

Accelerating Fully Homomorphic Encryption over the

Integers with Super-size Hardware Multiplier and

Modular Reduction

Xiaolin Cao, Ciara Moore, Maire O’Neill, Elizabeth O’Sullivan and Neil Hanley

CSIT, ECIT, Queen’s University Belfast, Belfast, Northern Ireland, UK

xcao03@qub.ac.uk, cmoore50@qub.ac.uk, m.oneill@ecit.qub.ac.uk,

n.hanley@qub.ac.uk, e.osullivan@qub.ac.uk

Abstract. A fully homomorphic encryption (FHE) scheme is envisioned as be-

ing a key cryptographic tool in building a secure and reliable cloud computing

environment, as it allows arbitrarily evaluation of a ciphertext without revealing

the plaintext. However, existing FHE implementations remain impractical due

to their very high time and resource costs. Of the proposed schemes that can

perform FHE to date, a scheme known as FHE over the integers has the ad-

vantage of comparatively simpler theory, as well as the employment of a much

shorter public key making its implementation somewhat more practical than

other competing schemes.

To the author’s knowledge, this paper presents the first hardware implemen-

tations of encryption primitives for FHE over the integers using FPGA technol-

ogy. First of all, a super-size hardware multiplier architecture utilising the Inte-

ger-FFT multiplication algorithm is proposed, and a super-size hardware Barrett

modular reduction module is designed incorporating the proposed multiplier.

Next, two encryption primitives that are used in two schemes of FHE over the

integers are designed employing the proposed super-size multiplier and modular

reduction modules. Finally, the proposed designs are implemented and verified

on the Xilinx Virtex-7 FPGA platform. Experimental results show that the

speed improvement factors of up to 44.72 and 54.42 are available for the two

FHE encryption schemes implemented in FPGA when compared to the corre-

sponding software implementations. Meanwhile, the performance analysis

shows that further improvement is speed of these FHE encryption primitives

may still be possible.

Keywords: Barrett Modular Reduction, Fully Homomorphic Encryption,

FPGA, Hardware, Integer-FFT Multiplication.

1 Introduction

Fully homomorphic encryption (FHE) is a significant breakthrough in cryptographic

research in recent years [1]. A FHE scheme can be used to arbitrarily perform compu-

tations on a ciphertext, but without compromising the content of the corresponding

plaintext. Therefore, a practical FHE scheme will open the door to numerous new

mailto:cmoore50@qub.ac.uk

security technologies and privacy related applications, such as the privacy-preserving

search, cloud-based storage, computing outsourcing and identity preserving banking.

To date, many FHE schemes based on different computationally hard problems

have been proposed [1 – 9], as well as their software implementations [8 – 13]. The

first software implementation of the lattice-based FHE scheme was reported by Gen-

try and Halevi (GH) with a public key size from 17 Megabytes (MB) to 2.3 Giga-

bytes, and a ciphertext homomorphic evaluation time from 6 seconds to 30 minutes

[10]. Then, Coron et al. [8] proposed a scheme of FHE over the integers with a re-

duced public key size from 0.95 MB to 802 MB, and an encryption time from 0.05

seconds to 3 minutes. Next, Coron et al. [9] further reduced the public key size to no

more than 10.1 MB but with a longer encryption time of 0.05 seconds to 7 minutes. In

more recent work, Gentry et al. described a homomorphic implementation of the

block cipher Advanced Encryption Standard (AES), which requires 36 hours to eval-

uate a single AES encryption operation [11]. Lauter et al. presented a somewhat

homomorphic encryption implementation that employs much shorter key, 29 Kilo-

bytes, than its FHE counterpart, and requires a shorter encryption time of 0.024 se-

conds [12]. The most recent software implementation was done on a NVIDIA C2050

GPU [13], and it uses the integer-FFT multiplication algorithm [14] to compute the

super-size multiplication and Barrett modular reduction [15] to implement Gentry’s

FHE scheme [2]. It gained almost 7 times speed improvement compared to the work

in [10]. However, all these reported software implementations results show that cur-

rent FHE schemes still face severe efficiency challenges, impractical public key sizes

and a very large computational complexity. Hence, there is still a long way to go be-

fore a practical FHE scheme can be deployed in real-life applications. To date, the

only previous hardware related FHE implementations are reported in [16, 17]. In the-

se work, they look to obtain a scalable hardware implementation on a FPGA platform

using the Matlab
®
 HDL Coder tool, however they do not report any implementation

or simulation results yet.

The objective of this paper is to accelerate the encryption primitives in FHE over

the integers using FPGA technology. This algorithm was chosen as it uses smaller key

size, and the FPGA platform is used as it provides a quick verification environment
1
.

Specifically, we present the first full hardware implementation of the encryption

primitives required for FHE over the integers. Our contributions are as follows: (i) a

super-size hardware multiplier architecture using the Integer-FFT multiplication algo-

rithm is proposed; (ii) a super-size hardware architecture of Barrett modular reduction

is presented using the proposed multiplier as a sub-module; (iii) two encryption primi-

tives of FHE over the integers are designed utilising the proposed super-size multipli-

er and modular reduction as sub-modules; (iv) our implementations are verified in

Xilinx Virtex-7 FPGA, and the result shows our designs achieve a significant perfor-

1 As low cost FPGAs decrease in price, physical size and power consumption, while at the

same time increasing in density, they are also increasingly being used in released products.

This has the added advantage in security scenarios of allowing in-situ upgrading of hard-

ware as recommended protocols and algorithms are changed due to vulnerability concerns.

mance improvement of a factor of 44.72 and 54.42 over their prior corresponding

software counterparts.

