
Is extracting data the same as possessing data?

Douglas R. Stinson∗ and Jalaj Upadhyay
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

September 22, 2013

Abstract

Proof-of-retrievability schemes have been a topic of considerable recent interest. In these
schemes, a client C gives a file M to a server S with the understanding that S will securely store
M . A suitable challenge-response protocol is invoked by C in order for C to gain confidence
that M is indeed being correctly stored by S. The definition of proof-of-retrievability schemes
is based on the notion of an extractor E that can recover the file once the challenge-response
protocol is executed a sufficient number of times.

In this paper, we propose a new type of scheme that we term a proof-of-data-observability
scheme. Our definition tries to capture the stronger requirement that S must have an actual
copy of M in its memory space while it executes the challenge-response protocol. We give
some examples of schemes that satisfy this new security definition. As well, we analyze the
efficiency and security of the protocols we present, and we prove some necessary conditions for
the existence of these kinds of protocols.

1 Introduction

There has been considerable recent interest in proof-of retrievability and proof-of-data-possession
schemes for cloud storage [1, 3, 4, 8, 11, 13]. We begin by briefly introducing these schemes. Suppose
a client C gives a file M (also called a message) to a server S (e.g., a cloud storage service provider)
with the understanding that S will securely store M . A suitable challenge-response protocol is
invoked by C in order for C to gain confidence that M is indeed being correctly stored by S, without
actually requiring S to transmit the entire file to C. The server constructs a proving algorithm P
that it uses to respond to C’s challenges. The success probability of P, denoted succ(P), is defined
to be the probability that P gives a correct response to a random challenge. We consider the server
S along with the proving algorithm P (which is constructed by S) to comprise the adversary in one
of these schemes.

Suppose that the message M = (M1, . . . ,Mm), where M1, . . . ,Mm are the message blocks.
Typical challenge-response protocols require S to supply a certain subset of the message blocks
(e.g., [8, 11]), or to compute a specified linear combination of a subset of the message blocks (e.g.,
[13]). In these example schemes, the challenge would specify the message blocks and (if required)
the exact linear combination that the server is required to compute. Note that C might store the
file M (in this case it can verify the response of S by performing the same computation as S).

∗D. Stinson’s research is supported by NSERC discovery grant 203114-11

1

Alternatively, C might have precomputed and stored one or more responses (in this case it would
not be necessary for C to store M). Finally, C might have a “key”, which is smaller than the file,
but which still can be used to verify responses.

In a proof-of-retrieval scheme (POR scheme) (e.g., [8]), it is required that there should exist an
extractor E with the property that it can recover M , given P, whenever succ(P) is sufficiently high.
In general, E will perform the following operations:

• E is given read access to the code describing P,

• E is allowed to run P on challenges that are chosen by E ,

• E can perform additional computations, and

• E should compute and correctly output the entire file M .

The effectiveness of an extractor E for a POR scheme is usually quantified as follows. Let
0 < δ ≤ 1 and let 0 < ε ≤ 1. We say that E is a (δ, ε)-extractor provided that the success
probability of E is at least ε whenever succ(P) ≥ δ. Recall that succ(P) is the probability that P
gives the correct response to a random challenge; the success probability of E is the probability
that it is able to extract the entire file M correctly. The success probability of E takes into account
any random choices it makes during its execution.

POR schemes can be analyzed in the setting of computational security [1, 3, 4, 8, 13] or uncon-
ditional security [4, 11]. In the setting of computational security, E , S and P would be modelled as
polynomial-time probabilistic Turing machines. In the setting of unconditional security, we would
not place any restrictions on the computations that E , S and P are allowed to perform.

The idea of a proof-of-data-possession scheme (PDP scheme) is also found in the literature, e.g.,
a formal definition can be found in [1, Definition 4.2]. This definition also requires an extractor E to
actually recover or restore the data whose “possession” is guaranteed by the responses received by
C when the challenge-response protocol is carried out. Furthermore, in [1], it is explicitly permitted
for S to store the file in altered form (e.g., using some form of lossless data compression). Thus, it
seems in the literature that there is little or no fundamental difference between a POR scheme and
a PDP scheme.

Our main goal is to separate the notions of retrievability and possession. (Before proceeding
further, we note that all the results presented in this paper are in the standard client-server model
in which proof-of-retrievability schemes and proof-of-data-possession schemes have been studied.)
To make a distinction between retrievability and possession, it is helpful to ask what it means
conceptually or philosophically for S to actually “possess” data. We might argue that possessing
data should mean that S has an exact copy of the file M in its storage at some given time. However,
it would be difficult to force S to do this, because (as mentioned above) S can store M in some
altered form, e.g., involving encryption or (lossless) compression. However, it is conceivable that
the challenge-response protocol P might necessitate the reconstruction of M , in the sense that a
response cannot be generated without first restoring M to its initial form. In this case, an exact
copy of M would exist in the memory space of S at the time the response to the challenge is
computed, and we could say that the S “possesses” the data at this point in time.

