
Secure Key Management in the Cloud�

Ivan Damgård1, Thomas P. Jakobsen1,��,
Jesper Buus Nielsen1,��, and Jakob I. Pagter2

1 Aarhus University� � �

{ivan,tpj,jbn}@cs.au.dk
2 The Alexandra Institute A/S
jakob.i.pagter@alexandra.dk

Abstract. We consider applications involving a number of servers in the cloud that go
through a sequence of online periods where the servers communicate, separated by offline
periods where the servers are idle. During the offline periods, we assume that the servers
need to securely store sensitive information such as cryptographic keys. Applications like
this include many cases where secure multiparty computation is outsourced to the cloud, and
in particular a number of online auctions and benchmark computations with confidential
inputs. We consider fully autonomous servers that switch between online and offline periods
without communicating with anyone from outside the cloud, and semi-autonomous servers
that need a limited kind of assistance from outside the cloud when doing the transition. We
study the levels of security one can – and cannot – obtain in this model, propose light-weight
protocols achieving maximal security, and report on their practical performance.

Keywords: Information security, cloud computing, cloud cryptography, secure key man-
agement, secure distributed storage, secure multiparty computation.

� A short version of this paper is to appear at the 14th IMA International Conference on Cryptography
and Coding (IMA CC 2013).

�� Supported by the Danish Council for Independent Research via DFF Starting Grant 10-081612.
� � � The authors acknowledge support from the CFEM research center (supported by the Danish Strategic

Research Council), the Danish National Research Foundation, and the National Science Foundation
of China (under the grant 61061130540) for the Sino-Danish Center for the Thoery of Interactive
Computation, within which part of this work was performed.

1 Introduction

Cloud computing is a disruptive technology, changing the way computing resources are
deployed and consumed. The benefits of cloud computing are many, ranging from cost-
efficiency to business agility. The main drawback, however, is security and in particular
data confidentiality: Users of cloud technology essentially have to trust that the cloud
providers do not misuse their data. The recent disclosure of the PRISM surveillance pro-
gram3 in which NSA directly monitors all communication going through most world-wide
cloud providers such as Yahoo, Google, and Microsoft, is just one out of several incidents
emphasizing that this concern about security is real.

In the simple cloud computing case where a user outside the cloud wants to store some
data in the cloud for later retrieval, data confidentiality and integrity can relatively easy
be ensured. This is typically done using standard cryptography, by encrypting the user’s
data before it is stored in the cloud, keeping the encryption key secret from the cloud
provider. Several products such as CrashPlan4 and CloudFogger5 already offer this kind
of security.

But the cloud is more than just a storage medium: In particular, computation itself
is often outsourced to the cloud. In some cases the computation outsourced is even dis-
tributed among several cloud servers and may involve data from many clients. Sometimes
the cloud servers may even be controlled by different organizations. Also, the cloud servers
may exist in different parts of the cloud, spread across different cloud providers such as
Microsoft, Amazon, etc.

An example of this is the Danish site energiauktion.dk where electricity for com-
panies is traded at daily online auction. This works by each day starting up a number
of auction computations in the cloud. In order to protect the confidentiality of the sub-
mitted bids, even against collusions involving the operator of the auction site itself, the
bids are encrypted at the clients (the companies), and the auction computations are done
using MPC where each MPC server is running in the cloud, controlled by its own orga-
nization. Another relevant example is that of the Danish sugarbeet auctions [7]. Here,
similar auctions take place, but running on a yearly basis and computing the optimal way
to trade Danish sugarbeet contracts instead of electricity. As for energiauktion.dk, the
confidentiality of bids for the sugarbeet auctions are also ensured via MPC.6

Strong notions of security in such more involved cloud applications are generally not
as easily obtained as in the simpler case of cloud storage. Promising technologies such as
fully homomorphic encryption (FHE) [26] and secure multiparty computation (MPC) [50,
51, 27, 4, 14] definitely have the potential to raise the security for these applications. But
despite recent advances [39, 16, 29] they are still quite demanding in terms of performance.
While the functions to compute securely in the above examples are simple enough to allow
for MPC, securing applications via MPC or FHE in general would still be too resource
demanding. More light-weight solutions are therefore needed.

This paper is a study of certain subsets of these cloud computing scenarios. In Sec-
tion 2 through Section 5 we define these subsets, analyze which levels of security can be
obtained and provide concrete protocols achieving this security. In Section 6 we report on

3 http://en.wikipedia.org/wiki/PRISM_(surveillance_program)
4 www.crashplan.com
5 www.cloudfogger.com
6 While the electricity auctions currently take place in the cloud, the sugarbeet auction servers have

until now been running on non-cloud computers, with the MPC keys stored on USB sticks held by
administrators of each organization. But the application would fit nicely to a cloud setup.

a prototype implementation of the proposed protocols. For lack of space, the presentation
in these sections has been kept at an informal level. A formal model of the protocols and
proof of their security within the UC framework [9] are provided in Appendix B.

2 The Model

In this paper we are interested in the following scenario:

– Distributed computation A number of n servers S1, S2, . . . , Sn are engaged in some
distributed computation taking place in the cloud.

– Online/offline periods The computation does not proceed in a continuous fashion.
Rather, in some periods there is no need for computation and the servers are therefore
idle. We call the first periods for online periods and the latter for offline periods. In
this way the application goes through a number of rounds, each round consisting of
an online period followed by an offline period, and we assume that the servers receive
signals from the application that allows them to agree on the times to switch between
online and offline.

– Sensitive state During the application’s lifetime some or all of the servers possess
sensitive data that is needed by these servers in the online periods and that must be
stored securely during the offline periods. This could for example be data used in the
computation itself or keys needed to authenticate against other servers. We will refer
to the sensitive data that Si must store securely during the offline phase of round r as
that server’s secret file and we denote it by σr

i .

This model of course does not cover all kinds of cloud computing. Regarding the
online/offline property we note, however, that many applications naturally only require
computation at certain well-defined points in time. For example, online auctions and
benchmarks are often designed to be repeated at regular time intervals. Furthermore,
most cloud providers operate on a pay-per-use basis (pay per CPU cycle spent, pay per
byte sent, etc.) that in itself motivates the design of applications in which computation
is “batched” together in time as much as possible such that the cloud servers can be shut
down in between these periods of computation in order to save money.

Examples fitting particularly well into our model include those where MPC is done in
the cloud. Using MPC is for instance relevant in order to let a client securely outsource a
computation to the cloud: By computing via MPC and by making sure that servers are
hosted at different cloud providers, strong security is guaranteed since a large number of
different cloud providers must collaborate maliciously in order to violate security. Other
examples involving MPC in the cloud are the electricity auctions and the Danish sugar-
beet auctions mentioned above. Both of these applications involve the regular running of
auctions with bids containing confidential client information, and to guarantee confiden-
tiality of the bids, the auction computations are done using MPC where the servers are
controlled by different organizations. These applications therefore consist of a distributed
system of servers going through a number of online and offline periods (daily offline peri-
ods for the electricity auctions, yearly offline periods in the sugarbeet case). During the
offline periods, the servers need to store secret data, namely the keys used for doing MPC.

In this paper we do not aim at providing any extra security in the online periods,
other than what can already be obtained by other means such as MPC. Rather, we are
concerned with the question: To which extend is it possible to guarantee the confidentiality,
integrity, and availability of the servers’ secret files in the offline periods, given various

attacks on the servers and the network over which they communicate. By confidentiality
and integrity we mean that a secret file stored by a server at shutdown during an offline
period is guaranteed not to be read by others and that the server can be assured that
it reads the same unmodified file at wakeup as it stored at the previous shutdown. By
availability we refer to the guarantee that a file stored by a server can later be retrieved
again.

In the first part of our paper we take into account the following additional requirement:

– Autonomous servers The transition between online and offline periods must proceed
without anyone from outside the cloud taking action. That is, the servers must be able
to switch between online and offline periods communicating only with each other.

This may be essential to some applications. In particular, there simply may not be
any relevant parties outside the cloud, such as system administrators or non-cloud servers
within an organization, with the right levels of trust, at the times when the cloud servers
shut down or wake up.

It turns out that within this model, where the only players are the servers themselves,
there is a limit to the level of availability and confidentiality we can hope to get at the same
time: Any protocol that guarantees that some subset of the servers can restore a secret
file at wake up (availability) of course also allows the same subset of servers to learn the
contents of this file, meaning that the file leaks if the servers in that subset are malicious
(lack of privacy). Let tconf be the confidentiality threshold, that is, the maximal number
of servers an adversary can corrupt without learning anything about the contents of the
secret file. Similarly, let tavail be the availability threshold, meaning the maximal number
of servers the adversary can corrupt without being able to prevent the reconstruction of
the secret file. We can then express this trade-off as follows.

Fact 1 (Informal) With autonomous servers, the thresholds tconf and tavail must satisfy
the equation tconf + tavail < n. In particular, no protocol for fully autonomous servers
can guarantee at the same time both confidentiality and availability of a secret file in the
presence of more than n/2 malicious servers.

In Section 4 we present a protocol for fully autonomous servers that achieves very
strong privacy. Because of Fact 1, this means that we have to give up on availability.

The limitation expressed by Fact 1 is a consequence of the requirement that the servers
are only allowed to communicate with each other during shutdown and wakeup. We there-
fore continue our study in the second part of the paper, Section 5, by considering how
to most meaningfully relax the requirement of autonomous servers in order to gain more
security, while at the same time minimizing the involvement from outside. We end up
with the following slightly relaxed requirement:

– Semi-autonomous servers Under normal conditions the transition between online
and offline periods must proceed without anyone from outside the cloud taking action.
However, in case the system has been attacked, we allow the transitions to involve
actions from someone from outside the cloud.

We model this more concretely by assuming the existence of certain parties outside
the cloud that can fetch data from the cloud servers. For convenience we call these parties
administrators, though it could also for example be automated scripts running on trusted
(non-cloud) servers within the organizations operating the cloud servers.

The model with semi-autonomous servers covers many applications where the cloud
servers are operated by organizations that have their own trusted people or servers else-
where, outside of the cloud, that can assist the cloud servers in the transitions between
online and offline periods. In particular, it models well the scenario where human system
administrators are actually willing to log in to the cloud servers in certain situations.

In Section 5 we present a protocol with semi-autonomous servers, providing both very
strong confidentiality and availability while at the same time relying only on minimal
involvement from the administrators. The protocol essentially guarantees that an admin-
istrator can always restore a secret file stored on his server unless all the cloud servers
have been corrupted.

While definitely suited for increasing security of applications like energiauktion.dk
and the Danish sugarbeet auctions [7], we believe that these two models capture many
other interesting classes of cloud computing applications and that the protocols provided
here therefore will be useful for enhancing security for such applications.

3 Related Work

Our work is based on secret sharing. Several secret sharing schemes exists, including
schemes allowing various thresholds [5, 45] and schemes with proactive security [30]. How-
ever, for the same reason as for Fact 1, secret sharing considered in isolation can never give
both availability and confidentiality in case of a dishonest majority of parties. We show
how to combine secret sharing with other techniques in a specific context and thereby
achieve a level of security that one cannot get with secret sharing alone. In particular,
we show how to get both confidentiality and availability in the presence of a dishonest
majority in the model with semi-autonomous servers.

Secure multiparty computation (MPC) [50, 51, 27, 14, 4] allows a set of servers to jointly
compute on encrypted data. Security, including data confidentiality, is then guaranteed
even though some of the servers are malicious and may pool their data together. While
still a very resource demanding technology, MPC has reached a level where it has become
practical, at least for a limited class of applications [7, 21, 40, 46]. By letting the cloud
servers compute using one of the MPC protocols designed to give security against dishonest
majority [16, 39] one can achieve a level of security somehow similar to ours in the offline
periods, namely that an adversary must break into the offline storage of all servers, stealing
or modifying all MPC keys, to do any harm. However, as mentioned, MPC is still often
too heavy and contrary to our protocol for semi-autonomous servers, protocols designed
for dishonest majority MPC do not provide strong termination (meaning availability of
files in our case).

In any case, for all non-MPC computations as well as computations based on more
light-weight MPC protocols that assume less powerful adversaries (that is, honest majority
protocols, honest-but-curious or covert adversaries, etc.) our protocols can be used to
enhance security during the offline periods at a low cost. In this way, our protocols can
be seen not as a substitute, but more as a complement to the use of MPC.

Fully homomorphic encryption [26, 25] allows general computations on encrypted data
and is in many respects considered the “holy grail” of cloud computing security. FHE
allows a user to outsource computation to one or more cloud servers without violating
confidentiality even if all servers are malicious. Combining FHE with other techniques
allows to also guarantee the correctness of the outsourced computation [24, 15, 13]. Fur-
thermore, recent results consider outsourcing computations involving input from several
parties [32]. As such FHE can be used to secure essentially any cloud computing scenario,

including those we consider, to a very high degree. Despite recent improvements [8, 29],
though, the performance of FHE is still a long way from being efficient enough for practi-
cal purposes. Therefore our protocols, perhaps combined with MPC in the online periods,
pose a more realistic way to secure cloud computing, at least for the foreseeable future.

