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Abstract
The increasing penetration of Online Social Networks

(OSNs) prompts the need for effectively accessing and
utilizing social networking information. In numerous ap-
plications, users need to make trust and/or access control
decisions involving other (possibly stranger) users, and
one important factor is often the existence of common
social relationships. This motivates the need for secure
and privacy-preserving techniques allowing users to assess
whether or not they have mutual friends.

This paper introduces the Common Friends service, a
framework for finding common friends which protects pri-
vacy of non-mutual friends and guarantees authenticity of
friendships. First, we present a generic construction that
reduces to secure computation of set intersection, while en-
suring authenticity of announced friends via bearer capab-
ilities. Then, we propose an efficient instantiation, based
on Bloom filters, that only incurs a constant number of
public-key operations and appreciably low communication
overhead. Our software is designed so that developers can
easily integrate Common Friends into their applications,
e.g., to enforce access control based on users’ social prox-
imity in a privacy-preserving manner. Finally, we show-
case our techniques in the context of an existing applica-
tion for sharing (tethered) Internet access, whereby users
decide to share access depending on the existence of com-
mon friends. A comprehensive experimental evaluation at-
tests to the practicality of proposed techniques.

1 Introduction
Online Social Networks (OSNs) play a key role

in today’s computing ecosystem, as social interac-
tions/connections are increasingly used to enhance trust
in, and usability of, a growing number of applications.
Popular OSNs, such as Facebook, have become de-facto

providers of online identities and are often used to en-
force verification of personas and information. Numer-
ous applications leverage technologies like OAuth [24] and
OpenID [47] to authenticate users while relying on third-
party services offered by OSN providers. Others connect
to social network profiles and rely on data harvested from
them, e.g., to verify self-reported information [45] or de-
tect Sybil nodes [13].

In many realistic scenarios, users need to make access
control decisions involving other (possibly stranger) users,
e.g., for sharing rides [2] and cabs [1], to construct dis-
tributed computing platforms [42] and online dating ser-
vices [3], or to base routing decisions for anonymous
communications [35, 41]. One important trust-enhancing
factor, potentially guiding such decisions, is the existence
of previously established social relationships. For instance,
an intuitive access control policy may be to only carpool
with one’s friends or friends-of-friends, or to base routing
decisions on social proximity. However, the process of dis-
covering common friends may harm the privacy of the two
parties and that of their friends. At least one party needs to
disclose the identity of his friends and, depending on the
application scenario, this could reveal the identity of the
user, and possibly even information about his lifestyle and
social attitudes.

Motivated by the above issues, this paper presents the
design and the implementation of a framework supporting
secure discovery of common friends, which we denote as
Common Friends. It allows two devices to assess whether
their owners are friends or have mutual friends in a given
social network, without reciprocally revealing any inform-
ation about non-common friends.

We first introduce a generic construction that reduces the
problem to secure computation of set intersection [23] and,
at the same time, ensures authenticity of claimed friends
using bearer capabilities [48]. We then propose a very ef-
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ficient instantiation, based on Bloom filters [10], that only
incurs a constant number of public-key operations (inde-
pendent from the size of friend lists). Our proposed frame-
work provides a clear and usable interface for application
developers, enabling them to support access control de-
cisions based on users’ social proximity, independently of
underlying cryptographic techniques. Finally, we integrate
the Common Friends service into an existing application
for sharing Internet connection [5], whereby users decide
whether or not to share based on the existence of common
friends. A comprehensive experimental evaluation attests
to the practicality of proposed techniques.

1.1 Securely Finding Common Friends
As our main building block, we turn to Private Set Inter-

section (PSI) [23, 37, 17, 33, 29, 18], a cryptographic prim-
itive allowing two parties, each inputting its own private
set, to interact so that they only obtain, at most, the set
intersection. If one considers the lists of users’ friends
as (unordered) sets, then PSI could be used to let users
only learn the friends they share, by obtaining the set in-
tersection. Alternatively, if only the number of shared
friends is needed, one could use the Private Set Intersec-
tion Cardinality (PSI-CA) variant [23, 4, 27, 14], which
only outputs the magnitude of the set intersection. Unfor-
tunately, however, with PSI/PSI-CA, users could include
identities of arbitrary friends in their input list (i.e., claim
non-existent friendships). The Authorized PSI (APSI) vari-
ant [17, 15, 11], which extends PSI by ensuring that inputs
are authorized by an appropriate authority, would not work
either as it assumes that only one party’s set is certified and
the certification is performed by a single authority.

The work in [16] addresses the problem of claiming non-
existent friendships by requiring users to provide a proof of
prior relationship, via cryptographic credentials. Common
friends are (privately) discovered following a relatively ex-
pensive technique resembling Secret Handshakes [6, 40],1

where validity of certificates is verified obliviously to guar-
antee privacy while enforcing authenticity. Whereas, our
approach is to use bearer capabilities [48] (aka sparse cap-
abilities or bearer tokens): each user distributes a time-
limited, randomly generated capability to his friends via
a secure (i.e., authentic and confidential) channel. Pos-
session of the capability represents a proof of an exist-
ing friendship, thus, users can input it into a cryptographic
protocol, such as PSI, which reciprocally discloses only
their common (authentic) friends. Using this approach, in-
put sets to the PSI protocol are actually high-entropy ob-
jects, generated from a large space that is impractical to
enumerate. Consequently, we do not need the full secur-
ity of standard PSI techniques [23, 37, 17, 33] designed to

1Secret Handshakes allow two parties with certificates issued by the
same organization to privately authenticate each other.

work with potentially “predictable” items, such as names
or identifiers. As we discuss later in Sec. 2.4, the unpre-
dictability of capabilities allows us to instantiate PSI us-
ing a novel construction based on Bloom filters [10], with
appreciably lower communication overhead and reduced
number of modular exponentiations (constant vs. linear in
the number of friends).

