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Abstract. Physically Unclonable Functions (PUFs) are emerging as hardware security prim-
itives. So-called strong PUFs provide a mechanism to authenticate chips which is inherently
unique for every manufactured sample. To prevent cloning, modeling of the challenge-response
pair (CRP) behavior should be infeasible. Machine learning (ML) algorithms are a well-known
threat. Recently, repeatability imperfections of PUF responses have been identified as another
threat. CMOS device noise renders a significant fraction of the CRPs unstable, hereby providing
a side channel for modeling attacks. In previous work, 65nm arbiter PUFs have been modeled
as such with accuracies exceeding 97%. However, more PUF evaluations were required than for
state-of-the-art ML approaches. In this work, we accelerate repeatability attacks by increas-
ing the fraction of unstable CRPs. Response evaluation faults are triggered via environmental
changes hereby. The attack speed, which is proportional to the fraction of unstable CRPs, in-
creases with a factor 2.4 for both arbiter and ring oscillator (RO) sum PUFs. Data originates
from a 65nm silicon chip and hence not from simulations.

Keywords: arbiter PUF, ring oscillator PUF, fault injection, modeling, repeatability, supply
voltage, temperature

1 Introduction

There is a clear trend towards small, distributed, mobile and wireless applications. They are typi-
cally integrated on chip. Cryptographic protection is indispensable as almost all applications process
sensitive data, but is thwarted because of the trend above. Energy/power and chip area are scarce
resources, so we are often limited to lightweight cryptography. Furthermore, because of the mobility,
one can easily gain physical access to the chip. Hardware attacks, either invasive or noninvasive, are
thus a significant threat.

Classical cryptography heavily relies on the ability to store secret information. Traditionally, binary
keys are stored in on-chip Non-Volatile Memory (NVM). EEPROM and its successor Flash are the
main technologies. However, this approach is vulnerable to hardware attacks [13]. The permanent
nature of storage worsens the problem as no limits are posed on the time frame of the attacker. Circuits
that detect hardware invasion offer additional protection. Unfortunately they suffer from practical
limitations. They might be expensive, bulky, battery powered, vulnerable to bypassing and/or not
appropriate for lightweight environments.

Physically Unclonable Functions (PUFs) have been proposed as a more secure and more efficient
alternative. PUFs measure the unique variability of physical objects. They can be manufactured
in a variety of technologies: optical, acoustical, magnetical, electrical and so on. PUFs which can
be integrated on chip, especially in CMOS technology, are by far the most relevant for commercial
applications. The manufacturing variability of nanoscale structures is then quantified.

For PUFs, the secret is stored in intrinsic physical features of a chip, resulting in some remarkable
security advantages in comparison to on-chip NVM. First, PUFs are often assumed to be resistant
against invasive attacks. One can argue that invasion damages the physical structure of the PUF.
Second, keys are inherently unique for each manufactured sample of a chip and there is no need to
explicitly program them. Third, the key is only generated and stored in on-chip volatile memory when
key-dependent operations have to be performed, as such posing limits on the attackers time frame.



1.1 Weak and Strong PUFs

PUFs are functions and produce a response when queried with a challenge. Responses and challenges
are both binary vectors. PUFs are often subdivided in two classes, depending on the number of
challenge-response pairs (CRPs) [12]. Weak PUFs have few CRPs and are typically utilized for on-
the-fly secret key generation. PUF response bits are not directly usable as a secret key because they
are noisy and possibly correlated. A so-called fuzzy extractor ensures a reproducible and uniformly
distributed key by applying an error-correcting code and a cryptographic hash function respectively [1].

Strong PUFs have many CRPs, in the ideal case exponentially increasing with the required chip
area, and offer more applications. It should be infeasible to capture all their CRPs in a reasonable time
span. Although secret key generation is possible as well, the most prominent strong PUF application
is CRP-based authentication of a chip. In an enrollment phase, the verifier collects arbitrary CRPs
from the chip and stores them secretly. In the verification phase, the verifier picks a challenge and
requests the PUF response again. The returned response should match the one in the database. To
avoid the error-correction overhead, a few erroneous bits are typically tolerated hereby. To prevent
replay attacks, the verifier should discard a CRP once it has been employed for authentication.

1.2 Security

We assume an attacker to have physical access to the PUF chip. Remember that PUFs are claimed
to resist hardware attacks better than on-chip NVM. Restriction to an eavesdropping attacker would
undermine the need for PUFs. As nanoscale manufacturing variations are uncontrollable, it is infeasible
to produce a clone of a PUF. A functional clone, copying the CRP behavior, is the main threat however.
The security considerations differ per application.

For secret key applications, it is imperative to keep the responses on chip, just as the secret keys
to which they are post-processed. Hardware attacks (invasive, through side channels and via fault
injection) should be taken into account. As mentioned before, PUFs are often assumed to be resistant
against the first category. Experimental evidence is generally lacking however, except for the coating
PUF [16]. Electromagnetic radiation is an exploitable side channel for ring oscillator (RO) PUFs [9].
In addition to PUF circuits, fuzzy extractors might leak side channel information as well [10].

For strong PUFs in a CRP-based authentation application, CRPs can be obtained by anyone with
physical access to the chip. The security arises from the CRP behavior unpredictability. It should be
infeasable to construct a clone via a mathematical model. Modeling through Machine Learning (ML)
algorithms, given a training set of CRPs, is a major threat. The arbiter PUF, which quantifies the
variability of gate delays, can be modeled as such [8]. Variants of the arbiter PUF which introduce
additional non-linearity (XOR, feed-forward, . . . ) provide more resistance but can still be modeled [11].
Hardware attacks on strong PUFs should be considered too, as they can facilitate modeling. We
introduced the repeatability side channel attack and demonstrated its feasibility on 65nm arbiter
PUFs [4].