The rest of the paper is organised as follows. In Section 2, the previously related

works are reviewed. In Section 3 the proposed hardware architecture of the super-size

multiplier is described. Next, Section 4 details the hardware architectures of the pro-

posed super-size Barrett reduction and two FHE encryption primitives. The imple-

mentation and performance comparison results are given in Section 5. Finally, Section

6 concludes the paper.

2 Review of Related Work

2.1 Encryption Primitives in FHE over the Integers

Currently, there are three different schemes of FHE over the integers. The first

scheme was proposed by van Dijk et al. [3]. Then this scheme was improved by

Coron et al. [8] by reducing the public key size, this scheme is referred to as CMNT

in this paper. The last scheme with the smallest public key size was presented in 2012

also by Coron et al. [9], and is denoted as CNT here. As the encryption primitives of

the two shorter key size schemes, CMNT and CNT, are implemented in this paper,

their mathematical definitions are listed in Equation (1) and Equation (2).

 (1)

 (2)

In both equations, denotes the ciphertext; is a 1-bit plaintext; is a

random signed integer in ; , is a part of the public key. In Equa-

tion (1), with is a random integer sequence, and each is a -bit

integer. and with are two public key sequences, and each entry

is a -bit integer. In Equation (2), with is a random integer sequence,

and each is a -bit integer. with is again the public key sequence,

and each is a -bit integer. The parameter bit-length of four test groups for both

equations, which will be used in the following performance comparison in Section 5,

are individually listed in Table 1 and Table 2.

Table 1. The four groups of parameters for Equation (1) in CMNT [8]

Group

Toy 42 168 0.16 12

Small 52 208 0.86 23

Medium 62 248 4.20 44

Large 72 288 19.00 88

To implement the above two equations, the first challenge is the super-size multi-
plication. A typical multiplication algorithm for very large bit-length operands is Inte-
ger-FFT [14, 18, 19]. It conquers large bit-length multiplication by first dividing it into

small bit-length multiplication then accumulating. For example, the widely used open-
source GMP library uses the Schönhage-Strassen Integer-FFT algorithm [14] for mul-
tiplication when the bit-length of operands is greater than bits [20]. There are many
different Integer-FFT variants that use different methods to improve the small bit-
length multiplication speed, as it is the performance bottleneck of the Integer-FFT
algorithm. However, a Xilinx Virtex-7 FPGA device can help to solve this problem by
using its embedded multipliers, which are specially optimised for high-speed perfor-
mance of up to 750MHz [21]. Thus, the basic Integer-FFT algorithm [19] combined
with these embedded FPGA multipliers is used in our work.

Table 2. The four test groups of parameters for Equation (2) in CNT [9]

Group

Toy 936 936 0.15 158

Small 1476 1476 0.83 572

Medium 2016 2016 4.20 2110

Large 2556 2556 19.35 7695

The super-size modular reduction is also a considerable challenge. Generally, the

modular reduction algorithms used in traditional long bit-length cryptography imple-
mentations are Montgomery [22] and Barrett reduction [15]. However, Montgomery
reduction algorithm is only suitable for scenarios where successive modular operations
with the same operands are required, such as exponentiation for example. Otherwise, a
heavy pre-computation and post-processing penalty is incurred. On the other hand,
Barrett reduction only requires a one-time pre-computation, and is typically used after
the multiplication is completed. Therefore, Barrett reduction is adopted for the modular
reduction in the proposed hardware implementations.

The objective of this paper is to accelerate the speed of Equations (1) and (2), ra-
ther than dealing with the storage bottlenecks. Therefore, it is assumed that there is
sufficient off-chip memory available for the designed FPGA accelerator to store its
intermediate variables and final results. This is a reasonable assumption as the acceler-
ator could be viewed as a powerful coprocessor device, sharing memory with the main
workstation (be it a server or PC) over a high speed PCI bus. However, it is acknowl-
edged that off-chip memory I/O can become a bottleneck and that the latency of the
bus becomes an issue. Investigations into such issues will be the subject of future
work.

2.2 The Integer-FFT Multiplication Algorithm

The Integer-FFT multiplication treats each multiplication operand as a sequence of

smaller, computationally efficient numbers instead of a single super-size integer. The

input parameters to the Integer-FFT multiplication are:

─ , a -bit prime number, used as the modulus in the Integer-FFT modular reduc-

tion.

─ , the FFT point number.

─ , the twiddle factor of the FFT.

─ , the base unit bit-length when transforming the input super-size operand into a -

bit digit sequence.

To ensure the Integer-FFT algorithm works correctly, it is required that the FFT

point number divides for every prime factor of (in this paper, because

is a prime, is equal to), the twiddle factor is a primitive -th root of unity

(meaning that and for any prime divisor
of [14]), and all operations used in the FFT should be modular with respect to the

prime modulus, .

Table 3. The four groups of Integer-FFT parameters in our experiments.

Group

Special modulus form [23]
 33 64 2 8

 65 128 2 24

Solinas modulus form [24] 64 128 7 28

General modulus form [19] 32 64 17 12

The Integer-FFT parameters used in our experiments are listed in Table 3. As the

selection of a reasonable modulus, , heavily influences the modular multiplication

performance in Equations (4 – 6), four different moduli are implemented and com-

pared in this paper. Their different characteristics are detailed in Section 3.3. In the

following Algorithm 1, we take an example, , to explain the Integer-FFT

algorithm [14] used in this paper as illustrated in Fig. 1(i).

