
Multi-LHL protocol

Marika Mitrengová

Faculty of Mathematics, Physics and Informatics Comenius University, Mlynska
dolina, 842 48 Bratislava, Slovakia
mitrengova@dcs.fmph.uniba.sk

Abstract. We present a password-authenticated group key exchange
protocol where each user has his/her own password. Advantage of such
protocol is in short passwords, which can be easily memorized. On the
other hand these protocols face the low password entropy. In the first
part we define security model based on models of Abdalla, Fouque and
Pointcheval and Bellare, Pointcheval, Rogaway. We construct MLHL
(Multi-LHL) protocol, which is based on LHL protocol proposed by Lee,
Hwang and Lee. However, LHL protocol is flawed as pointed by Abdalla,
Bresson, Chevassut and Choo, Raymond. We prove that our protocol is
secure authenticated key exchange protocol with forward secrecy proper-
ty and that the protocol is resistant against attacks on LHL protocol.

Keywords: protocol, password, security

1 Introduction

With the explosion of its size, Internet became a major communication channel
among people. However, in its basis, Internet is an inherently insecure channel.
The essential part of securing such channel is an exchange of cryptographically
strong keys. People are notoriously bad at remembering long (pseudo)random
sequences and thus the classical solution is to store the key on some device (e.g.
hard disk, smart card) and protect it with a user password. This is inconvenient
because the medium holding the original key needs to be carried everywhere by
the user.

Password authenticated key exchange (PAKE) protocols were designed to
alleviate this issue. They require a human user to remember only a short (easily-
memorable) secret password. This is a major advantage for mobile users who
need to authenticate at various places. PAKE protocols are therefore an inter-
esting alternative of public key cryptography (PKI), especially in environments
where PKI is hard to deploy. Because of their ability to distill low-quality user
passwords to strong keys, PAKE protocols have received a lot of attention [14,
15, 18, 19].

Although the original idea of PAKE protocol EKE [1] was designed only for
two participants, PAKE protocols can be used to authenticate multiple parties
as well. The most important requirement is to require only a single password
for the user. Solutions, where user has to remember one password per group of

participants obviously does not scale with human memory. Moreover, in case
when one of the participants is compromised the whole group needs to choose a
new password. Instead, the schemes with a single password per user offer much
better user experience. This, however, comes at the cost of incorporating one
party which will be trusted by everyone – a trusted server.

Security issues with PAKE protocols: As opposed to other cryptographic
schemes, PAKE protocols contain one weak link in their security and that is the
user password. Therefore, they must be guarded from a dictionary attack against
a known dictionary DICT of all possible passwords. The dictionary attack comes
in two flavours – online and offline. The protocol can be easily protected against
online dictionary attacks by blocking the user access after some unsuccessful
tries. On the other hand the off-line dictionary attacks can (and should) be
prevented by the PAKE protocol itself.

Related work. The research on PAKE protocols started with EKE (Encrypted
key exchange) protocol based on Diffie-Hellman key exchange. EKE was pro-
posed by Bellowin and Merritt in [1], however, the paper provides only very
informal proof of security. This original work spawned a lot of new research
ideas.

Observing recent work, Bellare, Pointcheval and Rogaway conclude that al-
though many new PAKE protocols are proposed, the theory is lagging behind.
They therefore define a security model for PAKE protocols and prove the cor-
rectness of EKE. Boyko, MacKenzie and Patel [14] proposed 2PAKE protocols
called PAK and PAK-X. They defined a new security model based on the model
of Shoup [27]. Security of PAK is proved in the random oracle model under de-
cisional Diffie-Hellman assumption. PAK is extended to a protocol PAK-X. It is
built on the idea of a server which owns a user password verifier and the client
stores a plaintext password. The authors formally proved the security of PAK-X,
even when the server is compromised.

The work of MacKenzie [16] is based on [14], he introduced a protocol PAK-
Z. Compared to PAK, PAK-Z has public and secret key for signature scheme.
Here the client does a non-interactive proof of knowledge of his secret key.

The other research direction was pursued by Bresson, Chevassut and Point-
cheval [13]. They introduced PAKE protocol OEKE (One encryption key ex-
change), whose advantage is in efficiency, because only one flow of sended data
is encrypted.

Kwon, Jeong, Sakurai and Lee [7] deal with a multi-party scenario with
a trusted server where each participant owns a different password. The goal
of their protocols PAMKE1 and PAMKE2 is a group authentication and they
note that designing PAKE protocols with trusted but curious server is quite
involved task. Trusted server means that the server performs protocol steps and
do not manipulate data in a different way. Curious means, that the server is
honest, but we do not want it to know the computed session key. Another group
authentication protocol was proposed by Lee, Hwang and Lee in [2]. The LHL
protocol is however not secure as showed by Abdalla, Bresson and Chevassut

in [3] where they propose a new protocol secure against this attack. Choo [4]
suggested another attack on LHL protocol.

Our contribution. We were inspired by the LHL protocol [2]. However in [3, 4] it is
shown that this protocol is not secure. We propose a new PGAKE protocol based
on the LHL and prove that this protocol is secure in a random oracle model and
ideal cipher model under decisional Diffie-Hellmann assumption. The security
model is adopted from [1, 5–7]. Our construction is secure against the attacks
from [3, 4]. Second, every participant has his own secret password (compared
with the protocol suggested in [3]) and because of this, there are not problems
with adding a new participant and with compromising some participant. Our
main contribution is proof of security (denoted as AKE-fs, see Definition 11) of
our protocol.

2 Preliminaries

In this section, we establish the most important notation. If you are familiar with
the standard notation in cryptography, it should be safe to skip this section.

2.1 Basic definitions

Random choice of an element M from a finite set S where the element M is
chosen uniformly is denoted as M

$←− S. By M1 ‖ M2 we denote concatenation
of two strings M1 and M2.

Random oracle is a function f : M → Y uniformly chosen from the set
Func(M,Y) of all functions with domain M and range Y . Let us define
Z∗n = {x|1 ≤ x < n ∧ the greatest common divisor of integers x, n is 1}.

We say that Turing machine A has oracle access to Turing machine B if ma-
chine A can use B as a function. We denote this fact as AB . Symbol ⊥ represents
undefined value.
A symmetric encryption scheme E = (G, E ,D) is defined as E : P × K → C,
D : C ×K → P , where P , K and C are sets of plaintexts, keys and ciphertexts,
G is key-generation algorithm, E is encryption algorithm and D is decryption
algorithm. For all p ∈ P and all k ∈ K it holds that D(E(p, k), k) = p. We
say that encryption scheme with set of keys K is ideal encryption scheme [9]
(or is modeled in ideal cipher model) if is equivalent to family of 2|K| inde-
pendent random permutations. Message authentication code scheme (MAC) is
denoted as M = (Gen,Mac,Vrf), where Gen is key-generation algorithm, MAC
is tag-generation algorithm and Vrf is verification algorithm. Mac computes a
tag τ = Mack(m) for message m with use of key k. Vrf verifies a pair message,
tag (m, τ) with use of key k, it returns 1 (Vrfk(m, τ)→ 1) if the tag is valid for
corresponding message m and key k, 0 otherwise. A MAC scheme is existentially
unforgeable under an adaptive chosen-message attack [10], if the adversary is not
able to forge a valid tag on any message he has not been asked by his Mac oracle.
We denote this property MAC-forge.

2.2 Protocols and adversaries

A single execution of a protocol is called a session. The set of protocol partici-
pants is C ∪S, where C = {P1, P2, . . . Pn} is set of clients and S is set of servers.
For simplicity, we assume that |S| = 1. Each client Pi ∈ C has a password pwi
called long-lived key (LL-key) and server S has a vector of clients passwords
〈pwS,Pi〉Pi∈C (pwi = pwS,Pi for all Pi ∈ C in symmetric case, otherwise they are
different in asymmetric case). The j-th instance of participant Pi is denoted as
Πj
i and ID(Pi) is a unique identifier of participant Pi (analogously j-th instance

of server S is denoted as Ψ j). A group of participants Pi1 , Pi2 , . . . , Pik is denoted
as Grpi1,i2,...,ik .

Definition 1. [8] A protocol is a triple P = (Π,Ψ,LL), where Π specifies
how each client behaves, Ψ specifies how server behaves and LL specifies the
distribution of long-lived keys.

A function is said to be negligible, if it decreases faster than inverse of any
polynomial function.