So-called controlled PUFs enhance the security of CRP-based authentication via additional hard-
ware [2]. Hereby, the response bits of the strong PUF are post-processed using a fuzzy extractor.
Cryptographic hash functions are non-invertible and modeling vulnerabilities of the CRP behavior
are hence hidden. Also, one could preprocess the challenges with a cryptographic hash function to
counteract chosen-challenge attacks. However, the use of controlled PUFs poses two major problems.
First, the increased hardware footprint undermines the potential for resource constrained applications.
Second, the additional building blocks are not necessarily resistant to hardware attacks.

1.3 Variability and Noise

The distinction between variability and noise is essential for a good understanding of this paper.
Both cause deviations with respect to the nominal behavior. Measurements of (structural) variability,
originating from manufacturing processes, are reproducible. One can state that they are defined by
spatial distributions (and orientations) of individual molecules of the solid materials. Noise however is
a non-reproducible temporal phenomenon. Generally speaking, in electronic circuits, both variability



and noise are undesired. PUF circuits measure variability, but are bothered by noise as well, as it
reduces the repeatability.

Both variability and noise are technology dependent. They remain major design and manufacturing
challenges, especially while downscaling dimensions according to Moore’s law. Random Dopant Fluc-
tuation and Line-Edge/Width Roughness are important sources of variability for CMOS devices [7].
White thermal noise and 1/f noise affect the CMOS channel current [6]. Interconnect is affected by
Line-Edge/Width Roughness and white thermal noise too.

1.4 Environment

Environmental conditions like temperature and supply voltage affect PUF behavior. In the ideal case,
PUFs therefore operate in a constant nominal environment, which is to be specified. However, one can
not force an attacker to obey this specification. In this paper, we intentionally apply environmental
changes for PUF modeling purposes.

1.5 Our Contribution

Recently, we identified repeatability imperfections of PUF responses as a side channel for modeling
strong PUFs [4]. The presence of CMOS device noise, rendering a significant fraction of the CRPs
unstable, is exploited. As a proof of concept, 65nm arbiter PUFs have been modeled, with accuracies
exceeding 97%. However, more PUF evaluations were required than for state-of-the-art ML approaches.

In this paper, we accelerate repeatability attacks by increasing the fraction of unstable CRPs. We
trigger response evaluation faults via environmental changes. A significant performance gain is ob-
tained for arbiter and RO sum PUFs, both manufactured in 65nm CMOS technology. Data originates
from a silicon chip and hence not from simulations. We also describe the attack capabilities for RO
PUFs, employed in a CRP-based authentication application, although the application use cases are
rather limited.

This paper is organized as follows. In section 2, 3 and 4, we introduce arbiter, RO and RO sum
PUFs respectively. The high-level architecture, implementation aspects and security risks are described
for each. The repeatability model of PUF responses, capturing the impact of CMOS device noise, is
resumed in section 5. Attacks exploiting the former side channel are described in section 6 for all three
PUFs. Fault injection, accelerating modeling via environmental changes, is introduced in section 7.
Side channel and fault injection results are compared in section 8, for 65nm arbiter and RO sum
PUFs. Suggestions for further work are given in section 9. Section 10 concludes the work.

2 Arbiter PUF

2.1 Architecture

Arbiter PUFs [8] measure structural variability via the propagation delays of logic gates, like ring
oscillator [14] and glitch PUFs [15]. The high-level functionality is represented by figure 1. A rising edge
propagates through two paths with identically designed delays. Because of nanoscale manufacturing
variations however, there is a delay difference ∆tV between both paths. An arbiter decides which path
‘wins’ the race (∆tV ≶ 0) and generates a response bit r.

The two paths are constructed from a series of k switching elements. Challenge bits ci determine
for each stage whether path segments are crossed or uncrossed. Each (binary) state of each stage has
a unique contribution to ∆tV . So challenge vector c determines the arbiter time difference ∆tV and
hence the response bit r. The number of CRPs equals 2k.

CRP-based authentication with strong PUFs requires responses to have multiple bits. A single
arbiter PUF produces only a single response bit however. Two solutions, or a mixture of both, are
possible. First, one can implement multiple arbiter circuits on the same chip, all having the same
challenge as input. Second, one can query a single PUF circuit with multiple challenges and concatenate
the responses.
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Fig. 1. Arbiter PUF.

2.2 Implementation

Our 64-stage arbiter PUFs are manufactured in TSMC’s 65nm Low Power CMOS technology [5].
Switching elements are implemented via two 2-to-1 inverting multiplexers, as shown in figure 2. As
k is even, we still have two rising edges as arbiter input. Each multiplexer is implemented by two
transmission gates and a static complementary CMOS inverter to restore signal level.

s = ci

s = ci s

s

s

Fig. 2. Switching element circuit.

A variety of circuits can serve as an arbiter. Our chip employs a NAND latch, as shown in figure
3. Two cross-coupled NAND gates, implemented in static complementary CMOS logic, determine and
store the response bit r. Initially inputs i1 and i2 are both zero so that memory nodes r and r are
both charged. A rising edge will discharge one memory node and simultaneously lock the other.

i2
r

i1 r i2 i1 state

0 0 r = 1, r = 1

0 1 r = 1, r = 0

1 0 r = 0, r = 1

1 1 no change

}

Fig. 3. Arbiter circuit: NAND latch.

It is important to match the delay of both NAND gates. Otherwise, bias is introduced and the
response bit generation degrades to ∆tV ≶ ∆tB , with ∆tB a nonzero constant. The probability of
r to be 1 (or 0) would not be 50% anymore, assuming a symmetrical Probability Density Function
(PDF) of ∆tV with mean zero. Our arbiters are biased more than usual because response readout
logic is connected to node r only, so that is has a higher capacitive load than node r. A dummy
inverter connected to node r would improve the bias characteristics. A slight bias will always be
present however as manufacturing variations prevent the NAND gates from being perfectly identical.
So any modeling attack claiming to be general, should incorporate bias imperfections somehow, which
we are able to demonstrate well for our attacks due to the forgotten replica.