Algorithm 1: Integer-FFT Multiplication Algorithm

Input: , , , , ,

Output:

 Step-1: is processed as a -bit digit sequence, with . The se-

quence should be treated as: to are filled by the real data of

from the least significant bit (LSB) to the most significant bit (MSB), while

to are filled with 0. Performing the same operations to to obtain .
Their relationship is expressed in Equation (3):

 (3)

 Step-2: Perform a -point FFT over the finite field with the sequence

 as inputs to obtain a -point sequence, with The same op-

erations are applied to to obtain the sequence . Equation (4) is used to

describe this relationship.

 (4)

 Step-3: Perform a point-wise multiplication over the finite field , as in

Equation (5), to get a -point sequence with :

 (5)

 Step-4: Using the sequence to perform a -point IFFT, as in Equation (6),

in the finite field to get a -point sequence :

 (6)

 Step-5: Resolve the long carry chain to obtain the product , as de-

scribed in Equation (7).

 (7)

2.3 The Barrett Modular Reduction Algorithm

Algorithm 2: Barrett Reduction Algorithm

Input: (bits), (bits)

Output:
 Step-1: Pre-computing a constant number, ;

 Step-2: Computing according to Equation (8);

 Step-3: Computing ;

 Step-4: Computing and ;

 Step-5: If , , otherwise .

In this paper, two versions of Barrett modular reduction are designed. The first one is

for the small size reduction used in the Integer-FFT algorithm, and the second is the

proposed super-size Barrett reduction. Both of them adopt the Barrett reduction algo-

rithm introduced in [25].

 (8)

The essence of the Barrett reduction is that as given in Equation (8) is used to es-

timate , then is used to approximate . The advantage of this

algorithm is that it has been proved that if and , at most only one sub-

traction is required in the final reduction [25]. Algorithm 2 outlines the Barrett reduc-

tion algorithm.

3 The Proposed Super-Size Multiplier Architecture

3.1 The Architecture Overview

An overview diagram of the proposed super-size hardware multiplier architecture is

illustrated in Fig. 1(ii). It consists of a shared RAM, a finite state machine (FSM) con-

troller, and an Integer-FFT unit. The shared RAMs are assumed to be off-chip, and are

used to store the input operands, the intermediate and final results. The FSM controller

is responsible for distributing the signals to schedule to algorithm. The proposed FSM

scheduling mechanism can be viewed as a combination of school-book multiplication

[20] and the Integer-FFT multiplication [14]. The core element of the design is an Inte-

ger-FFT module that executes a block multiplication for calculating partial products of

the entire super-size multiplication, while the FSM controller schedules an iterative

school-book multiplication to accumulate the block products. The proposed architec-

ture is also a fully pipeline architecture, as the RAM reading, RAM writing and Inte-

ger-FFT operations are executed in parallel.

yi

zi,j=xi×yj

F
S

M
 C

o
n
tro

ller
Integer-FFT

multiplication

Shared RAMs:

storing

multiplication

operand,

temporary values,

and the final result

Oprand Block Read

Block product

accumulation

xi

FFT of {yt}FFT of {xt}

z=x×y

Inverse FFT of {ZT}

Point-wise modulo

mutiplication

{XT} {YT}

{ZT}

Addition recovery

x y

{zt}

(ii)(i)

Fig. 1. (i) Diagram of the Integer-FFT multiplication algorithm; (ii) Overview of the proposed

super-size hardware multiplier architecture

In the following of this subsection, we take an example, , to explain the
operation of the proposed architecture. It is assumed that the super-size operands,
and , are already stored in the shared RAMs before the multiplication starts. The input
parameters to the proposed multiplier are divided into two groups. The first group re-
lates to multiplication operands, (-bit) and (-bit). The second group is the

Integer-FFT related parameters as described in Section 2.2. The steps of computing
 are as follows:

 Step-1: In this step the operands are read from the shared RAMs. The operand

is processed as a sequence of

-bit data blocks, with

, from

LSB to MSB. Similarly, the sequence with

 is obtained. Each

iteration,

-bit and

-bit are read into the proposed Integer-FFT multipli-

er. Therefore, the total count of RAM read access is

 due to the use of

school-book multiplication method.

 Step-2: The Integer-FFT multiplication is performed to calculate the block

product, , as described in Algorithm 1.

 Step-3: Following the school-book multiplication method, this step accumulates

the block products to obtain the final product, . This step also determines how

to write/read the partial products to/from the shared RAMs. The final product, ,

is written to the share RAM as

-bit data blocks, with

,

from LSB to MSB as follows:

─ Step-3.1: Read the

-bit partial product, , from the shared RAMs into the

proposed multiplier. The step is only done when both and .

─ Step-3.2: Write the partial/intermediate block product into the shared RAMs.

In this step, the block product, , is processed as two

-bit parts from LSB

to MSB,
 and

 . If ,
 is directly

written into memory, and
 remains the same; else if and

 ,

 is written to memory; else if and

 , the addition,
 , is performed prior to writing

memory; else if and ,

 is writ-

ten to memory. When ,
 is kept in an on-chip register

array for faster accumulation.

─ Step-3.3: Determine the index of the operand data block to be read and de-

termine the conditions for iterating the block multiplication as follows: If

 , increment , then go to Step-1; Else if

 and

 , reset , increment , then go to Step-1; Else when

 and

 , the whole multiplication is completed.

In the following sections, the key components in the proposed multiplier architecture

are described. In all the following diagrams the outputs of multiplication and sub-

modules are registered.

