
Improved Linear Sieving Techniques with
Applications to Step-Reduced LED-64

Itai Dinur1,?, Orr Dunkelman2,4,??, Nathan Keller3,4,? ? ?, and Adi Shamir4

1 Département d’Informatique, École Normale Supérieure, Paris, France
2 Computer Science Department, University of Haifa, Israel
3 Department of Mathematics, Bar-Ilan University, Israel

4 Computer Science department, The Weizmann Institute, Rehovot, Israel

Abstract. In this paper, we describe new techniques in meet-in-the-
middle attacks. Our basic technique is called a linear key sieve since it
exploits as filtering conditions linear dependencies between key bits that
are guessed from both sides of the attack. This should be contrasted with
related previous attacks, which only exploited a linear state sieve (i.e.,
linear dependencies between state bits that are computed from both sides
of the attack). We apply these techniques to the lightweight block cipher
LED-64, and improve some of the best known attacks on step-reduced
variants of this cipher in all attack models. As a first application of the
linear key sieve, we describe a chosen plaintext attack on 2-step LED-
64, which reduces the time complexity of the best previously published
attack on this variant from 256 to 248. Then, we present the first attack
on 2-step LED-64 in the known plaintext model. In this attack, we show
for the first time that the splice-and-cut technique (which inherently
requires chosen messages) can also be applied in the known plaintext
model, and we use the linear key sieve in order to obtain an attack
with the same time complexity as our chosen plaintext attack. Finally,
we describe a related-key attack on 3-step LED-64 which improves the
best previously published attack (presented at Asiacrypt 2012) in all the
complexity parameters of time/data/memory from 260 to 249. As our
first two single-key attacks, the related-key attack is also based on the
linear key sieve, but it uses additional techniques in differential meet-in-
the-middle which are interesting in their own right.

Keywords: Cryptanalysis, LED, AES, Even-Mansour, Meet-in-the-middle at-
tack, Splice-and-cut

? Some of the work presented in this paper was done while the first author was a
postdoctoral researcher at the Weizmann Institute, Israel.

?? The second author was supported in part by the German-Israeli Foundation for
Scientific Research and Development through grant No. 2282-2222.6/2011.

? ? ? The third author was supported by the Alon Fellowship.



1 Introduction

Meet-in-the-middle (MITM) attacks on block ciphers were first introduced more
than 30 years ago [12]. A block cipher was shown to be vulnerable to such
attacks if it is possible to independently compute a variable of its inner state
from the encryption and decryption sides without having to guess the full key.
The value of this inner variable (or variables) is used to efficiently sieve the
key suggestions obtained from both sides and mount an efficient attack. This
motivated block cipher designers to incorporate relatively complex key schedule
algorithms into the design, thus assuring very quick diffusion of the full key
into the state and making the cipher resistant to MITM attacks. On the other
hand, complex key schedule algorithms are difficult to implement in resource-
constrained environments (such as RFID tags and wireless sensors). Thus, in
recent years, with the rise of lightweight cryptography, designers have proposed
many schemes with simplified key schedule algorithms. At the extreme end of
the scale lie block ciphers such as LED-64 [9], Zorro [8] and PRINCE [3] which
have no key schedule at all, and simply XOR the key to the internal state of the
cipher several times during the encryption process.

Naturally, the tendency to simplify the key schedule of block ciphers was
accompanied by the development of interesting new techniques in MITM attacks
in order to break these schemes. Examples of these techniques include sieve-
in-the-middle [5] and splice-and-cut [1, 14] which is one of the most notable
techniques, initially applied to hash functions, but was quickly shown to be
applicable to block ciphers as well. Splice-and-cut attacks are adaptations of
Merkle and Hellman’s attack on 2K-3DES [12] to single encryption. The main
idea is to obtain the encryptions of several chosen plaintexts in order to view the
first and the last rounds of the cryptosystem as consecutive rounds. As a result,
the adversary can split the cipher into two parts in an unconventional way, and
mount an efficient MITM attack in cases where such an attack seems difficult
otherwise.

Another important technique used in several MITM attacks exploits the abil-
ity to independently and efficiently compute linear combinations of variables of
the inner state (rather than the actual variables) of the cipher from the encryp-
tion and decryption sides. This linear state sieving technique allows the adver-
sary to apply a MITM attack through a linear layer of the block cipher, and was
specifically exploited in [4, 10, 13] in order to mount such attacks through the
linear MixColumns operation of AES-based constructions.

