success rate of Normalized
Template Attacks for Case 1 (denoted by SR(ne,NTA1)) and the success rate of
Template Attacks for Case 1 (denoted by SR(ne,TA1)) when one can use ne traces
in the extraction stage as follows. We repeated the two attacks 500 times. For
each time, we chose ne traces from the 100,000 real power traces uniformly at
random. Both Normalized Template Attacks for Case 1 and Template Attacks
for Case 1 used the same templates and the same ne traces in the extraction
stages. We respectively recorded how many times the two attacks can successfully
recover the correct subkey (denoted by num(ne,NTA1) for Normalized Template
Attacks for Case 1 and num(ne,TA1) for Template Attacks for Case 1). Then,
we computed the success rate SR(ne,NTA1) (SR(ne,NTA1) = num(ne,NTA1)/500)
and SR(ne,TA1) (SR(ne,TA1) = num(ne,TA1)/500).

We will show SR(ne,NTA1) and SR(ne,TA1) for different ne in Figure 2. For
every S-box in the first round of AES-128, Normalized Template Attacks for Case
1 are more effective than Template Attacks for Case 1. Table 2 in Appendix A
shows the success rate of Normalized Template Attacks for Case 1 and the success
rate of Template Attacks for Case 1 in the practical experiments for different np
and ne. In each entry “A/B” of Table 2, “A” represents SR(ne,NTA1) and “B”
represents SR(ne,TA1).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(a) np =5,000

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(b) np =6,000

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(c) np =7,000

Fig. 2. Practical Experiments Results of Normalized Template Attacks for Case 1 and
Template Attacks for Case 1 (SR(ne,NTA1),SR(ne,TA1))

10

It can be seen from Figure 2 and Table 2 that, Normalized Template Attacks
for Case 1 have obviously higher success rate (higher leakage exploitation rate)
than Template Attacks for Case 1. When we use more real power traces to
build the templates in the profiling stage and use more real power traces in the
extraction stage, the success rate of Normalized Template Attacks for Case 1 is
not lower than the success rate of Template Attacks for Case 1. Hence, we only
show the cases that one uses less real power traces here.

4.2 Case 2

To verify Case 2, we attacked the key expansion algorithm of unprotected AES-
128 software implementation over PowerSuite 4.0 as an example. Algorithm 2
in Appendix B describes the key expansion algorithm of unprotected AES-128.
RotWord in Algorithm 2 performs a one-byte circular left shift on a word. This
means that an input word [b0,b1,b2,b3] is transformed into [b1,b2,b3,b0]. Sub-
Word in Algorithm 2 performs a byte substitution on each byte of its input word,
using the S-box. If the adversary can recover w[3],w[7],w[11], and w[15], then he
can recover the main key key[0],key[1],. . .,key[15] using the mathematical struc-
ture of the key expansion algorithm easily. Note that w[3],w[7],w[11], and w[15]
are the input of RotWord. And the output of RotWord is the input of Sub-
Word. Therefore, one can try to attack the outputs of the S-boxes in SubWord
and to recover w[3],w[7],w[11], and w[15] completely if he obtains the outputs
of every S-box in SubWord successfully. In all of our practical experiments for
Normalized Template Attacks for Case 2 and Template Attacks for Case 2, we
attacked an output of a S-box in SubWord and tried to recover key[15] in w[3] as
an example. The processes of attacking other key bytes in w[3],w[7],w[11], and
w[15] are similar.

We used 80,000, 120,000, and 160,000 real power traces to build the 256
templates respectively. If we use less real power traces in the profiling stage, the
success rates of both the two attacks are low though the success rate of Normal-
ized Template Attacks for Case 2 will also be much higher than the success rate
of Template Attacks for Case 2. The reason of this situation is the leakage func-
tion of our device approximates Hamming Weight leakage function and it is very
difficult to distinguish two different intermediate values (the output of the S-box)
which have the same Hamming Weight. Therefore, we used 80,000, 120,000, and
160,000 real power traces to build 256 templates in order to give out a clearer
situation. The main key of each of these real power traces was chosen uniformly
at random. In our practical experiments, we chose 32 random main key (Thus
there were 32 random values of key[15].). For each main key, we generated 600
real power traces with the fixed main key. We tested the success rate of Nor-
malized Template Attacks for Case 2 (denoted by SR(ne,NTA2)) and the success
rate of Template Attacks for Case 2 (denoted by SR(ne,TA2)) when one can use
ne traces in the extraction stage as follows. For the ith (i = 1, 2, . . . , 32) value of
key[15], we repeated the two attacks 128 times. For each time, we chose ne real
power traces uniformly at random from the corresponding 600 simulated power
traces. Both Normalized Template Attacks for Case 2 and Template Attacks