1.1 Formal Definitions for Proof-of-data-observability

Based on the previous discussion, we now define the new concept of a proof-of-data-observability
scheme (PDO scheme). This definition captures the idea that S actually has a complete copy of

2

M in its memory space during the execution of P. To formalize this stronger security notion, we
consider an observer O, who has considerably less power than E . O is permitted to do the following:

• O is given read access to the code describing P,

• O is allowed to observe a single run of the challenge-response protocol with a random challenge
supplied by C,

• O can perform additional computations, and

• O should copy the correct file M from the contents of S’s memory space to an output tape,
at some time during the execution of P.

Intuitively, this definition is trying to capture the idea that it is possible to take a “snapshot” of
S’s memory space (at an appropriate time) that precisely contains the file M .

For a PDO scheme, we have a somewhat different objective than we did for a POR scheme. As
before, let 0 < δ ≤ 1 and let 0 < ε ≤ 1. We say that an observer O is a (δ, ε)-observer provided that
the expected fraction of M that O copies is at least ε whenever succ(P) ≥ δ. That is, on average,
O is able to copy at least εn bits of M , where M is n bits in length. This average is computed over
the random challenge chosen by C, as well as any random choices O makes during its execution.

It is important to emphasize that O watches a single run of the challenge-response protocol that
is being executed with a random challenge that is chosen by C (i.e., the challenge is not chosen by
O). Based on O’s knowledge of the how the proving algorithm P works, O is able to recognize the
presence of the file M in the memory space of S as P is executed, and copy M to its output tape.

Remark 1. It is most useful to think of E and O as conceptual entities employed in the security
proof. They are not normally used in the standard operation of a POR or PDO scheme (respectively).

It is reasonable to ask why this new notion of observability might be preferable in practice to
the standard notion of retrievability. One of the motivations of cloud computing is to outsource
computations to the cloud. In general, performing some computation on data stored at a remote
server S will be possible only if S has the actual data M in hand. The notion of retrievability does
not guarantee that the actual file is readily available. This is because the operations performed
by the extractor E may be very complicated (even if they are required to be polynomial-time
operations). We would argue that a PDO scheme provides a better guarantee than a POR scheme
that the file M is “available” at a given point in time.

Suppose that an n-bit file M consists of m message blocks, and assume that a response in a
challenge-response protocol depends on a random subset of m′ message blocks chosen by C. For
δ > 0, the best observer we could hope for would be a (δ,m′/m)-observer, because a single run of P
only requires performing a computation on m′n/m bits of the file M . On the other hand, a trivial
example of a PDO scheme that has a (1, 1)-observer would be one in which S must give the entire
file M to C.

1.2 A Basic PDO Scheme

In this paper, we will be investigating certain types of PDO schemes in the random oracle model.
Our basic scheme is very simple; it is based on S returning a response of the form h(M ‖ c), given
a random challenge c, where h is a random oracle. We follow the usual random oracle model as

3

defined in [2], where h is regarded as a function that takes a binary string of arbitrary length as
input and produces a completely random d-bit output. We call this output the message digest or
hash value. An important property of random oracles is that any hash value h(x) is completely
independent of all the other hash values h(x′), x′ 6= x. This fact is used either implicitly or explicitly
in our analyses of the protocols we discuss.

Here is some intuition regarding the schemes we analyze. Because h is a random oracle, the
only way to compute h(M ‖ c) is to supply h with all the bits in M and c. However, a possible
complication is that a response h(M ‖ c) could be precomputed ahead of time, instead of being
computed online during the execution of the proving algorithm P. Nevertheless, if we upper-
bound the number of oracle accesses that are permitted in the pre-computation stage, then we
can upper-bound the number of precomputed responses that P can utilize. If P is required to
have a sufficiently high success probability and c is chosen from a large enough challenge space,
then it must be the case that, with high probability, h(M ‖ c) will be computed online during P’s
execution. In this case, the file M is necessarily stored in S’s memory space immediately prior to
the call h(M ‖ c) that is made to the random oracle h. Therefore we will have a PDO scheme,
according to our definition given above.

