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Abstract. A fully homomorphic encryption (FHE) scheme is envisioned as be-

ing a key cryptographic tool in building a secure and reliable cloud computing 

environment, as it allows arbitrarily evaluation of a ciphertext without revealing 

the plaintext. However, existing FHE implementations remain impractical due 

to their very high time and resource costs. Of the proposed schemes that can 

perform FHE to date, a scheme known as FHE over the integers has the ad-

vantage of comparatively simpler theory, as well as the employment of a much 

shorter public key making its implementation somewhat more practical than 

other competing schemes.  

To the author’s knowledge, this paper presents the first hardware implemen-

tations of encryption primitives for FHE over the integers using FPGA technol-

ogy. First of all, a super-size hardware multiplier architecture utilising the Inte-

ger-FFT multiplication algorithm is proposed, and a super-size hardware Barrett 

modular reduction module is designed incorporating the proposed multiplier. 

Next, two encryption primitives that are used in two schemes of FHE over the 

integers are designed employing the proposed super-size multiplier and modular 

reduction modules. Finally, the proposed designs are implemented and verified 

on the Xilinx Virtex-7 FPGA platform. Experimental results show that the 

speed improvement factors of up to 44.72 and 54.42 are available for the two 

FHE encryption schemes implemented in FPGA when compared to the corre-

sponding software implementations. Meanwhile, the performance analysis 

shows that further improvement is speed of these FHE encryption primitives 

may still be possible. 

Keywords: Barrett Modular Reduction, Fully Homomorphic Encryption, 

FPGA, Hardware, Integer-FFT Multiplication. 

1 Introduction 

Fully homomorphic encryption (FHE) is a significant breakthrough in cryptographic 

research in recent years [1]. A FHE scheme can be used to arbitrarily perform compu-

tations on a ciphertext, but without compromising the content of the corresponding 

plaintext. Therefore, a practical FHE scheme will open the door to numerous new 
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security technologies and privacy related applications, such as the privacy-preserving 

search, cloud-based storage, computing outsourcing and identity preserving banking.  

To date, many FHE schemes based on different computationally hard problems 

have been proposed [1 – 9], as well as their software implementations [8 – 13]. The 

first software implementation of the lattice-based FHE scheme was reported by Gen-

try and Halevi (GH) with a public key size from 17 Megabytes (MB) to 2.3 Giga-

bytes, and a ciphertext homomorphic evaluation time from 6 seconds to 30 minutes 

[10]. Then, Coron et al. [8] proposed a scheme of FHE over the integers with a re-

duced public key size from 0.95 MB to 802 MB, and an encryption time from 0.05 

seconds to 3 minutes. Next, Coron et al. [9] further reduced the public key size to no 

more than 10.1 MB but with a longer encryption time of 0.05 seconds to 7 minutes. In 

more recent work, Gentry et al. described a homomorphic implementation of the 

block cipher Advanced Encryption Standard (AES), which requires 36 hours to eval-

uate a single AES encryption operation [11]. Lauter et al. presented a somewhat 

homomorphic encryption implementation that employs much shorter key, 29 Kilo-

bytes, than its FHE counterpart, and requires a shorter encryption time of 0.024 se-

conds [12]. The most recent software implementation was done on a NVIDIA C2050 

GPU [13], and it uses the integer-FFT multiplication algorithm [14] to compute the 

super-size multiplication and Barrett modular reduction [15] to implement Gentry’s 

FHE scheme [2]. It gained almost 7 times speed improvement compared to the work 

in [10]. However, all these reported software implementations results show that cur-

rent FHE schemes still face severe efficiency challenges, impractical public key sizes 

and a very large computational complexity. Hence, there is still a long way to go be-

fore a practical FHE scheme can be deployed in real-life applications. To date, the 

only previous hardware related FHE implementations are reported in [16, 17]. In the-

se work, they look to obtain a scalable hardware implementation on a FPGA platform 

using the Matlab
®
 HDL Coder tool, however they do not report any implementation 

or simulation results yet. 

The objective of this paper is to accelerate the encryption primitives in FHE over 

the integers using FPGA technology. This algorithm was chosen as it uses smaller key 

size, and the FPGA platform is used as it provides a quick verification environment
1
. 

Specifically, we present the first full hardware implementation of the encryption 

primitives required for FHE over the integers. Our contributions are as follows: (i) a 

super-size hardware multiplier architecture using the Integer-FFT multiplication algo-

rithm is proposed; (ii) a super-size hardware architecture of Barrett modular reduction 

is presented using the proposed multiplier as a sub-module; (iii) two encryption primi-

tives of FHE over the integers are designed utilising the proposed super-size multipli-

er and modular reduction as sub-modules; (iv) our implementations are verified in 

Xilinx Virtex-7 FPGA, and the result shows our designs achieve a significant perfor-

                                                           
1 As low cost FPGAs decrease in price, physical size and power consumption, while at the 

same time increasing in density, they are also increasingly being used in released products. 