1.2 Contributions
In this paper, we present the design and the imple-

mentation of Common Friends, a framework that enables
two devices to assess whether their owners are friends or
share common friends in a given social network. Common
Friends combines PSI with bearer capabilities [48] to en-
sure (1) privacy, i.e., users only learn information about
their common friends, and (2) authenticity, i.e., one can-
not falsely claim non-existent friendships. The Common
Friends service is appealing in a number of realistic scen-
arios, where users can make trust and access control de-
cisions, in a privacy-preserving manner, based on the ex-
istence (and possibly magnitude) of social relationships,
e.g., for distributed computation, social networking, online
dating, or ride-sharing.

In summary, this paper makes several contributions:

• The insight that when input sets include high-entropy
items one can design more efficient PSI schemes than
traditional PSI designed for low-entropy elements and
the concrete design of such a PSI scheme based on
Bloom Filters (Sec. 2.4);

• A detailed description of the design and implement-
ation of a framework encapsulating the secure use of
PSI protocols (independently from the actual imple-
mentation/variant) and bearer capabilities in the Com-
mon Friends scenario (Sec. 3). Our implementations
provide a clear interface for developers to easily in-
tegrate Common Friends into their applications and
use social proximity to guide trust and access control
decisions. As a proof-of-concept, we successfully in-
tegrate it with a tethering application for sharing con-
nectivity (Sec. 4).

• A performance evaluation that attests to the practical-
ity of our solutions (Sec. 5).

2 The Common Friends Service
In this section, we describe the Common Friends ser-

vice. We first introduce the desired security properties and
then present our generic system design that reduces to the
problem of private set intersection, followed by an efficient
instantiation based on Bloom filters. Finally, we discuss
the security of our proposals.
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2.1 Security Goals and Attacker Model
We now define the secure common friend discovery

functionality, along with relevant corresponding security
goals.

Attacker Model. Before presenting security definitions,
we introduce the attacker model. We consider honest-but-
curious (aka semi-honest) adversaries, i.e., participants are
assumed to follow protocol specifications but nonetheless
attempt to infer more information, during or after protocol
execution. In particular, we assume that legitimate parti-
cipants will not disclose, or share, secret information.

Common Friends. The Common Friends service relies
on a two-party protocol involving “initiator” I and “re-
sponder” R, on input the list of their friends f(IDI) and
f(IDR), respectively. (IDI and IDR denote, respectively,
the identity of I and R in a given social network). Specific-
ally, we rely on three protocol variants securely realizing
three functionality variants, presented in Table 1, and satis-
fying privacy and authenticity definitions discussed below.

Protocol R’s output I’s outputVariant
Basic f(IDI) ∩ f(IDR) ⊥

Cardinality-only |f(IDI) ∩ f(IDR)| ⊥
Mutual Output f(IDI) ∩ f(IDR) f(IDI) ∩ f(IDR)

Table 1: Secure Common Friend Discovery Variants.

Initiator’s Privacy. I’s privacy is guaranteed if, on each
possible pair of inputs (f(IDI), f(IDR)), R’s view can
be efficiently simulated on input: f(IDR) and either
f(IDR) ∩ f(IDI) in the basic variant, or |f(IDR) ∩
f(IDI)| in the cardinality-only variant.

More precisely, let ViewR(f(IDI), f(IDR)) be a ran-
dom variable representing the view of the responder R dur-
ing a protocol interaction with inputs f(IDI), f(IDR).
Then, there exists a Probabilistic Polynomial Time (PPT)
algorithm R∗such that, in the basic variant:

{R∗(f(IDR), f(IDR) ∩ f(IDI))}(f(IDR),f(IDI))

c≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI))

or, in the cardinality-only variant:

{R∗(|f(IDR), f(IDR) ∩ f(IDI)|)}(f(IDR),f(IDI))

c≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI))

Responder’s Privacy (Basic and Cardinality-Only Vari-
ants). If the functionality yields no output to the initiator,
then responder’s privacy is guaranteed if no information is
disclosed about its input, not even the number or the iden-
tity of the common friends.

Description Notation
Entities

Server S
Initiator User I

Responder User R
Generic User (can be either I or R) U

Keys
DH public key of U, I, R, resp. PKU , PKI , PKR

DH private key of U, I, R SKU , SKI , SKR

DH session key between I and R KIR

Data
Certificate of server S CertS

U’s identifier in the social network IDU

Set of U’s friends in the social network f(IDU )
Capability uploaded by user U cU

U’s friends and their capabilities RU ={(IDj , cj ) |
downloaded from S IDj ∈ f(IDU )}

I’s input set to PSI RI ={(cj ||PKI ||PKR) |
(IDj , cj) ∈ RI )}

R’s input sets to PSI RR={(ck||PKI ||PKR) |
(IDk, ck) ∈ RR)}

Table 2: Notation.

That is, for every PPT adversary I∗ playing initiator’s
role, every initiator input set f(IDI), and any responder
inputs (f(IDR)

(0), f(IDR)
(1)) (of equal size), the views

of I∗ if responder inputs f(IDR)
(0) and if responder inputs

f(IDR)
(1) are computationally indistinguishable.

Responder’s Privacy (Mutual Output Variant). Clearly,
when the functionality yields, as output, the identity of
common friends to both parties, responder’s privacy is
defined like initiator’s privacy, i.e., I’s view should be ef-
ficiently simulated with only its inputs and outputs. Spe-
cifically, let ViewI(f(IDI), f(IDR)) be a random vari-
able representing the view of the initiator I during a pro-
tocol interaction with inputs f(IDI), f(IDR). Then, there
exists a PPT algorithm I∗such that:

{I∗(f(IDI), f(IDI) ∩ f(IDR))}(f(IDI),f(IDR))

c≡

{ViewI(f(IDI), f(IDR))}(f(IDI),f(IDR))

Authenticity (Informal Definition). A user should not
be able to falsely claim to have a common friend with the
other party if there is no such common friend. Obviously, it
follows that if the latter controls access to a resource on the
basis of the existence of common friends, then, the former
cannot succeed in getting access to this resource by claim-
ing non-existent friendships and/or inflating the number of
common friends.