We note that we are not placing any restrictions on the computations performed by P or S. That
is, we analyze our schemes in the setting of unconditional security. However, we will be bounding
the storage available to S and/or the number of calls to the random oracle that S or P are allowed
to make. Basically, it is impossible to prove anything meaningful without some restrictions of this
type: if S can precompute and store the responses to all possible challenges, then it does not need
to store the file M at all. In this case, the challenge-response protocol cannot serve to provide any
guarantee at all to C. When we consider “reasonable” parameters for our schemes, we will allow
large number of accesses to the random oracle, e.g., 260 or 280, which would make the resulting
security guarantees meaningful and believable.

1.3 PDO is a Stronger Notion than POR and PDP

We describe a simple example of a POR/PDP scheme that is not a PDO scheme. Suppose a message
M = (M1, . . . ,Mm), where Fq is a finite field and Mi ∈ Fq for 1 ≤ i ≤ m. A challenge consists of a
random vector c = (c1, . . . , cm) ∈ (Fq)m and the corresponding response is r = c ·M ∈ Fq. This is
easily seen to be a POR scheme (e.g., see [11]). However, there exists P that can generate correct
responses to challenges without explicitly storing or performing computations on the original file
M ; the existence of this P shows that we do not have a PDO scheme. When S is originally given
the file M , it chooses a random γ ∈ Fq such that γ 6= 1. Then S computes M ′ = γM . M ′ and
γ are stored and M is discarded. Later, when P receives a challenge c, it computes the (correct)
response r = γ−1(c ·M ′). This computation does not use M , so no observer can obtain M simply
by observing the online computations of P.

1.4 Our Contributions

Our main goal is to show that there are simple, practical schemes that satisfy our new notion
of observability. We present a couple of PDO schemes and analyze them in different adversarial
settings. We believe that simplicity of the schemes and the fact that they can be analyzed in a
straightforward manner is an argument in favour of utilizing these types of schemes.

4

In Section 2, as a warm-up, we analyze our basic hash-based challenge-reponse scheme when the
server S stores part of the file M along with some number of precomputed responses. We analyze
the associated proving algorithm P and show, under reasonable assumptions regarding the storage
available to S, that this scheme is indeed a practical PDO scheme.

In Section 3, we consider a more general adversarial situation, where S and P are only restricted
in the number of accesses to the random oracle that they can make. Here we show that the scheme
is still a PDO scheme in this stronger adversarial setting, and we provide a concrete bound for δ as
a function of ε.

The schemes in Section 2 and Section 3 require hashing the entire file every time a response
is computed. This may not be desirable. Therefore, in Section 4, we consider observers who are
allowed to watch σ > 1 executions of the challenge-response protocol, obtaining part of the file each
time the protocol is run. This permits schemes where responses can be computed more efficiently.
In this section, we study another simple protocol and analyze its properties as a PDO scheme.

1.5 Previous Work on POR/PDP and Related Concepts

In recent literature, there has been a considerable amount of work on various notions related to
proof-of-storage on a cloud. All this research involves a client C who wants to verify whether S is
storing its file properly or not. Here are a few papers on this general topic. Naor and Rothblum [10]
studied primitives called memory checking and sublinear authenticators and gave lower bounds on
the efficiency of these systems in Yao’s simultaneous message model [14]. Juels and Kaliski [8]
and Ateniese et al. [1] independently introduced the concept of proof-of-retrievability and proof-
of-data-possession, respectively. Ateniese et al. [1] also introduced the idea of using homomorphic
authenticators to reduce the communication complexity of the system. Shacham and Waters [13]
showed that the scheme of Ateniese et al. can be transformed to a POR scheme by constructing an
extractor that extracts the file from the responses of the server to the challenges. Bowers, Juels,
and Oprea [3] used error-correcting codes, in particular the idea of an “outer” and an “inner” code
(in much the same vein as concatenated codes), to get a good balance between the server storage
overhead and computational overhead in responding to the audits. Dodis, Vadhan and Wichs [4]
used hardness amplification and error-correcting codes to propose a more efficient POR scheme,
with extraction performed through list decoding and an almost-universal hash function. Paterson,
Stinson and Upadhyay [11] studied POR schemes in the setting of unconditional security, as well
as their connections to error-correcting codes.

A related line of research investigates the question of storage enforcement, wherein, if the server
passes the challenge-response protocol, then the client is assured that the server has allotted the
amount of storage that it committed to the client. This problem is studied, for example, in [5, 6, 7].
In these types of schemes, the prover does not prove directly that it is storing the actual file, but
it proves that it is has allotted sufficient resources to do so.