Our work essentially consist of protocols for secure, distributed storage of keys and is
as such related to the broader field of secure storage and secure distributed file systems.
Lots of work has been done in these areas [34], but in many cases such as NFS [38, 47], AFS
[31], and SFS [22], security only means that unauthorized clients cannot access or modify
files; the storage servers themselves are trusted. Due to increased security demands, a new
generation of so-called cryptographic storage systems has evolved, exemplified by Windows
EFS [20], CFS [6], Tahoe-LAFS [48], NCryptfs [49], and many others. Using various kinds
of cryptography, these systems provide the stronger notion of end-to-end security, meaning
that clients no longer need to trust the storage servers. However, all of these systems
require that clients themselves securely store keys and/or remember passwords and are
therefore not suitable in our setting where servers must operate autonomously (or at least
semi-autonomously) in the cloud.

Some results [23, 2, 36] already consider how data can securely be dispersed among a
number of servers without the need for storing secret keys on any client. These results
combine secret sharing, error correcting codes, variants of Rabin’s information dispersal
algorithm [41, 35] and other cryptographic techniques in order to guarantee both confiden-
tiality, integrity and availability of the stored data. Forward-secure threshold encryption
[37] could also be used to encrypt files at shutdown. As such, these protocols could indeed
be used to secure data during the offline phases in our model with autonomous servers.

Common to these results, however, are that they only provide security in the presence
of up to n/2 malicious servers. In contrast, the constructions provided in this paper are
designed to guarantee confidentiality and integrity of the stored data in the presence of
up to n − 1 servers. In Section 4 we achieve this for fully autonomous servers by giving
up on availability. In Section 5 we show how to take advantage of the model with semi-
autonomous servers in order to also guarantee availability with up to n − 1 malicious
servers.

We are, to the best of our knowledge, the first to consider protocols specifically designed
for securing the offline periods in cloud computing environments as described above. In
particular, we are not aware of any existing protocols suitable for such cases providing
the same combination of high security and good performance as those we present in this
paper.

4 Fully Autonomous Servers

We here describe a protocol that increases the offline security in the model with fully
autonomous servers and we discuss the limits of the possible security we can in this
model. Due to space restrictions the description is kept at an informal level while a formal
modelling of the protocol in the UC framework [9] and a rigorous proof of its claimed
security are postponed to Appendix B.

Suppose that the overlying application has a security threshold of Tapp, meaning that
an adversary breaking into Tapp or less servers does not violate security of the overlying
application. For many applications Tapp = 0, but Tapp may also be higher, say Tapp = n/2,
if for example the overlying application is MPC.

4.1 What Cannot Be Done

As discussed earlier, there is a limit as to how much confidentiality and availability we
can achieve at the same time with fully autonomous servers. In addition we observe that
it is clearly impossible to protect against the following kind of attack: If the adversary
manages to passively break into server Si during an offline period, he learns whatever that
server knows. If he then also attacks Si’s network channels in the following wakeup phase,
he can cut off Si, that is, silence Si and pretend to be that server towards the remaining
servers, using the keys for authentication stolen from Si during the offline period. By doing
this, the adversary has essentially carried out what corresponds to an active (Byzantine)
corruption of Si only by means of a combination of a passive break-in during the offline
period followed by a network attack – two attacks normally considered less difficult than
a full active attack on the server. We will denote such attacks as cut-off attacks, and not
being able to avoid these can be seen as the price we pay for not involving any external
parties in the protocol.

4.2 What Can Be Done

We start out with the simplest possible solution and gradually show, in a number of steps
informally discussed below, how to extend the solution in order to increase security. The
resulting protocol is presented in its entirety at the end of this section.

Secret sharing. In the most naïve protocol each server simply stores its own secret file
locally during offline periods. This of course does not add any extra security. In particular,
an adversary can spoil security by breaking into the offline storage of Tapp + 1 servers.
The servers could encrypt their secret files before storage, but not much is gained if the
encryption key is also stored locally.

We therefore let each server Si encrypt its file σi using a randomly chosen encryption
key Li and then secret share this key among the full set of servers, each server keeping
one share si,i for itself and sending the remaining shares si,j to each of the other servers
Sj before the offline periods. When the servers wake up for the next online period, each
server collects its missing shares from the other servers, reconstructs the encryption key,
and decrypts its secret file.

With this approach the trade-off between confidentiality and availability discussed ear-
lier can be adjusted by using secret sharing schemes with different thresholds. For example,
using Shamir’s secret sharing scheme [45] with threshold t = n/2 ensures availability of
secret files unless t+1 servers are malicious, but also only guarantees confidentiality of the
files for up to t malicious servers. For now we aim at optimal confidentiality and therefore
instead use a sharing scheme with full threshold (t = n − 1), such as additive sharings
over a finite field. (Better availability is considered later, in Section 5).

This first solution ensures optimal confidentiality of the secret files against adversaries
performing only offline attacks, but we also have to consider network attacks. Consider
first the case where we just send the shares in cleartext. Here we can observe that Si never
sends its own share si,i to anyone. Therefore any attack that only uses the network will
miss at least one share for every server and so cannot get any useful information. On the
other hand, it is also clear that passive eavesdropping combined with an offline attack on
Si will allow you to get σi, and so passive eavesdropping plus offline attacks on Tapp + 1
servers will break the system.

Diffie-Hellmann key exchange. To improve this, we can encrypt the communication. How-
ever, securing the communication channels using standard encryption requires servers to
store private keys and therefore does not add extra security: This solution can be still bro-
ken by offline attacks on t + 1 servers and passive eavesdropping, because the adversary
then knows the keys he needs for decryption.

Instead, we use Diffie-Hellman (DH) key exchange [17] to set up secure pairwise chan-
nels on the fly when the systems starts up. DH lets each pair of servers Si and Sj agree
on a secret session key Ki,j that can be used to encrypt the channel. This way no private
keys for encrypting the channels need to be stored during the offline periods. This means
that we are secure against offline attacks on up to n − 1 servers combined with passive
eavesdropping. This is an improvement for any application with Tapp < n− 1.

The above solution does not authenticate the messages in the DH key exchange, since
it is only designed to cope with passive eavesdropping. Using an active network attack,
an adversary could therefore impersonate any agent during wakeup, and could therefore
get the same information as one would get if everything was sent in the clear. However,
such an attack alone will not give him any useful information, for the same reason that we
described above (Si never sends its own share si,i to anyone). As before, if this is combined
with an offline attack on Tapp servers, one gets the online information for these and nothing
more. We are therefore still secure against offline attacks on up to Tapp servers combined
with active network attacks. This is optimal because – as discussed in connection with
cut-off attacks above – the same attack on Tapp + 1 servers is equivalent to Tapp + 1 full
corruptions which is always fatal. In particular, this shows that we do not get any benefit
from authenticating the messages in the DH key exchanges.

In conclusion, the solution sketched so far has optimal security against both offline
plus passive network attacks as well as offline plus active network attacks, namely security
against attacks on n− 1, respectively Tapp servers.

Detecting attacks. It turns out that authenticating the DH key exchanges, for instance
using digital signatures as in the STS protocol [18], or more generally, using any scheme
for authenticated key exchange (AKE), is not useless, however. As discussed earlier, cut-
off attacks cannot be prevented. But using AKE, in case a cut-off attack do in fact occur,
the cut-off server S itself will always notice that something is wrong, as long as it is not
actively corrupted when it wakes up. The reason is the following: Since the adversary broke
passively into S during offline it knows S’s private AKE key and can thus pretend to be S

towards the remaining servers in the online phase. But the real, but impersonated, S will
still try to do AKEs with the remaining servers. Unless the adversary passively breaks
into all the servers, there will be at least one private AKE key that he does not know.
This means that S will experience that at least one of the AKEs he tries to complete will
fail and can therefore abort the protocol and try to warn the other servers. In other words,
the adversary can cut off S, but cannot prevent S from detecting the cut-off attack, and
unless the adversary can carry out a denial-of-service attack on S forever (something that
is often considered practically impossible), this fact will become known to the rest of the
system. For these reasons we will use AKE instead of unauthenticated DH in our solution.

Integrity. In the above discussion we have focused on confidentiality. The solution does
not, however, protect against for example a corrupted server modifying a share before
sending it back to another server at wakeup. We can protect against this by replacing
the basic secret sharing scheme with an extended scheme, that we will denote as a robust
secret sharing scheme (RSS). Such a scheme produces along with the shares, s1, s2, . . . , sn

a public verification key V . The key V reveals no information about the secret, and can
be kept by the server during the offline period and used at wakeup to verify that the
shares reconstruct to the original secret. Details on this kind of secret sharing is provided
in Appendix A.1.

Proactive security. Proactive security is a powerful notion of security put forward by
Canetti et al. [10]. In short, a protocol is proactively secure if it can tolerate any number
of corruptions during its lifetime as long as only a certain number of corruptions take
place within a given time frame. Having proactive security is important for protocols such
as ours that are supposed to run for a long time.

Our current protocol already is proactively secure in a limited sense: Due to the fact
that fresh session keys are generated in each round, we can tolerate any number of passively
corrupted servers in the offline phases, as long as at most n− 1 of the corruptions happen
in the same offline phase.

There is no proactiveness for the detection of cut-off attacks discussed above, though,
since the servers use the same keys for authenticating the DH throughout all rounds. This
means that if one manages to steal the private signing key belonging to a server in one
round, this key can be used to cut off that server in a later round. We can remedy this by
letting the servers in each round refresh the digital signature keys for authenticating the
DH. The refreshment is done by letting each server generate a new key pair, replacing its
old private signing key with the fresh signing key while sending the new public verification
key to the other servers where similar replacements take place. To prevent an attacker
from modifying these new public verification keys while they are in transit, each server
attaches a message authentication code (mac) to the key, using the current session key
that the sending and receiving server share.7

With these extra steps we have now obtained a protocol that is proactively secure with
respect to passive corruptions and detection cut-off attacks, with each round being one
refreshment period. However, obtaining proactive security against active offline attacks,
that is, where someone not only gets read access to the servers’ offline storage, but who
can also modify this state during the offline period, turns out to be impossible, at least
without any further assumptions. This stems from the fact that once the server gets
actively corrupted, during offline as well as online periods, the adversary can change all
state, including the protocol code that specifies how the server behaves. By modifying
the code offline, the adversary can in effect control the behaviour of the server for the
following online period. In this sense, an active attack on a server during the offline period
is equivalent to a full active attack on that server during the following online period.

Making the additional assumption that the code of each server cannot be changed
during offline periods, we can do better. This assumption is a variant of the Read-Only
Memory (ROM) model discussed further by Canetti et al. [11].8 In the ROM model, we
can strengthen our protocol by letting each server compute a hash of its secret file plus
7 Our way of securing the network resembles to some extend the way in which SSL/TLS works: SSL/TLS

can be configured to use symmetric encryption and macs with a session key established using authenti-
cated Diffie-Hellmann, and also provides a mechanism for renegotiating the keys used to authenticate
the DH on a regular basis. We choose however, to embed encryption, etc., directly in our protocol, not
relying on SSL/TLS. We do this because we want to be able to reason formally about the security of our
protocol which would not be easy with SSL/TLS that consists of over 100 combinations of encryption
modes, handshakes, etc.

8 The assumption can sometimes be justified by the use of ROM or other special hardware such as
TPM modules. Also, one can perhaps argue that this models well a cloud environment with all servers
booting up from the same uncorrupted virtual image on every wakeup.

some random salt at shutdown and distribute this hash to all servers (including keeping
a copy itself). At wakeup we let the server collect again the hashes and abort if these
are not all equal. In the ROM model this implies that an adversary will have to actively
corrupt the offline storage of all servers in the same offline in order to break integrity.

The Protocol. We denote the protocol resulting from this discussion the Cloud Key
Management protocol, or just PCKM. It is illustrated in Fig. 1 and consists of two proce-
dures to be carried out by each server, one before entering an offline period (shutdown)
and another before returning to the next online period (wakeup). The entire protocol
consists of several rounds, each round r consisting of four phases: An online phase where
the application is running, a shutdown phase where the servers run the PCKM shutdown
procedure, an offline phase with no computation, and finally a wakeup phase where the
servers run the PCKM wakeup procedure to restore the secret files.

When a server Si receives a file from the environment at shutdown, it is encrypted un-
der a key L using symmetric encryption (Enc). That key is then split into shares {si,j}j∈[n]
using a robust secret sharing scheme (RSS). The server keeps one of the shares, si,i and
distributes the remaining shares among the other servers, using a session key for encryp-
tion and message authentication codes (macs) to protect against leakage and modification
during network transmission. At the end of the shutdown procedure the server erases most
values, including the file itself, from its memory. The only values remaining in the follow-
ing offline phase are the encrypted file, the keys needed for AKEs in the the following
wakeup phase, the server’s own share and the shares received from the other servers (that
follow the same shutdown procedure). On wakeup, a procedure reverse to the shutdown
procedure takes place: The server receives its shares from the other servers, reconstructs
the key, verifies its integrity, decrypts the file and returns it to the environment. At the
beginning of each wakeup and shutdown phase, a server Si agrees on a fresh secret session
key with each of the other servers using AKE. The private and public keys used for AKEs
are refreshed once in each round at shutdown.