This has the added advantage in security scenarios of allowing in-situ upgrading of hard-

ware as recommended protocols and algorithms are changed due to vulnerability concerns. 



mance improvement of a factor of 44.72 and 54.42 over their prior corresponding 

software counterparts.  

The rest of the paper is organised as follows. In Section 2, the previously related 

works are reviewed. In Section 3 the proposed hardware architecture of the super-size 

multiplier is described. Next, Section 4 details the hardware architectures of the pro-

posed super-size Barrett reduction and two FHE encryption primitives. The imple-

mentation and performance comparison results are given in Section 5. Finally, Section 

6 concludes the paper. 

2 Review of Related Work 

2.1 Encryption Primitives in FHE over the Integers 

Currently, there are three different schemes of FHE over the integers. The first 

scheme was proposed by van Dijk et al. [3]. Then this scheme was improved by 

Coron et al. [8] by reducing the public key size, this scheme is referred to as CMNT 

in this paper. The last scheme with the smallest public key size was presented in 2012 

also by Coron et al. [9], and is denoted as CNT here. As the encryption primitives of 

the two shorter key size schemes, CMNT and CNT, are implemented in this paper, 

their mathematical definitions are listed in Equation (1) and Equation (2). 

                                                                    (1) 

                                                    
 
            (2) 

In both equations,   denotes the ciphertext;         is a 1-bit plaintext;   is a 

random signed integer in         ;          , is a part of the public key. In Equa-

tion (1),        with         is a random integer sequence, and each      is a  -bit 

integer.        and        with       are two public key sequences, and each entry 

is a  -bit integer. In Equation (2),      with       is a random integer sequence, 

and each    is a  -bit integer.      with       is again the public key sequence, 

and each    is a  -bit integer. The parameter bit-length of four test groups for both 

equations, which will be used in the following performance comparison in Section 5, 

are individually listed in Table 1 and Table 2. 

Table 1. The four groups of parameters for Equation (1) in CMNT [8] 

Group                 

Toy 42 168 0.16 12 

Small 52 208 0.86 23 

Medium 62 248 4.20 44 

Large 72 288 19.00 88 

 

To implement the above two equations, the first challenge is the super-size multi-
plication. A typical multiplication algorithm for very large bit-length operands is Inte-
ger-FFT [14, 18, 19]. It conquers large bit-length multiplication by first dividing it into 



small bit-length multiplication then accumulating. For example, the widely used open-
source GMP library uses the Schönhage-Strassen Integer-FFT algorithm [14] for mul-
tiplication when the bit-length of operands is greater than     bits [20]. There are many 
different Integer-FFT variants that use different methods to improve the small bit-
length multiplication speed, as it is the performance bottleneck of the Integer-FFT 
algorithm. However, a Xilinx Virtex-7 FPGA device can help to solve this problem by 
using its embedded multipliers, which are specially optimised for high-speed perfor-
mance of up to 750MHz [21]. Thus, the basic Integer-FFT algorithm [19] combined 
with these embedded FPGA multipliers is used in our work. 

Table 2. The four test groups of parameters for Equation (2) in CNT [9] 

Group                 

Toy 936 936 0.15 158 

Small 1476 1476 0.83 572 

Medium 2016 2016 4.20 2110 

Large 2556 2556 19.35 7695 

 
The super-size modular reduction is also a considerable challenge. Generally, the 

modular reduction algorithms used in traditional long bit-length cryptography imple-
mentations are Montgomery [22] and Barrett reduction [15]. However, Montgomery 
reduction algorithm is only suitable for scenarios where successive modular operations 
with the same operands are required, such as exponentiation for example. Otherwise, a 
heavy pre-computation and post-processing penalty is incurred. On the other hand, 
Barrett reduction only requires a one-time pre-computation, and is typically used after 
the multiplication is completed. Therefore, Barrett reduction is adopted for the modular 
reduction in the proposed hardware implementations.  

The objective of this paper is to accelerate the speed of Equations (1) and (2), ra-
ther than dealing with the storage bottlenecks. Therefore, it is assumed that there is 
sufficient off-chip memory available for the designed FPGA accelerator to store its 
intermediate variables and final results. This is a reasonable assumption as the acceler-
ator could be viewed as a powerful coprocessor device, sharing memory with the main 
workstation (be it a server or PC) over a high speed PCI bus. However, it is acknowl-
edged that off-chip memory I/O can become a bottleneck and that the latency of the 
bus becomes an issue. Investigations into such issues will be the subject of future 
work.  

2.2 The Integer-FFT Multiplication Algorithm 

The Integer-FFT multiplication treats each multiplication operand as a sequence of 

smaller, computationally efficient numbers instead of a single super-size integer. The 

input parameters to the Integer-FFT multiplication are:  

─  , a  -bit prime number, used as the modulus in the Integer-FFT modular reduc-

tion. 

─  , the FFT point number. 

─  , the twiddle factor of the FFT. 

─  , the base unit bit-length when transforming the input super-size operand into a  -

bit digit sequence.  