3.2 The FFT/IFFT Module and Its Butterfly Unit

There are various different FFT algorithms and architectures that can be used to im-

plement Equations (4) and (6) for different tradeoff purposes [18, 19]. In this paper,

the radix-2 fully parallel architecture is adopted for the FFT and IFFT in order to ob-

tain the highest multiplication throughput. The architecture is illustrated in Fig. 2(i).

For example, there are butterfly stages for a -point FFT, and each butterfly

stage is composed of parallel butterfly units, which is plotted in Fig. 2(ii).

(ii)

1st butterfly block:

k/2 butterfly units

.

.

.

log2k-th butterfly

block:

k/2 butterfly units

.

.

.

. . .

. . .

(i) wdown

Xup

Xdown

xup

xdown

Modulo

Reduction

M
U

X
M

U
X

M
U

X

wup

Modulo

Reduction

From FSM

controller

p

Fig. 2. (i) The radix-2 parallel FFT diagram; (ii) The proposed FFT/IFFT butterfly unit

The IFFT in Equation (6) needs to multiply , which is not needed in

the FFT. If an identical architecture is used to implement both of FFT and IFFT, a

point-wise module multiplication stage is additionally required for the IFFT, and the

cycle latency of the IFFT is increased compared to the FFT. The problem is solved by

pre-computing to incorporate into the IFFT

twiddle factors, then is used in the final IFFT butterfly stage, while the other

stages still use . In order to meet the butterfly requirement of both of FFT and

IFFT, a unified butterfly unit is proposed in Fig. 2(ii). The multiplication operation at

the bottom left-hand side in Fig. 2(ii), , is the same for all FFT/IFFT

butterfly stages, as well as the operation / as shown on the right-hand side

of Fig. 2(ii). However, the operation of illustrated on the upper left-hand

side of Fig. 2(ii) is only required at the final stage of the IFFT.

In our designs, if the special modulus form as listed in Table 3 is

used, each (-bit -bit) multiplier in a butterfly is implemented as bit-shifting, as

the -th primitive root of unit is equal to 2 in this situation. Otherwise, each butter-

fly multiplier is designed using a multi-stage pipelined multiplier, which is imple-

mented using the FPGA embedded multipliers through the use of the Xilinx Core

Generator [21] tools. This prevents the multipliers becoming the timing performance

bottleneck in our design.

3.3 The Modular Reduction Module

The addition/subtraction modular reduction is very simple and is illustrated in the

right-hand part in Fig. 2(ii). Therefore, this subsection introduces the modular reduc-

tion unit used after the butterfly and point-wise multiplication. Three reduction meth-

ods are designed and tested in our work: the first is the Barrett modular reduction that

can be used for any modulus (here), the second is the simplest reduc-

tion method of the three that is only suitable for a modulus with the special form

 , and the third is suitable for the Solinas modulus [24].

x

ya b c d

p

p

M
U

X

px

MUX

y

x[m-2:0] x[2m-3:m-1]

x[2m-1:2m-2]

y

MUX
p1

p

p
x

(i) (ii)

(iii)

Fig. 3. The proposed modular reductions used in FFT butterfly and point-wise multiplication:

(i) Barrett reduction suitable for all modulus; (ii) The simplest reduction only suitable for a

special form modulus, ; (iii) A simpler reduction only suitable for the Solinas

form modulus

The Barrett reduction architecture is shown in Fig. 3(i). Following the Barrett re-

duction algorithm outline in Section 2, in our design we set and ,

thus, , and the pre-computed constant number in Fig. 3(i) is bits.
The design of the special form modulus reduction algorithm [14] is shown in Fig.

3(ii). The input parameters are (-bit) and , the reduction
 is easily to be obtained using the logic in Fig. 3(ii) as follows: let
 and ; If
 , ; else . As no multiplication is required here, this circuit obvi-
ously consumes less hardware resource than Barrett reduction, and its speed perfor-
mance is better.

The design of the Solinas modulus reduction is shown in Fig. 3(iii). If the Solinas

modulus is used, the 128-bit multiplication product can be ex-

pressed as , where , , and are 32-bit numbers. As

 and , the reduction can be quickly com-

puted as . Thus, the upper-half 64-bit

() and the lower-half 64-bit () results can be computed inde-

pendently. As the result of is within the range of (,), an

addition, a subtraction and a 3:3 multiplexer are needed for the final reduction. Alt-

hough it is a little more complex than the special modulus form, it is much simpler than

the Barrett reduction as no multiplication is required. However, according to the condi-

tion described in Section 2.2, not every Solinas modulus is suitable for the Integer-FFT

algorithm [14, 19].

3.4 The Addition Recovery and Product Accumulation Module

The addition recovery module is responsible for converting the IFFT outputs back to

an integer by resolving a very long carry chain, as is shown in Equation (7). The

product accumulation module is used to generate intermediate product results that can

be written to memory. As these two modules are tightly coupled together in our pro-

posed design, they are described in the same section.

The addition recovery architecture is composed of two parts, respectively depicted

in Fig. 4(i) and 4(ii). The part in Fig. 4(i) is a parallel two-by-two adder tree, which

means at each addition level, the adjacent two entries are added from the least signifi-

cant entry to the most significant entry. Let represent the data bus bit-width between

our super-size multiplier and the shared RAMs. There are in total

 levels two-by-two

adder trees (provided suitable values of and are chosen). Let the sequence

with

 be the result after

 levels two-by-two addition. The addition results

in each level are registered. Otherwise, a very long carry chain will become the time

performance bottleneck of the design. It can be shown that the first useful -bit output

value is included in , the second available -bit product can be obtained by

 , and the third -bit product can be obtained by

 . Therefore, this can be achieved by a registered carry chain addition,

which is illustrated in Fig. 4(ii).