A few notes about the protocol are in place: The refreshment of the AKE keys is done
once every round, but the session key is refreshed twice each round, using the same AKE
keys. The reason for doing two session key refreshments is to avoid any shared session
key to reside in memory not only during offline, but also during online periods, as doing
so would reduce the number of corrupted servers we can tolerate. Also, for simplicity of
presentation, the same session key is used for both encryption and macs in Fig. 1. A secure
implementation would require separate keys for macs and encryption, see Appendix B.3
for details.

Security. In order to summarize the security of PCKM we first define cut-off attacks more
precisely as follows:

Definition 1 (Cut-Off Attack). A cut-off attack on Si in round r is a passive corruption
of Si in round r−1 or r (stealing the server’s private AKE key skr−1

i) combined with active
network attack on all of Si’s channels during the shutdown phase of round r (impersonating
Si in the AKEs done there), or a passive corruption of Si at some point during round r
(stealing skri) combined with active attacks on all of Si’s channels during the wakeup phase
of round r (impersonating Si in the AKEs done in that phase).

We also note that the security of PCKM builds on a number of assumptions:

Shutdown Each server Si holds from the previous round a private key skr−1
i and public keys

vkr−1
j for each of the other servers Sj . When receiving the secret file σ from the application,

Si does the following.
1. Session key refreshment

(a) For each of the other servers Sj , invoke (in parallel) the AKE protocol, using skr−1
i

and vkr−1
j . This results in Si and Sj sharing a fresh secret session key Kdown

i,j .
(b) Generate a new AKE key pair (skr

i , vk
r
i).

2. Encrypt file and distribute shares of the encryption key.
(a) Choose a random encryption key L and compute C ← EncL(σ).
(b) Compute V, {si,j}j∈[n] ← RSS(L).
(c) For each of the other servers Sj , the server Si compute ci,j ← EncKdown

i,j
(si,j) and

di,j ← MacKdown
i,j

(vkr
i).

(d) Sends the concatenated message Mi,j = ci,j || vk
r
i || di,j to Sj (keeping si,i).

(e) Wait to receive messages Mj,i = cj,i || vk
r
j || dj,i from the other servers Sj . Abort if the

mac dj,i is invalid, otherwise compute sj,i ← DecKdown
i,j

(cj,i). This step is repeated until
valid shares and public keys have been received from all other servers.

3. Offline state hashing. Let O be the concatenation of (skr
i , C, V, si,i) with the shares sj,i

and public AKE keys vkr
j received from the other servers Sj . Compute γi ← H(O) and

send γi to all other servers along with a mac using Kdown
i,j . Wait until valid hash values γj

have been received from all other servers.
4. Erase all data except O and the hashes {γj}j∈[n].

Wakeup On wakeup Si does the following.
1. Session key refreshment. Invoke the AKE protocol, this time using skr

i and vkr
j , resulting

in Si and Sj sharing a fresh secret session key Kup
i,j .

2. Offline state verification. Send γj to Sj , along with a mac of it using Kup
i,j . Wait to receive

γj from the other servers. Verify that all macs are valid and that H(O) = γj for all
j = 1, 2, . . . , n, and abort otherwise.

3. Reestablishing the secret file.
(a) Compute cj,i ← EncKup

i,j
(sj,i) and send cj,i to Sj . Wait until ci,j is received from all

other Sj and compute si,j ← DecKup
i,j

(ci,j).
(b) Reconstruct L from {si,j}j∈[n] and verify integrity of the sharing using V . Abort if

invalid, otherwise compute and return to the application σ ← DecL(C).
4. Erase all values except skr

i and vkr
j for the other servers Sj .

Fig. 1. The PCKM (Cloud Key Management) protocol.

– Trusted setup A once-and-for-all setup must be in place, consisting of the initial AKE
keys for the first round. This can for instance be established in practice by a PKI.

– Cryptographic assumptions Various cryptographic assumptions due to the primitives
used in the protocol. For example, the STS protocol for authenticated key exchange
[18] builds on the DDH assumption. More details on this can be found in Appendix A.

– Erasure That a server can erase part of its state on shutdown such that it is not
accessible to an adversary that gets access to the server’s offline storage.

– Randomness That each server has access to a source of close-to-true randomness.
– Static adversary We assume that the adversary decides before each round which servers

and channels to corrupt in the following round.
– Code in Read-Only Memory (ROM) We assume that at least the code of the protocol

itself is stored in ROM and cannot be altered by an active offline attack.

In Appendix B.4 we show how to model these assumptions precisely in the UC frame-
work. The ROM assumption is perhaps the most questionable of these assumptions, so
we first summarize what security we have obtained without the ROM assumption.

Theorem 1. (Informal) Given the assumptions above (except the ROM assumption), the
confidentiality and integrity of a file σr

i stored and retrieved by Si in round r using the
PCKM protocol in Fig. 1 is guaranteed as long as

1. Si has not been actively corrupted (during offline or during online periods) up to and
including round r.

2. Si is neither passively corrupted in the shutdown or wakeup phases of round r.
3. No cut-off attack on Si takes place up to and including round r.
4. No more than n − 1 servers are passively corrupted in each offline phase up to and

including round r.

Furthermore, if σr
i leaked due to Si being exposed to a cut-off attack at any point up to or

including round r, this will be detected by Si.

In particular, without the ROM assumption, a server being actively corrupted at
any point, including during offline periods, will stay actively corrupted throughout the
protocol. On the other hand, as stated in Theorem 2, the ROM assumption allows us to
achieve full proactive security with regards active corruptions.

Theorem 2. (Informal) Given the assumptions above (including the ROM assumption),
the confidentiality and integrity of a file σr

i stored and retrieved by Si in round r using the
PCKM protocol in Fig. 1 is guaranteed as long as

1. Si is neither passively or actively corrupted during the shutdown or wakeup phases of
round r.

2. No cut-off attack on Si takes place in round r.
3. A maximum of n− 1 servers are corrupted, actively or passively, in each round up to

and including round r.

Furthermore, if σr
i leaked due to Si being exposed to a cut-off attack in round r, this will

be detected by Si.

This section has been kept at an informal level, including the two theorems above. For
lack of space, more precise definitions of the primitives used, such as the AKE scheme
and the robust secret sharing, have been deferred to Appendix A and a formal model of
the protocol itself and a proof of its security in the UC framework have been deferred
to Appendix B. In particular, formal versions of Theorem 1 and Theorem 2 appear in
Appendix B.5 and Appendix B.6.

5 Semi-Autonomous Servers

In the previous section, dealing with fully autonomous servers, we had to choose between
guaranteeing either confidentiality or availability in case of dishonest majority as expressed
by Fact 1, and we aimed at a protocol with maximal confidentiality. Here we show how
to construct a protocol with the same strong confidentiality as before, but with improved
availability. This is possible because semi-autonomous servers are allowed to interact with
someone from outside the cloud in case of an attack.

As discussed earlier, this is done by providing a special recovery mechanism by which
an administrator for a server is guaranteed to be able to recover a file, even if the normal
wakeup procedure fails to terminate.

The protocol, which we will denote as PCKM
∗, is given below in Fig. 2 and is an

extension to the PCKM protocol described earlier, that in addition relies on a threshold
signature scheme. Such a scheme allows the servers to collectively sign data without any
single server being able to sign. In fact, to fit in PCKM

∗ the threshold scheme must have full
threshold and be proactive. It turns out that the threshold signature scheme of Almansa

et al. [1] is easily modified, giving up on termination, to satisfy our needs. Details are
provided in Appendix B.6.

The protocol works as follows: As part of the trusted setup, we also require a threshold
signature scheme to have been initialized with the signing key distributed among the
servers and such that the administrator and all servers hold the public verification key.
In addition we require each administrator to hold a private decryption key for which
his server holds the corresponding public encryption key. At shutdown, along with the
procedure already specified by PCKM, the server Si computes an encryption Fi under
the administrator’s public encryption key, and the servers then collectively sign Fi. The
signature is distributed to all servers, using the session key to authenticate the channels.
If normal operation fails during wakeup, the administrator requests the copies of the
encrypted file held by the servers. When obtaining one or more of these, he verifies integrity
and decrypts the secret file using his private decryption key.

The trusted setup works as in PCKM, but also includes that the administrator gets a private decryp-
tion key dk while each server gets a copy of the corresponding public encryption key ek. Also, the
threshold signature scheme is setup, meaning that the administrator and all servers gets the public
verification key W while the shares {wj}j∈[n] of the corresponding signing key is distributed among
the servers.

Shutdown As PCKM, but with the addition that also the proactive refreshment method of the
threshold signature scheme is invoked. Also, the following additional steps performed by server
Si the erasing of values in Step 4 of PCKM:
1. Compute Fi ← Encek(σ).
2. Compute a threshold signature fi of Fi by invoking FTHSIG.
3. Verify fi using the public verification key W and abort if invalid.
4. Place Fi and fi somewhere that is accessible by the administrator.
5. Send (Fi, fi) to all other servers.
6. When a pair (Fj , fj) is received from another server Sj , verify the signature fj and abort if

invalid. Otherwise, make the pair accessible to the administrator and return an OK message
to Sj with channel integrity ensured by the session key Kdown

i,j .
7. Abort unless valid signatures have been received from all other servers, and valid OK

messages from all servers have been received for the (Fi, fi) that was sent out from this
server.

Wakeup As PCKM.

File Recovery When the administrator wants to recover the file σ during the wakeup phase he
does the following:
1. Fetch messages (Fi, fi) from the servers (can be done in parallel).
2. When a message (Fi, fi) is fetched from a server Sj , verify the signature fi. If valid, output

σ ← Decdk(Fi). If invalid, fetch a message from another server.

Fig. 2. The protocol PCKM
∗ for semi-autonomous servers.

Some additional comments on the protocol: The receipts ensure that if Si goes offline
without aborting, all honest servers have marked the encrypted file of Si as accessible
to the administrator. The operation of “making data accessible” typically involves that
this information is stored in a dedicated location on the server’s disk, but one could also
imagine that on shutdown, this public information is collected, say on a trusted mail server.
If normal file recovery by the servers fails, the administrator can, with his verification key,
log in to this email server and access the information needed to restore the file.

The security of PCKM
∗ is summarized in the following theorem.

Theorem 3 (File Availability). (Informal) The protocol PCKM
∗ has the same guar-

antees as PCKM regarding confidentiality and integrity of stored files. Furthermore, once
a server that has not been actively corrupted up to and including round r, finishes the
shutdown procedure, the file σi stored at that server is guaranteed to be recoverable by the
corresponding administrator, unless all servers are actively corrupted during the following
offline and wakeup phase.

Again, for lack of space, a more precise modelling of the protocol in the UC framework,
including the modelling of the administrator, is deferred to Appendix B. The intuitive
reason for the strong availability is that because of the threshold signature scheme, the
adversary must corrupt all servers during the offline period in order to forge the signature
or delete all copies of the encrypted file, Fi. If not, the administrator will be able to restore
the correct file by fetching Fi from just one honest server, verify the threshold signature,
and decrypt it using his private encryption key.

This is a considerably stronger availability guarantee than what was achieved by the
PCKM protocol. We stress that the extended protocol PCKM

∗ works in the semi-autonomous
model and therefore requires the involvement of administrators, but only if retrieving
secret files in the normal, autonomous, way fails due to an attack on the system.

6 A Prototype Implementation

A prototype of the basic PCKM protocol (without the mechanism for recovery of files by
administrators) has been implemented and benchmarked in the Amazon Web Services
cloud environment [3]. We here report on these benchmarks and discuss a few practical
aspects related to the implementation.

For the benchmarks, each server was running on its own EC2 instance with an Elastic
Block Store (EBS) volume as permanent storage. Before each offline period, the shutdown
procedure of PCKM was executed following by disposing each EC2 instance such that
during the offline phase only the EBS storage volumes remained. On wakeup, new EC2
instances were started up, the EBS volumes re-associated to the EC2 instances, and the
wakeup procedure of PCKM subsequently executed in order to restore the secret files of
the servers.

Table 6 shows the performance of the CKM protocol itself, that is, excluding the 10-30
seconds it typically takes to start up or dispose the EC2 instances. From these results we
conclude that the protocol indeed is practical.

Most applications will only require storage of small files such as cryptographic keys.
To reflect this, the servers in the benchmark all store and retrieve secret files of size 1 Kb.
Storing larger secrets of course increases the execution time, but the size of secrets was
found to have relatively little impact: For example, storing 100 Mb instead of 1 Kb secrets
roughly costs 2 seconds extra. The reason for this is that that encryption and decryption
of secrets take place locally and only the encryption keys are shared.

Also, the results in Table 6 are benchmarks with all servers located in the same Ama-
zon region (with network latency time being roughly 5-10 ms). Other benchmarks have
been carried out with servers located worldwide, again with only little impact on the
performance: As an example, five servers located across Europe, US, and Singapore were
found to decrease performance by roughly 10 percent compared to a single-region setup.