2.3 Vulnerability to Modeling Attacks

Arbiter PUFs show additive linear behavior which makes them vulnerable to modeling attacks. A
single stage can be described by two parameters, one for each challenge bit state, as illustrated in
figure 4. The delay difference at the input of stage i flips in sign for the crossed configuration and is
incremented with δt1i or δt0i for crossed and uncrossed configurations respectively.

∆tIN

i

ci = 0

∆tIN + δt0i ∆tIN

i

ci = 1

−∆tIN + δt1i

Fig. 4. Arbiter PUF: single stage modeling.

The impact of a δt on ∆tV is incremental or decremental for an even and odd number of subsequent
crossed stages respectively. By lumping together the δt’s of neighboring stages, one can model the
whole arbiter PUF with only k+1 independent parameters (and not 2k). A formal expression for ∆tV
is as follows [11]:

∆tV = γτ =
(
γ1 γ2 . . . γk 1

)(
τ1 τ2 . . . τk+1

)T

with τ =
1
2


δt01 − δt11

δt01 + δt11 + δt02 − δt12
...

δt0k−1 + δt1k−1 + δt0k − δt1k
δt0k + δt1k

and

γ =



(1− 2c1)(1− 2c2) . . . (1− 2ck−1)(1− 2ck)
(1− 2c2) . . . (1− 2ck−1)(1− 2ck)

...
(1− 2ck−1)(1− 2ck)

(1− 2ck)
1



T

.

Vector γ ∈ {±1}1×(k+1) is a transformation of challenge vector c ∈ {0, 1}1×k. Vector τ ∈ R(k+1)×1

contains the lumped stage delays. Arbiter bias can be incorporated too, so that the response bit is
still the outcome of ∆tV ≶ 0:

τk+1 = δt0k + δt1k −∆tB .

2.4 Machine Learning

High modeling accuracies can be obtained through ML techniques like support vector machines and
artificial neural networks. Given a limited set of training CRPs, algorithms automatically learn the
input-output behavior by trying to generalize the underlying interactions. The more linear a system,
the easier to learn its behavior. By using γ instead of c as ML input, a major source of non-linearity
is eliminated. The non-linear threshold operation ∆tV ≶ 0 remains however.

In the paper proposing arbiter PUFs as a security primitive, ML was already identified as a threat
[8]. They reported a modeling accuracy of 97% for their 64-stage 0.18µm CMOS implementation. A
more recent 65nm implementation, having 64-bit challenges too, has been modeled equally accurate
[3]. Our repeatability attacks are performed on the same 65nm chip. We circumvent the ∆tV ≶ 0
binarization by exploiting response repeatability as a side channel. A full linear system is obtained,
which is straightforward to model.



3 Ring Oscillator PUF

3.1 Architecture

RO PUFs [14] quantify the manufacturing variability of k identically laid-out oscillators. The high-
level functionality is represented by figure 5. A pairwise frequency comparison (δf ≶ 0) generates a
single response bit r. Each challenge is hence defined by a pair of RO indices. Frequencies are typically
measured by counting rising or falling edges on a wire connecting two subsequent inverters.

. . .
k

...

. . .
2

. . .
1 cnt

≶

cnt

r

Fig. 5. Ring oscillator PUF.

3.2 Implementation

Our RO PUF is implemented on the same 65nm CMOS chip [5] as the arbiter PUFs. Each oscillator
consists of 40 inverters and one NAND-gate, the latter being able to enable/disable the oscillation. For
improved testability, the oscillation time can be configured and counter values are directly accessible
(frequency comparisons are performed in software). This should not be the case however for market
products claiming to be secure.

The oscillation time is regulated by a separate RO, incrementing its dedicated counter. Once a user-
defined value is reached for this counter, all ROs are disabled and stop oscillating. The more oscillations
one allows, the more stable the counter values, the more repeatable the PUF responses. We performed
an experiment to determine an appropriate oscillation time. Figure 6 plots the noise-induced spread
on RO counter values as a function of the oscillation time. The counter value spread for a single RO is
quantified by the normalized standard deviation σcnt/µcnt, computed for 20 measurements, with µcnt
the mean value. To improve figure quality, the spread of 8 ROs is averaged. For all further results, we
configured a value of about 1000 oscillations, as indicated by the arrow. Responses are fairly repeatable
then, without increasing energy consumption and PUF evaluation time unnecessarily.
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Fig. 6. RO PUF: trade-off between repeatability and oscillation time.



3.3 Vulnerability to Modeling Attacks

For CRP-based authentication, RO PUFs offer little security. Their number of challenges, which equals
k(k−1)/2, increases quadratically and not exponentially with the PUF circuit area. As a consequence,
it is always feasible to collect all CRPs in a reasonable time span. By brute force, one is thus able to
construct a complete CRP table serving as a PUF clone. Even worse: not all CRPs have to be collected
as they are interdependent. The total PUF entropy is only log2(k!) bit as there are k! ways to sort
the frequency values. Sorting algorithms with complexity O(k log2(k)) accelerate the attack [11].

Therefore, only secret key generation is recommended as PUF application. Hereby, a fixed sequence
of challenges is applied via an internal challenge generator and response bits are kept secret. For the
sake of completeness, we will discuss repeatability attack for CRP-based authentication, although
rather briefly.