The advantage of the above architecture is that each clock we have a -bit result to

write into memory, thus, there is no bus bit-width wastage. However, as the carry

chain of length is needed to generate the -bit result, the parameter should

be carefully chosen to avoid this carry chain becoming the performance bottleneck.

This parameter is determined by iterative experiments in our implementation (here the

values

 are used for the four test groups in Table 4 respectively).

zk-1 zk-2

.

.

.

<<b

zk-3 zk-4

<<b

<<2b

<<d

<<2b

z3 z2

<<b

z1 z0

<<b

<<2b

<<d

z'0z'kb/d-1

.

.

.

.

.

.

.

.

.

. . .
. . .

z'2

To product

accumulation

>>d

z'1

z'0

To product

accumulation

>>d

z'kb/d-1

To product

accumulation

>>d

.

.

.

(i) (ii)

Fig. 4. The proposed addition recovery architecture: (i) a parallel two-by-two adder tree used as

the 1st part; (ii) a serial and registered carry chain used as the 2nd part.

si carryi-1

s'i+kb/2d

carryi

RAM

data

MUX
From FSM

controller
Writing into

RAMs

To addition

with si+1
(i) (ii)

si carryi-1

carryi s'i

To addition

with si+1

To addition

with si-kb/2d

Fig. 5. The proposed serial and registered multiplication product accumulation architecture: (i)

when

; (ii) when

The proposed product accumulation architecture is illustrated in Fig. 4(ii). It is as-

sumed that the sequence of { } with is the input. This architecture is

a detailed diagram illustrating how to execute the control logic explained in Step-3.2

and Step-3.3 in Section 3. Since each iteration a -bit partial/intermediate prod-

uct is written into memory, the LSB product (i.e. when) has a differ-

ent processing procedure from the MSB product (i.e. when), which is

shown in Fig. 5(i) and Fig. 5(ii) respectively.

From the carry chain logic perspective, the logic in Fig. 4(ii) should be executed

after that in Fig. 4(i). Actually in our design, they are concurrently and pipelined exe-

cuted. We take the example in Step-3.2 to explain in Section 3. Each block product,

 , is processed as two -bit parts,
 and

 . In the first

block round (i.e.),
 is first generated and written into

memory. At the same time,
 cannot be obtained due to the lacking of carry

bits. Then from the next block iteration (i.e.),
 and

 can be calculated simultaneously, as all the parameters in Fig. 4(i) and

Fig. 4(ii) are already ready to use from this moment.

4 The Proposed FHE Encryption and Super-Size Modular

Reduction Architecture

The proposed hardware architecture for the two encryption primitives in CMNT and

CNT are plotted in Fig. 6(i). These two primitives share the same architecture but

with different FSM controller logic (i.e., different accumulation and multiplication

schedule procedure). Due to that only one instance of the proposed multiplier is im-

plemented in our architecture, the FHE encryption architecture is tightly coupled with

the super-size Barrett modular reduction using the FSM controller. Thus, the over-

view diagram in Fig. 6(i) can also represent the proposed architecture of the super-

size Barrett reduction, which means that all the multiplications, in Equations (1) and

(2) and the super-size Barrett reduction, are completed by the single Integer-FFT in-

stance.

A FSM Controller

Super-size

Accumulate

module

Super-size

Subtract

module

Super-size FFT

multiplication

module

Shared

RAMs(i) (ii) Carry Sum

Reg

R
A

M
 re

a
d

/w
rite

 in
te

rfa
c
e

S
h
a
re

d
 R

A
M

s

(iii)

Indicate the correct

result RAM:

y1 or y2

The shared RAMs:

x, p, p1, q, r, y1, y2

RAM read/write interface

y1 y2

p

r

x

Fig. 6. The proposed FHE encryption and super-size Barrett modular reduction architecture: (i)

an overview diagram; (ii) a super-size accumulation module for FHE encryption; (iii) the sub-

traction module for the super-size Barrett reduction.

The proposed super-size accumulation module is illustrated in Fig. 6(ii) to com-

plete the required product accumulation operation in Equations (1) and (2). It is basi-

cally a general -bit width accumulation operation, which is interleaved with the

memory reading/writing operations. As the bit-length of the modulus in Equations

(1) and (2) is , the bit-length of the accumulation result in Equations (1) and (2)

should be defined as according to the adopted Barrett reduction algorithm [25].

As the bit-length of or is much less than and the bit-length of the accumula-

tion counter is much less than , it is clear that is also much less than . This is

beneficial to the super-size Barrett reduction hardware design, as it allows more flexi-

bility to choose the parameters. In this super-size situation, Equation (8) becomes (9):

 (9)

Here, we still use the symbols and in our explanation. As ,

 and

are super-size parameters, it is impossible to directly load all the required bits of

and into the multiplier directly. Therefore, we need to iteratively access the memory

to obtain the full values. An implementation issue of the super-size Barrett reduction

is how to choose the suitable value of and in Equation (9) so that the correct val-

ues of

 and can be read out from the right address of the shared RAMs when

computing

 and . In our work, this issue is solved by relating the

value of and to the data bus bit width, , as given in Equations (10) and (11),

 (10)

 (11)

In Equation (10) it is assumed that in super-size FHE implementation.