To ensure the Integer-FFT algorithm works correctly, it is required that the FFT 

point number   divides     for every prime factor   of   (in this paper, because   

is a prime,   is equal to  ), the twiddle factor   is a primitive  -th root of unity 

(meaning that              and                  for any prime divisor   
of   [14]), and all operations used in the FFT should be modular with respect to the 

prime modulus,  . 

Table 3. The four groups of Integer-FFT parameters in our experiments. 

Group           

Special modulus form [23] 
      33 64 2 8 

      65 128 2 24 

Solinas modulus form [24]           64 128 7 28 

General modulus form [19]           32 64 17 12 

 

The Integer-FFT parameters used in our experiments are listed in Table 3. As the 

selection of a reasonable modulus,  , heavily influences the modular multiplication 

performance in Equations (4 – 6), four different moduli are implemented and com-

pared in this paper. Their different characteristics are detailed in Section 3.3. In the 

following Algorithm 1, we take an example,      , to explain the Integer-FFT 

algorithm [14] used in this paper as illustrated in Fig. 1(i).  

Algorithm 1: Integer-FFT Multiplication Algorithm 

Input:  ,  ,  ,  ,  ,   

Output:        

 Step-1:   is processed as a  -bit digit sequence,      with      . The se-

quence      should be treated as:    to        are filled by the real data of   

from the least significant bit (LSB) to the most significant bit (MSB), while      

to      are filled with 0. Performing the same operations to   to obtain     . 
Their relationship is expressed in Equation (3): 

                                 
 
                 

 
            (3) 

 Step-2:  Perform a  -point FFT over the finite field      with the sequence 

     as inputs to obtain a  -point sequence,      with        The same op-

erations are applied to      to obtain the sequence     . Equation (4) is used to 

describe this relationship. 

                            
   
                     

   
               (4) 

 Step-3:  Perform a point-wise multiplication over the finite field     , as in 

Equation (5), to get a  -point sequence      with      : 

                                                                  (5) 

 Step-4: Using the sequence      to perform a  -point IFFT, as in Equation (6), 

in the finite field      to get a  -point sequence     : 



                                                    
   
                (6) 

 Step-5: Resolve the long carry chain to obtain the product      , as de-

scribed in Equation (7). 

                 
    (7) 

2.3 The Barrett Modular Reduction Algorithm 

Algorithm 2: Barrett Reduction Algorithm 

Input:   (   bits),   (  bits) 

Output:              
 Step-1: Pre-computing a constant number,          ; 

 Step-2: Computing    according to Equation (8);  

 Step-3: Computing        ;  

 Step-4: Computing         and        ;  

 Step-5: If     ,     , otherwise     . 

In this paper, two versions of Barrett modular reduction are designed. The first one is 

for the small size reduction used in the Integer-FFT algorithm, and the second is the 

proposed super-size Barrett reduction. Both of them adopt the Barrett reduction algo-

rithm introduced in [25].                          

                                                        

 

     
    

 

    
 (8) 

The essence of the Barrett reduction is that    as given in Equation (8) is used to es-

timate    , then       is used to approximate          . The advantage of this 

algorithm is that it has been proved that if      and    , at most only one sub-

traction is required in the final reduction [25]. Algorithm 2 outlines the Barrett reduc-

tion algorithm. 

3 The Proposed Super-Size Multiplier Architecture 

3.1 The Architecture Overview  

An overview diagram of the proposed super-size hardware multiplier architecture is 

illustrated in Fig. 1(ii). It consists of a shared RAM, a finite state machine (FSM) con-

troller, and an Integer-FFT unit. The shared RAMs are assumed to be off-chip, and are 

used to store the input operands, the intermediate and final results. The FSM controller 

is responsible for distributing the signals to schedule to algorithm. The proposed FSM 

scheduling mechanism can be viewed as a combination of school-book multiplication 

[20] and the Integer-FFT multiplication [14]. The core element of the design is an Inte-

ger-FFT module that executes a block multiplication for calculating partial products of 

the entire super-size multiplication, while the FSM controller schedules an iterative 

school-book multiplication to accumulate the block products. The proposed architec-



ture is also a fully pipeline architecture, as the RAM reading, RAM writing and Inte-

ger-FFT operations are executed in parallel. 
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Fig. 1. (i) Diagram of the Integer-FFT multiplication algorithm; (ii) Overview of the proposed 

super-size hardware multiplier architecture 

In the following of this subsection, we take an example,      , to explain the 
operation of the proposed architecture. It is assumed that the super-size operands,   
and  , are already stored in the shared RAMs before the multiplication starts. The input 
parameters to the proposed multiplier are divided into two groups. The first group re-
lates to multiplication operands,   (  -bit) and   (  -bit). The second group is the 

Integer-FFT related parameters as described in Section 2.2. The steps of computing 
      are as follows: 

 Step-1: In this step the operands are read from the shared RAMs. The operand   

is processed as a sequence of  
  

 
-bit data blocks,      with     

   

  
, from 

LSB to MSB. Similarly, the sequence      with     
   

  
 is obtained. Each 

iteration, 
  

 
-bit    and 

  

 
-bit    are read into the proposed Integer-FFT multipli-

er. Therefore, the total count of RAM read access is 
   

  
 

   

  
 due to the use of 

school-book multiplication method. 