The multiplexer-counter-comparator architecture might greatly vary in practice. The correspond-
ing degree of parallelism affects the security against side channel attacks: measuring frequencies si-
multaneously offers more protection. Actually, there is a whole spectrum in between the following two
extremes: an individual counter per RO and a single counter accessing all ROs via a giant multiplexer.
Consider for instance the semi-invasive modeling attack proposed in [5], where one measures oscillator
frequencies via the electromagnetic side channel. If one can not assign these frequencies to individual
ROs, the attack is obstructed as such.

4 RO sum PUF

4.1 Architecture

RO sum PUFs [17] provide a much larger challenge space than their originals. The high-level func-
tionality is represented by figure 7. ROs are subdivided into k pairs, with each pair having a certain
frequency difference δf (digitized via counters). All δf ’s are summed, with challenge bits determining
the individual signs as expressed below. A thresholding step binarizes ∆fV to a response bit. The
number of CRPs equals 2k.

∆fV =
k∑
i=1

(1− 2ci)δfi.

δf1 ×

−1 1

c1

δf2 ×

+

−1 1

c2

. . .

δfk ×

+

−1 1

ck

∆fV
≶ 0

r

Fig. 7. RO sum PUF.

4.2 Implementation

The same array of 65nm on-chip ROs, selectively incrementing a counter via a multiplexer, is employed
as analog PUF core. We choose k = 64. Similar as for RO PUFs, CRP evaluation is performed partly
in software. The oscillation time parameter is chosen the same.



4.3 Vulnerability to Modeling Attacks

More obvious as for arbiter PUFs, there is additive linear behavior. RO sum PUFs are completely
described by k + 1 independent parameters, including one dedicated parameter to model bias effects.
Using the same notation as for arbiter PUFs, we obtain:

∆fV = γτ with τ =
(
δf1 δf2 . . . δfk −∆fB

)T
and γ =

(
(1− 2c1) (1− 2c2) . . . (1− 2ck) 1

)
.

Again, the thresholding operation is the only non-linearity in the system. The authors of [17]
already indicate ML as a threat, although an attack has not been demonstrated. Later work on
this PUF therefore concentrates on secret key applications instead of CRP-based authentication. We
still consider this PUF to be an interesting test specimen for demonstrating the capabilities of our
repeatability attacks.

5 PUF Repeatability Model

Repeatability refers to the short-term reliability of a PUF as affected by CMOS (and interconnect)
noise sources. Long-term device aging effects are not included. With R ∈ [0, 1], we denote the fraction
of the responses which evaluates to ‘1’ for a certain CRP. The further from R = 1

2 , the more repeatable.

5.1 Model Description

A generalized PUF architecture is shown in figure 8. There is always an analog circuit harvesting
variability, which is unfortunately affected by CMOS device noise and the environment too. For RO
and especially RO sum PUFs, there is additional post-processing logic, which is digital and hence fully
deterministic. A signal ∆x, having mean zero in the ideal case, is binarized to a response bit using
threshold zero, also in the ideal case. Bias might be introduced before or during binarization, but in
both cases the response bit evaluates as ∆x ≶ ∆xB . Without loss of generality, we develop our model
for the latter case.

c

E

analog

behavior digital

∆x ≶ ∆xB
r

PUF

arbiter

RO

RO sum

∆x

∆t

δf

∆f

Fig. 8. Generalized PUF architecture.

The PUF repeatability model is represented by figures 9 and 10, the former for the ideal case∆xB =
0 only. We assume variability and noise components to be independent so that ∆x = ∆xV +∆xN . As
both components are the result of very complex processes, we expect them to be normally distributed
according to the central limit theorem. Variance component ∆xV is normally distributed with respect
to the set of all challenges, as shown in subfigures a. We assume a zero mean and denote its standard
deviation as σV . Arrows indicate ∆xV for a particular challenge ci.

We collect the device noise relevant for response bit generation in one equivalent noise source. Noise
component ∆xN is normally distributed with respect to the infinite set of all PUF evaluations. We
assume a zero mean and denote its standard deviation as σN . Subfigures b show the PDF of ∆x(ci),
with variance and noise components determining its mean and its spread respectively. The fraction
which corresponds to a response r = 0, is marked black. Repeatability R, as shown in subfigures c, is
computed by integrating the former PDF:

R(∆xV ) =
1
2
erfc

(
∆xB −∆xV√

2σN

)



with erfc(x) =
2√
π

∫ ∞
x

e−z
2

dz.
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Fig. 9. PUF repeatability model, bias excluded. (a) Normal distribution of variance component ∆xV . (b)
Normal distribution of noise component ∆xN , superimposed onto a particular challenge ci. (c) Repeatability
R.

The key insight is that repeatability measurements provide direct access to internal analog infor-
mation, as expressed below. Knowledge of neither σV nor σN is required for PUF modeling purposes.
Acquired analog information is all relative, which is not a problem as in the end we only need the sign
of ∆xV −∆xB to predict response bits.

∆xV (R) = ∆xB −
√

2σNerfc−1(2R).

5.2 Repeatability Measurements

Fraction R can be estimated by evaluating the same challenge multiple times (parameter M). A
measurement error εR is bound to be present. As a consequence, an error ε∆xV

on the estimated value
of ∆xV is present too. For small ε’s, the derivative d∆xV

dR serves as a scaling factor:

ε∆xV
=
√

2πσNexp
((
erfc−1(2R)

)2)
εR.

We distinguish two error phenomena making εR nonzero. First, there is the discretization R ∈
{0, 1

M , . . . , M−1
M , 1}. The larger M , the less significant this type of errors. Second, there are stochastic

errors. We consider a single PUF evaluation as a Bernoulli trial; multiple evaluations then describe a
binomial distribution. For simplicity, we could define stochastic error εR as the standard deviation of
the random variable R:

εR =

√
R(1−R)

M
.