2.2 System Description
Table 2 summarizes the notation used throughout this

paper. The Common Friends service consists of two sub-
protocols:
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Establish a secure connection	

using CertS (server auth) and pwdU (user auth)	


cU	

Store (IDU, cU)	


RU	


User U! Server S!
Inputs:	

pwdU, CertS	


Input:	

SKS	


RU !
IDj,cj( ) s.t.
IDj " f (IDU )

#
$
%

&%

'
(
%

)%

cU !R {0,1}
160

Figure 1: Common Friends Capability distribution.

• A capability distribution protocol (Fig. 1) which is
executed periodically by every user in the system, and

• A friend finding protocol (Fig. 2) which is executed
between two users whenever they want to find com-
mon friends. (To ease presentation, we first present
the basic protocol variant, and discuss further variants
in Sec. 2.3, 2.4).

Capability distribution. We assume the presence of a
server S, in the form of a social network application, which
is used to distribute capabilities, as depicted in Fig. 1.
First, user U and server S establish a secure channel. We
use CertS for server authentication and let the social net-
work authenticate the user based on his password pwdU .
U periodically generates a random capability cU from a
large space (e.g., 160-bits) and uploads it to S via the
established channel. S stores cU , along with the social
network user identifier IDU , and returns the list RU =
{(IDj , cj )|IDj ∈ f(IDU )}, i.e., the identifiers and cor-
responding capabilities of each friend of U’s. This protocol
is run periodically in order to keep RU up-to-date.

Observe that RU contains capabilities that uniquely
identify U’s friends. They are distributed over a confid-
ential and authentic channel, thus ensuring that U cannot
claim non-existent friendships.

The capability distribution system is implemented on
top of PeerShare, a generic scheme for securely distrib-
uting data among social groups, which we developed
earlier [43].

Friend Finding. The friend finding protocol involves two
users, I and R, members of the given social network. Let
I be the user that initiates the protocol by contacting user
R to find their common friends. The protocol, illustrated
in Fig. 2, starts with I and R exchanging their (Diffie-
Hellman) public keys, i.e., PKI , and PKR, respectively.

Initiator I! Responder R!
Inputs:!
SKI,PKI,RI!

Inputs:!
SKR,PKR,RR!

SKI, PKI! SKR, PKR!

PKR, KIR! PKI, KIR!

RI RR

DH-KeyExchange!

PSI!

RR∩RI

RR ←
ck PKI PKR( )

s.t. (IDk,ck )∈ RR

#
$
%

&%

'
(
%

)%
RI ←

cj PKI PKR( )
s.t. (IDj,cj )∈ RI

#
$
%

&%

'
(
%

)%

Figure 2: The friend finding protocol in the Common
Friends service (basic variant). First, I and R run a DH
key exchange. Next, friend capabilities are bound to public
keys and input sets to the PSI protocol are populated. Fi-
nally, on completion of PSI, R learns the common friends
(and nothing else).

The resulting shared Diffie-Hellman (DH) key KIR will
be used for two purposes: (a) to protect the messages ex-
changed as part of the Private Set Intersection (PSI) pro-
tocol protocol executed next and (b) to limit access if the
PSI protocol determines that I and R have common friends.

To avoid man-in-the-middle attacks, the DH channel
needs be cryptographically bound to the protocol instance.
To this end, rather than inputing the set RI (respectively
RR), I (R) builds the set RI (RR), by appending DH pub-
lic keys PKI , PKR to each capability in RI (RR). This
transformation has negligible impact on performance, as
PSI protocols hash each element in the list before further
processing. The resulting sets:

RI = {(cj ||PKI ||PKR) | (IDj , cj) ∈ RI )}, and
RR = {(ck||PKI ||PKR) | (IDk, ck) ∈ RR)}

are used as inputs to the PSI protocol executed next.
Note that the friend finding protocol can trivially be ex-

tended to determine whether two users are direct friends of
each other, provided that each user U adds cU to the list of
capabilities given in input to the PSI protocol.

2.3 PSI vs PSI-CA Instantiations
We now present the PSI instantiations we use to priva-

tely intersect users’ capabilities, as stated in the friend find-
ing protocol.

4



Available PSI Protocols. A few different instantiations of
PSI have been proposed, with different security models, as-
sumptions, and complexities. PSI can be constructed using
generic Garbled Circuits [51, 29], Oblivious Polynomial
Evaluation [23, 37], or Oblivious Pseudo-Random Func-
tions (OPRFs) [26, 32, 17, 33].

According to the performance evaluations in [18], the
most efficient protocol is the OPRF-based construction by
De Cristofaro and Tsudik [17]. It is secure, in the presence
of honest-but-curious adversaries, under the OneMore-
RSA assumption in the Random Oracle Model (ROM) [8].
Assuming that m is the size of set held by one party (the
Responder), and n that of the other party (the Initiator), the
protocol in [17] incurs O(m+ n) computational and com-
munication complexities. In particular, the former is dom-
inated byO(m+n) modular exponentiations (specifically,
RSA signatures), while the latter corresponds to transfer-
ring 2n group elements and m outputs of a cryptographic
hash function.

PSI-CA Variants. A possible alternative could be to use a
more restrictive variant that only yields the number of com-
mon friends, and not their identities. To this end, we turn
to Private Set Intersection Cardinality (PSI-CA) protocols
[23, 4, 27, 14]: PSI-CA allows two parties, each holding a
private set, to interact in a cryptographic protocol such that
one party learns the magnitude of the set intersection (and
nothing else), while the other obtains nothing. Clearly,
PSI-CA could be used instead of PSI to let users learn
only how many friends they have in common. This cor-
responds to the cardinality-only protocol variant presen-
ted in Sec. 2.1 On the one hand, this approach provides
strictly more stringent privacy guarantees. On the other
hand, however, certain application scenarios may require
users to know the specifics of which friends are common,
e.g., to make better informed access control/trust decisions.
In this case, PSI would be the preferred option.

To the best of our knowledge, the most efficient PSI-CA
protocol is presented in [14], with honest-but-curious se-
curity in ROM, under the OneMore-DH assumption [8].
Complexities are similar to the PSI protocol in [17], i.e.,
linear in the size of sets. Specifically, computation com-
plexity is dominated by O(m + n) modular exponenti-
ations (in prime order groups with random exponents taken
from a subgroup), while communication complexity cor-
responds to transferring 2m group elements and n outputs
of a hash function (assuming that m is the size of set held
by the initiator, and n that of the responder).