2 Analysis of the Basic PDO Scheme

We begin by presenting in Figure 1 our basic PDO scheme that hashes the file along with a random
challenge provided by C. The server S constructs the proving algorithm P after it has been given
a copy of the file M . S is also permitted to access the random oracle and use the results to help
construct P. For example, various responses of the form h(M ‖ c) could be precomputed and

5

Figure 1: Basic Random Oracle PDO scheme

Initialization: The client C and the server S are given access to a random oracle h that
maps an arbitrary length input to a d-bit output. C gives a file M to S, where the
length of M is n bits. S is permitted to access h some fixed number of times, and
then S creates a proving algorithm P.

Challenge: C chooses an `-bit random challenge, c, and sends it to S.

Response: S uses P to compute the response r = P(c) and sends it to C.

Verification: C accepts the response r as valid if and only if r = h(M ‖ c).

stored in S’s memory.
For future reference, we list the parameters of our scheme in Table 1. In this scheme, d and `

will typically be much smaller than n. As an illustrative example, we could take ` = 100, d = 256,
and n = 225.

Remark 2. We will be analyzing the scheme in Figure 1 in the random oracle model. Nevertheless,
it might be of interest to consider how this scheme might be instantiated in practice, where one would
replace the random oracle with a “real” hash function. We note that this would have to be done
carefully in order to prevent certain types of attacks. For example, if h is an iterated hash function,
then h(M) can be precomputed and stored, and then h(M ‖ c) can be computed from h(M) and c.
These types of issues are studied in detail in [12]. A good practical solution might be to use a zipper
hash [9].

In this section, we give an exact combinatorial analysis of a specific type of adversary that
we name A(t, s). This adversary incorporates a storage-bounded server S who has access to t bits
of storage. This storage will be used to store part or all of the file M and/or some number of
precomputed responses. Although not completely general, this type of adversary is a very natural
and plausible one to consider.

It may be useful to distinguish adversaries according to their intent. Perhaps the adversary is
just being selfish in that it wants to achieve a “reasonable” success probability without actually
storing the whole file. The adversary A(t, s) would be selfish only if t < n. Alternatively, the
adversary could be malicious, which means that he might be willing to devote a large amount of
storage to precomputed responses in an attempt to deceive the client C who is expecting the server
S to store the file. The adversary A(t, s) would be considered to be malicious only if t ≥ n.

The adversary A(t, s) stores s bits of M , along with s∗ precomputed responses obtained from
s∗ accesses to the random oracle. Clearly, s ≤ min{n, t}. Since each response has d bits, it must
be the case that

s∗ ≤
⌊
t− s
d

⌋
.

Additionally, there are 2` possible responses, so s∗ ≤ 2`. Therefore, we have

s∗ = min

{
2`,

⌊
t− s
d

⌋}
6

Table 1: Parameters of a PDO Scheme

parameter meaning

t size of S’s storage

n size of the file M

s number of bits of M stored by S

d size of a message digest (hash value)

` size of a challenge

s∗ number of accesses to the random oracle

for the adversary A(t, s).

Remark 3. The data precomputed by A(t, s) can be thought of as a list of of ordered pairs of the
form (c, h(M ‖ c). In our analysis, we are only counting the storage needed for the responses
h(M ‖ c), as various methods could be used to reduce or even eliminate the storage required for the
challenges (i.e., the c values). For example, the stored responses might correspond to s∗ consecutive
values of c.

Given a challenge c, the proving algorithm P operates as follows:

1. If the (correct) response r = h(M ‖ c) has been precomputed and stored, then P outputs r.

2. Otherwise (when the response has not been precomputed and stored), P randomly guesses the
n− s non-stored bits of M , creating a file M∗. The adversary then computes r = h(M∗ ‖ c)
and outputs r.

Note that P makes at most one (on-line) call to the random oracle each time the challenge-response
protocol is run.

The case where t ≥ 2`d is not very interesting. Here the adversary can precompute all 2`

possible responses when s = 0. Therefore, the resulting proving algorithm has success probability
equal to 1 and no bits of the file M are stored. Therefore, in what follows, we will assume that
t < 2`d, which will imply that

s∗ =

⌊
t− s
d

⌋
. (1)

Theorem 1. Assume that t < 2`d. Then the success probability of A(t, s) is

p(t, s) = 1−
(

1− 2s

2n

)(
1− 1

2d

)(
1− t− s

2`d

)
. (2)

Proof. Let E1 denote the event that A(t, s) has precomputed the response to a given random
challenge. Let E2 denote the event that P correctly guesses the n− s non-stored bits of n. Finally,
let E3 denote the event that the on-line output of the random oracle on an incorrect input yields
the correct response (i.e., h(x) = h(M ‖ c) for a given x 6= M ‖ c). For 1 ≤ i ≤ 3, let pi = Pr[Ei].
Clearly, from (1), we have

p1 =
s∗

2`
=
t− s
2`d

.