Through setting the initial RAM storage address of and

 in the shared

RAMs to 0, the above parameter setting makes sure the initial read address of ,

,

is a multiple of , and the starting read address of

,

, is also a multiple

of . At the same time, Equation (10) obviously meets the requirement of ,

and Equation (11) also has as it is mentioned that both and are much

smaller than . Thus, the procedure of the proposed super-size modular reduction is

as follows:

 Step-1: The constant number is pre-computed and stored in the

shared RAM before the reduction starts.

 Step-2: Read from its RAM address

, and read from its RAM address

0, then use the super-size FFT multiplication module to calculate
 .

 Step-3: Read from its RAM address

, and read from its RAM address

0, then use the super-size FFT multiplication to compute
 .

 Step-4: Read , and from their RAM address 0, and use the super-size sub-

tract module to calculate , and output a

signal that indicates which of or is the correct reduction result.

As the subtraction also a super-size operation, a super-size subtraction module is

designed in Fig. 6(iii) to complete the required subtraction operation in the super-size

Barrett reduction. It is essentially a successively applied -bit subtraction operation,

but a memory read/write interface is added to extend its bit width

5 Implementation, Performance and Comparison

All the proposed architectures were designed and implemented using Xilinx FPGA

technology. Modelsim 6.5a was used as the functional and post-synthesis timing sim-

ulation tool. The synthesis tool used was Xilinx ISE Design Suite 14.4. The synthesis

strategy is set to balance between speed and area. The optimisation objective is set to

speed. The target device is Virtex-7 XC7VX980T. The test vectors are generated as

random numbers using C++ according to the parameter requirements in Table 1 and

Table 2.

The proposed super-size multiplier architecture has been implemented as a fully

pipelined and parallel circuit. At the outer interface, three RAM read buses and one

RAM write bus are implemented, so that the two super-size multiplication operands

can be simultaneously read into the multiplier, and at the same time the final block

product accumulation can also be executed simultaneously. At the inner layer, the

Integer-FFT is also pipelined.

From the Table 3, it can be found that the base unit bit-length is chosen as the max-

imum even number of the suitable numbers according to the parameter requirements

described in Section 2. The reason is that the basic computation bit-length in Integer-

FFT is determined by the modulus bit-length rather than the base unit bit-length, so

increasing the base unit bit-length will not decrease the speed performance of Integer-

FFT’s multiplication and addition. However, the base unit bit-length is related to the

multiplication product throughput, that is, the larger the base unit bit-length, the less

the consumed clock cycle count.

In our implementation, the ratio of multiplication operand’s block bit-length and

the data bus bit-width (for both RAM read and write),

, to be equal to 8. Thus, the

data bus bit-width is respectively equal to 32, 48, 192 and 224 corresponding to the

four group parameters in Table 3. It means that the clock count is equal to 8 for each

 -bit input operand, and the clock cycle count is also equal to 8 for each output

block product except the first block product, according to our described hardware

architecture. Meanwhile, the pipeline stage count in each FFT butterfly stage is de-

signed to be also equal to 8, which accounts for all the -bit multiplication, addi-

tion/subtraction and modular reduction.

The latency of the proposed architecture is analysed as follows. The total latency

for the designed pipelined multiplication is composed of two parts. The first part is

the time cost required by the preparation work before outputting the first block prod-

uct, and the second part is determined by the count of block products multiplying a

fixed parameter for a pipelined architecture. It is equal to 8 in our design.

Let , and respectively be the count of pipeline stage in a FFT/IFFT but-

terfly, in a point-wise multiplication, and in the addition recovery. Then, the time

latency of the preparation work is equal to ,

where denotes the latency for reading the operand, and
 denotes the block product computation latency. Next, the common time

latency of outputting each block products is analysed according to the logic described

in Step-3.2 and Step-3.3 in Section 3. If , -bit intermediate

product is written into memory, and the latency is equal to ; if
 , -bit intermediate product is written into memory, and the latency

is . As there are totally
 block products, in which there

are blocks with the condition . As in our design we

have , therefore, combining the two parts, the whole time laten-

cy can be expressed as:

 (12)

We have implemented four different designs using the four groups of parameters in

Table 3. For each design, the FFT point num is fixed, unrelated to the multiplication

operand bit-length. With the input multiplication operand bit-length increasing,

 quickly becomes much smaller than

 , as the data bus bit-width is fixed. Therefore, the time latency of the

proposed implementations with the four forms of modulus is almost the same, which

can be estimated by multiplying the total count of block products, , and

the output latency of each block product, .

For the small size 33-bit 33-bit, 32-bit 32-bit, 65-bit 65-bit and 64-bit 64-bit

multiplication used in FFT butterfly and point-wise multiplication, Xilinx Core Gen-

erator is employed to generate a 4 stage pipelined multiplier using the embedded mul-

tipliers on the Virtex-7 FPGA device. Meanwhile, in order to meet the demand of the

addition recovery latency, that is , the adder tree length is equal to , 4,

4, 8, and 8 in our implementations respectively.

Table 4. The synthesis results of the proposed super-size multiplier.

Group
Frequency

(MHz)

DSP48E1

Utilisation

(total: 3600)

Slice register

Utilisation

(total: 1224000)

Slice LUT

Utilisation

(total: 612000)

Multiplier with

304.990 256 191151 237034

Multiplier with

254.065 6292 213403 170919

Multiplier with

179.346 2048 955974 1214269

Multiplier with

166.450 18496 1122826 954737

The synthesis results of the proposed super-size multiplier are displayed in Table 4.