Stochastic measurement error εR has a maximum at R = 1
2 and decreases monotonically towards

R = 0 and R = 1. Scaling factor d∆xV

dR has an opposing effect and is the most dominant. It has
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Fig. 10. PUF repeatability model, bias included. (a) Normal distribution of variance component ∆xV . (b)
Normal distribution of noise component ∆xN , superimposed onto a particular challenge ci. (c) Repeatability
R.

a minimum at R = 1
2 . Towards R = 0 and R = 1, it increases monotonically and approaches ∞

asymptotically. We prefer measurements around R = 1
2 , but consider the whole 10 − 90% region as

reasonable.

5.3 Model Validation

We provide a visual validation for our repeatability model. Analytical PDF expressions are matched
with a normalized histogram of experimental data. For RO PUFs, we obtain variability and noise
characteristics directly from the counter values. We evaluated 2048 ROs with M = 15. A histogram of
averaged counter values µcnt is shown in figure 11a. We overlay a normal distribution with the same
mean and standard deviation. A histogram of counter value deviations, with respect to the averaged
values, is provided in figure 11b. The former two plots validate the model for both RO and RO sum
PUFs.

For the arbiter PUF, we validate our model via the PDF of fraction R. An analytical expression
is given below. We measured the reliability of one PUF circuit for 65000 random challenges with
M = 2000. A nonlinear curve fitter iterating over two variables, σN/σV and ∆tB/σV , provides the
match. Figure 11c shows an overlay of both PDFs. Only data in the 10 − 90% region has been used
for better visibility. Also note the minor bias towards r = 0, as discussed before in section 2.2.

PDF (R) = PDF (∆tV (R))
∣∣∣∣d∆tVdR

∣∣∣∣ =
σN
σV

exp

(erfc−1(2R))2 − 1
2

(
∆tB −

√
2σNerfc−1(2R)
σV

)2
 .

6 Modeling Attacks Exploiting CMOS Noise

Arbiter and RO sum PUFs show a similar form of additive linear behavior and are modeled likewise.
We discuss them first. Remark that each of their response bits contains variability contributions from
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Fig. 11. Repeatability model validation. (a) RO (sum) PUF: variance component. (b) RO (sum) PUF: noise
component. (c) arbiter PUF.

the whole PUF circuit. Next, RO PUFs are briefly discussed. Each of their response bits is affected
by only a very small fraction of the whole PUF circuit. This turns out to be fundamentally different
from an attacker’s point of view.

6.1 Modeling Arbiter and RO Sum PUFs

Figure 10c shows that R(∆xV ) is fairly linear for 10% ≤ R ≤ 90%: we call this the linear region.
As ∆xV is a linear combination of the model parameters (τ1 to τk+1 for both arbiter and RO sum
PUFs), so is R in the linear region (approximately). Via the repeatability side channel, the PUF
degrades to a full linear system, which is straightforward to model. Consider a set of N training
CRPs, all in the linear region and evaluated M times each: {ci, Ri}. For N ≥ k + 1, we can simply
solve the (overdetermined) system of linear equations shown below in a Least Mean Square manner.
Numerically stable algorithms are described in literature.

Γτ =


R1

R2

...
RN

 with ΓN×(k+1) =


γ1

γ2

...
γN

 .

As discussed earlier, bias is included in element τk+1. To predict the PUF response for a challenge
c, one should check whether R = γτ ≶ 1

2 . The predicted value of R can also be utilized to estimate
the prediction certainty: the further from 1

2 , the better. This feature is not intrinsically available for
ML techniques like artificial neural networks.

One could improve the linearity by applying the transformation below. For response prediction,
one should check whether γτ ≶ erfc−1(1) = 0. We do not apply this transformation as we observe



only very minor improvements for the modeling accuracy.

Γτ =


−erfc−1(2R1)
−erfc−1(2R2)

...
−erfc−1(2RN )

 .

6.2 Accuracy Analysis

We now analyze the modeling accuracy of the former attack in a theoretical manner. Errors in the
repeatability measurements (εR) cause an error ετ on the PUF model vector obtained by the attacker:

Γ(τ + ετ ) = (R+ εR) with Γτ = R.

To quantify the extent to which repeatability errors propagate, one could compute the condition
number κC of Γ. In our case, a modified definition is much more appropriate. Model error ετ = Γ+εR
is determined by the (pseudo)inverse of challenge matrix Γ. Row i of Γ+ determines for τi to which
extent repeatability errors accumulate/cancel out. To quantify the overall condition, we sum the
elements in each row of Γ+ and subsequently average their absolute values:

κC =
1

k + 1

k+1∑
i=1

∣∣∣∣∣∣
N∑
j=1

Γ+
i,j

∣∣∣∣∣∣ .
To study the impact of N , we performed a simulation as shown in figure 12. For different values

of N ≥ k + 1, we generated 1000 random challenge matrices and averaged their condition numbers.
Condition number κC decreases monotonically with increasing N : rapidly in the beginning and in-
creasingly slower afterwards. As demonstrated later in section 8, very small values of M become
feasible as measurement errors on R cancel out efficiently.
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0

0.2

0.4

0.6

0.8

1

1.2

N

κC

Fig. 12. Accuracy analysis of repeatability attacks on arbiter and RO sum PUFs: condition number simulation.

6.3 Query Algorithms

A major speed bottleneck is that most CRPs are very repeatable and hence not suitable for modeling
purposes. One might try to increase the fraction of usable CRPs by an adaptive query algorithm.
Hereby, the challenges are not chosen at random anymore. The ability to perform small steps of ∆xV
turns out to be useful: a CRP originally in the linear region might remain there after making a small
step. Consider the following arbitrary challenge as a reference:{

cREF = (c1 c2 . . . ck)
γREF = (γ1 γ2 . . . γk 1).