7

Here, we are assuming for convenience that (t − s)/d is an integer, so we can omit the “floor”
computation. It is also clear that

p2 =
2s

2n
and p3 =

1

2d
.

Now the success probability of A(t, s) is

p(t, s) = p1 + (1− p1)(p2 + (1− p2)p3) = 1− (1− p1)(1− p2)(1− p3), (3)

which simplifies to give the desired result.

Suppose we fix a value of t < 2`d and, for brevity, we denote p(s) = p(t, s). We will analyze the
behaviour of p(s) as a function of s. In order to do this, it is helpful to define

q(s) = (2`d− t+ s)(2s − 2n).

It is easy to see that
q(s) = C(p(s)− 1), (4)

where C is a constant (independent of s). Using elementary calculus, we have

q′(s) = 2s(1 + (2`d− t+ s) ln 2)− 2n. (5)

From (5), we see that q′′(s) > 0 for all s > 0. Therefore, from (4), we also have p′′(s) > 0 for all
s > 0, so the function p(s) is “concave up”.

First, let’s consider the situation where s = 0. We have

q′(0) = (1 + (2`d− t) ln 2)− 2n.

Under the reasonable assumption that 2`d� 2n, we will have q′(0) < 0 and p′(0) < 0.
At this point, we have shown that p′(0) < 0 and p′(s) is an increasing function of s. The

maximum value of p(s) must occur at one of the two endpoints (i.e., when s = 0 or when s =
min{n, t}). Therefore, there are two possibilities to consider:

case (1) The maximum value of p(s) is attained when s = 0.

case (2) The maximum value of p(s) is attained when s = min{n, t}. Note that this case can
happen only when p′(min{n, t}) > 0.

In order to determine which case would apply to a given parameter situation, it is helpful to
estimate the value s̃ > 0 such that p(0) = p(s̃). From (2), we see that p(0) = p(s̃) if and only if(

1− 1

2n

)(
1− t

2`d

)
=

(
1− 2s̃

2n

)(
1− t− s̃

2`d

)
.

If we ignore terms that are products of two “small” numbers, then the equation to be solved for s̃
can be approximated as

t

2`d
+

1

2n
≈ t− s̃

2`d
+

2s̃

2n
.

8

If s̃ is reasonably large, then we can ignore the term 1/2n. In this case, our equation can be
rewritten as

2s̃

2n
≈ s̃

2`d
,

which is equivalent to
s̃+ `+ log2 d ≈ log2 s̃+ n.

Ignoring the term log2 s̃, we finally obtain the estimate s̃ ≈ s′, where

s′ = n− `− log2 d. (6)

We see that s′ > 0 because we assumed that 2`d < n. Now, in order for case (2) to occur, we need
s′ ≤ min{n, t}. It is clear that s′ < n. However, it may or may not be the case that s′ ≤ t.

The two possible cases mentioned above will be distinguished by whether s′ ≤ t or s′ > t.
Roughly speaking, we have the following possibilities:

1. If t < s′, then p(s) ≤ p(0) for 0 < s < min{n, t}.

2. If t ≥ s′, then p(s) > p(0) for s′ < s < min{n, t}.

The second case is of course the more interesting one. This is because, in the first case, the adversary
is better off storing nothing.

The above discussion can be rephrased by saying that, if the adversary’s success probability
exceeds p(0), then t ≥ s′, s ≥ s′ and s ≤ t. In this situation, the adversary must be storing all of
the file M , except for `+ log2 d (or fewer) bits.

We present some numerical examples.

Example 1. Suppose n = 212 = 4096, ` = 50 and d = 64. Then s′ = 4040. The exact value
for s̃ is s̃ = 4041, so the estimated value s′ from (6) is very accurate. Suppose the adversary’s
storage is t = s′ bits (this would be a selfish adversary). Then p(0) = 5.6× 10−14. Therefore, if the
adversary’s success probability exceeds 5.6× 10−14, it must be the case that the adversary is storing
at least 4041 of the 4096 bits of M (i.e., all but 55 bits). Figure 2 presents a graph of p(s) as a
function of s. Note that p(s) is very close to 0 until s is almost n, and then p(s) increases very
quickly to 1. This behaviour is typical of most “reasonable” parameter situations.