In this paper, we extend the linear sieving technique and show how to ob-
tain additional filtering conditions by exploiting linear dependencies in the key
suggestions that are computed from both sides in the MITM attack, which we
call a linear key sieve. Although we do not expect such linear dependencies to
exist in block ciphers with complex non-linear key schedules, they are much more
likely to occur in lightweight designs with simple key schedules. To demonstrate
the power of our linear key sieve techniques, we apply them to LED-64 [9], and
use them to improve some of the best previously known attacks on step-reduced
variants of this block cipher in all attack models.

2



The lightweight block cipher LED was presented at CHES 2011 [9], and due
to its elegant AES-based design, it has been the target of significant cryptanalytic
effort in the past few years. In the single-key chosen plaintext model, the best
previously known attack on 2 steps of LED-64 (reduced from the full 8) was
presented in [10], and we reduce its time complexity from 256 to 248. Both the
previous attack and our new attack apply the splice-and-cut technique in order
to mount a MITM attack on the cipher. The main element that enables us to
improve the previous attack of [10] is the linear key sieve, which we use in order
to filter the key suggestions obtained during the attack in a more efficient way.

In addition to the chosen plaintext attack, we present the first attack on
2-step LED-64 in the known plaintext model. The main novelty of this attack
is that it uses, for the first time, the splice-and-cut technique (which seems
to require chosen messages in an inherent way) in the known plaintext model.
Once again, in this attack we use the linear key sieve technique, and it enables
our known plaintext attack to maintain the same running time as our chosen
plaintext attack.

Finally, in the stronger related-key model, we analyze 3-step LED-64, on
which the best previously known attack [11] used a classical differential method.
In this model, we use a differential MITM attack (which is interesting in its own
right), in addition to the linear key sieve, in order to mount a more efficient
attack which improves the previous attack in all the complexity parameters of
time/memory/data from 260 to 249.

The paper is organized as follows: in Section 2, we describe LED-64 and
summarize the previous attacks as well as our new attacks on this cipher. In
Section 3, we describe the notations and conventions that are used in this paper.
Our new chosen plaintext, known plaintext and related-key attacks are described
in Sections 4, 5 and 6, respectively. Finally, we conclude in Section 7.

2 Description of LED-64

LED [9] is a 64-bit block cipher built using several public permutations, in-
terleaved with round-key additions over GF (2) (i.e., XOR operations). This
construction is generally known as iterated Even-Mansour (see Figure 1), which
generalizes the original one-round construction [7]. In the case of LED, the public
permutations are called steps, and each step is composed of 4 rounds. A round
of LED uses an AES-like design, where given a 64-bit input X, it is treated as
a concatenation of 16 four-bit nibbles X[0]‖X[1]‖ . . . ‖X[15], which are (concep-
tually) arranged in a 4× 4 array:

X[0] X[1] X[2] X[3]
X[4] X[5] X[6] X[7]
X[8] X[9] X[10] X[11]
X[12] X[13] X[14] X[15]

The round function uses 4 AES-like mappings AddConstants (AC), SubCells
(SC), ShiftRows (SR), and MixColumnsSerial (MCS). The structural proper-

3



ties of these mappings (given below) are similar to those of the AES mappings
AddRoundKey, SubBytes, ShiftRows and MixColumns, respectively, and these
are the only properties which are exploited by our attacks. For the complete
implementation details of the LED mappings, refer to [9].

1. AddConstants adds (over GF(2)) a round-dependant constant to each cell
of the two first columns.

2. SubCells applies a 4-bit Sbox to every cell of the internal state.
3. ShiftRows rotates each cell located in row i by i positions to the left.
4. MixColumnsSerial independently applies an MDS (Maximum Distance Sep-

arable) matrix to each column.

LED has two main variants, LED-64 and LED-128, which differ according to the
key size. In this paper, we are mainly interested in the 64-bit version, which uses
32 rounds (or 8 steps). The key schedule of LED-64 simply adds the 64-bit key
K before rounds 4i+ 1 for i = 0, 1, . . . , 7, and after the final round 32.

P
⊕

F1

⊕
F2

⊕
Fi

⊕
Fr

⊕
C

K1 K2 K3 Ki+1 Kr+1

Fig. 1. Iterated Even-Mansour

2.1 Summary of Our New Attacks and the Previous Attacks on
Step-Reduced LED-64

Our new attacks on step-reduced LED-64 are summarized in table 1. In the
single-key model, the previous best chosen plaintext attack on 2-step LED-64
is described in [10], and we improve its time complexity from 256 to 248. In
addition, we present the first attack on 2-step LED-64 in the known plaintext
model, which has the same time complexity as our best chosen plaintext attack
(but requires more data and memory). We also mention the attack on 3-step
LED-64 given in [6]. However, despite its theoretical significance, the attack is
non-practical with respect to the memory complexity (which is 260) and it is only
about 16 times faster than exhaustive search. On the other hand, our attacks on
2-step LED-64 are more than 250,000 times faster than exhaustive search and
are more practical.