 Step-2: The Integer-FFT multiplication is performed to calculate the block 

product,           , as described in Algorithm 1. 

 Step-3: Following the school-book multiplication method, this step accumulates 

the block products to obtain the final product,  . This step also determines how 

to write/read the partial products to/from the shared RAMs. The final product,  , 

is written to the share RAM as 
  

 
-bit data blocks,      with     

        

  
, 

from LSB to MSB as follows: 

─ Step-3.1: Read the 
  

 
-bit partial product,     , from the shared RAMs into the 

proposed multiplier. The step is only done when both     and    . 



─ Step-3.2: Write the partial/intermediate block product into the shared RAMs. 

In this step, the block product,     , is processed as two 
  

 
-bit parts from LSB 

to MSB,     
        and     

         . If        ,     
        is directly 

written into memory, and     
         remains the same; else if      and 

   ,     
               

         is written to memory; else if     and 

    , the addition,      
             , is performed prior to writing 

memory; else if     and    ,     
               

              is writ-

ten to memory. When      ,       
         is kept in an on-chip register 

array for faster accumulation. 

─ Step-3.3: Determine the index of the operand data block to be read and de-

termine the conditions for iterating the block multiplication as follows: If 

  
   

  
  , increment  , then go to Step-1; Else if    

   

  
   and 

  
   

  
  , reset    , increment  , then go to Step-1; Else when    

   

  
   and    

   

  
  , the whole multiplication is completed. 

In the following sections, the key components in the proposed multiplier architecture 

are described. In all the following diagrams the outputs of multiplication and sub-

modules are registered.  

 

3.2 The FFT/IFFT Module and Its Butterfly Unit 

There are various different FFT algorithms and architectures that can be used to im-

plement Equations (4) and (6) for different tradeoff purposes [18, 19]. In this paper, 

the radix-2 fully parallel architecture is adopted for the FFT and IFFT in order to ob-

tain the highest multiplication throughput. The architecture is illustrated in Fig. 2(i). 

For example, there are       butterfly stages for a  -point FFT, and each butterfly 

stage is composed of     parallel butterfly units, which is plotted in Fig. 2(ii).   
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Fig. 2. (i) The radix-2 parallel FFT diagram; (ii) The proposed FFT/IFFT butterfly unit 

The IFFT in Equation (6) needs to multiply            , which is not needed in 

the FFT. If an identical architecture is used to implement both of FFT and IFFT, a 

point-wise module multiplication stage is additionally required for the IFFT, and the 

cycle latency of the IFFT is increased compared to the FFT. The problem is solved by 

pre-computing                      to incorporate             into the IFFT 



twiddle factors, then      is used in the final IFFT butterfly stage, while the other 

stages still use    . In order to meet the butterfly requirement of both of FFT and 

IFFT, a unified butterfly unit is proposed in Fig. 2(ii). The multiplication operation at 

the bottom left-hand side in Fig. 2(ii),            , is the same for all FFT/IFFT 

butterfly stages, as well as the operation    /      as shown on the right-hand side 

of Fig. 2(ii). However, the operation of         illustrated on the upper left-hand 

side of Fig. 2(ii) is only required at the final stage of the IFFT.  

In our designs, if the special modulus form          as listed in Table 3 is 

used, each ( -bit   -bit) multiplier in a butterfly is implemented as bit-shifting, as 

the  -th primitive root of unit   is equal to 2 in this situation. Otherwise, each butter-

fly multiplier is designed using a multi-stage pipelined multiplier, which is imple-

mented using the FPGA embedded multipliers through the use of the Xilinx Core 

Generator [21] tools. This prevents the multipliers becoming the timing performance 

bottleneck in our design.   

3.3 The Modular Reduction Module 

The addition/subtraction modular reduction is very simple and is illustrated in the 

right-hand part in Fig. 2(ii). Therefore, this subsection introduces the modular reduc-

tion unit used after the butterfly and point-wise multiplication. Three reduction meth-

ods are designed and tested in our work: the first is the Barrett modular reduction that 

can be used for any modulus (          here), the second is the simplest reduc-

tion method of the three that is only suitable for a modulus with the special form 

        , and the third is suitable for the Solinas modulus           [24].  
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Fig. 3. The proposed modular reductions used in FFT butterfly and point-wise multiplication: 

(i) Barrett reduction suitable for all modulus; (ii) The simplest reduction only suitable for a 

special form modulus,         ; (iii) A simpler reduction only suitable for the Solinas 

form modulus  



The Barrett reduction architecture is shown in Fig. 3(i). Following the Barrett re-

duction algorithm outline in Section 2, in our design we set      and      , 

thus,           , and the pre-computed constant number in Fig. 3(i) is     bits.  
The design of the special form modulus reduction algorithm [14] is shown in Fig. 