Definition 2. A function f : N → R+ is negligible, if for every constant c > 0
there exists an integer n0 ∈ N such that f(n) < 1

nc holds for all n ∈ N,n > n0.

Definition 3. An adversary is a probabilistic polynomial-time Turing machine
with oracle access to several other Turing machines. Running time of an adver-
sary A is the length of description of A plus the worst case running time of
A.

Let C be a cryptographic construction (algorithm), A be an adversary and
xxx be any problem on C (such as collision resistance of hash function, or discrete
logarithm in a group G). Advxxx

C,A is a measure of adversary’s advantage defined
as a probability, that A succeeds to solve the problem xxx for C. Sometimes, the
advantage depends on some parameter, such as time of execution, length of the
algorithm’s input or the number of some queries. Let a1, a2, . . . an be parameters
needed for the security definition, then the adversary’s advantage is denoted as
Advxxx

C,A(a1, a2, · · · an).

In this paper we adopt a Dolev-Yao model of an adversary, where the ad-
versary intercepts whole communication during the execution of the protocol.
The adversary can delay, change or deliver messages out of order, start a new
execution of protocol, acquire LL-key of some participants and acquire given
session key. All abilities of the adversary are modelled through oracles defined
in Section 4.

We use the notion of Decisional Diffie-Hellman assumption in our security
proofs.

Definition 4 (Decisional Diffie-Hellmann assumption – DDH). Let G be a cyclic
group of order q with generator g and D be an adversary. Two distributions are
defined:

DDH∗ = {(gx, gy, gxy)|x, y $←− Z∗q } and

DDH$ = {(gx, gy, gw)|x, y, w $←− Z∗q }. The DDH problem for input (u, v, w) is to
distinguish, from which distribution is it. The DDH assumption holds in a cyclic
group G if and only if the advantage of every adversary D on DDH problem in
time T is negligible. This advantage is denoted as AdvDDH

G,D (T) and computed
as:

AdvDDH
G,D (T) = |Pr[D(DDH∗)→ 1]− Pr[D(DDH$)→ 1]|.

Abdalla et al. [3] defined Parallel Decisional Diffie-Hellman assumption and
challenger Challβ(·).

Definition 5 (Parallel Decisional Diffie-Hellmann assumption – PDDHn). Let
G be a cyclic group of order q with generator g and D be an adversary. Two
distributions are defined:
PDH∗n = {(gx1 , gx2 , . . . , gxn , gx1x2 , gx2x3 , . . . , gxnx1)|x1, x2, . . . , xn

$←− Z∗q } and

PDH$
n = {(gx1 , gx2 , . . . , gxn , gy1 , gy2 , . . . , gyn)|x1, x2, . . . , xn, y1, y2, . . . , yn

$←− Z∗q },
where n > 2. The PDDHn problem for input (u1, u2, . . . , un, w1, w2, . . . , wn) is
to distinguish, from which distribution is it. The PDDHn assumption holds in a
cyclic group G if and only if the advantage of every D on PDDHn problem in
time T is negligible. This advantage is denoted as AdvPDDHn

G,D (T) and computed
as:

AdvPDDHn

G,D (T) = |Pr[D(PDH∗n)→ 1]− Pr[D(PDH$
n)→ 1]|.

In [3], it was proved that for a group G, time T , integer n > 2 and distin-
guisher D the PDDHn and DDH problems are equivalent in G:

AdvDDH
G,D (T) ≤ AdvPDDHn

G,D (T) ≤ n ·AdvDDH
G,D (T)

Challβ(S) is an algorithm that on input S outputs vectors from the distribution
PDH∗n, if the bit β = 0, otherwise it outputs vectors from the distribution
PDH$

n. If the same S is given on input again, then the same vectors are returned.

3 LHL protocol and its shortcomings

In this section, we review Lee, Hwang, Lee (LHL) protocol [2] and two attacks on
this protocol. The goal of LHL protocol is to authenticate a group P1, . . . , Pn of
participants which share a common secret password pw ∈ DICT and establish
a group session key.

The protocol works in a cyclic group G of order q (q is a prime) with a
generator g. We assume that participants share an ideal symmetric encryption
scheme E = (G, E ,D) where E : G×DICT → G, D : G×DICT → G. Moreover,
let H and H′ be two pseudorandom hash functions, such that H : {0, 1}∗ →
{0, 1}lH and H′ : {0, 1}∗ → {0, 1}lH′ .

Supposing that participants P1, . . . , Pn are arranged along a circle, the pro-
tocol works in the following steps:

1. Establish a temporary key Ki between each pair of neighbours Pi, Pi+1 using
the encrypted Diffie-Hellman key exchange:

(a) Each participant Pi selects a random number xi
$←− Z∗q ;

(b) Pi sends ID(Pi) ‖ Epw(gxi) to his two neighbours;1

(c) Upon receiving and decrypting gxi±1 , participant Pi computes Ki =
H((gxi+1)xi) and Ki−1 = H((gxi−1)xi).

2. Participant Pi computes value wi = Ki−1 ⊕ Ki (a xor of temporary keys
with his neighbours) and broadcasts ID(Pi) ‖ wi.

3. Session key sk = H′(K1 ‖ K2 ‖ . . . ‖ Kn) is established by all participants
using following procedure:
(a) Participant Pi can reconstruct Ki+1 as wi+1 ⊕Ki;
(b) Having established Ki+1, he can continue in similar manner and recon-

struct Ki+2,Ki+3, . . . ,Kn,K1, . . .Ki−2
(c) Pi can compute sk = H′(K1 ‖ K2 ‖ . . . ‖ Kn).

3.1 Attacking LHL

In the introduction we have already mentioned that PAKE protocols are sus-
ceptible to dictionary attacks. Even if one guarantees that the distribution of
session keys generated by the protocol is the same for every password, the at-
tacker might use correlations between different session keys to quickly pinpoint
the user password. Simply put, the protocol is secure if established session keys
between different sessions are uncorrelated, i.e. revealing previous session keys
does not bring any advantage to the attacker (adversary). Another important
part of the security is a forward secrecy which models misuse of user long-lived
key (password). Informally, revealing user passwords should not bring any ad-
vantage to the adversary trying to break previous session keys.

Now, we will show the two different attacks on LHL protocol. The first at-
tack was described in [3] and goes as follows: First, the attacker convinces the
participant P1 to start the group authentication twice with another three partic-
ipants. Denote values chosen by P1 in both instances as x1 and x′1 and let z1 and
z′1 be corresponding encrypted values that are sent. Attacker now impersonates
participants P2, P3 and P4 in both sessions as follows: P2 → P1 : (ID(P2)||z′1),
P3 → P1 : (ID(P3)||z1), P4 → P1 : (ID(P4)||z′1) and similarly for the other ses-
sion. After this exchange, all Diffie-Hellman exchanges will result in gx1x

′
1 and

therefore wi = w′i = 0 for all participants. Thus, the attacker can simply send
the second round of messages and finish the protocol.

In essence, this attack forces participant P1 to establish the same group ses-
sion key twice (on top of believing to be communicating with P2, P3 and P4).
Although the attacker will not obtain the session key itself, compromising one
instance of participant P1 will break the other one, thus violating our security
requirements.

1 Original LHL protocol broadcasts this information. From our point of view it is
redundant

Next we present an unknown key share attack on LHL described in [4]. In
this attack, the adversary tricks participant P1 to establish a key with partic-
ipants P2, P3 while P2 and P3 believe that the key is shared with P4 6= P1.
The attack starts with a group of three participants P1, P2, P3. When each par-
ticipant Pi sends (ID(Pi)||zi), the adversary intercepts (ID(P1)||z1) and sends
(ID(P4)||z1) instead. Similarly, the adversary intercepts (ID(P1)||w1) and sends
(ID(P4)||w4). Now, the participant P1 established a key with P2 and P3 but both
of them believe that they share the key with P4 instead.

4 Security model

In this section we present a model based on [1, 12], later extended in [6] and
adapted for group key exchange in [7]. For identification of a concrete session
and an instance of a partner in the session we defined notions session identifier
and partnering.

Definition 6. Session identifier (sid) is a unique identifier of the session. It is
the same for all participants in the session. Session identifier of instance Πj

i is

denoted as sidji . For a server instance Ψs session identifier is denoted as sids.

If instances Πj
i , Π l

k and Ψs are in the same session, then sidji = sidlk = sids.