Example 2. Suppose n = 225 = 33554432, ` = 100 and d = 256. Then s′ = 33554324. The
exact value for s̃ is s̃ = 33554329, so the estimated value s′ from (6) is very accurate. Suppose the
(selfish) adversary’s storage is t = s′ bits. Then p(0) = 1.03× 10−25. Therefore, if the adversary’s
success probability exceeds 1.03 × 10−25, it must be the case that the adversary is storing at least
33554329 of the 33554432 bits of M (i.e., all but 103 bits).

Now we consider how to construct an observer O(t, s) for the adversary A(t, s) and we analyze
the success probability of the observer we construct. O(t, s) will simply copy any value M where
the output of P is obtained by an online evaluation of h(M ‖ c), where c is the challenge. Suppose
we define events Ei and probabilities pi (1 ≤ i ≤ 3) as in the proof of Theorem 1. It is clear that
O(s, t) outputs the correct file M whenever E2 holds and E1 does not hold. Therefore the success
probability of O(s, t) is

(1− p1)p2 =

(
1− t− s

2`d

)
2s−n.

9

Figure 2: Success probability as a function of s when n = 4096, ` = 50 and d = 64.

If the success probability of O(s, t) is denoted by ε, then, from (3), we can compute

ε = p(t, s)− p1 − (1− p1)(1− p2)p3.

It is clear that
ε > p(t, s)− p1 − p3. (7)

For most “reasonable” parameter values, p1 and p3 are very small, and hence ε is very close to
p(s, t).

2.1 A Variation

One possible variation/generalization of the adversary A(t, s) would be to consider storing partial
precomputed information about responses rather than “all or nothing”. However, it is not hard to
see that this will not increase the adversary’s success probability. Suppose that an adversary A stores
d1 bits of the response h(M ‖ c1) and d2 bits of the response h(M ‖ c2), where 0 < d1 ≤ d2 < d.
Consider the modified adversary A′ who stores d1−1 bits of the response h(M ‖ c1) and d2 + 1 bits
of the response h(M ‖ c2). These two adversaries have the same storage requirement. However,
we show below that the success probability of A′ is at least as large as the success probability of A.
Iterating this process enough times, we can transform the adversary A into one that does not store
any “partial” responses.

Here is the proof of the claim: The probability of A guessing the response is 2−d+d1 when the
challenge is c1, and 2−d+d2 when the challenge is c2. For the adversary A′, the probabilities are
2−d+d1−1 when the challenge is c1, and 2−d+d2+1 when the challenge is c2. The claim is proven by
observing that

2−d+d1 + 2−d+d2 ≤ 2−d+d1−1 + 2−d+d2+1

when d1 ≤ d2.

10

2.2 Discussion

We conclude this section by discussing how the results presented in this section should be inter-
preted. Theorem 1 gives an exact success probability of a particular type of bounded storage
adversary in terms of different parameters. If parameters of the scheme are chosen in a suitable
way, this probability is close to 1 only when s̃, the number of bits of the file stored properly by
the server S, is very close to the actual size of the file. Therefore, if the adversary succeeds in the
challenge-response protocol with a probability close to 1, then this implies that it has stored almost
all of the file. The construction of the observer and equation (7) then guarantee that O outputs
almost all of the file with probability very close to the success probability of the adversary.

3 A General Bound

In this section, we consider a much more general adversary than the one studied in Section 2. We
consider an arbitrary proving algorithm P for which succ(P) ≥ δ. Instead of bounding the storage
utilized by S (as we did in the previous section), we upper-bound the number of calls to the random
oracle that the adversary is allowed to make. We denote the maximum allowed number of random
oracle calls by s∗ and we permit S to store all the responses to these calls. We can assume without
loss of generality that s∗ ≤ 2`, since there are only 2` challenges h(M ‖ c) that are pertinent to
the challenge-response protocol. We refer to this adversary as a (δ, s∗)-adversary. The proving
algorithm P can be either a deterministic or a randomized algorithm.

We want to quantify observability as a function of the success probability of P. in order to do
this, it is helpful to define some notation. First, we define

SP = {c : h(M ‖ c) has been precomputed}.

Observe that |SP | ≤ s∗.
Second, for c 6∈ SP , let pc denote the probability that P computes h(M ‖ c) online, in response

to the challenge c. It is possible that a given value pc 6= 0 or 1, because P is permitted to be a
randomized algorithm.

The next theorem upper-bounds the success probability of P in terms of s∗ and the pc values.