3(ii). The input parameters are   (  -bit) and         , the reduction   
          is easily to be obtained using the logic in Fig. 3(ii) as follows: let    
                                  and        ; If 
    ,     ; else     . As no multiplication is required here, this circuit obvi-
ously consumes less hardware resource than Barrett reduction, and its speed perfor-
mance is better. 

The design of the Solinas modulus reduction is shown in Fig. 3(iii). If the Solinas 

modulus             is used, the 128-bit multiplication product can be ex-

pressed as                   , where  ,  ,   and   are 32-bit numbers. As 

                and                   , the reduction can be quickly com-

puted as                                  . Thus, the upper-half 64-bit 

(        ) and the lower-half 64-bit (      ) results can be computed inde-

pendently. As the result of                is within the range of ( ,   ), an 

addition, a subtraction and a 3:3 multiplexer are needed for the final reduction. Alt-

hough it is a little more complex than the special modulus form, it is much simpler than 

the Barrett reduction as no multiplication is required. However, according to the condi-

tion described in Section 2.2, not every Solinas modulus is suitable for the Integer-FFT 

algorithm [14, 19].  

3.4 The Addition Recovery and Product Accumulation Module 

The addition recovery module is responsible for converting the IFFT outputs back to 

an integer by resolving a very long carry chain, as is shown in Equation (7). The 

product accumulation module is used to generate intermediate product results that can 

be written to memory. As these two modules are tightly coupled together in our pro-

posed design, they are described in the same section.  

The addition recovery architecture is composed of two parts, respectively depicted 

in Fig. 4(i) and 4(ii). The part in Fig. 4(i) is a parallel two-by-two adder tree, which 

means at each addition level, the adjacent two entries are added from the least signifi-

cant entry to the most significant entry. Let   represent the data bus bit-width between 

our super-size multiplier and the shared RAMs. There are in total 
 

 
 levels two-by-two 

adder trees (provided suitable values of   and   are chosen). Let the sequence       

with     
  

 
  be the result after 

 

 
 levels two-by-two addition. The addition results 

in each level are registered. Otherwise, a very long carry chain will become the time 

performance bottleneck of the design. It can be shown that the first useful  -bit output 

value is included in    , the second available  -bit product can be obtained by 

           , and the third  -bit product can be obtained by          

          . Therefore, this can be achieved by a registered carry chain addition, 

which is illustrated in Fig. 4(ii). 

The advantage of the above architecture is that each clock we have a  -bit result to 

write into memory, thus, there is no bus bit-width wastage. However, as the carry 



chain of length     is needed to generate the  -bit result, the parameter     should 

be carefully chosen to avoid this carry chain becoming the performance bottleneck. 

This parameter is determined by iterative experiments in our implementation (here the 

values 
 

 
           are used for the four test groups in Table 4 respectively).  
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Fig. 4. The proposed addition recovery architecture: (i) a parallel two-by-two adder tree used as 

the 1st part; (ii) a serial and registered carry chain used as the 2nd part.   
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The proposed product accumulation architecture is illustrated in Fig. 4(ii). It is as-

sumed that the sequence of {  } with            is the input. This architecture is 

a detailed diagram illustrating how to execute the control logic explained in Step-3.2 

and Step-3.3 in Section 3. Since each iteration a       -bit partial/intermediate prod-

uct is written into memory, the LSB product (i.e. when             ) has a differ-

ent processing procedure from the MSB product (i.e. when            ), which is 

shown in Fig. 5(i) and Fig. 5(ii) respectively.  



From the carry chain logic perspective, the logic in Fig. 4(ii) should be executed 

after that in Fig. 4(i). Actually in our design, they are concurrently and pipelined exe-

cuted. We take the example in Step-3.2 to explain in Section 3. Each block product, 

    , is processed as two       -bit parts,     
        and     

        . In the first 

block round (i.e.        ),     
         is first generated and written into 

memory. At the same time,     
         cannot be obtained due to the lacking of carry 

bits. Then from the next block iteration (i.e.           ),       
         and 

    
         can be calculated simultaneously, as all the parameters in Fig. 4(i) and 

Fig. 4(ii) are already ready to use from this moment. 

4 The Proposed FHE Encryption and Super-Size Modular 

Reduction Architecture  

The proposed hardware architecture for the two encryption primitives in CMNT and 

CNT are plotted in Fig. 6(i). These two primitives share the same architecture but 

with different FSM controller logic (i.e., different accumulation and multiplication 

schedule procedure). Due to that only one instance of the proposed multiplier is im-

plemented in our architecture, the FHE encryption architecture is tightly coupled with 

the super-size Barrett modular reduction using the FSM controller. Thus, the over-

view diagram in Fig. 6(i) can also represent the proposed architecture of the super-

size Barrett reduction, which means that all the multiplications, in Equations (1) and 

(2) and the super-size Barrett reduction, are completed by the single Integer-FFT in-

stance. 
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Fig. 6. The proposed FHE encryption and super-size Barrett modular reduction architecture: (i) 

an overview diagram; (ii) a super-size accumulation module for FHE encryption; (iii) the sub-

traction module for the super-size Barrett reduction. 