Definition 7. Partner identifier pidji for instance Πj
i is set of all identifiers of

instances with whom Πj
i wants to establish a session key. Instances Πj

i and Π l
k

are partners, if

– sidji = sidlk 6=⊥
– Πj

i ∈ pidlk and Π l
k ∈ pid

j
i

An adversary controls whole communication. He can stop sended message,
send message M , deliver messages out of order and intercept communication.
His abilities are modelled using the following oracles:

– Send(Πj
i ,M) – sends the message M to the instance Πj

i in session sidji and

returns a reply of Πj
i (according to the execution of the protocol). This oracle

query simulates an active attack of the adversary.
– Send(Ψs,M) – similarly to the Send(Πj

i ,M). This oracle query sends the
message M to the instance of server Ψs in the session sids and returns the
reply of Ψs.

– Execute(Grpi1,i2,...,ik , S) – this oracle starts execution of the protocol be-
tween participants Pi1 , Pi2 , . . . , Pik and server S. The result is a full copy of
messages sent during execution of the protocol. This query models a passive
attack, where adversary eavesdrops the execution of the protocol.

– Reveal(Πj
i) – if the instance Πj

i has established session key sk, then the
oracle returns sk else return ⊥. This oracle models scenario of session key
leakage.

– Corrupt(Pi) – this query returns the LL-key pwi of participant Pi. This
oracle models forward secrecy. (Such definition of Corrupt query is in a
weak corruption model. In a strong corruption model Corrupt(Pi) returns
an internal state of all instances of participant Pi too.)

– Test(Πj
i) – This query can be used only on a fresh/fs-fresh instance (see

Def. 8). First a random bit b
$←− {0, 1} is chosen. If instance Πj

i has not
established session key sk, then ⊥ is returned. If b = 0, then the real session

key sk is returned else (if b = 1) random string sk′
$←− {0, 1}|sk| is returned.

Definition 8 (Fresh and fs-fresh instance). Instance Πj
i is fresh,

1. if oracle query Reveal was not made on the instance Πj
i and its partners,

2. and if Corrupt query was not made on any protocol’s participant in any
session.

Instance Πj
i is fs-fresh,

1. if oracle query Reveal was not made on the instance Πj
i and its partners,

2. and if Corrupt query was not made on any protocol’s participant in any
session before Test query or Send query was not made on instance Πj

i .

Forward secrecy is security feature of a protocol and it is defined by Corrupt
queries on the protocol. Informally, the protocol has forward secrecy property,
if and only if revealing of LL-keys does not compromise previous established
session keys.

Definition 9. Advantage AdvAKE
P,A (k) of an adversary A attacking a protocol

P in aforementioned model without forward secrecy with security parameter k
is defined by a following game:
GameAKEP,A:

– A can ask queries to Send, Reveal and Execute oracles multiple times.
– Test query can A ask only once and on a fresh instance.
– A returns bit b′.

Let Succ denote the event, that b = b′, where b is the bit randomly chosen during
Test oracle. Then AdvAKE

P,A (k) = |2 · Pr[Succ]− 1|.

Definition 10. Advantage AdvAKE−fs
P,A (k) of an adversary A attacking a pro-

tocol P in aforementioned model with forward secrecy and security parameter
k is defined as follows:
GameAKE-fsP,A:

– A can ask queries to Send, Reveal, Execute and Corrupt oracles multiple
times.

– Test query can A ask only once and on a fs-fresh instance.
– A returns a bit b′.

Let Succ denote the event, that b = b′, where b is the bit randomly chosen during
Test oracle. Then AdvAKE−fs

P,A (k) = |2 · Pr[Succ]− 1|.

Definition 11. We say a protocol P is AKE (AKE-fs) secure multi-party PAKE
protocol without (with) forward secrecy, if for all adversaries A running in poly-
nomial time holds:

– all participant instances which are partners have the same session key,

– Adv
AKE(−fs)
P,A (k) ≤ Q(k)

|DICT | + ε(k), where ε(k) is negligible and Q(k) denotes

the number of on-line attacks (all Send queries to clients, server S and all
Corrupt queries). DICT is a set of all possible passwords.

5 Our protocol

Our design goals for the new protocol are following:

– Enable group-based authentication with a distinct password per user. This
however requires a presence of a trusted server.

– Protect against the previously mentioned attacks.

We meet both these design goals by replacing the first step of LHL protocol
with a secure communication through the trusted server. Because of this secure
communication, the attacker can no longer exchange user identities by switching
messages.

Similarly to the LHL, our protocol works with a cyclic group of order q (q is a
prime) with generator g. Again, we will use two pseudorandom hash functions H
and H′ (H : {0, 1}∗ → {0, 1}lH and H′ : {0, 1}∗ → {0, 1}lH′). What is new is the
presence of a trusted server. Every participant Pi has password pwi ∈ DICT ,
which is shared with the server. To establish a secure connection to the server,
we use arbitrary secure 2PAKE protocol denoted as 2P with the length of the
session key lk. We assume a symmetric encryption scheme modeled as an ideal
cipher E = (G, E ,D) defined as E : G × {0, 1}lk → G, D : G × {0, 1}lk → G
and an existentially unforgeable under an adaptive chosen-message attack se-
cure message authentication scheme M = (Gen,Mac,Vrf).

Protocol MLHL (Multi-LHL):

1. Each participant Pi establishes a key ski with the server S using 2P protocol.
2. Establish a temporary key Ki between each pair of neighbours:

(a) Each participant Pi chooses a random xi, computes zi = gxi and sends
to the server message Pi → S : ID(Pi)||z∗i = Eski(zi).

(b) Server decrypts z∗i and sends following messages to the participants Pi−1
and Pi+1:
S → Pi−1 : ID(S)||ID(Pi)||Eski−1

(zi)
S → Pi+1 : ID(S)||ID(Pi)||Eski+1

(zi)
(c) Each Pi decrypts received messages to obtain values zi−1 and zi+1 and

computes Ki = H(zxi
i+1), Ki−1 = H(zxi

i−1).

3. Each participant Pi computes wi = Ki−1 ⊕ Ki, then he computes MAC
τi = MacKi

(ID(Pi)||wi) and broadcasts message (ID(Pi)||wi||τi).
4. When Pi receives messages (ID(Pj)||wj ||τj) from all other participants, he

computes Kj = H(gxj−1xj) for all j ∈ {1, ..., n} using the values wj and
Ki−1, in direction to the left (from Ki−1, . . . ,Kn, . . . ,Ki+1,Ki). During this
computation, he verifies for received values ID(Pj) and wj their tags τj . For
example, he starts with computing K ′i−2 = wi−1⊕Ki−1, VrfKi−1

(ID(Pi−1)||
wi−1, τi−1) and ends with K ′i = wi+1⊕Ki+1, VrfKi+1(ID(Pi+1)||wi+1, τi+1).
If all tag values are correct, then Pi continues with the next step, otherwise
terminates.

5. Pi computes the session key sk = H′(K1‖K2‖ . . . ‖Kn).

The verification phase disables the adversary to change sent messages in the way,
that participants do not know about this change.

5.1 Security of MLHL protocol

Let G be a cyclic group with generator g, for which the DDH assumption holds.
Let H and H′ be modeled as random oracles, where H : {0, 1}∗ → {0, 1}lH
and H′ : {0, 1}∗ → {0, 1}lH′ . Let 2P be an arbitrary secure 2PAKE protocol
with length of the session key lk, let E = (G, E ,D) be symmetric encryption
scheme defined as E : G × {0, 1}lk → G, D : G × {0, 1}lk → G and modeled
as an ideal cipher. Let M = (Gen,Mac,Vrf) be an existentially unforgeable
under adaptive chosen-message attack secure message authentication scheme.
Symbol ε denotes a negligible function, qE number of encryption queries, qD
number of decryption queries, qsend, qexecute, qreveal is number of Send, Execute,
Reveal queries the attacker makes in underlying 2P protocol during GameAKE-
fsMLHL,AMLHL

. Polynomial p(·) denotes the number of instances of the protocol
MLHL executed through the Execute oracle or through the sequence of Send
queries. Symbol AX denotes adversary attacking construction X on its security
property. Running times of adversaries AMLHL, A2P, AM and ADDH are denoted
T, t, t′, t′′ and k is security parameter.