The hardware resource utilisation and frequency of the two designs with the special

modulus (and) are obviously better than the multipliers with the gen-

eral modulus () and the Solinas modulus (). The reason

the special modulus multiplier requires the smallest hardware resource is that it does

not need multiplication in the FFT butterfly unit and no multiplication is needed for

reduction with the special modulus. The reason the Solinas modulus multiplier re-

quires more hardware than the general modulus multiplier is that it does not need

multiplication in the modular reduction units. It can also be seen that the smallest bit-

length modulus multiplier has the highest frequency, as the four multipliers needed

for the point-wise multiplication in the Integer-FFT algorithm contain the critical

path, and are implemented as 4 stage pipelined multipliers. However, this does not

mean that the super-size multiplier with the special modulus will definitely outper-

form the other two, as the other two multipliers allow a larger base bit-length that

implies that in one clock cycle the Solinas modulus multiplier can produce the longest

product.

Meanwhile, we can find that only the multiplier with the smallest modulus
 is within the hardware resource budget, and there are not enough hardware

resources for the other architectures. Thus, the conclusion is that the parallel FFT

architecture is not suitable for a practical or implementable design due to the exces-

sive hardware cost, although this FFT architecture has the highest product throughput.

Table 5. The synthesis results of the FHE encryption primitives.

Group
Frequency

(MHz)

DSP48E1

Utilisation

(total: 3600)

Slice register

Utilisation

(total: 1224000)

Slice LUT

Utilisation

(total: 612000)

CMNT with

292.410 256 191176 237031

CMNT with

254.054 6292 213788 171450

CMNT with

179.346 2048 956974 1215166

CMNT with

166.450 18496 1123001 954955

CNT with

292.410 256 191167 236979

CNT with

254.054 6292 213777 171494

CNT with

179.346 2048 956973 1215150

CNT with

166.450 18496 1122933 954947

The proposed super-size Barrett reduction has been implemented by serially calling

the super-size multiplier to finish Step-2 and Step-3 in Section 4. For the super-size

subtraction module, additional RAM read and write buses are implemented in parallel

to simultaneously execute with the Integer-FFT, so the cycle latency of the super-size

Barrett reduction can be estimated at twice the time cost that is required by a super-

size multiplication with the input operand’s bit-length.

The two encryption primitives in Equation (1) and (2) have been implemented by

adding a super-size accumulation module following the super-size Barrett reduction.

It can be seen as a serial procedure of two stages. In the first stage, the super-size

accumulation module and the super-size multiplier are parallel executed; in the se-

cond stage, the super-size Barrett reduction is executed. The reason is that there is

only one super-size multiplier is implemented. The synthesis results of the implemen-

tations of FHE encryption primitives are listed in Table 5. It can be seen that the fre-

quency and hardware resource utilization are almost the same as that in Table 4. The

synthesis performance of CMNT and CNT is also nearly identical. The reason is that

the controller part only occupies a very small percentage of hardware resource com-

pared to the super-size multiplier, and the only difference between the CMNT’s and

CNT’s controller parts is the different multiplier scheduling procedures.

Table 6. The average running time of the proposed FHE encryption designs.

Group Toy Small Medium Large

CMNT with 0.003 s 0.050 s 0.872 s 15.735 s

CMNT with 0.003 s 0.057s 1.003 s 18.110 s

CMNT with 0.000854 s 0.0139 s 0.239 s 4.284 s

CMNT with 0.000815 s 0.0130 s 0.221 s 3.958 s

CMNT [8] 0.05 s 0.79 s 10 s 2 min 57 s

CNT with 0.011 s 0.306 s 7.586 s 159.173 s

CNT with 0.012 s 0.352 s 8.731 s 183.204 s

CNT with 0.000786 s 0.0142 s 0.5165 s 8.655 s

CNT with 0.000739 s 0.0132 s 0.4772 s 7.994 s

CNT [9] 0.05 s 1.0 s 21 s 7 min 15 s

[13] 1.69 s

The running time of the proposed hardware implementations of FHE encryption

primitives using the 4 group parameters listed in Table 1 and Table 2 is provided in

Table 6, and the previously reported corresponding software results are also given

here. The running time is obtained by averaging the simulated latency of the test vec-

tors and multiplying by the synthesis frequency. It can be seen that although the spe-

cial modulus multiplier has a higher frequency, it needs more running time than the

Solinas modulus multiplier. The reason is that for the proposed multiplier, the multi-

plication product throughput is mainly determined by the product of the data bus bit-

width, the base unit bit-length and the frequency, rather than only the frequency,

which can be deduced from the time latency expression in Equation (12). Comparing

the four group parameters in Table 3, it is also easy to see that although the special

modulus can use twiddle factor of 2, its obvious disadvantage is that its base unit bit-

length is much smaller than the other two kinds of modulus when almost the same bit-

length modulus is employed. Therefore, for the proposed FHE encryption architec-

ture, the Solinas modulus is the best choice in our proposed designs, which enables a

comparable simpler modular reduction and a larger base unit bit-length.

It can be seen that when the Solinas modulus multiplier is used, the proposed im-

plementations are 61.34 and 67.65 times faster than the software implementations of

CMNT and CNT respectively for the toy parameter group. And the proposed designs

also respectively achieve a time improvement of 44.72 and 54.42 for the large group.