In the related-key model, the best attack on 3-step LED-64 is described
in [11], and we simultaneously improve it in all the complexity parameters of
time/memory/data from 260 to 249. We also mention the related-key attack on
4-step LED-64 given in [11]. However, although the attack may be theoretically

4



interesting, it is very marginal with respect to the time, memory and data com-
plexities, which are all1 about 263.

Section Model Steps Time Data Memory

4.2 Single-key 2 248 216 CP 217

5 Single-key 2 248 248 KP 248

6.2 Related-Key 3 249 249 CP 249

The data complexity is given in chosen plaintexts (CP), or in known plaintexts (KP).

Table 1. Our New Attacks of Step-Reduced LED-64

3 Notations and Conventions

Notations We denote by Rr the public function of round r of LED-64 (without
the key addition), i.e., given a 64-bit state X, Rr(X) ,MCS(SR(SC(AC(X))).
We denote by Fi the public function of step i, i.e., given a 64-bit stateX, Fi(X) ,
R4i+4(R4i+3(R4i+2(R4i+1(X)))). The functions R−1r and F−1i are defined as the
inverses of Rr and Fi, respectively.

Given a plaintext-ciphertext pair (P,C), we denote the state after r en-
cryption rounds by Xr (e.g., X0 = P and X1 is the state after one round of
LED-64). In order to simplify our notation, we define X̂4i = X4i ⊕ K, and so
Fi(X̂4i) = X4(i+1). In some of our attacks, in addition to obtaining plaintext-
ciphertext pairs, we independently evaluate the public step function Fi (for some
i) on some input states Ŷ4i, and we define Fi(Ŷ4i) = Y4(i+1) (i.e., Ŷ4i = Y4i⊕Ki).

We denote the j’th column of Xi by Xi,|j|, i.e., Xi,|0| is composed of nibbles
{0, 4, 8, 12}. Similarly, we denote by Xi,|j,l| columns j and l of Xi. We define two
more column-related sets: the first is Xi,/j/ which is composed of the nibbles
in Xi corresponding to the places after the ShiftRows operation on column j,
e.g., Xi,/0/ is composed of nibbles 0,7,10,13. The second set is Xi,\j\ which is
composed of the nibbles in the positions of column j after having applied the
inverse ShiftRows operation.

Conventions Throughout this paper, we use the standard conventions and
calculate the time complexity of our attacks in terms of evaluations of the full
cipher, while calculating their memory complexity in terms of 64-bit words (since
the block size of LED-64 is 64 bits). Some of the attacks presented in this paper

1 In fact, since the time complexity of exhaustive search given 2 related keys is 263,
the attack of [11] in its current form is faster than exhaustive search by a factor
which is less than 2.

5



involve basic linear algebra algorithm (such as solving a system of linear equa-
tions with a few dozen variables2 over GF (2)). Since our attacks execute these
basic linear algebra algorithms no more than a few times per evaluation of the
full cipher, we can ignore them in our time complexity analysis.

4 An Improved Chosen Plaintext Single-Key Attack on
2-Step LED-64

In this section, we introduce the linear key sieve technique, and apply it (com-
bined with splice-and-cut) to 2-step LED-64. Our attack improves the time com-
plexity of the previously best known attack on 2-step LED-64 [10] (which is based
on the techniques of [13]) from 256 to 248.

To simplify the description of the technique, before presenting the full 2-step
attack, we introduce the linear key sieve in a simple example of a basic MITM
attack on 1-step LED-64.

4.1 A Meet-in-the-Middle Attack on 1-Step LED-64

We describe a basic MITM attack on 4-round (1-step) LED-64, using a single
known plaintext-ciphertext pair (P = X0, C = X̂4). The attack is based on a
few simple and well-known observations on AES-based constructions:

1. The order of the linear operations ARK and MCS is interchangeable, i.e.,
MCS−1(ARK−1(C)) = ARK ′−1(MCS−1(C)), where ARK ′ adds the key
K ′ ,MCS−1(K) to the state. As in many attacks on AES-based construc-
tions, we can thus apply MCS−1 to the ciphertext C, and “peel-off” the
last-round MCS operation.

2. Given an inverse-shifted column Xr,\i\ (at the beginning of any round r),
we can fully compute the shifted column of the state after the first 7 opera-
tions SR(SC(AC(MCS(SR(SC(AC(Xr)))))))/i/. Similarly, given a shifted
column Xr,/i/, we can fully compute the inverse-shifted column of the state
after the 7 inverse operations
AC−1(SC−1(SR−1(MCS−1(AC−1(SC−1(SR−1(Xr)))))))\i\. Such a per-
mutation, mapping 4 nibbles to 4 nibbles of the state through a “round
and a half” is called a “Super-Sbox” of LED.