Theorem 1. Assume that every participant Pi has a secret key pwi ∈ DICT ,
which is shared with the server S. We suppose, that the adversary AMLHL es-
tablishes p(k) sessions during GameAkeMLHL,AMLHL

between n participants for
some polynomial p(·). Then the advantage of the adversary AMLHL in attacking
protocol MLHL is

AdvAKE−fs
MLHL,AMLHL

(k, T) ≤ 2

(
3(qE + qD)2

2|G|
+

3p(k) · n · qD
2lk

+ 4AdvMAC−forge
M,AM

(t′)

+ p(k) · nAdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) + 2ε

+
np(k)2

2lk+1
+ 5p(k) · n ·AdvDDH

G,ADDH
(t′′) + 8qE/2

lk

)
.

Looking at the definition of fs-fresh instance on which adversary makes a
Test query we have following cases of Corrupt query usage (on instance in Test
query) during the game GameAKE-fsMLHL,AMLHL :

– Case1: No Corrupt query was made during the execution of the game GameAKE-
fsMLHL,AMLHL . In this case the adversary can ask Send, Execute and Reveal
queries.

– Case2: In this case, there must be at least one Corrupt query and all Corrupt
queries were made after a Test query in the game GameAKE-fsMLHL,AMLHL

(note that in this case the session key was established for instance on which
Test query was made). Here Send, Execute and Reveal queries are allowed.

– Case3: In this case, there must be at least one Corrupt query and some Cor-
rupt query was made before a Test query in the game GameAKE-fsMLHL,AMLHL

.
In this case only Execute and Reveal queries are allowed, due to preservation
of fs-fresh property (adversary can not ask Send query on instances of other
participants in the same session, because if he starts to ask Send queries in
the session, he must ask Send queries on instance on which he will ask a Test
query to finish the protocol execution correctly).

Therefore, we can divide advantage of the adversary attacking on AKE-fs secu-
rity into advantage of the adversary in every of these cases:

AdvAKE−fs
MLHL,AMLHL

(T) = AdvAKE−fs
MLHL,AMLHL,Case1

(T) + AdvAKE−fs
MLHL,AMLHL,Case2

(T)

+ AdvAKE−fs
MLHL,AMLHL,Case3

(T).

We prove the theorem for every case in three lemmas by sequence of games,
starting with the game G0 simulating the real protocol. In these games we si-
mulate participants of the protocol and their behavior. By Succi we denote that
b = b′ in the game Gi, where b was randomly chosen bit in Test query and b′ is
the output of the adversary.
For simplicity we suppose, that the adversary asks Execute queries on group
with the number of users n. Similarly when the protocol is simulated through
Send queries, we assume that the number of users is n too.

Proof. The proof of theorem is given in Appendix A.

Security of the MLHL protocol against attacks on LHL protocol: The
first attack is not possible, because in every session participant Pi establishes
key ski with server S with use of protocol 2P, therefore the keys are different in
every session and with high probability are not repeated. If adversary repeats
some messages, they will be decrypted and encrypted with different passwords
and if the adversary can not manipulate the messages that they go through
verification step (DDH problem and MAC property), protocol terminates.
The second type of attack is not possible due to MAC property too. Adversary
can manipulate messages that participants P2 and P3 think, that they receive
messages from P4 (adversary overrides value P1 by value P4 in messages sent by
server), but he does not know to compute correct τ4. Therefore the execution of
protocol terminates during verification step.

6 Conclusion

We have proposed and proved security of the MLHL protocol, which is secure
PGAKE protocol for participants with different passwords. This protocol is
based on the LHL protocol, but his advantage is in security against mentioned
attacks and in usage of different passwords per user.

Acknowledgement. This paper was supported by VEGA grant number 1/0259/13
and by Comenius University grant number UK/407/2013.

References

1. Steven M. Bellovin and Michael Merritt,Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks, In IEEE Computer Society Sympo-
sium on Research in Security and Privacy, pp. 72-84, IEEE Computer Society Press,
1992.

2. Lee, Su-Mi and Hwang, Jung Yeon and Lee, Dong Hoon, Efficient Password-Based
Group Key Exchange, Trust and Privacy in Digital Business, First International
Conference, TrustBus’04, pp. 191-199, LNCS 3184, Springer, 2004.

3. Michel Abdalla and Emmanuel Bresson and Olivier Chevassut, Password-based
Group Key Exchange in a Constant Number of Rounds, Public Key Cryptogra-
phy - PKC’06 - 9th International Conference on Practice and Theory in Public Key
Cryptography, pp. 427–442, LNCS 3958, Springer, 2006.

4. Choo, Kim-Kwang Raymond, On the Security Analysis of Lee, Hwang & Lee (2004)
and Song & Kim (2000) Key Exchange / Agreement Protocols, Informatica, 17, pp.
467-480, IOS Press, 2006.

5. Michel Abdalla and Pierre-Alain Fouque and David Pointcheval, Password-based
authenticated key exchange in the three-party setting, PKC 2005: 8th International
Workshop on Theory and Practice in Public Key Cryptography, pp. 65–84, LNCS
3386, Springer, 2005.

6. Mihir Bellare and David Pointcheval and Phillip Rogaway, Authenticated
Key Exchange Secure Against Dictionary Attacks, Advances in Cryptology –
EUROCRYPT’00, International Conference on the Theory and Application of Cryp-
tographic Techniques, pp 139–155, LNCS 1807, Springer, 2000.

7. Jeong Ok Kwon and Ik Rae Jeong and Kouichi Sakurai and Dong Hoon Lee,
Password-authenticated multiparty key exchange with different passwords, IACR
Cryptology ePrint Archive, 2006.

8. Mihir Bellare and Phillip Rogaway, Provably secure session key distribution: The
Three Party Case, Proceedings of the twenty-seventh annual ACM symposium on
Theory of computing, STOC ’95, pp. 57–66, ACM, 1995.

9. Jean-Sébastien Coron and Jacques Patarin and Yannick Seurin, The Random Or-
acle Model and the Ideal Cipher Model Are Equivalent, Advances in Cryptology -
CRYPTO’08, 28th Annual International, pp. 1–20, LNCS 5157, Springer, 2008.

10. Katz, Jonathan and Lindell, Yehuda, Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series),Chapman &
Hall/CRC, 2007.

11. Jonathan Katz and Rafail Ostrovsky and Moti Yung, Forward Secrecy in Password-
Only Key Exchange Protocols, Security in Communication Networks, Third Inter-
national Conference, pp. 29–44, LNCS 2576, Springer, 2003.

12. Mihir Bellare and Ran Canetti and Hugo Krawczyk, A modular approach to the
design and analysis of authentication and key exchange protocols, STOC’98: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing, pp.
419–428, ACM, 1998.

13. E. Bresson and O. Chevassut and D. Pointcheval, Security proofs for an efficient
password-based key exchange, Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, CCS’03, pp. 241–250, ACM, 2003.

14. Victor Boyko and Philip Mackenzie and Sarvar Patel, Provably secure password-
authenticated key exchange using Diffie-Hellman, Advances in Cryptology - EURO-
CRYPT’00, International Conference, pp. 156–171, LNCS, Springer, 2000.

15. David P. Jablon, Strong Password-Only Authenticated Key Exchange, SIGCOMM
Computer Communication Review 26, pp. 5–26, ACM, 1996.

16. Philip MacKenzie, The PAK suite: Protocols for Password-Authenticated Key Ex-
change, IEEE P1363.2, 2002.

17. Thomas Wu, The secure remote password protocol, Proceedings of the Network
and Distributed System Security Symposium, NDSS’98, The Internet Society, pp.
97–111, 1998.

18. Oded Goldreich and Yehuda Lindell, Session-Key Generation using Human Pass-
words Only, Advances in Cryptology - CRYPTO’01, 21st Annual International
Cryptology Conference, pp. 408–432, LNCS 2139, Springer, 2001.

19. Jonathan Katz and Rafail Ostrovsky and Moti Yung, Efficient Password-
Authenticated Key Exchange using Human-Memorable Passwords, Advances in
Cryptology - EUROCRYPT’01, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, pp. 475–494, LNCS, Springer, 2001.

A Proof of Theorem 1

A.1 Advantage of adversary in Case1:

In this section we prove the AKE-fs security of the MLHL protocol in Case1,
where the adversary does not make any Corrupt queries.