Theorem 2. Suppose that P is a (δ, s∗)-adversary for a challenge-response protocol. Then

2`δ ≤
(

1− 1

2d

)s∗ +
∑
c6∈Sp

pc

+ 2`−d. (8)

Proof. There are |SP | values of c for which h(M ‖ c) has been precomputed. For a challenge
c 6∈ SP , h(M ‖ c) is computed online with probability pc. If c 6∈ SP , then with probability 1 − pc,
the response h(M ‖ c) is not computed online and in this situation the probability that the response
given by P is correct is 2−d. It follows that

succ(P) ≤ |SP |
2`

+
1

2`

∑
c 6∈Sp

(
pc + (1− pc)2−d

)
.

After some simplification, the right-hand side of the above inequality can be rewritten as

1

2`

(
1− 1

2d

)|SP |+ ∑
c 6∈Sp

pc

+ 2−d.

11

Using the fact that |SP | ≤ s∗, we obtain

succ(P) ≤ 1

2`

(
1− 1

2d

)s∗ +
∑
c6∈Sp

pc

+ 2−d.

Since succ(P) ≥ δ, the inequality (8) follows.

Next, we consider how to construct an observer O and we relate the success probability of
O to the success probability of P. The basic idea is to copy any value M such that the output
of P is obtained by an online evaluation of h(M ‖ c), where c is the challenge. However, a
possible complication would be arise if h(M ‖ c) = h(M ′ ‖ c) for some M ′ 6= M and for some
c. For example, perhaps P computes h(M ‖ c), and then it manages to find M ′ 6= M such that
h(M ‖ c) = h(M ′ ‖ c). It might not be obvious to O whether to copy M or M ′.

One possible way to address this issue would be restrict relevant parameters of the scheme so
that it is very unlikely that any collision will ever be encountered by the adversary. In general, this
will follow from the birthday paradox provided that

s∗ � 2d/2. (9)

In the following analysis, we will assume that (9) holds and hence we can assume that the adversary
is not able to find any M 6= M ′ such that h(M ‖ c) = h(M ′ ‖ c) for some c.

Theorem 3. Suppose that A is a (δ, s∗)-adversary for a challenge-response protocol for a PDO
scheme, and suppose that (9) holds. Then there exists a (δ, ε)-observer, where

ε ≥ 2dδ − 1

2d − 1
− s∗

2`
. (10)

Proof. As described above, the observer O copies any value M such that the output of P is obtained
by an online evaluation of h(M ‖ c), where c is the challenge. Denote

p∗ =
∑
c6∈Sp

pc.

Since (9) holds, it follows that any value M copied by O is correct (except with negligible prob-
ability). Therefore O is a (δ, ε)-observer, where ε = p∗/2`. Applying (8) from Theorem 2 and
simplifying, it follows that

ε =
p∗

2`
≥ 2dδ − 1

2d − 1
− s∗

2`
.

Let’s look a bit more closely at the lower bound (10). For any “reasonable” values of the
parameters, the first term is essentially equal to δ and the second term can be ignored. As an
example, suppose we take ` = 100 and d = 256. Even if the adversary precomputes s∗ = 260

responses, the second term is at most 2−40. When δ is somewhat larger than 2−40, we see that ε is
very close to δ.

12

4 Multiple Runs of the Challenge-Response Protocol

Our definition of an observer given in Section 1 requires that an ε fraction of the file M can be
obtained from a single run of the challenge-response protocol. This is a strong requirement, obvi-
ously, and protocols satisfying this requirement must necessarily involve challenges that “depend
on” an ε fraction (or more) of M . For ε close to 1, this could be problematic because a frequent
goal of POR-type protocols is to only require responses that depend on a “small” part of the whole
file M (this is important mainly for efficiency reasons). In this section, we give a relaxation of our
definition of an observer that allows a prover to respond to the challenges more efficiently while
preserving the same type of security guarantees considered in Section 2 and Section 3. Specifically,
we allow the O to watch some number σ ≥ 1 of executions of the challenge-response protocol,
possibly copying part of M from each run. After σ runs of the protocol, O should have copied an
ε fraction of file M , on average.

More precisely, let 0 < δ ≤ 1, let 0 < ε ≤ 1 and let σ ≥ 1 be an integer. We say that an O is
a (δ, ε, σ)-observer provided that the expected fraction of M that O copies is at least ε whenever
succ(P) ≥ δ, where O watches σ runs of the challenge-response protocol with random challenges
chosen by C. In general, ε will increase as σ is increased.

We give an analysis of a simple scheme in this setting. Suppose that a challenge c consists of
a randomly-chosen k-subset of {1, . . . ,m}, say c = {i1, . . . , ik}, where i1 < · · · < ik. The correct
response is r = (Mi1 , · · · ,Mik). This scheme has been called the “Multiblock Challenge Scheme”
and a detailed analysis of it, from the point of view of coding theory, can be found in [11].