The proposed super-size accumulation module is illustrated in Fig. 6(ii) to com-

plete the required product accumulation operation in Equations (1) and (2). It is basi-

cally a general  -bit width accumulation operation, which is interleaved with the 

memory reading/writing operations. As the bit-length of the modulus    in Equations 

(1) and (2) is  , the bit-length of the accumulation result in Equations (1) and (2) 



should be defined as     according to the adopted Barrett reduction algorithm [25]. 

As the bit-length of    or      is much less than   and the bit-length of the accumula-

tion counter   is much less than  , it is clear that   is also much less than  . This is 

beneficial to the super-size Barrett reduction hardware design, as it allows more flexi-

bility to choose the parameters. In this super-size situation, Equation (8) becomes (9): 

                                                        

 

    
 
    

  

    
 (9) 

Here, we still use the symbols   and    in our explanation. As  , 
 

    
 

    

  
 and    

are super-size parameters, it is impossible to directly load all the required bits of 
 

    
 

and    into the multiplier directly. Therefore, we need to iteratively access the memory 

to obtain the full values. An implementation issue of the super-size Barrett reduction 

is how to choose the suitable value of   and   in Equation (9) so that the correct val-

ues of 
 

    
 and    can be read out from the right address of the shared RAMs when 

computing 
 

    
 

    

  
 and     . In our work, this issue is solved by relating the 

value of   and   to the data bus bit width,  , as given in Equations (10) and (11),  
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In Equation (10) it is assumed that     in super-size FHE implementation. 

Through setting the initial RAM storage address of    and 
 

    
 

    

 
 in the shared 

RAMs to 0, the above parameter setting makes sure the initial read address of  , 
   

 
, 

is a multiple of  , and the starting read address of 
 

    
 

    

 
, 
   

 
, is also a multiple 

of  . At the same time, Equation (10) obviously meets the requirement of     , 

and Equation (11) also has     as it is mentioned that both   and   are much 

smaller than  . Thus, the procedure of the proposed super-size modular reduction is 

as follows: 

 Step-1: The constant number              is pre-computed and stored in the 

shared RAM before the reduction starts.  

 Step-2: Read   from its RAM address 
   

 
, and read      from its RAM address 

0, then use the super-size FFT multiplication module to calculate       
             .  

 Step-3: Read   from its RAM address 
   

 
, and read    from its RAM address 

0, then use the super-size FFT multiplication to compute             
     .  



 Step-4: Read  ,   and    from their RAM address 0, and use the super-size sub-

tract module to calculate                  ,           and output a 

signal that indicates which of     or    is the correct reduction result.  

As the subtraction also a super-size operation, a super-size subtraction module is 

designed in Fig. 6(iii) to complete the required subtraction operation in the super-size 

Barrett reduction. It is essentially a successively applied  -bit subtraction operation, 

but a memory read/write interface is added to extend its bit width 

5 Implementation, Performance and Comparison 

All the proposed architectures were designed and implemented using Xilinx FPGA 

technology. Modelsim 6.5a was used as the functional and post-synthesis timing sim-

ulation tool. The synthesis tool used was Xilinx ISE Design Suite 14.4. The synthesis 

strategy is set to balance between speed and area. The optimisation objective is set to 

speed. The target device is Virtex-7 XC7VX980T. The test vectors are generated as 

random numbers using C++ according to the parameter requirements in Table 1 and 

Table 2.  

The proposed super-size multiplier architecture has been implemented as a fully 

pipelined and parallel circuit. At the outer interface, three RAM read buses and one 

RAM write bus are implemented, so that the two super-size multiplication operands 

can be simultaneously read into the multiplier, and at the same time the final block 

product accumulation can also be executed simultaneously. At the inner layer, the 

Integer-FFT is also pipelined.  

From the Table 3, it can be found that the base unit bit-length is chosen as the max-

imum even number of the suitable numbers according to the parameter requirements 

described in Section 2. The reason is that the basic computation bit-length in Integer-

FFT is determined by the modulus bit-length rather than the base unit bit-length, so 

increasing the base unit bit-length will not decrease the speed performance of Integer-

FFT’s multiplication and addition. However, the base unit bit-length is related to the 

multiplication product throughput, that is, the larger the base unit bit-length, the less 

the consumed clock cycle count.  

In our implementation, the ratio of multiplication operand’s block bit-length and 

the data bus bit-width (for both RAM read and write), 
  

  
, to be equal to 8. Thus, the 

data bus bit-width is respectively equal to 32, 48, 192 and 224 corresponding to the 

four group parameters in Table 3. It means that the clock count is equal to 8 for each 

      -bit input operand, and the clock cycle count is also equal to 8 for each output 

block product except the first block product, according to our described hardware 

architecture. Meanwhile, the pipeline stage count in each FFT butterfly stage is de-

signed to be also equal to 8, which accounts for all the  -bit multiplication, addi-

tion/subtraction and modular reduction.  