11

for Case 2 used the same templates and the same ne traces in the extraction
stages. For the ith (i = 1, 2, . . . , 32) value of key[15], we respectively recorded
how many times the two attacks can recover the output of S-box successfully
(denoted by num(ne,i,NTA2) for Normalized Template Attacks for Case 2 and
num(ne,i,TA2) for Template Attacks for Case 2). For the ith (i = 1, 2, . . . , 32)
value of key[15], we use sr(ne,i,NTA2) (sr(ne,i,NTA2) = num(ne,i,NTA2)/128) and
sr(ne,i,TA2) (sr(ne,i,TA2) = num(ne,i,TA2)/128) to denote the success rate. The
success rates of the two attacks for the case one using ne traces in the extraction
stage were computed by

SR(ne,NTA2) =

∑32
i=1 sr(ne,i,NTA2)

32
, SR(ne,TA2) =

∑32
i=1 sr(ne,i,TA2)

32
.

We will show SR(ne,NTA2) and SR(ne,TA2) for different ne in Figure 3. Table 3
in Appendix A shows the success rates of Normalized Template Attacks for Case
2 and Template Attacks for Case 2 in the practical experiments for different np
and ne. In each entry “A/B” of Table 3, “A” represents SR(ne,NTA2) and “B”
represents SR(ne,TA2).

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(a) np =80,000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(b) np =120,000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in the extraction stage

S
uc

ce
ss

 r
at

e

Classical TA
Normalized TA

(c) np =160,000

Fig. 3. Practical Experiments Results of Normalized Template Attacks for Case 2 and
Template Attacks for Case 2 (SR(ne,NTA2),SR(ne,TA2))

It can be seen from Table 3 that, Normalized Template Attacks for Case 2
have much higher success rate (higher leakage exploitation rate) than Template
Attacks for Case 2. The success rate of Normalized Template Attacks for Case 2 is
close to 1. We attacked all the S-boxes in w[3], w[7], w[11] and w[15] similarly. For
each S-box, Normalized Template Attacks for Case 2 have much higher success
rate than Template Attacks for Case 2. Moreover, the situations of the success
rate for each S-box are very similar. Therefore, the success rate of Normalized
Template Attacks for Case 2 of recovering the whole main key is close to 1 and
is much higher than the success rate of Template Attacks for Case 2 which is
close to 0.

12

5 Conclusion and Future Work

In this paper, we prove that leakage exploitation rate of classical Template At-
tacks is not optimal by introducing a normalization process. The normalization
process can be used in both Case 1 and Case 2 yielding Normalized Template
Attacks. We verified Normalized Template Attacks by experiments. Remarkably
enough, the normalization process is of extremely low computation cost. There-
fore, we argue that this normalization process should be integrated into Template
Attacks as one necessary step in order to better understand practical threats of
this kind of attacks. Additionally, we find a quantitative factor in the extraction
stage of classical Template Attacks which reduces the leakage exploitation rate.

Our work inspire us to think about the following two questions. First, whether
the leakage exploitation rates of other profiled side-channel attacks (especially
in the extraction stages) is optimal? Second, what are the quantitative factors
in the extraction stages of other profiled side-channel attacks affect their effec-
tiveness? Other profiled side-channel attacks include the stochastic model based
attacks [14], reduced Template Attacks [15], PCA-Based Template Attacks [4],
and LDA-Based Template Attacks [16] etc. We believe that the two question-
s are worth researching. It is also very necessary to further verify Normalized
Template Attacks in other devices such as FPGA and ASIC. Moreover, it would
be interesting to have a formula that expresses leakage exploitation rate of a
side-channel attack in terms of the number of traces in future work.