Theorem 4. For any integer σ ≥ 1, there is a (δ, ε, σ)-observer for the Multiblock Challenge

Scheme, where ε = δ
(

1−
(
1− k

m

)σ)
.

Proof. Denote σ random challenges by c1, . . . , cσ. The observer O will simply copy every message
block supplied by P during the σ executions of the challenge-response protocol. It is possible that
O observes a message block Mi and later observes a possibly different version of the same message
block Mi, because some of the adversary’s responses might be erroneous. In this case, only the
“last” copy of Mi is retained. However, any specific copy of Mi obtained by O is correct with
probability at least δ.

For 1 ≤ j ≤ m, define a random variable Xj , where

Xj =

{
1 if j ∈

⋃σ
i=1 c

i

0 otherwise.

Then define X =
∑m

j=1 Xj . It is easy to see that

E[Xj] = Pr[Xj = 1] = 1−
(

1− k

m

)σ
for 1 ≤ j ≤ m. By linearity of expectation, we have

E[X] = m

(
1−

(
1− k

m

)σ)
.

This says that the expected fraction of message blocks that are queried is 1−
(
1− k

m

)σ
.

The probability that a specific response to a query is correct is at least δ. Therefore, our

observer is a (δ, ε, σ)-observer, where ε = δ
(

1−
(
1− k

m

)σ)
.

13

For fixed k and m, we have that
(
1− k

m

)σ ≈ e−kσ/m, so ε approaches δ exponentially quickly
as a function of σ. This is exactly what we want to happen.

5 Summary and Conclusion

We have introduced the new notion of proof-of-data-observability as a strengthening of the now-
standard concepts of proof-of-recovery and proof-of-data-possession schemes for cloud storage. This
new concept provides stronger guarantees relating to the server’s behaviour than the traditional
notions do. We described and analyzed some simple schemes for proof-of-data-observability in the
random oracle model. We also proved some general necessary conditions for the existence of these
schemes, and we studied an extension where the observer is allowed to accumulate the stored file
over time, by observing a sequence of runs of the challenge-response protocol.

References

[1] G. Ateniese, R.C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N.J. Peterson and D.X. Song.
Provable data possession at untrusted stores. ACM Conference on Computer and Communi-
cations Security, 2007, 598–609.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. ACM Conference on Computer and communications security, 2003, 62–73.

[3] K.D. Bowers, A. Juels and A. Oprea. Proofs of retrievability: theory and implementation.
Proceedings of the First ACM Cloud Computing Security Workshop (2009), 43–54.

[4] Y. Dodis, S. Vadhan and D. Wichs. Proofs of retrievability via hardness amplification. Lecture
Notes in Computer Science 5444 (2009), 109–127 (TCC 2009).

[5] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforcing communication and
storage complexity. Lecture Notes in Computer Science 2357 (2002), 120–135 (FC 2002).

[6] M.I. Husain, S. Ko, A. Rudra and S. Uurtamo. Storage enforcement with
Kolmogorov complexity and list decoding. ArXiv report 1104/3025, 2011,
http://arxiv.org/abs/1104.3025.

[7] M. I. Husain, S. Ko, A. Rudra and S. Uurtamo. Almost universal hash families are also
storage enforcing. ArXiv report 1205/1462, 2012, http://arxiv.org/abs/1205.1462.

[8] A. Juels and B.S. Kaliski Jr. PORs: Proofs of retrievability for large files. ACM Conference
on Computer and Communications Security (2007), 584–597.

[9] M. Liskov. Constructing an ideal hash function from weak ideal compression functions. Lecture
Notes in Computer Science 4356 (2007), 358–375 (SAC 2006 Proceedings).

[10] M. Naor and G. N. Rothblum. The complexity of online memory checking. Journal of the
ACM 56 (2009).

14

[11] M.B. Paterson, D.R. Stinson and J. Upadhyay. A coding theory foundation for the analysis
of general unconditionally secure proof-of-retrievability schemes for cloud storage. To appear
in Journal of Mathematical Cryptology.

[12] T. Ristenpart, H. Shacham and T. Shrimpton. Careful with Composition: Limitations of
the Indifferentiability Framework. Lecture Notes in Computer Science 6632 (2011), 487–506
(EUROCRYPT 2011).

[13] H. Shacham and B. Waters. Compact proofs of retrievability. Lecture Notes in Computer
Science 5350 (2008), 90–107 (ASIACRYPT 2008).

[14] A. C.-C. Yao. Some complexity questions related to distributive computing (preliminary
report). In STOC, pages 209–213, 1979.

15