Lemma 1. The advantage of the adversary from Case1 is:

AdvAKE−fs
MLHL,AMLHL,Case1

(T) ≤ 2

(
(qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ 2AdvMAC−forge

M (t′)

+ p(k) · nAdvAKE
2P (t, qexecute, qsend, qreveal)

+
np(k)2

2lk+1
+ 2p(k) · n ·AdvDDH

G,ADDH
(t′′) + 4qE/2

l−k

)
.

If no Corrupt queries are made, it is sufficient to prove AKE security instead
of AKE-fs, therefore AdvAKE−fs

MLHL,AMLHL,Case1
(T) = AdvAKE

MLHL,AMLHL
(T).

Proof. We start with the simulation of the real protocol.
Game G0:
This is a game simulating the real protocol. From the definition 9 we have:

AdvAKE
MLHL,AMLHL

(T) = 2 Pr[Succ0]− 1.

Because 2P could represent arbitrary secure 2PAKE protocol, without the loss
of generality we suppose that in the protocol 2P the communication is started
by participant Pi, which sends the first message to the server. Moreover, we
assume that the protocol has l flows of messages and the last message (l-th) is
sent by the server. By ski =2P(Pi, S) we denote, that key ski was computed
with simulation of 2P between Pi and S. When participant awaits more than
one message, we denote it as a concatenation (see definitions of Send3 and Send4

oracles).
In this game we simulate Send and Execute oracles as described bellow (we skip
the description of Test and Reveal queries, because they are straightforward
from their definition). The simulation of Send queries is divided into l+ 4 types
of queries (l is number of messages sent during 2P protocol). Such Send query
represents concrete type of message, which was sent.

Execute(P1, . . . ,Pn,S)
msgi0 =2P(Pi, S),

x1, . . . , xn
$←− G,

∀Pi, i ∈ {1, . . . , n} compute zi = gxi ,
z∗i = Eski(gxi),
z∗∗i−1 = Eski−1

(zi), z
∗∗
i+1 = Eski+1

(zi),
msgi1.1 = (ID(Pi)||Eski(zi)),
msgi1.2 = (ID(S)||ID(Pi)||z∗∗i−1),
msgi1.3 = (ID(S)||ID(Pi)||z∗∗i+1),
∀Pi, i ∈ {1, . . . , n} compute Ki = H(gxixi+1),
wi = Ki−1 ⊕Ki,
τi =GenKi

(ID(Pi)||wi)
msgi2 = (ID(Pi)||wi||τi),
sk = H′(H(K1)‖...‖H(Kn)),
msgi3 = ”accepted”
return {msgi0, msgi1.1, msgi1.2, msgi1.3, msgi2, msgi3}ni=1

Send1
1(Πj

i ,M)
simulate first step of 2P protocol, message M of the form
(ID(Pi1)||ID(Pi2)|| . . . ||ID(Pin−1

)||ID(S)) is sent to the instance Πj
i

informing that the instance Πj
i is going to establish a session key with

participants Pi1 , Pi2 , . . . , Pin−1
,

return the message, which is the result of simulation of the first step of
2P protocol.

...
Sendl1(ψs,M)

simulate the last step of 2P protocol,
return the last message of 2P protocol computed according to the rules
of the 2P.

Send1
2(Πj

i ,M)
M is the last message sent by the server ψ to Πj

i in 2P,
ski =2P(Pi, S),

xi
$←− G,

zi = gxi , z∗i = Eski(zi)
return (ID(Pi)||z∗i)

Send2
2(ψs,M)
M has the form (ID(Pi)||M ′)
zi = Dski(M),
z∗∗i−1 = Eski−1(zi),
z∗∗i+1 = Eski+1

(zi)
return (ID(S)||ID(Pi)||z∗∗i−1), (ID(S)||ID(Pi)||z∗∗i+1)

Send3(Πj
i ,Mi−1||Mi+1)

Mi−1 and Mi+1 have the form (ID(S)||ID(Pi−1)||M ′i−1) and
(ID(S)||ID(Pi+1)||M ′i+1)
zi−1 = Dski(Mi−1), zi+1 = Dski(Mi+1),
Ki−1 = H(zxi

i−1), Ki = H(zxi
i+1),

wi = Ki−1 ⊕Ki, τi = MacKi
(ID(Pi)||wi)

return (ID(Pi)||wi||τi)

Send4(Πj
i ,M0|| . . . ||Mi−1||Mi+1|| . . . ||Mn)

Mj has the form (ID(Pj)||wj ||τj),
j ∈ {0, . . . , i− 1, i+ 1, . . . , n},
if VrfKi−1

(ID(Pi−1)||wi−1, τi−1) = 1
then Ki−2 = wi−1 ⊕Ki−1, . . .
if VrfKi+1

(ID(Pi+1)||wi+1τi+1) = 1
then Ki = wi+1 ⊕Ki+1,
sk = H′(H(K1)‖...‖H(Kn)),
return ”accept”
else if any of MAC verifications fails, return ”terminated”

Game G′0:
In this game we simulate encryption and decryption oracles. We work with the
list ΛE of tuples (type, sidji , i, α, sk, z, z

∗), where we store previous answers of

encryption/decryption queries. Type takes values enc/dec, sidji is session ID of

instance Πj
i , α is value used in other games, sk is encryption/decryption key

and z∗ = Esk(z). Moreover, we use the list Λ2P of tuples (sid, i, sk) where we
store previously established session keys sk in 2P protocol in session sid for
participant Pi. We simulate encryption and decryption as follows:

– Esk(z) – if (·, ·, ·, ·, sk, z, z∗) ∈ ΛE , we return z∗ otherwise we choose z∗
$←− G,

if (·, ·, ·, ·, sk, ·, z∗) ∈ ΛE , we stop the simulation and the adversary wins
(because such situation represents collision). Otherwise we add a record
(enc,⊥,⊥,⊥, sk, z, z∗) to ΛE and return z∗.

– Dsk(z∗) – if (·, ·, ·, ·, sk, z, z∗) ∈ ΛE , we return z otherwise

• if (sidji , i, sk) ∈ Λ2P, we choose z
$←− G∗, if (·, ·, ·, ·, sk, z, ·) ∈ ΛE , we stop

the simulation and the adversary wins. Otherwise we return z and add
record (dec, sidji , i,⊥, sk, z, z∗) to ΛE .

• if (sidji , i, sk) /∈ Λ2P, we choose z
$←− G∗, if (·, ·, ·, ·, sk, z, ·) ∈ ΛE , we stop

the simulation and the adversary wins. Otherwise we return z and add
record (dec,⊥,⊥,⊥, sk, z, z∗) to ΛE

This game is the same as the previous unless:

– Collision occurs in the simulation of encryption/decryption. This event hap-

pens with probability ≈ (qE+qD)2

2|G| , where qE is the number of encryptions and

qD is the number of decryptions.
– Value sk had been first used by the decryption oracle D and then returned

as a result of the 2P protocol in the first step of the protocol MLHL. This

event occurs with probability p(k)·n·qD
2lk

, where p(·) is a polynomial and qD
denotes number of decryptions (p(k) · n is number 2P’s executions).

Hence,

|Pr[Succ′0]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
.

Next, in the games Gi1 we simulate gradual replacement of values ski by
random keys. We alter the simulation of Execute and Send1

2 queries as follows:
session key ski established during 2P protocol between participant Pi and server
S is replaced by a random string sk′i, while we keep these randomly chosen

values in the list Λ2P in the format (sidji , i, sk
′
i). The randomly chosen values sk′i

should not repeat for any participant and any session, if some sk′i is repeated, we
stop the simulation and we let the adversary win (this happens with probability
p(k)2

2lk+1 , where p(k) specifies number of simulations of the MLHL protocol.

Game G1
1:

In this game the session key established during 2P protocol between participant

P1 and server S is replaced by a random string sk′1. In the list Λ2P we store
values (sidj1, 1, sk

′
1). We show that

|Pr[Succ11]− Pr[Succ′0]| ≤ p(k)AdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) +
p(k)2

2lk+1
,

where qsend, qexecute, qreveal is number of Send, Execute, Reveal queries of 2P on
his oracles and p(·) is polynomial.
To show this inequality we use a hybrid argument: we assume that there is a
polynomial time distinguisher D that can distinguish games G′0 and G1

1 with
probability ε:

|Pr[DG
′
0 → 1]− Pr[DG

1
1 → 1]| = ε.