References

[1] Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. CHES2002, LNCS 2523,
pp.13-28, 2003.

[2] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. pp.156, Springer (2007).

[3] Rechberger, C., Oswald, E.: Practical Template Attacks. WISA2004, LNCS 3325,
pp.440-456, 2004.

[4] Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.:Template At-
tacks in Principal Subspaces. CHES2006, LNCS 4249, pp.1-14, 2006.

[5] Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-
device attacks using zero-mean unit-variance mormalization. Journal of Crypto-
graphic Engineering, Volume 3, Issue 2, pp.99-110, June 2013.

[6] Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance Is Futile.
CT-RSA2007, LNCS 4377, pp.243-256, 2007.

[7] Zhang, H., Zhou, Y., Feng, D.: An Efficient Leakage Characterization Method for
Profiled Power Analysis Attacks. ICISC2011, LNCS 7259, pp.61-73, 2011.

[8] Lerman, L., Bontempi, G., Markowitch, O.: Side Channel Attack: An Approach
Based On Machine Learning. COSADE2011, pp.29-41, 2011.

[9] Lerman, L. Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markow-
itch, O.: Semi-Supervised Template Attack. COSADE2013, LNCS 7864, pp.184-
199, 2013.

[10] Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods A
Performance Analysis for Side Channel Cryptanalysis. CHES2006, LNCS4249,
pp.15-29, 2006.

13

[11] Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. EUROCRYPT2009, LNCS 5479, pp.443-
461, 2009.

[12] Durvaux, F., Renauld, M., Standaert, F.-X. et al.: Efficient Removal of Random
Delays from Embedded Software Implementations Using Hidden Markov Models.
CARDIS2012, LNCS 7771, pp. 123-140, 2013.

[13] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Chapter 6, Springer (2007).

[14] Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. CHES2005, LNCS 3659, pp.30-46, 2005.

[15] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. pp.108, Springer (2007).

[16] Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attack-
s to Compare and Combine Power and Electromagnetic Information Leakages.
CHES2008, LNCS 5154, pp.411-425, 2008.

14

Appendix A: The Tables

In all the tables, the number of traces used to build the templates is denoted by
np and the number of traces used in the extraction stage is denoted by ne.

Table 1. The Variance of maxln(j)

np 5,000 6,000 7,000

variance 2.7356 2.5252 2.1740

Table 2. The Success Rates SR(ne,NTA1) and SR(ne,TA1) in Practical Experiments

HHHHHne
np

5,000 6,000 7,000

25 0.95/0.56 0.94/0.59 0.97/0.73

50 1.00/0.65 1.00/0.74 1.00/0.87

75 1.00/0.75 1.00/0.84 1.00/0.93

Table 3. The Success Rates SR(ne,NTA2) and SR(ne,TA2) in Practical Experiments

HHHHHne
np

80,000 120,000 160,000

50 0.47/0.12 0.56/0.13 0.62/0.20

100 0.67/0.13 0.76/0.14 0.81/0.24

150 0.75/0.13 0.84/0.15 0.89/0.25

15

Appendix B: The Key Expansion Algorithm of
Unprotected AES-128

In this section, we introduce the key expansion algorithm of unprotected AES-
128 in Algorithm 2.

Algorithm 2 Key Expansion Algorithm of AES-128

KeyExpansion (byte key [16], word w[44])
{

word temp
for (i = 0; i < 4; i++)

w[i] = (key[4∗i], key[4∗i+1], key[4∗i+2], key[4∗i+3]);

for (i = 4; i < 44; i++)
{

temp = w[i − 1];
if (i mod 4 = 0)

temp = SubWord(RotWord(temp))
⊕

Rcon[i/4];
w[i] = w[i − 4]

⊕
temp;

}
}

The AES-128 key expansion algorithm takes as input a 4-word (16-byte) key
(main key) and produces a linear array of 44 words (176 bytes). This is sufficient
to provide a 4-word round key for the initial AddRoundKey stage and each of
the 10 rounds of the cipher.

16