Detecting cut-off attacks. As already discussed, cut-off attacks cannot be prevented, but
in case a cut-off attack do in fact occur, the cut-off server S itself will always notice that

PCKM Shutdown PCKM Wakeup

2 servers 5.6 ± 0.5 4.4 ± 1.1
5 servers 9.2 ± 1.2 7.4 ± 0.9
10 servers 16.7 ± 2.8 15.7 ± 1.0
20 servers 33.3 ± 18.8 30.4 ± 18.8

Table 1. Performance of the CKM protocol, PCKM, in seconds (with 95% confidence intervals). Timings
do not include EC2 disposal and start-up times. Each server runs on a small EC2 instance corresponding
roughly to 1.7 GiB RAM and a 1.0-1.2 GHz 2007 Xeon processor [19]. Each server stores a 1 Kb file using
1024 bit asymmetric keys and 128 bit symmetric keys.

something is wrong. In order to make this detection as likely as possible in practice, the
servers should listen for (authentic) abort messages from the other servers and if such an
abort message is received, a server should immediately forward the message to all other
servers and to the application. Also, letting the servers wait some time after completing
the AKEs, but before sending their shares over the network, will in practice make the task
of breaking security by cutting-off servers considerably harder, because the adversary must
then silence the cut-off server for at least an amount of time corresponding to this delay
before being able to collect shares. Inserting such delays comes, of course, at the price of
decreased protocol performance (and are not included in the benchmarks above).

Entropy in the cloud. The servers in the PCKM protocol require sources of good randomness
in order to generate keys, shares, etc. In Appendix B this is modelled by letting the servers
be probabilistic Turing machines. In practice, however, this randomness has to come from
somewhere. Perhaps the most straightforward solution is to require a random seed to be
passed to the PCKM protocol from the application and then expand the seed using a secure
pseudo-random generator. If done correctly, a polynomial-time adversary will not be able
to distinguish the expanded randomness from true randomness if the initial seed is truly
random.

However, this just pushes the problem of finding good randomness to the application
layer. Another approach is to let the PCKM obtain its randomness from the operating
system, for example by using the SecureRandom Java class which as the default on Linux
obtains a random seed from the OS entropy pool though the \dev\random interface that
blocks until enough entropy has been gathered from the internal clock, network traffic,
etc. A somewhat surprising finding from the implementation was that this seriously affects
the performance of PCKM. For example, in the case of five servers, this approach was found
to cause a slowdown of 5-10 times for wakeup and 15-20 times for wakeup compared to
the benchmark results in Table 6 that use the non-blocking, but potentially less secure,
\dev\urandom that never blocks, but instead falls back to generating pseudo-random
numbers using SHA1 when the OS entropy pool is empty: It takes a considerable time
for the entropy pool to acquire enough entropy in newly started virtual instances in the
Amazon cloud environment.

Acknowledgements

The authors would like to thank Tim Rasmussen for providing the implementation of the
protocol as part of his Master’s thesis [43].

References

1. Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with adaptive
and proactive security. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in

Computer Science, pages 593–611. Springer, 2006.
2. Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien P. Stern. Scalable secure

storage when half the system is faulty. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
ICALP, volume 1853 of Lecture Notes in Computer Science, pages 576–587. Springer, 2000.

3. Amazon Web Services cloud computing. http://aws.amazon.com.
4. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computation. In Proceedings of the twentieth annual ACM symposium on

Theory of computing, STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.
5. G. R. Blakely. Safeguarding cryptographic keys. National Computer Conference Proceedings

A.F.I.P.S, 48:313–317, 1979.
6. Matt Blaze. Key management in an encrypting file system. In Proceedings of the Summer 1994

USENIX Conference, pages 27–35, 1994.
7. Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakobsen,

Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In Roger Dingledine and
Philippe Golle, editors, Financial Cryptography, volume 5628 of Lecture Notes in Computer Science,
pages 325–343. Springer, 2009.

8. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, ITCS, pages 309–325. ACM, 2012.

9. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145. IEEE Computer Society, 2001.

10. Ran Canetti, Rosario Gennaro, and Amir Herzberg. Proactive security: Long-term protection against
break-ins. CryptoBytes, 3:1–8, 1997.

11. Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated communication in the
presence of break-ins. J. Cryptology, 13(1):61–105, 2000.

12. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer

Science, pages 453–474. Springer, 2001.
13. Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation. Inf. Comput.,

226:16–36, 2013.
14. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols.

In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC ’88, pages
11–19, New York, NY, USA, 1988. AC.

15. Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In Rabin [42], pages 483–501.

16. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Safavi-Naini and Canetti [44], pages 643–662.

17. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, 1976.
18. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenticated

key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.
19. Amazon EC2 instance types. http://aws.amazon.com/ec2/instance-types.
20. The Encrypting File System (EFS). http://technet.microsoft.com/en-us/library/cc700811.aspx. A

white paper from Microsoft Corporation.
21. Danish Energy Auctions. http://energiauktion.dk.
22. Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and secure distributed read-only file system.

ACM Trans. Comput. Syst., 20(1):1–24, February 2002.
23. Juan A. Garay, Rosario Gennaro, Charanjit S. Jutla, and Tal Rabin. Secure distributed storage and

retrieval. Theor. Comput. Sci., 243(1-2):363–389, 2000.
24. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing

computation to untrusted workers. In Rabin [42], pages 465–482.
25. Craig Gentry. Computing on encrypted data. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka,

editors, CANS, volume 5888 of Lecture Notes in Computer Science, page 477. Springer, 2009.
26. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

crypto.stanford.edu/craig.

27. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Alfred V. Aho, editor, STOC, pages 218–229. ACM,
1987.

28. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

29. HELib, a software library implementing fully homomorphic encryption (copyrighted by IBM).
https://github.com/shaih/HElib, 2012.

30. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing or: How
to cope with perpetual leakage. In Don Coppersmith, editor, CRYPTO, volume 963 of Lecture Notes

in Computer Science, pages 339–352. Springer, 1995.
31. John H Howard. An overview of the Andrew File System. In Winter 1988 USENIX Conference

Proceedings, pages 23–26, 1988.
32. Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computation. IACR

Cryptology ePrint Archive, 2011:272, 2011.
33. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-

chronous computation. In TCC, pages 477–498, 2013.
34. Vishal Kher and Yongdae Kim. Securing distributed storage: Challenges, techniques, and systems. In

Vijay Atluri, Pierangela Samarati, William Yurcik, Larry Brumbaugh, and Yuanyuan Zhou, editors,
StorageSS, pages 9–25. ACM, 2005.

35. Hugo Krawczyk. Distributed fingerprints and secure information dispersal. In Jim Anderson and
Sam Toueg, editors, PODC, pages 207–218. ACM, 1993.

36. Subramanian Lakshmanan, Mustaque Ahamad, and H. Venkateswaran. Responsive security for stored
data. In Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS
’03, pages 146–, Washington, DC, USA, 2003. IEEE Computer Society.

37. Benoît Libert and Moti Yung. Adaptively secure forward-secure non-interactive threshold cryptosys-
tems. In Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Inscrypt, volume 7537 of Lecture Notes

in Computer Science, pages 1–21. Springer, 2011.
38. The NFS distributed file service. http://users.soe.ucsc.edu/s̃brandt/290S/nfs.ps, 1995. A white paper

from SunSoft.
39. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new

approach to practical active-secure two-party computation. In Safavi-Naini and Canetti [44], pages
681–700.

40. Partisia. http://partisia.com.
41. Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.

J. ACM, 36(2):335–348, 1989.
42. Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer

Science. Springer, 2010.
43. Tim Rasmussen. Key Management in the Cloud. Master’s thesis, Aarhus University, Aabogade 34,

DK-8200 Aarhus N, Denmark, 2012. Master’s Thesis.
44. Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd

Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume
7417 of Lecture Notes in Computer Science. Springer, 2012.

45. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
46. ShareMind. http://sharemind.cyber.ee.
47. Brian Pawlowski Spencer, David Noveck, David Robinson, and Robert Thurlow. The NFS version 4

protocol. In Proceedings of the 2nd International System Administration and Networking Conference

(SANE) 2000, 2000.
48. Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: The least-authority filesystem. In Proceedings

of the 4th ACM international workshop on Storage security and survivability, StorageSS ’08, pages
21–26, New York, NY, USA, 2008. ACM.

49. Charles P. Wright, Michael C. Martino, and Erez Zadok. NCryptfs: A secure and convenient cryp-
tographic file system. In Proceedings of the Annual USENIX Technical Conference, pages 197–210.
USENIX Association, 2003.

50. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164. IEEE Computer Society, 1982.

51. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167. IEEE Computer Society, 1986.

A Preliminaries

We take a formal approach where security is reduced to the security of a number of
primitives such as encryption, message authentication codes (macs), hash functions, and
signatures: We assume computational security of these primitives in the standard com-
putational sense as introduced by Goldwasser and Micali [28]. In particular, we assume
the encryption to be IND-CPA secure, and that mac schemes and digital signatures are
secure against existential forgery.

A.1 Robust Secret Sharing

We also use a variant of secret sharing that we denote robust secret sharing (RSS): This is
basic additive secret sharing with the extra property that the dealer apart from the shares
also produces a public key that can later be used to verify the correctness of the shares.9

More precisely, a robust secret sharing scheme consists of three PPT Turing machines
(RssGen,RSS,Rec) parametrized by the number of players n and the security parameter
κ. A global key rk is first generated as rk ← RssGen(n, 1κ). For a message m ∈ M, a
sharing is then computed as (V, s) ← RSSrk(m) where V is the public verification key for
the sharing and s = (s1, s2, . . . , sn) are the shares. The message can then be reconstructed
as m ← Recrk(V, s).

We capture the privacy requirement of robust secret sharing by the following indistin-
guishability game. It essentially says that even if revealing both the global key and the
public verification key and any n− 1 shares for a particular sharing to a computationally
bounded adversary, the adversary does not learn anything about the plaintext m that was
shared.

Definition 2 (IND-RSS). Let S = (RssGen,RSS,Rec) be a secret sharing scheme as
defined above. Let Gb for b ∈ {0, 1} be the PPT TM game that first computes and outputs
rk ← RssGen(1κ) to the adversary. It then receives m0,m1 ∈ M and T ⊂ {1, 2, . . . , n},
computes (V, s) ← RSSrk(mb) and outputs V and {si}i∈T . Then S is said to be IND-RSS
if G0 and G1 are indistinguishable.

We will capture the robustness by the following definition. It states in a precise game-
based way the requirement that for any s∗ �= s, ⊥ ← Recrk(V, s∗) if (V, s) ← RSSrk(m)
for some m ∈ M.

Definition 3 (Robustness). Let S = (RssGen,RSS,Rec) be a secret sharing scheme
as defined above. Let G be the following PPT TM game: It first receives a public key
rk from the adversary together with a message m ∈ M. It then computes and outputs
(V, s) ← RSSrk(m), receives s� and computes m� ← Recrk(V, s�). Finally, if m = m� or
m� = ⊥, it outputs 0 and otherwise it outputs 1. For any possibly unbounded adversary A,
let win(A,G) be the probability that A makes G output 1. Then S is said to be perfectly
robust if win(A,G) = 0.

We can now formally define what we mean by a robust sharing scheme as follows.

Definition 4. A robust secret sharing scheme S is a sharing scheme (RssGen,RSS,Rec)
that is: 1) correct, meaning that for any m ∈ M, m ← Recrk(V, s) if (V, s) ← RSSrk(m),
2) IND-RSS, and 3) perfectly robust.
9 This should not be confused with verifiable secret sharing (VSS) where even shares from a malicious

dealer are guaranteed to be consistent.

A RSS scheme can for example be constructed from basic additive secret sharing and
any commitment scheme with perfect binding, such as a public-key encryption scheme:
Given a message m we would first compute its additive secret sharing a ← SS(m) and
sample uniform values r. The sharing would then be (V, s) ← RSS where si = (ai, ri)
and V = (commit(ai; ri))

n
i=1. Recombination would then involve verification of the com-

mitments. Another way of realizing RSS in practice would be to let V be a hash of all
shares plus some randomness, utilizing the fact that a hash function is a perfectly binding,
computationally hiding commitment scheme, if we assume that it is collision-resistant.

A.2 Authenticated Key Exchange

Finally, we rely on a protocol for authenticated key exchange (AKE): By this we mean a
protocol that given a trusted setup allows a number of parties to establish shared secret
session keys, despite only being able to communicate over insecure channels. We will use
a notion of AKE security closely related to that of SK-security defined by Canetti and
Krawczyk [12]. However, since we do not need all the security captured by SK-security
(which for example includes security against fully adaptive adversaries), we can simplify
our proof by sticking to a simpler notion captured by the game in Fig. 3.

Key Generation On input (key-gen, i) for a server Si, a round r, if this message has not been
input before and no sessions have started yet, compute and store (i, vki, ski) and output vki.
Mark Si as honest.

Start Session On input (start-session, i, j, sid), if key-gen has already been invoked for Si and
Sj and (i, j, sid) is not already stored, store (i, j, sid) and start an internal simulation of the AKE
protocol between two parties Si and Sj . (Multiple AKE simulations can go on simultaneously).
Every time a message is sent between Si and Sj it is output, and the adversary gets the chance
to modify it or delete it. He also gets the chance to insert extra messages between the two
parties.