2.4 Improving Efficiency with Bloom Filter
based PSI (BFPSI)

Recall from Sec. 2.2 that capabilities are generated at
random from a large space, thus, they are high-entropy
objects and impractical to enumerate. Consequently, we

do not necessarily need to use traditional PSI protocols
(designed to work with low-entropy, possibly enumerable,
items): since input sets only include high-entropy items,
we can rely on more efficient techniques, which realize the
same set-intersection functionality, with same provable se-
curity properties.

Intuition. A straightforward approach for private set inter-
section is to let both parties hash each item in their set (us-
ing a cryptographic hash function) and send the results to
each other. Since the hash is one-way, parties cannot invert
the hash function and can only learn the set intersection
by finding matches between the received hashes and those
computed over their own set items. However, if set items
are low-entropy objects, a malicious party could test, off-
line, for the presence of a given item in counterpart’s set,
regardless of whether or not it belongs to the intersection.
As a consequence, PSI protocols need more sophisticated
techniques, relying on public-key cryptography, to prevent
parties from succeeding in such attacks.

On the other hand, if set items are high-entropy objects,
e.g., generated at random from a large space as in the case
of bearer capabilities, then the testing attack would not
work since it is impractical to enumerate sets. Thus, we no-
tice that the use of traditional PSI is actually an “overkill”
and the naive hash-based approach described above suffice
to realize the private set intersection functionality. Besides
removing the need for a number of public-key crypto oper-
ations (at least) linear in the size of sets, this approach en-
ables the use of optimization/compression techniques, like
Bloom filters [10], which we present below. We anticipate
that the resulting Bloom filter based protocol will disclose
the identity of common friends to both parties. Thus, it cor-
responds to the mutual output protocol variant, discussed
in Sec. 2.1.

Bloom Filters [10]. A Bloom Filter (BF) is a data structure
used to efficiently represent and test sets. Let us consider a
setX = {x1, . . . , xα} of α elements, and an array of β bits
initialized to 0. The notation BF(j) denotes the position
j in the BF. The Bloom Filter uses γ independent cryp-
tographic hash functions h1, . . . , hγ with range 1, . . . , β,
salted with random (periodically refreshed) nonces so that
it cannot be tracked over time. For each element x ∈ X ,
BF (hi(x)) is set to 1 for 1 ≤ i ≤ γ. To check whether an
element y is a member of X , we simply test if BF(hi(y))
equals 1 for all 1 ≤ i ≤ γ.

Note that Bloom filters introduce false positives, i.e., an
element might seem present although it was never inserted.
The probability p of false positive can be approximated as:

p = (1− (1− 1/β)γ·α)γ

It follows that the optimal value of γ that minimizes p is:

γ =
β

α
ln 2

5



Description Notation
Data

Bloom Filter sent by I BFI
Random value chosen by I irand

Random value chosen by R rrand
Challenge set containing HMAC values

csetusing ckey of elements in intersection
Response set containing HMAC values

rsetusing rkey of elements in intersection
RI ∩ RR with possible false positives X ′

Actual RI ∩ RR X
Algorithms

DH Key-Exchange (I) KIR ← DH-Key(SKI , PKR)
DH Key-Exchange (R) KIR ← DH-Key(SKR, PKI)

Message Authentication Code HMAC(key,message)
Key Derivation Function KDF(·, ·)

Keys
HMAC keys used by I and R, resp. ckey, rkey

Table 3: New notation introduced for Bloom Filter based
PSI.

Hence, the optimal size of the filter, for a desired false pos-
itive probability p, using the optimal value of γ, can be
estimated as:

β =

⌈
− log2 p

ln 2

⌉
× α (1)

where α = max(m,n) in our Common Friends setting, as-
suming m is the number of Initiator’s friends and n – that
of Responder’s.

Using Bloom Filter based PSI (BFPSI). Fig. 3 illustrates
how to use a Bloom Filter based PSI (BFPSI) to realize
the friend finding protocol. New notation is summarized in
Table 3.

As in the generic protocol description, interaction starts
with user I engaging user R, followed by a DH key ex-
change. I and R use input sets, RI and RR, respectively,
constructed as before. I inserts every element of RI into
a Bloom filter BFI which is then sent to R. R can now
discover the set X ′ of friends potentially shared with I by
testing every element of RR for membership in BFI .

Although the length of the Bloom filter primarily de-
pends on number of friends I and R have, it is also determ-
ined by the false positive probability value. Observe that p
affects not only communication but also computation over-
head since the lower the value of p is the higher the number
of hash operations required to insert one element into the
Bloom filter. Therefore, a practical implementation cannot
afford to choose a value of p that is negligible by the usual
standards for cryptographic algorithms. In our implement-
ation, we choose p = 10−4. However, we now need to
account for the possibility that the protocol returns more
common friends than there actually exist, due to the small
yet non-negligible probability of false positives. Since the
input sets are impractical to enumerate, users cannot mali-
ciously exploit the false positive rate to claim unwarranted
friendships or violate counterpart’s privacy. Nonetheless,

ckey, rrand,cset

rset, irand

!rj " RI :BFI . insert(rj )

ckey !R {0,1}
160

BFI

Initiator I! Responder R!
Inputs:	

SKI,PKI,RI	


Inputs:	

SKR,PKR,RR	


SKI, PKI	
 SKR, PKR	


PKR, KIR	
 PKI, KIR	


DH-KeyExchange	


RR !
ck PKI PKR( )

s.t. (IDk,ck )" RR

#
$
%

&%

'
(
%

)%

!X " r # RR  s.t.
BFI .contains(r)

$
%
&

'
(
)

rrand !R {0,1}
160

cset!
HMAC(ckey, x)
s.t. x " X '
#
$
%

&
'
(

irand !R {0,1}
160

rkey!KDF(irand, rrand)

rkey!KDF(irand, rrand)

RI !
cj PKI PKR( )

s.t. (IDj,cj )" RI

#
$
%

&%

'
(
%

)%

rset!