One can choose challenges ci so that γREF and γi only differ in element i, with i ∈ [1 k]:c1 = (c1 c2 . . . ck) (arbiter PUF)
c1 = (c1 c2 . . . ck) (RO sum PUF)
γ1 = (−γ1 γ2 . . . γk 1) c2 = (c1 c2 . . . ck) (arbiter PUF)
c2 = (c1 c2 . . . ck) (RO sum PUF)
γ2 = (γ1 −γ2 . . . γk 1)

... ck = (c1 . . . ck−1 ck) (arbiter PUF)
ck = (c1 . . . ck−1 ck) (RO sum PUF)
γk = (γ1 . . . γk−1 −γk 1).

Only τi then contributes to the difference in ∆xV . For optimal performance, one should learn
while querying. Actually the principle above can also be used for an attack scheme which estimates
the elements of model vector τ one by one [4]. However, its performance and usability are in all aspects
inferior to the method presented.

We do not implement a query algorithm because it has two major drawbacks. First, one should
take into account the method by which multiple response bits are generated, as discussed in section
2.1. Modeling a single PUF is more advantageous than modeling many parallel PUFs. That’s because
query algorithms can adapt their behavior to maximally benefit only a single PUF. Second, the rows
of Γ become strongly correlated, which increases its condition number.

6.4 Modeling RO PUFs

Consider a RO PUF employed in a CRP-based authentication application. A single CRP evaluation
does reveal the sign of a certain δf , with CMOS device noise causing an occasional error hereby.
State-of-the-art modeling attacks require O(k log2(k)) of these CRP evaluations. We claim that the
complexity can be reduced to O(k) via repeatability measurements. We explain the main idea, but
we do not provide refinements or experimental results because of two reasons. First, we do not expect
a substantial gain in terms of absolute numbers, if any, as k is limited. Second, as mentioned before,
even a simple brute-force tabulation of all CRPs would be feasible in practice.

Repeated CRP evaluations do provide a (relative) estimate of a certain δf , instead of just the sign.
The higher M , the better one can quantify the overlap of two counter PDFs and hence their δf . If
there is no significant overlap, only a lower/upper bound can be provided. Consider a limited number
of reference ROs, with all δf ’s known, as in figure 13a. We assume them to cover the whole frequency
range, as suggested in figure 13b. The frequency of every RO can be determined with respect to this
set, making the complexity of the attack O(k). Because M should be rather high and because the
number of CRPs is limited, both compared to the arbiter and RO sum PUF attack for instance, we
do not expect to obtain a performance advantage.

7 Faster Modeling via Environmental Changes

So far, response repeatability imperfections originate from CMOS device noise. We increase the fraction
of unstable responses U via environmental changes. So we switch from a side channel to a fault
injection approach. We still perform multiple measurements per challenge ci, as required to compute
a repeatability R, but we now use L different environments as depicted in figure 14. More generally,
one could collect multiple response bits per environmental setting, but we limit ourselves to M = 1
for our repeatability attacks. For our preceding environmental study, we use larger values of M to
suppress noise (majority vote). However, data of different environments is not ‘mixed’ then, but kept
separated.
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Fig. 14. Measurement setup for repeatability modeling attacks via environmental changes.

There are two basic data acquisition strategies for the attack. Either one handles the challenges
one by one, continuously changing the environment. Or one applies all challenges before performing
an environmental change. We opted for the latter strategy because of its convenience. There is no
need to store all challenges. We employed an on-the-fly approach where we re-seed a pseudorandom
number generator with a constant value.

We are particularly interested in CRPs with |∆xV −∆xB | slightly too large to pose repeatability
issues due to CMOS device noise alone. Environmental changes modify delay, noise and bias char-
acteristics of a PUF. The impact increases with the magnitude of the environmental deviation and
is not necessarily balanced for all three parameters of interest. So additional CRPs are expected to
become unstable when gathering repeatability data from different environments.

An example is given in figure 15 for L = 3. A challenge ci evaluates to r = 1 under nominal
conditions (E1), in a repeatable manner. Variance ∆xV , noise ∆xN and bias ∆xB all decrease for
environment E3, with slightly different scaling factors for each. The same challenge still evaluates to
r = 1, in even more stable manner. For E2 however, where the impact is increasing, the challenge will
regularly evaluate to r = 0.

We perform experimental measurements for all PUFs to support the former theory. There is no
need to discuss RO and RO sum PUFs separately as their analog core is identical. But first we define
the nominal PUF environment and we discuss the extent of deviation.

7.1 Environmental Experiments

Environmental deviations are chosen symmetrical around the nominal environment E1, as in the end
we want to obtain a model for a PUF under nominal conditions. We define the environment as the
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Fig. 15. Environmental changes increase the fraction of unstable CRPs.

DC supply voltage VS and the temperature T . Other environmental influences are not investigated
here and are suggested as further work. We quantify experimentally the environmental impact on our
PUFs, separately for the supply voltage and temperature case.

The nominal supply voltage of our 65nm chip equals 1.20V. We perform a sweep from 0.95V
to 1.45V in steps of 0.05V, corresponding to L = 11 environmental settings. The magnitude of the
deviations is limited by the operability of the chip. For the maximum voltage, we should also make
sure not to damage any circuitry.

We define the nominal temperature as 20 ◦C. Similar as for supply voltage, a sweep is performed
from −20 ◦C to 60 ◦C in steps of 10 ◦C, corresponding to L = 9 environmental settings. A TestEquity
Half Cube temperature chamber is hereby employed. Again, operability and potential damage of the
chip should be taken into account.

7.2 Arbiter PUF

For each environmental configuration, we query 32 arbiter PUFs with the same 2000 randomly chosen
challenges, using M = 15. Figure 16 and 17 show the averaged supply voltage and temperature impact
respectively. The fraction of usable CRPs U is rather independent of the environment, as shown in
subfigures a. So all environments are to be considered as equally stable.