Corruption On input (corrupt, i), if none of the sessions of Si are marked as test sessions and all
sessions at Si are completed, mark Si as corrupt and output ski. All sessions of Si are marked
as exposed.

Session Key Query On input (session-key-query, i, j, sid), if all sessions are completed and the
session with this sid is not marked as a test session, output the session key Ki,j,sid generated
by the AKE simulation and mark that session as exposed.

Test Session On input (get-test-session-key, i, j, sid), if this session is completed and unex-
posed (that is, both Si and Sj are marked as honest and the key is not marked as exposed),
and if at most T − 1 test sessions have already been marked, do as follows: If b = 0, output the
key Ki,j,sid that was the result of the simulated session and halt. Otherwise, if b = 1, output
instead a uniformly random key K. Finally, the session (i, j, sid) is marked as a test session.

Fig. 3. The security game MultiAKET
b for security of AKEs.

Definition 5 (IND-AKE). A protocol π for AKE is secure if for any probabilistic
polynomial-time distinguisher A requesting T test sessions and the game MultiAKE

T
b in

Fig. 3, the advantage of A when playing the game MultiAKE
T
b is negligible in κ. We fur-

ther require that if a session completes at both parties and if both parties have not been
corrupted, the keys output at the two parties are identical and uniformly distributed (cor-
rectness).

It is straight-forward to show that SK-security implies security according to the above
definition and we therefore leave out the reduction here. Concretely, since basic Diffie-
Hellmann key agreement authenticated with digital signatures is known to be SK-secure
[12] we can use this scheme to instantiate our protocol.

B Modelling the Protocol in UC

We here provide a formal model of protocols and their security in the UC framework
by Canetti [9] and proof that the protocols indeed achieves this security. The appendix
assumes that the reader has at least some familiarity with UC security or other kinds of
simulation based security based on the real/ideal-world paradigm.

B.1 The UC Framework

The UC framework is an example of the real/ideal world simulation paradigm. This
paradigm tries to capture the security of a protocol as follows: First an “ideal world”
is considered in which we are allowed to specify the behavior of a special trusted party,
called the ideal functionality, that everyone can trust and to which all other parties (servers,
in our case) are connected with secure channels. In this world, our desired functionality
is easily captured by just letting each server send its secret file to the ideal functionality
on shutdown and by receiving it again on wakeup.

The ideal world also consists of an adversary that has the ability to corrupt parties, not
including the ideal functionality. When a corruption takes place, the ideal functionality
decides exactly what happens. In our case, we can for example let the ideal functionality
reveal to the adversary not the content, but only the size of a secret file, once a server is
corrupted, and we could specify whether a corrupted server is allowed to prevent another
server from restoring its files, etc. In this way, the ideal functionality defines the ideal
leakage and ideal influence of our protocol, that we are willing to accept.

Apart from this ideal world, a “real world” is also specified. In this world there is no
trusted party, and the players therefore have to execute the actual protocol in order to
store the secret files. In this world there is also an adversary, corrupting players, but when
doing so, he gets to fully control these players.

The protocol is then defined to be secure if the two worlds are indistinguishable in
a certain well-defined sense. Of course, one could just look to see whether there is an
ideal functionality or not, so we instead introduce another Turing machine, denoted the
simulator, in the ideal world whose task it is to try to hide this structural difference. In
other words, if for any adversary it is so that any distinguisher looking at the trace from
the real execution with that adversary and another trace produced by the simulator from
the ideal world with the same adversary, that distinguisher cannot tell the difference, then
we say that the protocol is secure.

Since this definition implies that in a strong way that no real world adversary can
make the real world “deviate from” the ideal world, this makes out a very appealing
way to define security. An additional benefit is that this approach allows protocols to be
composed from other ideal functionalities that have previously been proved secure, and
we call the real world with such ideal sub-functionalities for a hybrid world. It can be
proved that the protocol that results from replacing these sub-functionalities with their
corresponding protocols yield a protocol that is still secure.

Compared to previous simulation-based definitions, the UC framework yields a con-
siderably stronger notion of security: Instead of presenting the two transcripts of the ideal
and real world executions to a distinguisher after the fact, the UC distinguisher, called the
environment, is an interactive distinguisher. This implies that the simulator has a harder
time hiding the differences of the two worlds to the distinguisher (the environment), be-
cause it has to make the ideal world look like the real world not only after, but also
during, the executions. The reason for this change is that contrary to earlier definitions,

UC secure protocols are also guaranteed to be secure when they execute in a dynamic
environment where execution of one protocol is interleaved with the execution of several
other instances of the same or other protocols.

Following the notation of [9], we let EXECP,A,E be the view of the environment E in
the real protocol execution of protocol P in the presence of the adversary A, and we let
IDEALF,A,E be E’s view in the ideal protocol execution with ideal functionality F. Then P

is said to securely realize F if for every adversary A there exists a simulator S such that for
every environment E it holds that EXECP,A,E = IDEALF,S,E. For this latter equality we will
distinguish between perfect equality (P

=), meaning that the distributions are identical, and
computational equality (C

=), meaning that a polynomially bounded distinguisher cannot
tell the difference.

B.2 The Ideal Functionality

Fig. 4 shows the ideal functionality of our protocol, FCKM, capturing exactly what func-
tionality and security we want it to possess. In other words, if the servers had access to a
trusted third party behaving as FCKM, we would have exactly what we wanted. FCKM con-
sists of procedures to be invoked by servers for securely storing a secret file at shutdown
and for restoring the file on wakeup. FCKM keeps track of the current round r as well as
whether a server is in its online or offline phase.

Apart from the ideal functionality, the definition also captures the ideal adversarial
leakage and influence, that is, the leakage and damage that we accept when the adversary
corrupts a server: Only the size of a stored file is allowed to leak from an honest server.
If, however, a server happens to be corrupt during wakeup or shutdown, the file itself is
leaked, and if actively corrupted, the adversary also gets to modify the file.10

Initially, FCKM stores (active, 0, Si) for all servers Si.

Shutdown On input (shutting-down, r, σi) from server Si, proceed as follows:
1. If Si is marked as online corrupted in this round, (corrupted, r, Si, σi) is sent to the ad-

versary A. Note that FCKM at this time knows whether this is the case since A is static in
each round

2. If no value on the form (active, r − 1, Si) is stored, then return.
3. Replace (active, r, Si) with (shutting-down, r, Si, σi).
4. Send (shutting-down, r, Si, |σi|) to the adversary and if it responds with

(shutdown-ok, r, Si) replace (shutting-down, r, Si, σi) with (offline, r, Si, σi) and
send (offline, r) directly to Si.

Wakeup On input (waking-up, r) from server Si, do:
1. If no value on the form (offline, r, Si, σi) is stored, then return.
2. Replace (offline, r, Si, σi) with (waking-up, r, Si, σi).
3. Send (waking-up, r, Si) to the adversary and if it responds with (wakeup-ok, r, Si), replace

(waking-up, r, Si, σi) with (active, r, Si) and send (active, r, σi) to Si.
Corruption FCKM receives corruption messages for a round from A before the round starts, and

saves them. In any phase where Si is actively corrupted and in its wakeup or shutdown phase,
a message (modify, Si, σ

�) from A causes FCKM to replace σi with σ�
i.

Fig. 4. The ideal functionality FCKM.

10 At first sight one would perhaps expect FCKM to also leak σi if Si is corrupted during its online phase
and let the adversary modify σi if actively corrupt during the online phase. The reason for not doing
this is that during the online phase, the secret file is returned to the environment and its protection
is no longer taken care of by FCKM: Implementations of FCKM simply erase σi after returning it to the
server just before entering the online phase.

B.3 The Protocol PCKM
�

In this section we model the protocol PCKM itself within the UC framework. We do not
include the hashing of the offline state (Shutdown Step 3 and Wakeup Step 2 in Fig. 1)
here. Instead, the full version of PCKM, including these steps, is more easily modelled in
connection with the extension involving administrators.

We will denote by PCKM
� the PCKM without the extra step for offline security in the

ROM model and it is outlined in Fig. 5. It consists of concrete instructions for the servers,
meant to realize FCKM without access to a trusted party. It is cast in the FSETUP

�-hybrid
model, meaning that the servers have access to an ideal functionality FSETUP

� that ensures
a trusted setup by which the servers can agree on the AKE keys for the initial round. The
protocol is essentially a more precise variant of Fig. 1 in Section 4.2, but here the servers
are interactive Turing machines communicating with an adversary as defined in UC.

Initialization The server Si obtains its initial private and public AKE keys, sk0
i and vk0

j , from
the trusted setup.

Shutdown When Si receives (shutting-down, r, σr
i) from E, it does as follows:

1. If not (active, r − 1) is stored, then return. Otherwise, replace (active, r) with
(shutting-down, r).

2. Session key refreshment. For each of the other servers Sj , Si invokes (in parallel) the AKE
protocol, using skr−1

i and vkr−1
j , resulting in Si and Sj sharing a fresh secret session key

Kr
down,i,j = (K1enc,r

i,j ,K1mac,r
i,j).

3. Generate a new AKE key pair (skr
i , vk

r
i) ← GenAKE(1κ) (where κ is the security parameter)

to be used for AKE.
4. Encrypt file and distribute shares of the encryption key.

(a) Generate a random encryption key Lr
i and compute Cr

i ← EncLr
i
(σr

i).
(b) Compute V r

i , s
r
i,1, s

r
i,2, . . . , s

r
i,n ← RSS(Lr

i).
(c) For each of the other servers Sj compute cri,j ← Enc

K1enc,r−1
i,j

(sri,j) and dri,j ←

Mac
K1mac,r−1

i,j
(vkr

i).
(d) Send the concatenated message Mr

i,j = cri,j || vk
r
i || d

r
i,j to Sj . (Si does not send Mr

i,i to
itself via the network, but instead just keeps sri,i.)

(e) Wait to receive messages Mr
j,i = crj,i || vk

r
j || d

r
j,i from the other servers Sj . When Mr

j,i

is received, verify the mac drj,i. If invalid, output (abort) to the environment and halt.
Otherwise, compute srj,i ← Dec

K1enc,r−1
i,j

(crj,i) and store (srj,i, vkr
j). This step is repeated

until valid shares and public keys have been received from all other servers.
5. Erase all the local values including K1enc,r−1

i,j and K1mac,r−1
i,j . The only values not erased

are skr
i , Cr

i , V r
i , and sri,i as well as the shares srj,i and public AKE keys vkr

j received from
the other servers Sj .

6. Replace (shutting-down, r) with (offline, r) and output (offline, r) to the environment.
Wakeup On input (waking-up, r) from E, server Si proceeds as follows:

1. If not (offline, r) is stored, then return. Otherwise, replace (offline, r) with
(waking-up, r).

2. Session key refreshment. For each of the other servers Sj , Si invokes the AKE protocol,
this time using skr

i and vkr
j , resulting in Si and Sj sharing a fresh secret session key

Kr
up,i,j = (K2enc,r

i,j ,K2mac,r
i,j).

3. Reestablishing the secret file.
(a) Compute crj,i ← EncK2enc,r

i,j
(srj,i) and send crj,i to Sj . Wait until cri,j is received from all

other Sj and compute sri,j ← DecK2enc,r
i,j

(cri,j).
(b) Reconstruct Lr

i from sri,1, s
r
i,2, . . . , s

r
i,n and verify integrity using V r

i . If invalid, output
(abort) to E and halt, otherwise compute σr

i ← DecLr
i
(Cr

i).
4. Erase all values except skr

i and vkr
j for the other servers Sj .

5. Replace the message (waking-up, r) with (active, r, σr
i) and output (active, r, σr

i) to the
environment.

Fig. 5. The protocol PCKM
� (without the ROM assumption).

B.4 Modelling Security Assumptions

The UC model is quite flexible regarding the power and limitations of the adversary and
the parties that can be modelled. For example, it allows us to model communication
channels with different semantics at the same time. In our case we model pairwise asyn-
chronous and insecure channels between the servers and reliable channels (with eventual
delivery) by which an administrator can fetch information from the servers. The ability
of servers to erase state is modelled by only requiring corrupted servers to reveal their
current state to the adversary. The remaining aspects of our security are modelled by
considering a restricted class of adversaries. As a first step, modelling the security of the
PCKM

� protocol as outlined in Fig. 5, that is, without the ROM assumption, we restrict
this class to adversaries that are
– Polynomially bounded.
– Static in each round, meaning that they always at some point before the shutdown in

a round is initialized must decide what to corrupt during that round: He must specify
exactly which channels and servers to corrupt, whether they are actively or passively
corrupted, and in which phases (shutdown, offline, wakeup, online) the corruption
happens.

– Can corrupt any number of network channels in each round.
– Can corrupt at most n− 1 servers in each round.
– If at any time a server becomes actively corrupted, that server must remain actively

corrupted in all future phases and rounds in the protocol.
– No cut-off attack is allowed, that is, if a server is passively corrupted in an offline or

online phase in round r then at least one of that server’s network channels must not be
actively corrupted until all AKEs have successfully completed in the shutdown phase
in round r + 1.

Note that a server that is passively corrupted in one round might be honest in the
next round. But once actively corrupted in a given phase, a server will remain actively
corrupted throughout the rest of that round and in all subsequent rounds. Further, the
rules guarantee that in any round there will be at least one server that is honest during
both the online and the offline phases.