HMAC(rkey, r)

"r # RI  s.t.
HMAC(ckey, r)# cset

$

%
&

'
&

(

)
&

*
&

X!
r, "r # $X  s.t.
HMAC(rkey, r)# rset

%
&
'

(
)
*

Figure 3: Friend Finding using Bloom filter based PSI
(BFPSI).

we need the means for I and R to verify that the output
of the protocol does indeed consist of their mutual friends
(and remove the false positives).

To this end, we introduce a simple challenge-response
protocol, illustrated in Fig. 3, where R asks I to prove
knowledge of the capabilities that constitute the set X as
follows:
• R first constructs a candidate intersection set X ′ by

testing every element of RR for presence in BFI .
• R then constructs a challenge set cset consisting of

HMACs (key-hashed message authentication codes)
computed on every item in X ′. A freshly generated
random key ckey is used as the key for the HMACs in
cset. Note that we need HMACs, rather than MACs,
to ensure the one-wayness of the function.
• R sends cset and ckey, along with a random coin
rrand.
• I can construct HMACs for each element of its own
RI using the received ckey as the key and check
whether the resulting HMAC is present in cset.
• For each of these elements, I computes HMACs with a

key rkey, obtained via a key derivation function using
its own random coin irand and rrand. The resulting
response set rset is sent to R, along with irand.
• R can recompute rkey, construct a HMAC on every

element of X ′ using rkey and check if the resulting
HMAC is found in rset. If it is, then that element is
added to X .
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Remark: Relying on Bloom filters to realize private inter-
section of high-entropy items yields constructions incur-
ring a constant number of public-key cryptography opera-
tions and a reduced communication overhead – a remark-
able performance gain which we further analyze in Sec. 5.

2.5 Security Considerations
We now analyze the security of our proposed techniques,

following security requirements outlined in Sec. 2.1.

Authenticity. Our proposed techniques guarantee authen-
ticity of claimed friendships, via bearer capabilities. These,
by definition, confer the same authorizations on anyone
who holds them, One potential concern is that users could
maliciously re-distribute them to other users. However,
we assume that: (1) capabilities are stored securely, and
(2) parties who receive capabilities legitimately (honest
but curious) do not share them with others who are not
authorized to receive them. We argue that such assump-
tions are reasonable in the context of the Common Friends
service, which is designed to be implemented on mo-
bile devices. These are usually equipped with software
and hardware platform security features that can ensure
application-specific secure storage [38].

Nonetheless, it is trivial to extend our constructions to
support “friendship certificates”, i.e., signatures issued on
friends’ public keys. Friends can securely exchange pub-
lic keys via the server S, in the same way they exchange
bearer capabilities. At the end of the friend finding pro-
tocol interaction, once R has determined the candidate in-
tersection set X ′, it can ask I to confirm possession of a
valid friendship certificate from each entity in X ′.

Privacy. The proposed techniques reduce the problem of
privately discovering common friends to secure computa-
tion of set intersection. Thus, privacy of our proposals stem
from the security of the underlying protocol that Common
Friends instantiates, e.g., the PSI construction in [17], the
PSI-CA variant in [14], or the BFPSI variant we introduce.
The security of the latter relies on the fact that items are
taken at a random from a large space, thus, while we do
not claim it achieves security comparable to traditional PSI
protocols, we can demonstrate that the BFPSI construction
reveals nothing besides the intended output.

Initiator’s Privacy (Proof Sketch). We prove that respon-
der R learns nothing about initiator I’s items outside inten-
ded output, regardless of the protocol variant. In the ba-
sic and cardinality-only variant, this follows immediately
from the security of the underlying PSI [17] and PSI-CA
protocols [14], respectively. Whereas, in the mutual-output
variant (which relies on BFPSI), I’s privacy follows from
the one-way property of the hash functions used to con-
struct the Bloom filter and the unpredictability of input sets
(bearer capabilities). Recall that, in ROM, the hash of an

unpredictable function is a PRF, thus, if R could learn more
than the intersection, it would be violating the PRF prop-
erties. That is, let us assume that:

{R∗(f(IDR), f(IDR) ∩ f(IDI))}(f(IDR),f(IDI))

c

6≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI))

Then, there must exist one item c∗ ∈ X ′ s.t. c∗ 6∈
f(IDR) ∩ f(IDI), i.e., BFI .contains(c∗) = 0. Since
c∗ is drawn from a large space (computationally infeasible
to enumerate), it must hold that BF is invertible, thus, the
hash function used for constructing the Bloom filter is not
a secure PRF.
Responder’s Privacy (Proof Sketch). Recall that, in the
basic and cardinality-only variants, I has no output from
the protocol, and, R’s privacy immediately stems from
the security of the underlying PSI [17] and PSI-CA proto-
cols [14], respectively, thus, I’s view should be efficiently
simulated with only its inputs and outputs.

R’s privacy in the the mutual-output variant, i.e., pro-
tocol in Fig. 3, is also straightforward. Recall that R
sends I cset with the HMAC of all items in the intersec-
tion (which is intended output of the protocol). Recall that
Bloom filters may introduce false positives, however, if I
could learn something about the false positive found by R,
then the HMAC used to construct cset must not be a se-
cure HMAC. However, this is impossible since, in ROM,
HMAC is known to be pseudo-random [7].

3 Framework Design
We now present the design of our Common Friends

framework and discuss how developers can integrate it
into their own applications. We argue that it is crucial
to abstract away the details of underlying cryptographic
techniques, so that application developers, who might not
be cryptography experts, can easily rely on secure and
privacy-preserving techniques to discover common friends
(and possibly use them to guide trust and/or access control
decisions). Our goal is to do so in such a way that applica-
tion developers:
(1) can use an intuitive and well-defined API;
(2) only need to specify the kind of functionality they

need (e.g., finding how many or which common
friends);

(3) do not need to refactor their code if a new PSI or
PSI-CA technique (perhaps more efficient or relying
on different assumptions) becomes available, but only
update the Common Friends library.