However, we are interested in response instabilities across different environments, instead of within
a single environment. For each PUF instance, each challenge and each voltage configuration, we first
perform a majority vote to suppress CMOS device noise somewhat. Subsequently we determine the
ratio of flipping response bits with respect to the nominal environment, as shown in subfigures b.

For the supply voltage case, we observe a significant amount of erroneous response bits when
changing the environment. The further from the nominal environment, the more CRPs become un-
stable. Immediately around the nominal environment, there seems to be a larger increase in flipping
bits. This is an artifact however, originating from CMOS device noise still present after the majority
vote. For the temperature case, we observe only a very minor impact of the environment. So for our
experimental fault injection attack later on, we only consider supply voltage deviations.
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Fig. 16. Arbiter PUF: deviations around the nominal supply voltage VS = 1.20V . (a) Fraction of unstable
CRPs U . (b) Response bit flips with respect to the nominal environment. (c) Response bias.

We also make a distinction between ‘1’ to ‘0’ and ‘0’ to ‘1’ flipping bits. For the supply voltage
case, the bias increasingly shifts towards r = 0 with increasing supply voltage. This effect is shown
more clearly in subfigure c, plotting the fraction of PUF responses evaluating to ‘1’. The dashed lines
represent the ±1 standard deviation interval with respect to the 32 PUF instances.

7.3 RO and RO Sum PUF

For each environmental configuration, we collect counter values for 2048 ring oscillators, using M = 15.
Figure 18 and 19 show the averaged supply voltage and temperature impact respectively. As before,
the fraction of usable CRPs U is rather independent of the environment, as shown in subfigures a.

We perform 2047 randomly chosen but independent frequency comparisons to evaluate the RO
PUF behavior. The ratio of flipping response bits, with respect to the nominal environment, is shown
in subfigures b. Our conclusions are similar as before: for the supply voltage case we observe a much
larger impact than for the temperature case. So again, we only consider supply voltage deviations for
our experimental modeling attacks later on.

Bias turns out to be limited and rather independent of the environment. As shown in subfigures
c, bias is mainly introduced by comparing equal counter values: the PUF should return either a ‘1’ or
a ‘0’ then. Therefore, we expect bias to decrease for the RO sum PUF, as the standard deviation of
∆fV increases with a factor

√
k with respect to δfV . Repeatability results are expected to be similar

however as the noise standard deviation increases with a factor
√
k as well.

Subfigures d show that the mean frequency is rather independent of the environment. The dashed
lines represent the ±1 standard deviation interval. However, for the supply voltage case, there is
an either increasing or decreasing trend for the counter values of individual ring oscillators, causing
response bits to flip. The environmental impact relative to the separate ring oscillator, determining
oscillation time, is of a major importance hereby.
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Fig. 17. Arbiter PUF: deviations around the nominal temperature T = 20 ◦C. (a) Fraction of unstable CRPs
U . (b) Response bit flips with respect to the nominal environment. (c) Response bias.

8 Results and Discussion

We want an accurate model while keeping the number of PUF evaluations (LMN/U) low. We first
determine an optimal value for parameter M , in case of the side channel approach (L = 1). For ease
of comparison, we will employ the same value for L in case of the fault injection approach (M = 1).
Subsequently we tabulate and compare accuracy results for both the arbiter and RO sum PUF. We
conclude that environmental changes increase the fraction of useful CRPs U without deteriorating the
modeling accuracy. As mentioned before, we only present supply voltage results.

8.1 Parameter M (side channel approach)

The larger M and N , the more accurate one can model. Figure 20 demonstrates that the best accuracy-
performance trade-off is obtained for very low values of M . We plot the modeling accuracy versus the
number of usable PUF evaluations (MN) for M ∈ {3, 15, 29}. Data is averaged over 32 arbiter PUF
instances, but we expect similar behavior for RO sum PUFs. The accuracy verification set counts 5000
CRPs, improved in quality via majority voting (M = 30).

The first model can be constructed for N = k + 1 = 65 and the modeling accuracy ramps up
rapidly with increasing N afterwards. That’s because repeatability measurement errors are dealt with
efficiently. The ramp up behavior is conform with the condition number simulation in figure 12.

The fraction of usable CRPs U is approximately constant for largeM . However, for high-performance
attacks, we are particularly interested in low values of M : the dependency U(M) is shown in figure 21.
Data is averaged over 25000 CRPs and 32 arbiter PUF instances. Again, we expect similar behavior
for RO sum PUFs.

The dependency U(M) is mainly caused by the asymmetry of discrete repeatability bins around
R = 10% and R = 90%. The larger M , the smaller the spacing between neighboring bins, the smaller
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Fig. 18. RO (sum) PUFs: deviations around the nominal supply voltage VS = 1.20V . (a) Fraction of unstable
CRPs U . (b) Response bit flips with respect to the nominal environment. (c) Response bias. (d) Mean counter
value cnt.

the deviations around the constant value for very large M . Regarding overall performance, we expect
the conclusions drawn from figure 20 to be dominant. Therefore we choose M = 3 for all further
results, despite the worst-case U .

8.2 Accuracy and Performance

We measure modeling accuracy via a verification set of 3000 and 5000 randomly chosen CRPs for the
arbiter and RO sum PUF respectively. Each verification challenge was evaluated M = 15 times on
32 arbiter PUF instances and one RO sum PUF instance respectively, with M/2 as a response bit
decision threshold. Verification data is acquired for the nominal environment E1 (VS = 1.20V ).

Table 1 and 2 provide accuracy-performance results for the arbiter and RO sum PUF respectively.
For the arbiter PUF, accuracies are averaged over 32 PUF instances: the mean value and the ±1
standard deviation interval is given. The leftmost column of values corresponds with the side channel
approach and serves as a reference.