Definition 6. We denote by E1 the class of environments in which the adversary follows
the rules outlined above.

What we capture with these rules is essentially proactive security [10] with respect to
passive corruptions, but not with respect to active server corruptions: An adversary may
“leave” a passively corrupted server, but not a server that has been actively corrupted.

B.5 Security of PCKM
�

Having modelled both the protocol and our assumptions about the adversary, we can now
formally state what our security involves.

Theorem 4. Let PCKM
� denote the FSETUP

�-hybrid multiparty protocol defined by Fig. 5.
Assuming that the encryption, mac, robust secret sharing and AKE primitives are secure
as explained in Appendix A, PCKM

� UC-realizes the ideal functionality FCKM in Fig. 4 with
respect to the environment class E1. That is, for any PPT adversary A there exists a PPT
simulator S with running time polynomial in that of A and such that for any environment
E ∈ E1 it holds that

IDEALFCKM,S,E
c
= EXECPCKM

�,A,E . (1)

Proof. Let A be a PPT adversary. In order to prove Theorem 4 we must argue that
there exists a simulator S with running time polynomial in the running time of A and
such that the above equation (1) holds. Recall that a simulator must try to simulate the
environment’s view of the adversary throughout the protocol execution. That is, E can
be seen as an interactive distinguisher that tries to determine whether it executes in the
real or the ideal setup. The difficulty arises from the fact that, contrary to the real world
adversary A, the simulator has only access to the ideal leakage and can only do ideal
influence as specified by FCKM.

The overall strategy of our proof is to use the fact that indistinguishability of dis-
tribution ensembles is transitive and therefore (1) can be split up into a sequence of
intermediary protocol executions, the first one identical to the ideal world execution and
the last one identical to the real world execution (from the point of view of the environ-
ment). We then show that the environment cannot distinguish between each consecutive
pair of these protocol executions. In the first step we argue that the ideal world execution
is “structurally” equal to a modified version of the real world execution (again, from the
point of view of the environment). In each of the remaining steps we slightly alter the
modified real world protocol execution such that it finally equals the real real-world execu-
tion. In proving “equality”, or rather indistinguishability, between these steps, we typically
split each step into even more intermediary protocol executions such that two consecutive
protocol executions only differ with respect to a single usage of one primitive such as for
example one encryption. By carefully ordering the steps (usually such that keys used for
the primitive become independent from anything the adversary sees), this allows us to
use the security properties for the primitive to prove that the steps are indistinguishable.

Consider the simulator S in Fig. 6. It simulates internally the real protocol PCKM
�

while acting itself as environment. Since the operations of the parties in PCKM
� are PPT,

this can be done by S in probabilistic polynomial time in the running time of A. If S had
access to the secret files that E inputs to the servers on shutdown, it could forward these
inputs to the servers in its internal simulation, resulting in a perfect simulation. However,
the simulator only sees the ideal leakage of FCKM which – for honest servers – is just the
length of the secret files. For honest servers we therefore instead let the simulator input
"dummy" files consisting of only zero-bits, but of the same length as the real files, to its
simulated servers. Our task is then to show that despite of this, E will not be able to
decide whether it executes in the real world with A and real parties, or in the ideal world
with FCKM and S.

As a tool in the proof we first define a special version of PCKM
� parametrized by five

bits a, b, c, d, and e. We call the protocol, outlined in Fig. 7, PCKM(a, b, c, d, e) and it
differs slightly from PCKM

� in five possible ways depending on which of the bits are turned
on.

Note that for d = 1 and e = 1 two servers magically agree on certain values (e.g. a new
session key in case of d = 1). This is not normally possible in protocol executions in the UC
model. However, we have the power to let this happen here since the protocol execution
is merely a thought experiment used to argue about indistinguishability of protocols. A
similar kind of magic allows us to not return the σr

i held during offline if c = 1 even
though Si gets corrupted.

In the remaining part of the proof, when reasoning about the indistinguishability
of distribution ensembles, we will use the shorthand notation FCKM = PCKM

� mean-
ing IDEALFCKM,S,E = EXECPCKM

�,A,E and PCKM(a, b, c, d, e) = PCKM(a�, b�, c�, d�, e�) mean-
ing EXECPCKM(a,b,c,d,e),A,E = EXECPCKM(a�,b�,c�,d�,e�),A,E. From this it follows directly that
PCKM(0, 0, 0, 0, 0) = PCKM

�. We first argue that FCKM = PCKM(0, 1, 1, 0, 0) and then that

S simulates internally the real world protocol execution consisting of the adversary A, the servers
S1, . . . , Sn, and the ideal functionality FSETUP

�. During the simulation, S itself plays the role of the
environment. Any input from the actual environment E is forwarded as input to the simulated
adversary and output from the simulated adversary is handed back to the E.

Shutdown On receiving (shutting-down, r, Si, |σ
r
i |) from FCKM the simulator does as follows: If Si

is going to be passively or actively online corrupted in round r, S also at this point receives a
message (corrupted, Si, σ

r
i) from FCKM. The simulator uses this to simulate Si “honestly”, that

is, it inputs (shutting-down, r, σr
i) to its simulated server. If, on the other hand, Si is known to

remain honest in the online phases of round r, S uses instead a dummy file for simulation, i.e., it
sends (shutting-down, r, 0|σ

r
i |) to the simulated server Si. In both cases, on output (offline, r)

from a simulated server Si, send (shutdown-ok, r, Si) to FCKM.
Wakeup On receiving (waking-up, r, Si) from FCKM, S inputs (waking-up, r) to Si.

On output (online, r, σ̃r
i) from Si, if Si is actively corrupted at this time, S sends (modify, Si, σ̃

r
i)

to FCKM. This ensures that for an actively corrupted server, the environment will always receive
the same file on wakeup in the ideal as well as in the real protocol execution. In both cases, S
then sends (wakeup-ok, r, Si) to FCKM.

Corruption All corruption messages received from E is forwarded to the simulated adversary A,
and S keeps track of the corruptions.
When a server Si is passively or actively online corrupted in round r, S receives σr

i from FCKM

which it then saves (and uses to simulate Si “honestly” as described in Shutdown above).

Fig. 6. The simulator S.

PCKM(0, 1, 1, 0, 0) = PCKM(0, 0, 0, 0, 0). To prove the latter we go through a number of
hybrid arguments.

The overall reasoning for the sequence of hybrids is the following: We must switch off
the b-bit before switching off the c-bit. Switching off b can be done via IND-CPA (Step
5) if A cannot influence the L-key (and it is correctly, that is, uniformly, distributed), so
we first have to switch on a-bit. This can be done by the IND-RSS (privacy) of the RSS
scheme (Step 4) if dummy shares are encrypted and sent over the wires instead of real
shares, so we must switch on the e-bit before switching on the a-bit. Switching on the
e-bit (Step 3) can be done by IND-CPA if the adversary has no influence on the session
keys, so the d-bit must be switched on before the e-bit can be switched on. Switching on
the d-bit (Step 2) can be done using a combination of AKE-security and MAC-security.

After switching off the b-bit (Step 5) we would like to switch off the c-bit. But switching
off c-bit (Step 7) requires us to first switch off the a-bit in Step 6 (since using random
L-key otherwise allows adversary to easily distinguish). After switching off the c-bit, we
just need to switch off d and e-bits. For similar reasons as before, we first have to switch
off the e-bit (Step 8) before switching off the d-bit (Step 9).

Step 1: FCKM = PCKM(0, 1, 1, 0, 0) Consider first an execution where servers ei-
ther remain honest or are only corrupt during the offline phases. When a server Si in
PCKM(0, 1, 1, 0, 0) receives a shutdown request from E its file σr

i immediately gets replaced
with a dummy file 0|σr

i | that is used throughout the round, except at the end of the wakeup
phase where the server returns the original file σr

i to E. The only difference between this
and the simulated protocol execution in FCKM is the initial and final replacement of secret
files in PCKM(0, 1, 1, 0, 0), which the environment cannot see. Since S forwards messages be-
tween the simulated adversary and the environment, it follows that from the environments
point of view, the two protocol executions are identical, that is, FCKM

P
= PCKM(0, 1, 1, 0, 0).

Consider then what takes place if a server happens to be passively corrupted during
one of the online phases of some round r (that is, during either shutdown, wakeup or the
application phase): Whether this is going to happen is known to the functionality FCKM

already when the shutdown phase in round r is initialized because the adversary is static

in each round. The functionality immediately leaks the secret file to the simulator that
uses it as input to its corresponding simulated server. So in such a case, the environment
also cannot distinguish.

Finally, if a server happens to be actively corrupted in one of the online phases of
the round, the real secret file is also leaked from the functionality and the simulator
can therefore also use that file as input to the server in its simulation. Furthermore, the
final replacement of the file at wakeup does not take place in PCKM(0, 1, 1, 0, 0), so in
both protocol executions, the environment will have the same view, also if the adversary
chooses to modify the file.

All in all we conclude that FCKM
P
= PCKM(0, 1, 1, 0, 0).

A server in PCKM(a, b, c, d, e) behaves exactly as in PCKM
� except:

1. If a = 1, the original key Lr
i used to encrypt σr

i is erased immediately after Step 3a in Shutdown,
and a new and uniformly random key L̃r

i is secret shared in Shutdown Step 3b instead.
2. If b = 1, the σr

i received from E at Shutdown is immediately replaced by the dummy file 0|σ
r
i |

if Si is known to remain honest throughout the online phases of this round (this is known since
the adversary is static within each round). This dummy file is used throughout this round in
the protocol whenever the real file was used in PCKM

�.
3. If c = 1, a copy of the original file received at shutdown is made, i.e. Σr

i ← σr
i . This copy is

stored throughout the protocol, that is, also if b = 1. In the wakeup phase Σr
i is returned to

E instead of the decrypted value DecLr−1
i

(Cr−1
i) computed in Step 4b of Wakeup unless the

server has been actively corrupt at some time during the online phases of this round. Note that
the copy Σr

i is not part of the internal state of the server and is therefore not handed to the
adversary upon corruption.

4. If d = 1, on both of two servers Si and Sj , the session keys Kr
down,i,j and Kr

up,i,j obtained from
the AKE sub-protocol in Step 3 of Shutdown and Step 3 of Wakeup are immediately replaced
by new and uniformly random session keys K̃1

r
i,j and K̃2

r
i,j which are then used in the rest of

the protocol whenever the original Kr
down,i,j and Kr

down,i,j are used in PCKM
�. I.e. both servers

end up sharing session keys that are unrelated to the keys they jointly generate via the AKEs.
This replacement is only done if both Si and Sj are honest throughout the online phases in
round r. If not, the key on neither of the servers gets replaced.

5. If e = 1, M̃r
i,j = c̃ri,j || vkr

i || d
r
i,j where c̃ri,j = EncK1enc,r

i,j
(ri,j), where ri is chosen uniformly at

random from the same (finite) field as si,j , is sent from Si to Sj in Step 4d of Shutdown instead
of ci,j || vkr

i || d
r
i,j . When Sj receives M̃r

i,j it is immediately replaced by the correct Mr
i,j .

Fig. 7. The protocol PCKM(a, b, c, d, e)

Step 2: PCKM(0, 1, 1, 0, 0) = PCKM(0, 1, 1, 1, 0) PCKM(0, 1, 1, 1, 0) differs only from
PCKM(0, 1, 1, 0, 0) in that in each round, pairs of honest servers use other, but still uni-
formly random, session keys than those obtained by the AKE.

Since each honest server in each of its rounds synchronize with all the other honest
servers through the AKE we can say that the protocol execution as a whole proceeds in
a number of rounds r = 1, 2, . . . , R (where the total number of rounds, R, depends on A,
E, and the random coins used by all Turing-machines in the protocol execution).11

Let Hl, for 0 ≤ l ≤ R, be the hybrid protocol execution that proceeds in the same way
as PCKM(0, 1, 1, 0, 0) for all rounds r > l and as PCKM(0, 1, 1, 1, 0) for all rounds r ≤ l.
Then, by definition, H

0 P
= PCKM(0, 1, 1, 0, 0) and H

R P
= PCKM(0, 1, 1, 1, 0). Let I

l be as
H
l+1 except that it is only the session keys from the AKEs between honest servers in the

11 Here we assume for simplicity that the execution consists of a whole number of rounds. The proof for
the case where servers halt in the middle of a round is an easy modification of the case where servers
halt at the end of a round.

shutdown phase of round l + 1 that are replaced by random keys, that is, Il is “half-way”
between H

l and H
l+1. Then, for any 0 ≤ l < R, Hl and H

l+1 differ only in that all session
keys generated by AKEs in round l + 1 are used in H

l whereas they are immediately
replaced by random session keys on both servers in H

l+1. Also, Hl differs only from I
l by

the AKE keys used in the shutdown phase of round l+ 1 and I
l differs from H

l+1 only by
the AKE keys used in the wakeup phase of round l + 1.