The latency of the proposed architecture is analysed as follows. The total latency 

for the designed pipelined multiplication is composed of two parts. The first part is 

the time cost required by the preparation work before outputting the first block prod-



uct, and the second part is determined by the count of block products multiplying a 

fixed parameter for a pipelined architecture. It is equal to 8 in our design. 

Let   ,     and     respectively be the count of pipeline stage in a FFT/IFFT but-

terfly, in a point-wise multiplication, and in the addition recovery. Then, the time 

latency of the preparation work is equal to                           , 

where           denotes the latency for reading the operand, and          
         denotes the block product computation latency. Next, the common time 

latency of outputting each block products is analysed according to the logic described 

in Step-3.2 and Step-3.3 in Section 3. If               ,       -bit intermediate 

product is written into memory, and the latency is equal to          ; if    
            ,   -bit intermediate product is written into memory, and the latency 

is          . As there are totally              
   block products, in which there 

are            blocks with the condition                . As in our design we 

have             , therefore, combining the two parts, the whole time laten-

cy can be expressed as:  

                
 

 
 
    

  
    

  

 
  (12) 

We have implemented four different designs using the four groups of parameters in 

Table 3. For each design, the FFT point num   is fixed, unrelated to the multiplication 

operand bit-length. With the input multiplication operand bit-length increasing, 

            quickly becomes much smaller than                  

         , as the data bus bit-width   is fixed. Therefore, the time latency of the 

proposed implementations with the four forms of modulus is almost the same, which 

can be estimated by multiplying the total count of block products,            , and 

the output latency of each block product,             .  

For the small size 33-bit 33-bit, 32-bit 32-bit, 65-bit 65-bit and 64-bit 64-bit 

multiplication used in FFT butterfly and point-wise multiplication, Xilinx Core Gen-

erator is employed to generate a 4 stage pipelined multiplier using the embedded mul-

tipliers on the Virtex-7 FPGA device. Meanwhile, in order to meet the demand of the 

addition recovery latency, that is       , the adder tree length is equal to    , 4, 

4, 8, and 8 in our implementations respectively.  

Table 4. The synthesis results of the proposed super-size multiplier. 

Group 
Frequency 

(MHz) 

DSP48E1  

Utilisation  

(total: 3600) 

Slice register  

Utilisation 

(total: 1224000) 

Slice LUT  

Utilisation 

(total: 612000) 

Multiplier with  

      
304.990 256 191151 237034 

Multiplier with  

          
254.065 6292 213403 170919 

Multiplier with  

      
179.346 2048  955974 1214269 

Multiplier with  

          
166.450 18496 1122826 954737 

 



The synthesis results of the proposed super-size multiplier are displayed in Table 4. 

The hardware resource utilisation and frequency of the two designs with the special 

modulus (      and      ) are obviously better than the multipliers with the gen-

eral modulus (         ) and the Solinas modulus (         ). The reason 

the special modulus multiplier requires the smallest hardware resource is that it does 

not need multiplication in the FFT butterfly unit and no multiplication is needed for 

reduction with the special modulus. The reason the Solinas modulus multiplier re-

quires more hardware than the general modulus multiplier is that it does not need 

multiplication in the modular reduction units. It can also be seen that the smallest bit-

length modulus multiplier has the highest frequency, as the four multipliers needed 

for the point-wise multiplication in the Integer-FFT algorithm contain the critical 

path, and are implemented as 4 stage pipelined multipliers. However, this does not 

mean that the super-size multiplier with the special modulus will definitely outper-

form the other two, as the other two multipliers allow a larger base bit-length that 

implies that in one clock cycle the Solinas modulus multiplier can produce the longest 

product.  

Meanwhile, we can find that only the multiplier with the smallest modulus  
      is within the hardware resource budget, and there are not enough hardware 

resources for the other architectures. Thus, the conclusion is that the parallel FFT 

architecture is not suitable for a practical or implementable design due to the exces-

sive hardware cost, although this FFT architecture has the highest product throughput. 

Table 5. The synthesis results of the FHE encryption primitives. 

Group 
Frequency 

(MHz) 

DSP48E1  

Utilisation  

(total: 3600) 

Slice register  

Utilisation 

(total: 1224000) 

Slice LUT  

Utilisation 

(total: 612000) 

CMNT with  

      
292.410 256 191176 237031 

CMNT with  

          
254.054 6292 213788 171450 

CMNT with  

      
179.346 2048 956974 1215166 

CMNT with  

          
166.450 18496 1123001 954955 

CNT with  

      
292.410 256 191167 236979 

CNT with  

          
254.054 6292 213777 171494 

CNT with  

      
179.346 2048 956973 1215150 

CNT with  

          
166.450 18496 1122933 954947 

 

The proposed super-size Barrett reduction has been implemented by serially calling 

the super-size multiplier to finish Step-2 and Step-3 in Section 4. For the super-size 

subtraction module, additional RAM read and write buses are implemented in parallel 

to simultaneously execute with the Integer-FFT, so the cycle latency of the super-size 



Barrett reduction can be estimated at twice the time cost that is required by a super-

size multiplication with the input operand’s bit-length.  