Comparing the arbiter side-channel results with [4], we observe a slight decrease in accuracy. We
indicate three possible root causes. First, another specimen of the same chip was employed for our
measurements. Second, another sequence of random challenges was applied. Third, parameter M of the
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verification set has been decreased significantly. We do not consider this observation as very important
however: our main interest is the accuracy-performance comparison with the fault-injection method.

The more to the right in both tables, the larger the supply voltage deviation. As discussed before,
environmental deviations are chosen symmetrical around the nominal value. We observe no significant
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side fault
channel injection

M 3 1

L 1 3

1.15V 1.10V 1.05V 1.00V 0.95V
E 1.20V 1.20V 1.20V 1.20V 1.20V 1.20V

1.25V 1.30V 1.35V 1.40V 1.45V

N
U 7.5% 8.4% 10.3% 12.9% 15.4% 17.9%

100
85.1% 87.4% 88.7% 89.3% 88.3% 87.4%
±9.9% ±6.9% ±3.8% ±2.6% ±2.5% ±3.2%

200
93.6% 93.8% 93.9% 93.7% 93.6% 93.4%
±1.5% ±1.4% ±1.2% ±1.0% ±1.0% ±1.3%

300
94.6% 94.7% 95.0% 95.0% 95.0% 94.8%
±1.2% ±0.9% ±0.7% ±0.7% ±0.7% ±0.7%

400
95.3% 95.3% 95.6% 95.6% 95.6% 95.3%
±0.8% ±0.7% ±0.7% ±0.6% ±0.5% ±0.5%

500
95.6% 95.7% 95.9% 95.7% 95.9% 95.7%
±0.6% ±0.6% ±0.6% ±0.6% ±0.5% ±0.5%

Table 1. Arbiter PUF: modeling accuracy and performance, with and without environmental deviations.

side fault
channel injection

M 3 1

L 1 3

1.15V 1.10V 1.05V 1.00V 0.95V
E 1.20V 1.20V 1.20V 1.20V 1.20V 1.20V

1.25V 1.30V 1.35V 1.40V 1.45V

N
U 3.7% 4.4% 5.7% 6.9% 7.5% 8.7%

100 96.1% 94.5% 95.2% 96.1% 95.4% 92.4%

200 98.0% 98.3% 97.7% 97.6% 97.8% 96.4%

300 98.4% 98.6% 98.4% 98.5% 98.2% 97.4%

400 98.8% 99.0% 98.6% 98.7% 98.6% 98.0%

500 98.8% 98.9% 98.8% 99.0% 98.9% 98.2%
Table 2. RO sum PUF: modeling accuracy and performance, with and without environmental deviations.

impact on the accuracy, with respect to the side channel case. This is especially clear for table 1,
which values are averaged. For the largest environmental deviation, the modeling speed improves with
an equal factor 17.9/7.5 ≈ 8.7/3.7 ≈ 2.4 for both arbiter and RO sum PUFs, while maintaining an
excellent accuracy.

ML attacks are still faster, as demonstrated for arbiter PUFs using the same 65nm chip [3],
although the gap is closing. We propose joined efforts instead of competition however: the presented
techniques might facilitate a ML attack. Repeatability R is a much more informative PUF output
than the (noisy) response bit r, so learning capabilities can only benefit. Further research is therefore



recommended. Other fault injection techniques, applied either individually or simultaneously, might
increase fraction U and hence the attack speed as well.

9 Further Work

We are convinced that more research is required to fully understand the attack capabilities. Other
strong PUF designs (e.g. the many arbiter PUF variants) should be examined for potential weaknesses.
We also proposed joined efforts with ML techniques: repeatability data might be employed to facilitate
automatic learning.

Alternative techniques for fault injection could be investigated as well. Consider for instance an
unstable power supply, where more noise is literally injected into the analog PUF circuit. Electromag-
netic radiation might be another idea worth exploring. Also remark that one could use multiple fault
injection techniques simultaneously.

Countermeasures are another line of research. Additional hardware for on-chip error correction,
as in a controlled PUF, might help. Also, one could try to detect different forms of fault injection.
One can ensure that the PUF is only operational if the provided supply voltage is very close to the
nominal value, for instance.

10 Conclusion

Repeatability measurements provide a new strategy for attacking strong PUFs in a CRP-based au-
thentication application. Either as a pure side channel technique or possibly accelerated via fault
injection. By applying environmental deviations, supply voltage in particular, response bit faults were
introduced. As such we were able to increase the fraction of unstable CRPs, hereby improving the
attack efficiency. As experimentally quantified using a 65nm CMOS chip, modeling attacks are accel-
erated with a factor 2.4 for both arbiter and RO sum PUFs, while maintaining an excellent accuracy.
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12. U. Rührmair, S. Devadas and F. Koushanfar, “Security based on Physical Unclonability and Disorder,”
Introduction to Hardware Security and Trust, Springer, Book Chapter, 2011.

13. S. Skorobogatov, “Semi-invasive attacks - a new approach to hardware security analysis, Technical Report
UCAM-CL-TR-630, University of Cambridge, Computer Laboratory, Apr. 2005.

14. G.E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key gener-
ation,” in IEEE Design Automation Conference, DAC 2007, pp. 9-14, Jun. 2007.

15. D. Suzuki and K. Shimizu, “The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes,”
in Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 366-382, Aug. 2010.

16. P. Tuyls, G.J. Schrijen, B. Skoric, J.V. Geloven, N. Verhaegh and R. Wolters, “Read-Proof Hardware from
Protective Coatings,” in Cryptographic Hardware and Embedded Systems, CHES 2006, pp. 369-383, Oct.
2006.

17. M.-D. Yu and S. Devadas, “Recombination of physical unclonable functions, in Government Microcircuit
Applications & Critical Technology Conference, GOMACTech 2010, Mar. 2010.