Framework Description. Fig. 4 illustrates how applica-
tions can use the Common Friends service. Tables 4 and
5 summarize the details of employed methods and con-
tainers. To use the Common Friends service, application
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Figure 4: Common Friend Service framework. Optional
message exchanges involving ProcessContainer invoca-
tions are used by PSI protocols that require more than three
message flows.

instances on a responder device R and a initiator device I
first set up a communication channel between them. Be-
fore starting a PSI instance, I sends a request IReq to R
consisting of (a) I’s Diffie-Hellman Public Key PKI and
(b) the type of protocol I wants to run. Currently, we sup-
port two different types: a protocol that only outputs the
cardinality of the intersection, i.e., PSI-CA, and one pro-
tocol that outputs the actual intersection set i.e., BFPSI (for
improved efficiency compared to traditional PSI).

R’s application instance can choose to accept or reject
the proposed protocol type and send a notification to I in
either case. On accept, it starts a protocol run by invok-
ing the StartResponder, with IReq as an argument. This
method performs the first step of the PSI protocol which
returns a response in the form of an RRes message. R sends
RRes to I, which starts its Common Friends service engine.
This returns an IRes message that is transported back to R.
R invokes the Process method with IRes as the parameter
which returns a ResultContainer object which contains a
status field that can take one of two values: done or wait,
and an optional message M.

The three protocol messages (IReq, RRes, IRes) are
mandatory for all PSI schemes. Some PSI protocols (e.g.,
PSI-CA in [14]) contain only three flows. They can be
acommodated using the three messages. Others (e.g.,
BFPSI) may need more message exchanges. To accom-
modate this variation, Common Friends framework allows
the possibility of an optional phase that can be repeated as

Name Input Output Invoker Description
StartResponder IReq RRes R Triggers PSI
StartInitiator RRes IRes I Triggers PSI; extracts KIR

Process IRes RC R Processes IRes
ProcessContainer M RC R,I PSI variant specific method

getResult - PR R,I Gets final PSI result
and shared key KIR

Table 4: Common Friends service interface.

Notation Description Constituent Data

type Type of Common Friends PSI type, hop length,
service needed number of friends

IReq IRequest supported algorithms, PKI

RRes RResponse accepted type, PKR,
PSI protocol specific payload (RDC)

IRes IResponse PSI protocol specific payload (IDC)

RC Result Container PSI state machine status,
optionally M to send

M Message PSI variant specific content
PR Protocol Result PSI final result, secret key KIR

Table 5: Parameters in the Common Friends service inter-
face.

many times as needed by the PSI protocol being used.
The application instances determine whether to carry out

these optional exchanges by examining ResultContainer
returned by the PSI protocol engine and performing the
following operations:
• If it contains a message M then transfer M to peer.
• If its status component is wait, wait for peer to re-

spond. Otherwise (status is done), call getResult to
extract PSI result.

While the optional phase is being executed, the applica-
tion instances simply act as conduits for their respective
PSI protocol engines to communicate with each other. De-
pending on the type of PSI, the result of PSI may be empty
for the initiator. As mentioned before,KIR can be used for
subsequent access control.

Plugging in Bloom filter based PSI. To plug the BFPSI
protocol (described in Sec. 2.4) into the Common Friends
service, we need to provide BFPSI-specific implementa-
tions of each of the methods identified in Table 4. Con-
structing the Bloom filter BFI and testing whether ele-
ments of RR are present in BFI are implemented within
the StartInitiator and StartResponder methods, respect-
ively. The creation of the challenge set (to eliminate false
positives) is implemented in the Process method on R and
the corresponding creation of the response set is implemen-
ted in the ProcessContainer method on I. The ProcessCon-
tainer method on R processes the response set and popu-
lates the intersection.

4 Implementation
We now present the implementation of Common Friends

on Android, and its integration with an existing tethering
application from our prior work [5].
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(a) (b)

Figure 5: Screenshot of the Tethering Application: View before Common Friends protocol run (a) and view presenting
results of Common Friends protocol (b).

Framework. We implemented Common Friends (Sec. 3)
as a simple Android service that exposes its interface to
third party applications via Android Interface Definition
Language (AIDL) declarations. Communication between
the service and application uses Android specific AIDL
interface. (However, the core service is implemented
in standard Java, thus, could be executed on any device
equipped with a Java Virtual Machine). The application
instances on I and R are responsible for setting up a com-
munication channel to exchange the protocol messages re-
ceived from the Common Friends Service. Protocol mes-
sages are containers implemented as Parcelable and Seri-
alizable Android classes, and are opaque to the calling
applications. Application instance on R chooses the pro-
tocol variant to use. Currently our implementation sup-
ports PSI-CA and BFPSI, implemented as plugins in Com-
mon Friends framework.

Developers can embed the Common Friends functional-
ity into their applications by simply adding the Common
Friends Service AIDL interface declaration to their ap-
plication source tree, together with the container classes.
The framework can also be extended with additional PSI
protocol engines: abstract class AlgorithmEngine provides
basic primitives (methods: StartResponder, StartInitiator,
Process, and optionally ProcessContainer) for future ex-
tensions with new PSI protocols.

PSI-CA. We implemented the PSI-CA protocol proposed
in [14], using the standard Android cryptography provider
(Bouncy Castle). We used Elliptic Curve Diffie-Hellman
(ECDH), based on the NIST P-192 curve [44], to imple-
ment both the Diffie-Hellman key agreement (needed for
integrating PSI-CA into the Common Friends service) and
the modular arithmetic operations within the PSI-CA pro-
tocol [14].

Bloom Filter based PSI (BFPSI). To implement the
BFPSI protoocol (see Sec. 2.4) we selected a fixed false
positive probability of p = 10−4, and used Bloom filter
with length calculated according to Equation 1. Diffie-
Hellman key exchange was as in the case of PSI-CA.
We used HMAC-SHA-1 to instantiate HMAC and SHA-
1 for KDF(·, ·). Bloom filter operations were implemen-
ted using code available from https://github.com/MagnusS/
Java-BloomFilter with SHA-1 as the underlying hash func-
tion.