The two encryption primitives in Equation (1) and (2) have been implemented by 

adding a super-size accumulation module following the super-size Barrett reduction. 

It can be seen as a serial procedure of two stages. In the first stage, the super-size 

accumulation module and the super-size multiplier are parallel executed; in the se-

cond stage, the super-size Barrett reduction is executed. The reason is that there is 

only one super-size multiplier is implemented. The synthesis results of the implemen-

tations of FHE encryption primitives are listed in Table 5. It can be seen that the fre-

quency and hardware resource utilization are almost the same as that in Table 4. The 

synthesis performance of CMNT and CNT is also nearly identical. The reason is that 

the controller part only occupies a very small percentage of hardware resource com-

pared to the super-size multiplier, and the only difference between the CMNT’s and 

CNT’s controller parts is the different multiplier scheduling procedures.   

Table 6. The average running time of the proposed FHE encryption designs. 

Group Toy Small Medium Large 

CMNT with       0.003 s 0.050 s  0.872 s 15.735 s 

CMNT with           0.003 s 0.057s  1.003 s 18.110 s 

CMNT with       0.000854 s 0.0139 s 0.239 s 4.284 s 

CMNT with           0.000815 s 0.0130 s 0.221 s 3.958 s 

CMNT [8] 0.05 s 0.79 s 10 s 2 min 57 s 

CNT with       0.011 s 0.306 s  7.586 s 159.173 s 

CNT with           0.012 s 0.352 s  8.731 s 183.204 s 

CNT with       0.000786 s 0.0142 s 0.5165 s 8.655 s 

CNT with           0.000739 s 0.0132 s 0.4772 s 7.994 s 

CNT [9] 0.05 s 1.0 s 21 s 7 min 15 s 

[13]  1.69 s   

 

The running time of the proposed hardware implementations of FHE encryption 

primitives using the 4 group parameters listed in Table 1 and Table 2 is provided in 

Table 6, and the previously reported corresponding software results are also given 

here. The running time is obtained by averaging the simulated latency of the test vec-

tors and multiplying by the synthesis frequency. It can be seen that although the spe-

cial modulus multiplier has a higher frequency, it needs more running time than the 

Solinas modulus multiplier. The reason is that for the proposed multiplier, the multi-

plication product throughput is mainly determined by the product of the data bus bit-

width, the base unit bit-length and the frequency, rather than only the frequency, 

which can be deduced from the time latency expression in Equation (12). Comparing 

the four group parameters in Table 3, it is also easy to see that although the special 

modulus can use twiddle factor of 2, its obvious disadvantage is that its base unit bit-

length is much smaller than the other two kinds of modulus when almost the same bit-

length modulus is employed. Therefore, for the proposed FHE encryption architec-

ture, the Solinas modulus is the best choice in our proposed designs, which enables a 

comparable simpler modular reduction and a larger base unit bit-length. 

It can be seen that when the Solinas modulus multiplier is used, the proposed im-



plementations are 61.34 and 67.65 times faster than the software implementations of 

CMNT and CNT respectively for the toy parameter group. And the proposed designs 

also respectively achieve a time improvement of 44.72 and 54.42 for the large group. 

It must be noted that only the experimental results using small FFT parameters (i.e., 

      and     ) are reported in this paper. As the product of the data bus bit-

width and the frequency determines the proposed super-size multiplier product 

throughput performance, we have enough reason to believe that there is still a great 

potential to improve the time performance for encryption primitives in FHE over the 

integers if larger FFT parameters are used. For example, the recent batch FHE over 

the integers proposed in [26] shows that the parallel super-size multiplication can be 

applied to improve the FHE encryption speed.  

6 Conclusion 

In this paper, the first complete hardware implementations of two encryption primi-

tives employed in schemes of FHE over the integers proposed by Coron et al. are 

presented. For this purpose, an Integer-FFT based super-size hardware multiplier 

module and a super-size Barrett modular reduction module are proposed. These pro-

posed hardware architectures are designed and verified on a Xilinx Virtex-7 device 

using four groups of Integer-FFT parameters. When the super-size multiplier is im-

plemented with a Solinas Integer-FFT modulus, the synthesis results show that our 

hardware implementations achieve speed improvement factors of 44.72 and 54.42 

compared to the corresponding software implementations for the large scale test data 

used in FHE over the integers. Meanwhile, as our implementations only use 128 point 

FFT and small base unit bit-length, 24 and 28, for the super-size hardware multiplier, 

there is still great potential to further improve the encryption speed in FHE over the 

integers. Recently research improvements in this area such as the batch FHE over the 

integers [26] confirm that this potential indeed exists for both hardware architecture 

and implementation developments.  
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