We show that if ε is not negligible, we can construct an adversary A2P against
AKE security of the 2P protocol, which probability of success is not negligible.
We define sequence distributions Hi

1, i = 0 . . . p(k), in distribution Hi
1 the first

i session keys established during 2P protocol between participant P1 and server
S are replaced by a random string sk′1. Clearly distribution H0

1 is equal to game

G′0 and distribution H
p(k)
1 is equal to game G1

1.
Adversary A2P

1. A2P selects an index j at random from {1 . . . p(k)− 1} and a bit b
$←− {0, 1}.

A2P runs distinguisher D and responds to his oracle queries (described later).
We assume that A2P is able to identify, which queries asked by D belong
to the 2P protocol (Send1

1, . . . , Sendl1) and which belong to the rest of the
protocol MLHL (Send1

2, . . . , Send4). A2P will simulate oracle queries of D as
follows:
– Send(Π l

1,M) in 2P, l < j:A2P replies with the response of his Send(Π l
1,M)

oracle. If this query leads to establishment of a session key in 2P, then
A2P selects a random key sk′1 and uses it as a session key sk1 between
P1 and S in the session with sidl1.

– Send(Πj
1 ,M) in 2P: A2P replies with the response of his

Send(Πj
1 ,M) oracle. If this query leads to establishment of a session key

in 2P, then A2P asks Test(Πj
1) query and the result is used as a session

key sk1 between P1 and S in the MLHL protocol with session identifier
sidj1.

– Send(Π l
i ,M) in 2P, i 6= 1 ∧ l ∈ {1, · · · p(k)} or i = 1 ∧ l > j: A2P

replies with the response of his Send(Πj
i ,M) oracle. If this query leads

to establishment of a session key in 2P, then A2P asks Reveal(Π l
i) query

and the returned result is used as a session key ski between Pi and S in
the session with sidji .

– Send(Ψs,M) in 2P: similar as Send(Πj
i ,M)

– Send(Πj
i ,M) query outside 2P:A2P answers with the result of simulation

of sending the message M in MLHL, while he follows rules and steps of
MLHL as in the previous game. During the simulation he uses keys
ski, i ∈ {1, 2, ..., n} (which were obtained as a response of his Reveal or
Test oracle or by a random choice).

– Send(Ψs,M) query outside 2P: similar to Send(Πj
i ,M) outside 2P.

– Execute(P1, P2, . . . , Pn, S): If instance of P1 has form Π l
1, where l = j

then response to this Execute query is computed as follows: A2P starts to
simulate 2P between participants P1, . . . , Pn and S with use of his own
Execute oracle. Then he asks Test query on the instance of participant P1

and Reveal queries on instances of participants P2, . . . , Pn in that session.
Next he continues with simulation of the rest of MLHL. Encryption and
decryption of messages is done using the obtained keys ski.
Other Execute queries, where l 6= j are simulated in a different way.

• If instance of P1 has form Π l
1, where l < j thenA2P starts to simulate

2P between participants P1, . . . , Pn and S with the use of his own
Execute oracle. After simulation of 2P protocol he chooses key sk′1
randomly and asks Reveal queries on all participants Pi, i ≥ 2. Next
he continues with the simulation of the rest of the MLHL protocol
with obtained keys as in previous game.

• If instance of P1 has form Π l
1, where l > j thenA2P starts to simulate

2P between participants P1, . . . , Pn and S with the use of his own
Execute oracle, then he asks Reveal queries on all participants Pi,
i ≥ 1. Next he continues with the simulation of the rest of MLHL
protocol with obtained keys as in previous game.

– Reveal(Πj
i): A2P answers under the rules of Reveal query in the security

model (he returns the real session key sk, if Πj
i has the key established

during the simulation)

– Test(Πj
i): if the randomly chosen bit b = 0, A2P returns the real session

key sk (computed during the simulation of Send or Execute queries),
otherwise he returns a randomly chosen key sk′.

2. A2P returns b← D

Now we analyze the behaviour of A2P. Fix polynomial p(·) and A2P chooses j =
J , where J is random value uniformly chosen from {1, . . . , p(k)}. If A2P during
GameAKE2P,A2P gets real session key established during protocol 2P between
participants P1 and S, then the view of distinguisher D is as in distribution
HJ−1

1 . That is,

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1|j = J] = Pr
view←HJ−1

1

[D(view) = 1].

Since the value of j is chosen uniformly at random, we have

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1] =
1

p(k)

p(k)∑
J=1

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1|j = J]

=
1

p(k)

p(k)∑
J=1

Pr
view←HJ−1

1

[D(view) = 1].

If A2P chooses j = J and during GameAKE2P,A2P
it receives a randomly chosen

value instead of the session key as a response of its Test oracle, then the view of
distinguisher D is as in distribution HJ

1 . That is,

Pr
sk′1←{0,1}lk

[A2P(sk′1) = 1|j = J] = Pr
view←HJ

1

[D(view) = 1].

Then, we have

Pr
sk′1←{0,1}lk

[A2P(sk′1) = 1] =
1

p(k)

p(k)∑
J=1

Pr
sk′1←{0,1}lk

[A2P(sk′1) = 1|j = J]

=
1

p(k)

p(k)∑
J=1

Pr
view←HJ

1

[D(view) = 1].

In the end we have∣∣∣ Pr
sk′1←{0,1}lk

[A2P(sk′1) = 1]− Pr
sk1←2P(P1,S)

[A2P(sk1) = 1]
∣∣∣

=
1

p(k)

∣∣∣ p(k)∑
J=1

Pr
view←HJ

1

[D(view) = 1]−
p(k)−1∑
J=0

Pr
view←HJ

1

[D(view) = 1]
∣∣∣

=
1

p(k)

∣∣∣ Pr
view←Hp(k)

1

[D(view) = 1]− Pr
view←H0

1

[D(view) = 1]
∣∣∣ =

ε

p(k)
.

Since 2P is AKE secure protocol and A2P runs in polynomial time and p(·) is
polynomial, the value ε must be negligible.

|Pr[Succ11]− Pr[Succ′0]| = | Pr
view←Hp(k)

1

[D(view) = 1]− Pr
view←H0

1

[D(view) = 1]|

≤ p(k)AdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) +
p(k)2

2lk+1
.

Game G2
1:

In this game we change the previous simulation so that the established session
key between the participant P2 and the server S is replaced by a random string
sk′2. Thus session keys between the participants P1, P2 and the server S are ran-
domly generated. The similar reasoning of existence of a distinguisher between
games G1

1 and G2
1 works. Therefore we have

|Pr[Succ21]− Pr[Succ11]| ≤ p(k)AdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) +
p(k)2

2lk+1
.

The games G3
1, . . . , G

n
1 are defined similarly. When we sum all inequalities on

the left side and on the right side,

|Pr[Succn1]−Pr[Succ′0]| ≤ n · p(k)AdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) +
np(k)2

2lk+1
.

In this part we simulate gradual replacement of values Ki by random values
in the games Gi2, i = 1 . . . n. We alter the simulation of Execute queries as fol-
lows: a Diffie-Hellman value Ki established during the MLHL protocol between
participants Pi and Pi+1 is replaced by a random value K ′i from G.
Game G1

2: In this game we simulate everything like in the previous game, how-
ever the value K1 is replaced by a random value during Execute queries. We
show that

|Pr[Succ12]− Pr[Succn1]| ≤ p(k)AdvDDH
G,ADDH

(t′′).

To prove this inequality, suppose that there exist a distinguisher D which can
distinguish these two games. We can use this distinguisher to construct an adver-
sary ADDH, which can solve DDH problem, with use of similar hybrid argument
as in previous games: we define distribution Hi

2, i ∈ {0, 1, . . . p(k)}. In the dis-
tribution Hi

2 the values K1 for instances Πj
1 , j ≤ i are chosen randomly and the

values K1 for instances Πj
1 , j > i are computed as in the previous game. We

assume that distinguisher D during simulation constructs p(k) sessions for some
polynomial p(·).
Adversary ADDH(u, v, w)

1. ADDH chooses random bit b and index j.
2. ADDH answers oracle queries of the distinguisher D as follows:

– Send, Reveal and Test queries are answered as in previous game, Test
queries are answered with the use of bit b (note, that the adversary knows
the established session keys, because he simulated the execution).