In the following we will say that the AKE shutdown keys of Si in round r are consistent
if 1) the AKE keys vkr−1

i and skr−1
i are correctly distributed (that is, they are generated

independently of E and according to GenAKE), and 2) at the beginning of the shutdown
phase of round r, Si holds skr−1

i and all other servers Sj hold vkr−1
i . Similarly, we say

that AKE wakeup keys in round r are consistent if the same properties hold for the keys
vkri and skri of Si at the beginning of the wakeup phase of round r.

Consider the following two statements:

P (r): PCKM(0, 1, 1, 0, 0)
C
= H

r and except with probability negligible in κ, the AKE
shutdown keys of all honest servers in round r + 1 are consistent.

Q(r): Hr C
= I

r and except with negligible probability in κ, the AKE wakeup keys of
all honest servers in round r + 1 are consistent.

P (0) follows directly from the construction of H
0 and the use of the ideal setup

FSETUP. We now prove that P (r) for some 0 < r < R implies P (r + 1). Since P (R)

implies H
R C
= PCKM(0, 1, 1, 0, 0), which by transitivity of indistinguishability implies that

PCKM(0, 1, 1, 1, 0)
C
= PCKM(0, 1, 1, 1, 0), this completes this step. Now, assume P (r) for

some 0 < r < R. Let Gb be the AKE game from Fig. 3 and consider the following re-
duction R

Gb with oracle access to Gb. RGb simulates the protocol execution EXECHr,E,A,
outputting whatever the simulated E outputs. However, the following modification are
made:

1. In round r, every time an honest server Si would otherwise generate public and pri-
vate keys for AKE via GenAKE in the shutdown phase of this execution, RGb inputs
(key-gen, i) to Gb and embeds the public AKE key received from Gb into the protocol
as vkri .

2. Every time a new AKE sub-protocol using skri is initiated, that is, in the wakeup phase
of round r and the shutdown phase of round r+1, a Gb session is initiated using either
sid = up or sid = down, respectively. Every time a message m is sent between Si and
Sj in the simulated AKE sub-protocol, Gb outputs m to the adversary. The adversary
gets to modify or delete m before delivery and he is allowed to insert extra messages.

3. When Si is corrupted such that E would learn skri , RGb sends (corrupt, i) to Gb and
receives skri which is embedded

4. In round r, when the AKE in wakeup completes in H
r, RGb sends the message

(session-key-query, sid) for sid = (i, j, r, up) to Gb and the returned session key
is embedded into the protocol as the result of the AKE. The E will not be able to
distinguish because of this, since in H

r the resulting session key is already random and
independent of E. Embedding keys here reflects the fact that the adversary should have
no advantage in guessing the outcome of a particular AKE even though the he learns
something about previously generated session keys using the same key, say, through
attacks on the network.

5. When an AKE between pairs of honest servers Si and Sj in the shutdown of round
r+1 are completed, RGb calls get-test-session-key, i, j, down) and embeds the test

keys returned in the protocol execution as the keys produced by the servers by this
AKE

By construction, RG0
P
= H

r and R
G1

P
= I

r. Since G0
C
= G1 by Definition 5 and indis-

tinguishability is preserved under efficient transformations, we get that R
G0

C
= R

G1 . By
transitivity of indistinguishability it then follows that H

r C
= I

r.
We now argue that in the execution I

r the AKE keys vkri and skri used at the beginning
of the wakeup phase in round r + 1 are consistent. Note first that the secret key skri is
kept by server Si and are therefore only modified if Si is actively corrupted. So we only
have to argue that the public key vkri is consistent at the wakeup phase in round r+1. Let
E be the event that there exists two servers Si and Sj (which are not actively corrupted
and do not abort in the wakeup phase of round r + 1) such that in the wakeup phase
of round r + 1 in the execution EXECIr,A,E, the key ṽk

r
i held by Sj does not match the

key vkri produced by Si. We then want to prove that Pr[E] is negligible in κ. Suppose for
the sake of contradiction that Pr[E] is non-negligible. We can write E =

�
i,j Ei,j where

Ei,j is the event that the public key is inconsistent between Si and Sj in the wakeup of
round r+1. Since by the union bound Pr[E] ≤

�
Pr[Ei,j] then there must exist one (i, j)

such that Pr[Ei,j] is non-negligible. We can then construct an adversary B for the game
G for unforgeable macs as follows: B simulates EXECIr,A,E but the message vkrj sent to
Si by Sj as well as the key vkri computed locally by Si are input to G and the resulting
macs embedded in the execution as dj,i and di,j , respectively. The altered mac d̃i,j and
the corresponding altered key ṽk

r
i received by Sj are input to G as the challenge. From

the fact that Sj does not abort on the received key and mac, it follows that B wins the
game G with the same probability p = Pr[Ei,j] which is non-negligible. This contradicts
the security of the mac scheme, so we conclude that all AKE keys among servers that are
not actively corrupted in the beginning of the wakeup phase of round r+1 are consistent.

Taken together, this implies Q(r). By Q(r) we have that the AKE keys are correctly
distributed in the wakeup phase of round r+1 except with negligible probability. Therefore,
by an argument similar to the argument involving AKE security above, also the session
keys resulting from the AKEs in the wakeup phase of round r + 1 can be replaced by
random keys without E being able to distinguish, that is, we get that I

r C
= H

r+1. Unless
servers are actively corrupted in round r + 1, the AKE keys vkri and skri will also be
consistent in the beginning of the shutdown phase of round r + 2. All in all, this implies
P (r + 1).

Since P (r) implies P (r+1) and P (0) is true because of the trusted setup, we get P (R),
in particular PCKM(0, 1, 1, 0, 9)

C
= H

R. Since by construction H
r P
= PCKM(0, 1, 1, 1, 0) we

get by transitivity of indistinguishability that PCKM(0, 1, 1, 0, 0)
C
= PCKM(0, 1, 1, 1, 0).

Step 3: PCKM(0, 1, 1, 1, 0) = PCKM(0, 1, 1, 1, 1) The only difference here is that in
both the shutdown and wakeup phases, encrypted dummy shares c̃i,j = EncK(ri,j) are
sent over the wires instead of the real encrypted shares ci,j = EncK2(si,j). That is, when
A for example corrupts a channel in the shutdown phase, E may see either EncK(ri,j) or
EncK(ri,j). Due to the previous step, E now has no influence on which K is used: It is
guaranteed to be sampled uniformly at random and independent of E. We can therefore
use the IND-CPA security property of the encryption scheme as detailed in the following.

Let L be the total number of session keys used by servers in EXECPCKM,A,E. These can
be ordered according to some ordering π(i, j, r, ·) �→ {0, 1, . . . , L − 1} such that the l’th
session key is used by Si and Sj in the shutdown phase of round r for (i, j, r, down) = π−1(l)
and by these servers in the following wakeup phase if (i, j, r, up) = π−1(l) (note that this

ordering does not necessarily correspond to the order in time in which the keys are used
in the execution). Define the hybrid protocols H

l for 0 ≤ l ≤ L as PCKM(0, 1, 1, 1, 0) with
the following modification: In the shutdown phase of round r, servers Si and Sj encrypt
random shares as in PCKM(0, 1, 1, 1, 1) if π(i, j, r, down) ≤ l, and similarly these servers use
random shares in the wakeup phase of round r if π(i, j, r, up) ≤ l. Then, by construction,
PCKM(0, 1, 1, 1, 0)

P
= H

0 and PCKM(0, 1, 1, 1, 1)
P
= H

L.
Let 0 ≤ l < L and consider the reduction R

G2
b with access to the IND-CPA encryption

oracle G2
b for two encryptions from the IND-CPA game: RG2

b simulates EXECHl,A,E with the
modification that between the servers Si and Sj in the round r and phase defined by the
index l, neither the real nor dummy shares are encrypted. Instead

�
(sri,j , s

r
j,i), (ri,j , rj,i)

�

is input to G2
b and the returned ciphertext (c1, c2) embedded in the simulation such that

these values are sent on the wire between Si and Sj . RG2
b finally outputs whatever the

simulated environment outputs. By construction we then have R
G2

0
P
= H

l and R
G2

1
P
= H

l+1.
Since G2

0
C
= G2

1 and efficient transformations preserves indistinguishability, RG2
0

C
= R

G2
1 .

By transitivity of indistinguishability it then follows that H
l C
= H

l+1, Finally, again by
transitivity of indistinguishability, this time a polynomial number of times in κ, we obtain
that PCKM(0, 1, 1, 1, 0) = PCKM(0, 1, 1, 1, 1).

Step 4: PCKM(0, 1, 1, 1, 1) = PCKM(1, 1, 1, 1, 1) The protocol PCKM(1, 1, 1, 1, 1) differs
from PCKM(0, 1, 1, 1, 1) only in that a server Si secret shares another key L̃r

i than the key
Lr
i used to encrypt the file σr

i .
Because of the previous step the same values are sent on the network in both cases,

so E cannot distinguish if only network corruptions occurs. By means of passively offline
corruptions, E gets to see either shares of Lr

i or L̃r
i (the encrypted file Cr

i is the same
in both cases). But since E ∈ E∞, there will at most be n = 1 offline attacks in round
r, and E will miss at least one share. This means that we can use the privacy property
of the RSS scheme from Definition 2: Analogous to the previous steps we introduce an
ordering π(i, r) �→ {0, 1, . . . , L − 1} and hybrid protocols H

l such that server Si secret
shares the same key Lr

i as used for encryption of σr
i as in PCKM(1, 1, 1, 1, 1) if π(i, r) ≤ l

and samples and shares another key L̃r
i as in PCKM(0, 1, 1, 1, 1) if π(i, r) > l. Then H

0 P
=

PCKM(0, 1, 1, 1, 1), Hl P
= PCKM(1, 1, 1, 1, 1).

H
l and H

l+1 differ only by the secret sharing of a key by one server Si in one round r and
we show that for any 0 ≤ l < L it holds that H

l C
= H

l+1. This time the reduction R
Gb has

oracle access to the IND-RSS game Gb: It simulates H
l with the following modifications:

Let (i, r) be such that π(i, r) = l. Since corruptions are static in each round, the reduction
knows at the beginning of round r which servers are corrupted in that round. Define these
as {Sj}j∈T . The reduction first inputs (Lr

i , L̃
r
i) to Gb. After receiving V r

i it inputs T and
receives as output a set of shares {s̃ri,j}j∈T which are embedded into the simulation, such
that s̃ri,j replaces sri,j . The reduction outputs the same as its simulated environment. Since
G0

C
= G1, PCKM(0, 1, 1, 1, 1)

C
= PCKM(1, 1, 1, 1, 1) follows for the same reasons as in the

previous step, that is, by the fact that indistinguishability is transitive and preserved
under efficient transformations.

Step 5: PCKM(1, 1, 1, 1, 1) = PCKM(1, 0, 1, 1, 1) The difference here is that Si in
PCKM(1, 1, 1, 1, 1) in each round r stores an encrypted dummy file Cr

i = EncLr
i
(0|σ

r
i |) while

Si in PCKM(1, 0, 1, 1, 1) stores instead an encryption of the real file EncLr
i
(σr

i). That is,

Due to the previous step, the keys used for encryption are chosen uniformly and
without influence from E, so we get PCKM(1, 1, 1, 1, 1) = PCKM(1, 0, 1, 1, 1) by an argument
similar to Step 3 above, this time using IND-CPA of the encryption.

Step 6: PCKM(1, 0, 1, 1, 1) = PCKM(0, 0, 1, 1, 1) The difference here is as in Step 4
whether the same key or an independent key is used for encrypting the secret file. This
time, it is the real file and not a dummy file, but otherwise the argument is identical to
that of Step 4.

Step 7: PCKM(0, 0, 1, 1, 1) = PCKM(0, 0, 0, 1, 1) In PCKM(0, 0, 1, 1, 1) an honest server
always returns the correct file to E on wakeup, that is, the file that E handed to the
server at the previous shutdown. In PCKM(0, 0, 0, 1, 1) the file returned to E is that which
is actually reconstructed in the protocol, so this step is essentially an argument for the
correctness of the protocol: If no corruption occurs, correctness follows directly from the
correctness of the encryption and secret sharing primitives used.

In addition, we need to argue that E cannot distinguish the file σr
i returned by honest

Si in round r from the correct file even if some or all of the returned shares have been
modified – either due to active network attacks or because one or more of the other
servers have been actively corrupted. Since rkri and V r

i never leaves Si, this follows from
the robustness of the RSS scheme.

More precisely, consider again a sequence of hybrid protocols Hl where the key Lr
i out-

put by the RSS reconstruction algorithm in Step 3b of the wakeup phase is replaced by the
correct key Lr

i for π(i, r) ≤ l. That is, H0 P
= PCKM(0, 0, 1, 1, 1), HL P

= PCKM(0, 0, 0, 1, 1),
and the difference between H

l and H
l+1 is only with regard to the secret sharing at Si

in round r + 1. Let E be the event that the reconstructed key is different from the key
originally secret shared by Si. We prove that Pr[E] is negligible in κ and the indistin-
guishability then follows since the conditional distribution EXECHl,A,E|Ē = EXECHl+1,A,E.
Assume for the sake of contradiction that Pr[E] is non-negligible. We can then construct
an adversary B for the RSS robustness game G from Definition 3 as follows: B simulates
the execution and inputs the RSS key rkri to G along with the key Lr

i shared by Si. The
shares s and public key V r

i output from G are embedded in the execution (they have the
same distribution as those originally used in the execution, so this cannot affect the output
of E). The possibly modified shares s� that Si receives at the wakeup phase of round r+1
are finally input to G. It follows that B wins the game G with the same non-negligible
probability Pr[E] which contradicts the robustness of the RSS scheme.