Tethering Application. To demonstrate the applicabil-
ity of our techniques to real-world scenarios where access
control decisions are securely made based on the existence
of common friends, we also extended an application for
tethering (proposed in our prior work [5]) by integrating it
with our Common Friends service.

The application allows a device to either act as a WiFi
tethering access point, or as a WiFi tethering client. We ex-
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Figure 6: Comparison of BFPSI and PSI-CA protocol performance.

tend the application by allowing a user to choose whether
or not to authorize another user to connect to his access
point based on whether or not the two are friends on a given
social network or have some common friends. The device
acting as access point is turned into a “hotspot” using the
Android WiFi Manager API, and plays the role of R. It also
opens a Bluetooth socket to listen for incoming tethering
requests. Our tethering service is advertised by a specific
Universal Unique Identifier (UUID), which is used in the
service discovery.

The device acting as a tethering client plays the role of I,
and initiates Bluetooth service discovery procedure look-
ing for a suitable WiFi tethering access point. On success-
ful discovery, both applications establish a Bluetooth con-
nection in RFCOMM mode and run BFPSI or PSI-CA to
learn which or how many friends are common. Based on
gathered information, R decides whether or not to send the
WiFi SSID and password to I over the secure channel (us-
ing the previously established Diffie-Hellman shared key
KIR). Fig. 5 presents screenshots of the tethering applic-
ation.

Code Availability: Source code of our implementations
can be made available for research use upon request.

5 Performance Analysis
This section present an empirical evaluation of the per-

formance of Common Friends service when using PSI-
CA [14] vs. BFPSI (Sec 2.4). Specifically, we analyze
the computational, communication and energy consump-
tion costs incurred by them.

Computation and Communication Overhead. To meas-
ure running times and bandwidth overhead, we performed
experiments (over 30 trials) on a Samsung Galaxy Nexus
smartphone running Android 4.2 API 17 and a Samsung

Galaxy Tablet GT-P3100 running Android 4.1.2 API 16,
connected over Bluetooth.

We made the assumption that both parties have the same
number of friends and varied this number in the range
{100, 200, 300, 400,
500}. The intersection of the sets was always at 10% of
the set size.

Processing time. Total average execution time increases
linearly for both protocols as expected, but at different rates
(Fig. 6). In particular, Table 6 shows that, with 5-fold in-
creases in set sizes, computation time for PSI-CA increases
by several seconds, whereas, with BFPSI it increases by
less than half a second.

Communication bandwidth. As shown in Table 7, the
total number of bytes exchanged also increases linearly for
both protocols. However, the amount of data exchange
is significantly larger for PSI-CA, by a factor of almost 6
compared to BFPSI.

Power Analysis. It is well-known that energy consump-
tion for sending/receiving a message increases with the
message size [46, 49]. As a result, the use of BFPSI pro-
tocol can have a lower impact on battery life, which is cru-
cial for mobile users. To study this aspect, we performed a
power analysis of the Common Friends service with input
sets of 200 items, using two Samsung Nexus S devices run-
ning the CyanogenMod 9.1.0-crespo Android release and
a laptop running a power analysis tool for Android devices
called Little Eye.2 Currently, the tool is optimized for pre-
cise power analysis measurements only on certain device
models, but it can be used for rough estimates on others
as well. (In general, power analysis on mobile devices at
the granularity of applications is known to be a challenging
problem [49], however, our estimates suffice to provide an

2http://www.littleeye.co/

10

http://www.littleeye.co/


Input size

BFPSI PSI-CA
Comm. [s] Comp. [s] Comm. [s] Comp. [s]
avg std avg std avg std avg std

100 0.649 0.061 0.652 0.061 3.053 0.089 2.999 0.24
200 0.646 0.049 1.047 0.062 5.307 0.373 6.401 0.358
300 0.72 0.086 1.33 0.088 7.904 0.212 13.438 0.195
400 0.811 0.066 1.597 0.056 10.099 0.16 20.709 0.799
500 0.816 0.085 1.968 0.099 12.543 0.176 26.535 0.69

Table 6: Average values and standard deviations of com-
putation and communication time (in seconds) for one
BFPSI and PSI-CA protocol transaction for various input
set sizes.

Input size BFPSI PSI-CA
100 2,548 34,833
200 3,424 67,933
300 4,292 100,399
400 5,168 133,222
500 6,036 166,029

Table 7: Total number of bytes exchanged in a protocol
run for increasingly large sets.

intuition of power requirements for continuous executions
of the Common Friends service.)

Fig. 7 and Fig. 8 show power diagrams for BFPSI and
PSI-CA protocols respectively, when executed 5 times (x-
axis shows elapsed time and the peaks correspond to the
five executions). We also calculated overall energy con-
sumed by Common Friends during each test. Measure-
ments include CPU power and communication, but ex-
clude power consumed by the device screen. Accord-
ing to our measurements, BFPSI execution required 0.18
mAh, while PSI-CA utilized 0.55 mAh, thus indicating that
BFPSI protocol consumes approximately 3 times less en-
ergy than PSI-CA.

To confirm that observed differences are not induced by
the power consumption characteristics of the device model
we used, we repeated the tests on a different device model
(Samsung Galaxy S3). The resulting measurements were
0.12 mAh and 0.38 mAh for BFPSI and PSI-CA, respect-
ively. Thus, we conclude that ratio of power consumption
between BFPSI and PSI-CA remains the same across dif-
ferent device models.

Discussion. Instantiating Common Friends with BFPSI
clearly offers improved performance compared to using
PSI-CA. BFPSI requires fewer computations (constant vs
linear number of public-key operations), lower bandwidth
and power consumption. As a result, the use of BFPSI
in Common Friends service is likely to offer a better user
experience and support more frequent runs. On the other
hand, if one only wants to disclose the number of common
friends, then one needs to tolerate the additional overhead
incurred by the use of PSI-CA.

Finally, observe that traditional PSI and PSI-CA proto-
cols incur similar complexities (e.g., they both require a

number of public-key operations linear in set sizes). There-
fore, we can expect that, when applied to finding common
friends, BFPSI will exhibit performance gains over tradi-
tional PSI protocols very close to those observed over PSI-
CA. This confirms our intuition that, while PSI protocols
are designed to deal with low-entropy input sets, we do not
need their full security in the context of finding common
friends, thus enabling appreciably improved efficiency.