– Execute(P1, . . . , Pn) queries are simulated in the following way:
If instance of P1 has form Π l

1, where l = j then simulation of Execute
query for instances of participants P3, . . . , Pn in the same session does
not change. Protocol 2P between P1, P2 and S is simulated as in the
previous game, after this simulation ADDH knows the values sk1, sk2
– he has chosen them randomly. Then he simulates that P1 sends the
message (ID(P1)||Esk1(u)) and P2 sends the message (ID(P2)||Esk2(v))
then K1 is set to w, K2 = vx3 , Kn = uxn . Next he continues with the
simulation of the rest of MLHL. Other Execute queries, where l 6= j are
simulated as follows:
• If instance of P1 has form Π l

1, where l < j then ADDH starts to
simulate 2P between participants P1, . . . , Pn and S as in previous
game. After simulation of 2P protocol he chooses randomly keys sk′i,
i = 1 . . . n and simulates the rest of the MLHL as in the previous
game however, the computed value K1 in each session is replaced by
random value.
• If instance of P1 has form Π l

1, where l > j then ADDH starts to
simulate 2P between participants P1, . . . , Pn and S as in previous
game. After simulation of 2P protocol he continues with simulation
of the rest of the MLHL as in the previous game.

3. ADDH returns b← D

If (u, v, w) from adversary’s input is a DDH triple and index j = 0, the view of
distinguisher D is the same as in the game Gn1 (H0

2). If (u, v, w) is not a DDH

triple and index j = p(k), the view of D is the same as in the game G1
2 (H

p(k)
2).

Thus the advantage of ADDH is at least as great as 1
p(k) of the advantage of D

(we skip the detailed reasoning).

|Pr[Succ12]− Pr[Succn1]| = p(k)AdvDDH
G,ADDH

(t′′)

Game G2
2:

In this game we change previous simulation that the computed value K2 is
replaced by a random value. Therefore values K1,K2 are randomly generated.
The similar reasoning about existence of a distinguisher between games G1

2 and
G2

2 works. Therefore we have

|Pr[Succ22]− Pr[Succ12]| = p(k)AdvDDH
G,ADDH

(t′′).

The games G3
2, . . . , G

n
2 are defined similarly. When we sum inequalities, we have

|Pr[Succn2]− Pr[Succn1]| = n · p(k) ·AdvDDH
G,ADDH

(t′′).

Game G3:
In this game the session key of MLHL is replaced by a random value during
Execute queries. We have

Pr[Succ3] = Pr[Succn2].

This claim follows from the view of an adversary in this two games. In the game
Gn2 the values Ki are chosen at random, therefore they are independent from
previously sent messages (They are not sent directly, but as xor-ed values wi,
which can originate from combination of 2|wi| different pairs of values). This
implies that the computed wi (which adversary can see) are independent from
previously sent messages. From all of this facts follows, that the computed ses-
sion key is independent from all sent values and therefore there is no difference
between these games.
Game G4:
In this game we change simulation of the first subcase of decryption oracle (de-
fined in game G′0) in Send queries: we build an instance of PDDH problem
in simulation of the protocol. We set β = 0, thus the challenger Challβ(·) re-
turns vectors (ζ1, ..., ζn, γ1, ..., γn) from the distribution PDH∗n. New vectors
are returned in every session, however the same vectors are returned in queries

on the same session. For randomly chosen (α1, ..., αn), αi
$←− Z∗q have vectors

(ζα1
1 , ..., ζαn

n , γα1α2
1 , ..., γαnα1

n) equal distribution to the original (ζ1, ..., ζn, γ1, ..., γn).
We use this property for application of random self-reducibility of the PDDH
problem. The decryption is changed as follows:

– Dski(z∗) – if (sidji , i, ski) ∈ Λ2P, (ζ1, ..., ζn, γ1, ..., γn)← Challβ(sk1, ..., skn)
(the arguments of Challβ can be found in the Λ2P list sharing the same

value of session ID), we choose random αi
$←− Z∗q and compute zi = ζαi

i . If
(·, ·, ·, ·, ski, zi, ·) ∈ ΛE , then we stop the simulation, adversary wins. Other-
wise we add record (dec, sidji , i, αi, ski, zi, z

∗) to ΛE and return zi.

Exponent αi specifies, how we applied random self-reducibility of PDDH problem
on instance generated by the challenger. Exponent αi can be defined in the list
ΛE only if values sidji and i are known. The view of the adversary does not
change and therefore we have

Pr[Succ4] = Pr[Succ3].

Game G5:
We change the simulation of Send1

2, Send2
2 and Send3 queries. First, encryption

of messages in the second step of the protocol is changed during simulation of

Send1
2. Instance Πj

i chooses z∗i
$←− G randomly and computes zi = Dski(z∗i) as in

the previous game. Then Πj
i sends the message (ID(Pi)||z∗i). Therefore Send1

2

queries in the second step of the MLHL lead to adding of αi to the list ΛE .
Simulation ends if

– (enc,⊥,⊥,⊥, ski, ·, z∗i) ∈ ΛE , because we do not know the value of αi. This
possibility occurs if the adversary asks for encryption of some value with the
key ski and the result of encryption was z∗i (it means that (enc,⊥,⊥,⊥,
ski, ·, z∗i) ∈ ΛE). The probability of this event is qE/2

lk . In this case we stop
the simulation, the adversary wins.

– (dec,⊥,⊥,⊥, ski, zi, z∗i) ∈ ΛE . This possibility occurs if we decrypt the value

z∗i , while the values i, sidji belonging to ski were not known. However this
situation can not occur (see Game G′0, point 3).

When the server accepts the message (ID(Pi)||z∗i) during simulation of Send2
2,

he should resend it to participants Pi−1 and Pi+1, thus he must decrypt z∗i . The
following cases can occur:

– z∗i was encrypted in the aforementioned manner, thus we know the value αi.
We can continue with the simulation of encryption described bellow.

– z∗i is response of encryption oracle Eski , while ski is correct key of Πj
i in

the corresponding session (thus adversary guessed the ski and used it for
encryption of data for server). In this case we stop the simulation, adversary
wins. This event occurs with probability qE/2

lk .

– z∗i was chosen by adversary without asking encryption oracle. In this si-
tuation adversary does not know the password and therefore he could not
compute messages in the way, that they go through the control step. Sim-
ulation continues as follows: we compute z′i = Dski(z∗i), then we compute
z∗∗i = Eski+1

(z′i) and send to the user Pi+1 message (ID(S)||ID(Pi)||z∗∗i).
Similar for Pi−1. Next we simulate as in the previous games, however, ad-
versary does not know any of values Ki, therefore he could not manipulate
other messages in the way, that they go through the verification step of
MAC scheme, unless he breaks it with probability AdvMAC−forge

M,AM
(t′), which

is negligible.

Encryption of zi = Dski (in the first case) with another passwords (ski−1 and
ski+1) (in second step) works as follows:

– Eski+1
(zi)

• if (·, ·, ·, ·, ski+1, zi, ·) /∈ ΛE and (dec, sidji , i, αi, ski, zi, ·) ∈ ΛE (this record

was added in simulation described above by the instance Πj
i), then we

choose z∗∗
$←− G if (·, ·, ·, ·, ski+1, ·, z∗∗) /∈ ΛE , we return z∗∗ and add

record (enc, sidji , i,⊥, ski+1, z, z
∗∗) into ΛE , else we stop the simulation

and adversary wins.
• if (enc,⊥,⊥,⊥, ski+1, zi, ·) ∈ ΛE , we stop the simulation and the adver-

sary wins. This case occurs if adversary asked for encryption of value zi
with key ski+1. The probability of this event is qE/2

lk .
• if (enc, sidji , i + 2,⊥, ski+1, zi, z

∗) ∈ ΛE , we return z∗. This case occurs
if during the simulation of execution of the protocol happens request for
resending the value zi to instance Πj

i+1 (sent with instance Πj
i+2), while

the value was encrypted with the key ski+1.
• if (dec, sidji , i + 1, αi+1, ski+1, zi, z

∗) ∈ ΛE , we return z∗. This case can

occur by simulation of Send queries of instance Πj
i+1 in second round.

– Eski−1(zi) – similar to the previous case.

Simulation of Send3, when Πj
i receives messages (ID(S)||ID(Pi−1)||z∗i−1) and

(ID(S)||ID(Pi+1)||z∗i+1) works as follows: compute zi−1 = Dski(z∗i−1) and zi+1 =
Dski(z∗i+1). This three cases can occur:

– z∗i−1 and z∗i+1 were encrypted in the previous manner. We can continue with
simulation as described bellow.