Step 8: PCKM(0, 0, 0, 1, 1) = PCKM(0, 0, 0, 1, 0) This step is needed before we can
switch off the d-bit. The argument is similar to that of Step 3. The only difference is
that now the real files and not dummy files are used in the protocol, but we can still use
IND-CPA as in Step 3.

Step 9: PCKM(0, 0, 0, 1, 0) = PCKM(0, 0, 0, 0, 0) This step is similar to Step 2 and
relies on the security of the underlying AKE and Mac schemes. Again, the fact that real
and not dummy files are used in the protocol does not make any difference.

Step 10: PCKM(0, 0, 0, 0, 0) = PCKM This step follows simply by construction of
PCKM(0, 0, 0, 0, 0).

Now, since the total number of reductions in the steps above is polynomial in the security
parameter κ we get by transitivity of indistinguishability that PCKM

� C
= FCKM or, using

the standard UC notation, EXECPCKM
�,A,E

C
= IDEALFCKM,S,E. �

The informal Theorem 1 in Section 4.2 follows immediately from Theorem 4 and the
definition of the ideal functionality FCKM.

B.6 The ROM Model and Semi-Autonomous Servers

In the previous section we modelled the basic PCKM
� protocol without the ROM assump-

tion and without administrators. In this section we show how to extend our model in the
UC framework to also cover the ROM assumption with increased offline security and the
semi-autonomous model with administrators.

Threshold Signatures In order to formally model our protocol for semi-autonomous
servers we will need a proactive threshold signature scheme. Such a scheme allows the
signing key to be split into several shares distributed among the servers in such a way
that all servers must participate in order to generate a valid signature and such that
the adversary must know all shares in the same round before he can produce his own
signatures. We can simplify our proof by treating this as an ideal functionality FTHSIG,
proving security in the FTHSIG-hybrid model.

In the informal discussion, strong security against active offline attacks in the ROM
model was achieved by having each serer hash its state before the offline period. It turns
out that the same offline security can be achieved, still in the ROM model, but using a
threshold signature scheme, if the ROM assumption means that not only the code, but
also the public verification key of the threshold scheme is embedded in ROM and cannot
be altered. Since the extension for the semi-autonomous servers already involves such a
threshold signature scheme, in this section we choose to model the full PCKM protocol
using this.

Almansa et al. [1] provide a UC-secure protocol that realizes the ideal functionality
FTHSIG listed in Fig. 8. Their protocol relies on secure point-to-point channels and setup
assumptions. It is originally designed to always terminate, but has only full threshold in
the passive setting while requiring honest majority against active adversaries. We show
below that by giving up on termination, we can get full threshold security also against
active adversaries.

Refreshment FTHSIG maintains a round counter r that is incremented on input (refresh) from
all honest servers.

Signature Generation The first time in each round that input (sign,m) from all honest servers
have been received, send (sign,m) to A. If A returns (sign-ok,m, σ) and (m,σ, invalid) was
not already stored, record (m,σ, valid) and send (signed,m, σ) to all honest servers.

Signature Verification On (verify,m, σ, v�) from Si, send (verify,m, σ, v�) to A. If
(verified,m, σ, φ) is then received from A, send (verified,m, σ, f) to Si where f is deter-
mined as follows:
1. If v� = v and (m,σ, valid) is stored, set f = 1 (ensures that if v� is the right public key

and σ is correctly generated, then verification succeeds).
2. Else if v� = v and no entry (m,σ, valid) is stored, set f = 0 (ensures that if v� is correct

and m was not legitimately signed, then verification fails). Record (m,σ, invalid).
3. Else, if v �= v�, set f = φ.

Fig. 8. The ideal functionality FTHSIG adapted from Almansa et al. [1]

PCKM in the ROM Model We build the trusted setup needed by FTHSIG, that is, the
distribution of a public verification key W , into our already existing setup FSETUP

� and
denote the extended setup by FSETUP. The extended protocol PCKM is depicted in Fig. 9.

Initialization As PCKM
� except that the extended FSETUP is used to also receive a public verification

key W and that also FTHSIG is initiated.
Shutdown As PCKM

� except that just before returning, Si concatenates all state that is not erased
into one string ∆r

i . Then all servers together compute a signature δri of ∆r
j using FTHSIG. Server

Si finally stores the signature δri along with ∆r
i during the offline phase.

Wakeup As PCKM
�, but before everything else, Si obtains its online state by first using the public

verification key W and FTHSIG to verify the signature δr−1
i on ∆r−1

i . If the signature is valid,
Si extracts the encrypted file, etc., from ∆r−1

i and continues as in PCKM
�. Otherwise it aborts.

After the verification, all servers refresh the signature scheme by calling (refresh) on FTHSIG.

Fig. 9. The protocol PCKM (with strong offline security in the ROM model).

In the previous section we considered the environments E1. We now consider another
environment class E2:

Definition 7. Let E2 be as E1 except that if an adversary in E2 actively offline corrupts
a server, that server is no longer, as in E2, forced to be actively corrupted from that point
and onwards: The adversary is allowed to let the server be only passively corrupted or
honest in the following online phase. If he does so, the adversary must however restore
the correct public verification key W on the server.

That is, E2 models the ROM assumption described above: An actively offline corrupted
server turning honest in the following wakeup phase corresponds to a server that during
the offline phase has stored its code and the threshold verification key in read-only memory
thereby preventing the adversary from modifying it even though he actively breaks into
the server during the offline phase. We stress, however, that for E2 it is still so that if a
server at any time gets actively corrupted online it must remain actively corrupted from
that point and throughout the protocol.

We now describe a modification of the threshold RSA protocol by Almansa et al. [1]
that will realize FTHSIG securely with respect to adversaries in E2. Here it is crucial that
FTHSIG explicitly allows the adversary to stop signatures from being generated.

In the original protocol [1] the secret RSA exponent d is additively shared among
the servers and each share di is verifiably secret shared (VSS’ed) among the servers. The
VSS is done with threshold n/2. The changes we introduce are as follows: First, we do
all VSSs with threshold n − 1. This means that whenever a VSS is opened, the correct
secret is reconstructed, or we abort. Second, at the end of each signature generation, each
server checks that a correct signature has been generated and aborts if not. Third, in the
refreshment protocol, a server Si who has been offline corrupted may not have any reliable
information stored about his state. This issue also occurs in the original protocol [1] where
it is solved by having each server send information (VSS shares of di and public values)
to Si. Because the original protocol [1] assumes honest majority, in that protocol Si can
always reconstruct a correct state. In our case we demand instead that all the information
Si receives must be consistent and sufficient to reconstruct the state, and otherwise Si will
abort.

Lemma 1. The RSA threshold signature protocol of Almansa et al. [1] modified as above
UC-securely realizes FTHSIG in our model, that is, with respect to the environment class
E2.

This can be shown by basically repeating the proof and simulator from the original
paper [1], except that at each point where the adversary behaves in a way that makes
an honest player abort, the simulator makes the functionality FTHSIG stop. Since we work
with threshold n − 1, no signatures can be generated in real life after an abort, and this
way we ensure that this is also the case in the simulation. As long as there is no abort,
the simulation works and is indistinguishable for the same reason as in the original proof.

Theorem 5. Let FCKM� be as FCKM but with the addition that it does not allow A to modify
σr
i if Si is actively corrupted only in the offline phase. Let PCKM denote the FSETUP,FTHSIG-

hybrid multiparty protocol defined in Fig. 9. Then PCKM UC-realizes FCKM
� with respect to

the class of environments E2.

The proof of Theorem 5 works in a similar fashion as that of Theorem 4, except that
servers in the real world have access to the ideal functionality for threshold signatures,
and is not included here.

Semi-Autonomous Servers In the UC framework we model the semi-autonomous
servers by associating with each server Si a corresponding incorruptible party Admi.

FDROPBOX in Fig. 10 below models what is essentially a public “dropbox”. An adminis-
trator Admi can use this to reliably fetch information from any honest server as long as this
information has been marked as “fetchable” by the server. In many real-life scenarios Admi

would not directly fetch information on other servers than his own, but rather contact
the other servers’ administrators who would then, in turn, fetch the required information
from the servers that they control and send it back to Admi. However, for simplicity we
do not model this in FDROPBOX.

Drop On input (drop,m) from server Si output (drop,m, i) to the adversary and store (drop,m, i).
Fetch On input (fetch, i) from any administrator Admj , if (drop,m, i) is stored for some m, send

(fetch,m, i) to Admj .
Corruption If Si gets passively corrupted, output (dropped,m) to A. If Si gets actively corrupted,

output (dropped,m) to A and furthermore, on input (modify,m�) from A, replace m by m�.

Fig. 10. The ideal functionality FDROPBOX.

Note that in FDROPBOX it is the administrator and not the servers that initiate com-
munication. That is, servers cannot push messages to administrators, but instead admin-
istrators have to “visit” servers in order to see whether there is any messages. Note also
that the dropbox comes with erasure: Once a server stores a new message, only the new
message and not the previously stored messages leak to the adversary upon corruption.
Since the dropbox will typically reside on the same computer as the server itself and thus
be fully controlled by the server (for which we already assume erasure), this seems to be
a reasonable assumption.

We do not provide any protocol realizing FDROPBOX. Rather, we argue that in reality, if
the humans controlling the servers, say, the system administrators, get actively involved,
achieving a functionality as defined by FDROPBOX will almost always be possible. The
administrators may for example communicate by meeting physically or via some external
trusted channels such as telephone lines or mail. Communicating via FDROPBOX will of
course often be much more expensive and time consuming than communication via the
standard network.

Note also that FDROPBOX delivers the fetchable information directly to the admin-
istrator upon request. This means that the adversary is not even allowed to delay the

message for a while. While defined this way here for simplicity, this assumption is actu-
ally stronger than we need. Roughly speaking we only require that the adversary cannot
delay the messages forever. In [33] it is shown how to model this in the UC framework.

Let FCKM
∗ be as FCKM, but with the following addition:

File Recovery On input (recover-file) from Admi, send back (recover-file, r, σi)
to Admi where r is the largest r such that (offline, r, Sj , σj) is stored for all honest
servers Sj .

We will also need an extended trusted setup FSETUP
∗ that apart from setting up

initial session keys as in FSETUP, also equips each Si with a public encryption key ekadm
i

and hands the corresponding decryption key dkadm
i to its administrator Admi. FSETUP∗

also initializes a threshold signature scheme, handing the public verification key W to all
servers and administrators and a share wi of the signing key to each server Si.

Initialization As PCKM except that also FDROPBOX is initialized. Also, from FSETUP
∗ the additional

public key ekadm
i of the server’s administrator and the public and private keys W and wi for a

proactive threshold signature scheme are obtained.
Shutdown As PCKM, with these additional steps performed by server Si before Step 4 (erasing

values) of PCKM:
1. Compute Fi ← Encekadm

i
(σi).

2. Compute a threshold signature fi of Fi by invoking FTHSIG.
3. Verify fi using the public verification key W and abort if invalid.
4. Mark Fi and fi as fetchable by sending (drop, (Fi, fi)) to FDROPBOX.
5. Send (Fi, fi) to all other servers.
6. When a pair (Fj , fj) is received from another server Sj , verify the signature fj and abort

if invalid. Otherwise, mark the pair as fetchable by outputting (drop, (Fj , fj)) to FDROPBOX

and return an authentic receipt to Sj using K1mac,r
i,j . a

7. Only return if valid signatures have been received from all other servers, and valid receipts
from all servers have been received for the (Fi, fi) that was sent out from this server.

Wakeup As PCKM but servers also invoke the (refresh) method of FTHSIG.
File Recovery When Admi receives (recover) from the E, it does as follows:

1. Use FDROPBOX to fetch messages (Fj , fj) from the servers (can be done in parallel).
2. When a message (Fi, fi) is fetched from a server Sj the signature fi is verified. If valid,

compute σi ← Decdkadm
i

(Fi) and return (r, σi) to E. If invalid, fetch a message from another
server.

Corruption As PCKM.

a The receipts ensure that once Si outputs (offline), all honest servers have marked Si’s file as
fetchable.

Fig. 11. The operations of the protocol PCKM
∗ (semi-autonomous servers) .

The extended protocol PCKM
∗ is defined Fig. 11. It is identical to PCKM

� except that
some additional steps are performed.

Definition 8. Denote by E3 the same environments as E1, but with the extra constraint
that adversaries in E3 do not corrupt administrators.

Theorem 6. Let PCKM
∗ denote the FSETUP∗,FDROPBOX,FTHSIG-hybrid multiparty protocol

defined in Fig. 11. Then PCKM∗ UC-realizes the ideal functionality FCKM
∗ with respect to

the class of environments E3.

The informal Theorem 3 in Section 4.2 follows immediately from the above theorem
and the definition of FCKM∗.