6 Related Work
Motivated by the increasing influence of social net-

works, a few techniques have focused on secure opera-
tions on users’ social network profiles, such as, matching
of common attributes, interests, and (similar to our work)
friends. Li et al. [39] formally analyze the problem of
privacy-preserving personal profile matching and propose
a set of protocols that leverage PSI and/or PSI-CA to se-
curely match attribute sets of different users. Dong et al.
[19] represent a user’s profile as a vector and measure so-
cial proximity via private vector dot product [31], while
Zhang et al. [53] extends it to improve its granularity with
finer grained attributes.

Zhang et al. [52] also propose a privacy-preserving veri-
fiable profile matching scheme which is based on symmet-
ric cryptosystem and thus improves efficiency. It relies on
a pre-determined ordered set of attributes and uses it as a
common secret shared by users. However, the scheme is
not applicable to unordered sets of attributes such as ran-
dom capabilities (as in our case).

In VENETA [50], Von Arb et al. use PSI for privacy-
preserving matching of common entries in the users’ ad-
dress books to support decentralized SMS-messaging via
Bluetooth. VENETA does not address the problem of ma-
licious users claiming non-existent friendships, but only
suggests to limit the size of input sets to 300. Huang
et al. [28] present an Android app that instantiates PSI
with garbled circuits and lets users privately find com-
mon entries in their address books. Besides being vulner-
able to the same potential attack as in VENETA, the work
in [28] reports timing values of 150 seconds to match 128
contacts, thus raising concerns about its practicality, even
though Carter et al. [12] recently present a faster prototype
implementation based on specialized secure function eval-
uation protocols.

De Cristofaro et al. [16] present a framework for private
discovery of common social contacts. In their scheme,
users need to provide a proof of prior relationship to claim
a given friendship (specifically, a cryptographic certific-
ate). Common friends are privately discovered following
a technique resembling Secret Handshakes [6, 40], where
validity of certificates is verified obliviously to guaran-
tee privacy while enforcing authenticity. However, this
scheme incurs significantly higher computation overhead

11



Figure 7: Power Consumption of BFPSI protocol. Figure 8: Power Consumption of PSI-CA protocol.

compared to our solutions relying on bearer capabilities
and BFPSI. Specifically, [16] incurs a number of expens-
ive modular exponentiations linear in the number of friends
(and a quadratic number of modular multiplications) and a
communication overhead similar to traditional PSI tech-
niques.

Our previous work [5] presents a framework for resource
sharing (e.g., Internet connectivity) in ad-hoc mobile net-
works where users enforce access control based on whether
users are friends in a given social networks or at least have
some friends in common. In [5], we mentioned the pos-
sibility of using a social network application to exchange
capabilities between social network users as proofs of the
friendship relation, and using these capabilities with avail-
able PSI schemes to determine common friends. In con-
trast, besides actually constructing and implementing a
framework for secure discovery of common friends, this
work shows that traditional PSI techniques, designed to
work with low-entropy set items, are actually an “overkill.”
More efficient solutions, such as the one based on Bloom
filters presented in Sec. 2.4, can be used to significantly re-
duce communication complexity and remove the need for
a linear number of public-key operations. Also, we present
the design of the Common Friends framework, which is
intended to enable developers to integrate it in their ap-
plication and use it, e.g., to support trust and access con-
trol decision based on social proximity. We verify prac-
ticality of proposed techniques with an experimental eval-
uation which shows the significant performance gains of
using BFPSI over traditional PSI protocols designed for
low-entropy items. We also integrate our Common Friends
service into the tethering application sketched in [5], which
supports sharing of tethering connections, and present a
full-blown implementation.

Bloom filters have been used in the context of se-
cure protocols in a number of other scenarios. For in-
stance, privacy-preserving information matching based on
encrypted Bloom filters has been proposed by Bellovin
and Cheswick [9] for privacy-preserving database search.
Kerschbaum [36] applies them for the protection of sup-
ply chain integrity and mitigate risks of industrial espion-
age. Also, Eppstein and Goodrich [20] propose Privacy-
enhanced Invertible Bloom Filters for secure comparison

of compressed DNA sequences. Clearly, none of these
techniques apply Bloom filters to securely discover com-
mon friends and/or for efficient, privacy-preserving inter-
section of high-entropy items.

Finally, a few techniques [30, 22, 25, 34, 21] have im-
proved performance of PSI by introducing assumptions
such as the presence of trusted hardware tokens. These
tokens might need to be trusted by both parties [30, 22, 25],
by only one party [34], or even untrusted [21]. While ef-
ficient, these protocols require handing over the hardware
token, and hence are inapplicable in scenarios like finding
common friends between stranger devices.

7 Conclusion
This paper presented the Common Friends service, a

framework supporting secure discovery of mutual friends,
which protects privacy of non-common friends and guar-
antees authenticity of friendships. We first presented a
generic construction that reduces the problem of finding
friends to private set intersection, while ensuring authenti-
city of claimed friends via bearer capabilities. Next, we in-
troduced a more efficient instantiation, based on Bloom fil-
ters, that only incurs a constant number of public-key cryp-
tography operations. We also integrated Common Friends
with an existing application for sharing Internet connec-
tion, whereby users decide whether or not to share based on
the existence of common friends. A comprehensive exper-
imental evaluation attested to the practicality of proposed
techniques.

The protocols described in this paper allow user to detect
whether another user is two hops away in a social graph.
As part of future work, we plan to generalize them to de-
tect friends who are more than two hops away. We also
intend to extend the infrastructure proposed in this paper
to detect other common attributes between two users, such
as shared interests and group membership, and explore the
use of social proximity to support additional access control
decisions (e.g., for cab/ride sharing, routing, impromptu
online dating, or multimedia content dissemination). Fi-
nally, whether or not we can design an efficient Bloom fil-
ter based PSI-CA variant for high-entropy items remains
an open question.
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