It must be noted that only the experimental results using small FFT parameters (i.e.,

 and) are reported in this paper. As the product of the data bus bit-

width and the frequency determines the proposed super-size multiplier product

throughput performance, we have enough reason to believe that there is still a great

potential to improve the time performance for encryption primitives in FHE over the

integers if larger FFT parameters are used. For example, the recent batch FHE over

the integers proposed in [26] shows that the parallel super-size multiplication can be

applied to improve the FHE encryption speed.

6 Conclusion

In this paper, the first complete hardware implementations of two encryption primi-

tives employed in schemes of FHE over the integers proposed by Coron et al. are

presented. For this purpose, an Integer-FFT based super-size hardware multiplier

module and a super-size Barrett modular reduction module are proposed. These pro-

posed hardware architectures are designed and verified on a Xilinx Virtex-7 device

using four groups of Integer-FFT parameters. When the super-size multiplier is im-

plemented with a Solinas Integer-FFT modulus, the synthesis results show that our

hardware implementations achieve speed improvement factors of 44.72 and 54.42

compared to the corresponding software implementations for the large scale test data

used in FHE over the integers. Meanwhile, as our implementations only use 128 point

FFT and small base unit bit-length, 24 and 28, for the super-size hardware multiplier,

there is still great potential to further improve the encryption speed in FHE over the

integers. Recently research improvements in this area such as the batch FHE over the

integers [26] confirm that this potential indeed exists for both hardware architecture

and implementation developments.

References

1. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University,

(2009). Http://crypto.stanford.edu/craig.

2. Gentry, C.: Fully homomorphic encryption using ideal lattices. The 41st annual ACM sym-

posium on Theory of computing. pp. 169–178. ACM (2009).

3. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption

over the integers. EUROCRYPT 2010, LNCS, vol. 6110, pp. 24–43. Springer (2010).

4. Smart, N.P., Vercauteren, F: Fully homomorphic encryption with relatively small key and

ciphertext sizes. PKC 2010, LNCS, vol. 6056, pp. 420–443. Springer (2010).

5. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Stand-

ard) LWE. FOCS (2011).

6. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption for Ring-LWE and Se-

curity for Key Dependent Messages. CRYPTO 2011, LNCS, vol. 6841, pp. 505–524.

Springer (2011).

http://crypto.stanford.edu/craig

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully Homomorphic Encryption without

Bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011).

8. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M: Fully Homomorphic Encryption over

the Integers with Shorter Public Keys. CRYPTO 2011, LNCS, vol. 6841, pp. 487–504.

Springer (2011).

9. Coron, J.S., Naccache, D., Tibouchi, M: Public key compression and modulus switching

for fully homomorphic encryption over the integers. EUROCRYPT'12. pp. 446–464.

Springer (2012).

10. Gentry, C., Halevi, S.: Implementing Gentry's fully homomorphic encryption scheme.

EUROCRYPT 2011, LNCS, vol. 6632, pp. 129–148. Springer (2011).

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES circuit. Cryptol-

ogy ePrint Archive, Report 2012/099 (2012).

12. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be Practical?

Cryptology ePrint Archive, Report 2011/405 (2011).

13. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully homomorphic en-

cryption using GPU. High Performance Extreme Computing (HPEC), pp. 1-5. IEEE

(2012).

14. Schönhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. Computing, vol. 7,

no. 3, pp. 281–292. (1971).

15. Barrett, P.: Implementing the rivest shamir and adleman public key encryption algorithm

on a standard digital signal processor. In Advances in CRYPTO’86. pp. 311–323. Spring-

er, (1987).

16. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: SIPHER: Scalable implementation of

primitives for homomorphic encryption–FPGA implementation using Simulink. High Per-

formance Extreme Computing Conference (2011).

17. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: SIPHER: An update on SIPHER

(Scalable Implementation of Primitives for Homomorphic EncRyption) — FPGA imple-

mentation using Simulink. High Performance Extreme Computing Conference (2012).

18. Craven, S., Patterson, C., Athanas, P.: Super-sized multiplies: how do FPGAs fare in ex-

tended digit multipliers. 7th International Conference on Military and Aerospace Program-

mable Logic Devices. (2004).

19. Emmart, N., Weems, C.: High precision integer multiplication with a gpu using strassen’s

algorithm with multiple fft sizes. Parallel Processing Letters, vol. 21, no. 3, p. 359. (2011).

20. http://gmplib.org/manual/Multiplication-Algorithms.html#Multiplication-Algorithms.

21. Xilinx Product Specification: LogiCORE IP Multiplier v11.2.

http://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf

22. Montgomery, P.: Modular multiplication without trial division. Mathematics of computa-

tion, vol. 44, no. 170, pp. 519–521. (1985).

23. Kalach, K., David, J.P.: Hardware implementation of large number multiplication by FFT

with modular arithmetic, the 3rd International IEEE-NEWCAS Conference, pp.267 – 270.

(2005).

24. Solinas, J. A.: Generalized Mersenne Numbers, Issue 39 of Research report (University of

Waterloo. Faculty of Mathematics). (1999).

25. Dhem, J. F.: Design of an efficient public-key cryptographic library for risc-based smart

cards. PhD thesis. (1998).

26. Cheon, J. H., Coron, J.-S., Kim, J., Lee, M. S., Lepoint, T., Tibouchi, M., and Yun, A.:

Batch Fully Homomorphic Encryption over the Integers, Advances in Cryptology –

EUROCRYPT 2013, Springer, LNCS, Volume 7881, pp. 315-335. (2013).

http://gmplib.org/manual/Multiplication-Algorithms.html#Multiplication-Algorithms