– one or both z∗i−1 and z∗i+1 is/are the answer from query on encryption oracle

Eski , while ski is correct key of instance Πj
i in session j (thus adversary

guessed password and used him for encryption of data from server). This
event occurs with probability qE/2

lk . In this case we stop the simulation,
adversary wins.

– one or both z∗i−1 and z∗i+1 was/were chosen by adversary without asking of
Encryption oracle, in this situation adversary do not know the password and
therefore he should not compute messages in the way, that they go through
the verification step of MAC scheme, unless he breaks it with probability
AdvMAC−forge

M,AM
(t′), which is negligible.

If the messages were sent as we simulate them, we have:

zi = ζαi
i , zi−1 = ζ

αi−1

i−1 , zi+1 = ζ
αi+1

i+1

and we can compute

Ki−1 = H(CDH(zi−1, zi)),Ki = H(CDH(zi, zi+1))

wi = Ki−1 ⊕Ki, τi = MacKi
(wi)

and resend the message (ID(Pi), wi, τi). When every participant broadcasts such
message, the session key can be computed.
This game is the same as the previous unless mentioned ”bad” events happen.

|Pr[Succ5]− Pr[Succ4]| ≤ 4qE/2
lk + 2AdvMAC−forge

M,AM
(t′)

Game G6:
In this game we change the bit β to 1, thus the values (ζ1, ..., ζn, γ1, ..., γn) are
from distribution PDH$

n. Clearly holds that

|Pr[Succ6]− Pr[Succ5]| ≤ p(k) ·AdvPDDHn

G,APDDH
(t′′),

where p(k) is the number of sessions, p is a polynomial.
Game G7:
The session key of MLHL is replaced by a random value during Send queries in
this game. We have

Pr[Succ7] = Pr[Succ6].

This claim follows from the view of adversary in this two games. In game G6 are
values Ki chosen at random, therefore they are independent from previous sent
messages (They are not sent directly, but as xor-ed values wi, which can originate
from combination of 2|wi| different pairs of values). This implies that the com-
puted wi (which adversary sees) are independent from previous sent messages.
From all of this facts follows, that the computed session key is independent from
all sent values and therefore there is no difference between these games.
The probability of adversary’s success in this game is 1

2 , because the session key
is randomly chosen and independent from the previous messages. Therefore

Pr[Succ7] =
1

2
.

When we sum all (in)equalities of games, we have:

|Pr[Succ7]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ 2AdvMAC−forge

M,AM
(t′)

+ p(k) · nAdvAKE
2P,A2P

(t, qexecute, qsend, qreveal)

+
np(k)2

2lk+1
+ p(k) · n ·AdvDDH

G,ADDH
(t′′) + 4qE/2

l−k

+ p(k) ·AdvPDDHn

G,APDDH
(t′′)

AdvAKE
MLHL,AMLHL

(A) ≤ 2

(
(qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ 2AdvMAC−forge

M,AM
(t′)

+ p(k) · nAdvAKE
2P,A2P

(t, qexecute, qsend, qreveal)

+
np(k)2

2lk+1
+ 2p(k) · n ·AdvDDH

G,ADDH
(t′′) + 4qE/2

l−k

)
.

A.2 Advantage of adversary in Case2:

In this section we prove the AKE-fs security of protocol in Case2, where the
adversary knows all LL-keys, if he asks Corrupt queries for all participants Pi,
i = {1, . . . , n} after Test query (notice, that means, that instance on which
adversary makes Test query has established session key before any Corrupt
query was made). He can make Send, Execute, Reveal and Test queries. Also
he can check, if the session keys of 2P protocol were changed: he can com-
pare, if encrypted part of sent message in second step after decryption, which
was sent by Pi is the same like encrypted part of sent message in second step
Dski(Esk′i(g

xi)) = Dski+1
(Eski+1

(gxi))

Lemma 2. The advantage of the adversary from Case2 is:

AdvAKE−fs
MLHL,AMLHL,Case2

(T) ≤ 2

(
(qE + qD)2

2|G|
+ 4qE/2

l−k p(k) · n · qD
2lk

+ ε

+ 2p(k) · n ·AdvDDH
G,ADDH

(t′′) + 2AdvMAC−forge
M,AM

(t′)

)
.

Proof. Similar like in the previous case, we start with the simulation of the real
protocol.
Game G0:
This is a game with the real protocol and from definition we have:

AdvAKE−fs
MLHL,AMLHL

(T) = 2 Pr[Succ0]− 1.

Game G′0:
Is same as in the Case1. Therefore

|Pr[Succ′0]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
.

Game G1:
Games Gi1 from the Case1 are not possible, because the adversary can check,
if the session keys of 2P were changed. In this game we keep all session keys
established in 2P in a list Λ2P in format (sidji , i, ski), where sidji is a session ID,
i is index of Pi and ski is a session key established in the protocol 2P between Pi
and S. If during some simulation an arbitrary participant establishes with server
session key, which is in Λ2P, we stop the simulation, adversary wins (session
keys can not repeat). This event happens with negligible probability ε. If ε is
not negligible, we have conflict with assumption that 2P is AKE secure 2PAKE
protocol, because the distribution of session key is not random.

|Pr[Succ1]− Pr[Succ0]| ≤ ε

The games G1
2, . . . , G

n
2 are defined as in the previous case. Therefore we have

|Pr[Succn2]− Pr[Succ1]| ≤ n · p(k) ·AdvDDH
G,ADDH

(t′′).

The games G3, G4, G5, G6 and G7 are simulated as in the previous case.
When we sum all (in)equalities of games, we have:

|Pr[Succ7]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ ε+ 4qE/2

l−k

+ 2AdvMAC−forge
M,AM

+ p(k) ·AdvPDDHn

G,APDDH
(t′′)

+ p(k) · n ·AdvDDH
G,ADDH

(t′′)

AdvAKE−fs
MLHL,AMLHL,Case2

(T) ≤ 2

(
(qE + qD)2

2|G|
+ 4qE/2

l−k p(k) · n · qD
2lk

+ ε

+ 2p(k) · n ·AdvDDH
G,ADDH

(t′′) + 2AdvMAC−forge
M,AM

(t′)

)
.

A.3 Advantage of adversary in Case3:

In this section we prove the AKE-fs security of protocol in Case3, the adversary
can make only Reveal, Execute queries on instances on which he wants to ask
Test query.

Lemma 3. The advantage of the adversary from Case3 is:

AdvAKE−fs
MLHL,AMLHL,Case3

(T) ≤ 2

(
(qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ ε

+ p(k) · n ·AdvDDH
G,ADDH

(t′′)

)
.

The proof of this lemma is very similar as in Case2.

Proof. Similar like in the previous case, we start with the simulation of the real
protocol.
Game G0:
This is a game with the real protocol and from definition we have:

AdvAKE−fs
MLHL,AMLHL,Case3

(T) = 2 Pr[Succ0]− 1.

Game G′0:
Is same as in the Case2. Therefore

|Pr[Succ′0]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
.

Game G1:
Is same as in the Case2. We have

|Pr[Succ1]− Pr[Succ0]| ≤ ε

The games G1
2, . . . , G

n
2 are defined as in the previous case. Therefore we have

|Pr[Succn2]− Pr[Succ1]| ≤ n · p(k) ·AdvDDH
G,ADDH

(t′′).

Game G3:
The session key of MLHL is replaced by a random value during Execute queries
in this game. We have

Pr[Succ3] = Pr[Succn2].

This claim follows from the view of adversary in this two games. In the game Gn2
are values Ki chosen at random, therefore they are independent from previous
sent messages (They are not sent directly, but as xor-ed values wi, which can
originate from combination of 2|wi| different pairs of values). This implies that
the computed wi (which adversary sees) are independent from previously sent
messages. From all of this facts follows, that the computed session key is inde-
pendent from all sent values and therefore there is not any difference between
these games.
The probability of adversary’s success in this game is 1

2 , because the session key
is randomly chosen and independent from the previous messages. Therefore

Pr[Succ3] =
1

2
.

When we sum all (in)equalities of games, we have:

|Pr[Succ3]− Pr[Succ0]| ≤ (qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ ε

+ p(k) · n ·AdvDDH
G,ADDH

(t′′)

AdvAKE−fs
MLHL,AMLHL,Case3

(T) ≤ 2

(
(qE + qD)2

2|G|
+
p(k) · n · qD

2lk
+ ε

+ p(k) · n ·AdvDDH
G,ADDH

(t′′)

)
.