3. Given knowledge of any b1 bits of the state X, we can compute the values
of b1 linear expressions (over GF (2)) on the state MCS(X).

Observation 2 implies that given X̂0,\i,j\ (for any two columns i and j) we
can compute SR(SC(AC(X1)))/i,j/ = MCS−1(X2)/i,j/, as shown by the gray
nibbles in Figure 2. Combined with Observation 3, we can compute 16 · 2 =
32 linear expressions on the state X2, spanning a subspace of dimension 32.

2 In order to reduce the O(n3) bit operations required to solve a system of n linear
equations Ax = b in the online phase of the attack, we compute A−1 offline. Given the
vector b in the online phase, we simply compute x = A−1b in O(n2) bit operations.

6



Similarly, we can apply Observation 2 from the decryption side (with three
columns), i.e., MCS−1(ARK−1(C))/l,m,n/ gives us the knowledge of 48 bits of
X2 (namely, X2,\l,m,n\) as shown by the striped nibbles in Figure 2.

Since the full state contains 64 bits, the intersection of these two subspaces is
a linear subspace of dimension3 32+48−64 = 16. The basis of this subspace gives
rise to 16 linearly independent expressions in the bits of the state X2 (denoted
by A, as shown in Figure 2) whose values are computable independently from
the known 2 inverse-shifted columns (from the encryption side), and from the
known 3 shifted columns (from the decryption side).

The computation of the |A| = 16 joint expressions, requires the knowledge
of 16 · 2 = 32 bits of K from one side and 16 · 3 = 48 bits of K ′ = MCS−1(K)
from the other side. For the correct guess of these bits, the values of the joint
expressions in A match with probability 1, whereas for an arbitrary incorrect
suggestion, based on standard randomness assumptions, the values of the expres-
sions in A match with probability 2−|A| = 2−16. Therefore, incorrect suggestions
in the MITM attack are discarded (as in the related attacks of [4, 10, 13]), and
we refer to the expressions in A as a linear state sieve.

In standard MITM attacks, one treats the keys K and K ′ as independent,
and thus there are 232+48 = 280 suggestions for the key from both sides. Given
the 16 bits of the linear state sieve, we expect about 264 suggestions to remain,
which we need to further analyze. Thus, in its current form, this attack is not
faster than exhaustive search.

⊕ AC

SC

SR MCS AC

SC

SR MCS

⊕AC

SC

SR MCS AC

SC

SR MCS

K

K ′ = MCS−1(K)

P (= X0)

C (= X̂4)

Match on the linear subspace A

Fig. 2. A Meet-in-the-Middle Attack on 1-Step LED-64

3 In general, the dimension of the intersection can be bigger. However, in AES-based
constructions (where the MixColumns operation is implemented using an MDS ma-
trix), the dimension of the intersection is exactly 32 + 48 − 64 = 16.

7



The Linear Key Sieve A simple solution to the problem of insufficient filtering
is to use an additional plaintext-ciphertext pair, which will offer an additional
16-bit filtering condition. However, we now introduce the linear key sieve which
provides these 16 bit-conditions with no additional data, by exploiting the linear
dependency of K and K ′. This novel observation (which [10] did not use) is
at the basis of our improved attack on 2-step LED-64 (described in the next
section), and all the other attacks presented in the paper.

Recall that the MITM attack requires 32 bits of K and 48 bits of K ′ =
MCS−1(K), which are linear expressions in the bits of K. Just as the state
subspaces intersect (and allow us to obtain the linear state sieve), so do the two
linear subspaces spanned by the expressions of K and K ′ that we guess. The
intersection is a linear subspace of dimension 32 + 48 − 64 = 16, giving rise to
16 linearly independent expressions in the bits of K (denoted by B3), whose
values are computable independently from both sides. The expressions in B3 are
used in order to filter our wrong key guesses (for the right key they agree with
probability 1, and for wrong key guesses they agree with probability 2−|B3|), and
thus we call this set of expressions a linear key sieve.

Let B1 be additional 16 linear expressions of K needed for the attack4 (i.e,
B1 and B3 determine the partial encryption of two inverse-shifted columns), and
let B2 be additional 32 linear expressions of K ′ needed for the attack (i.e, B2

and B3 determine the partial decryption of three shifted columns). Our MITM
attack is composed of an outer loop, iterating over the value of B3, where in
each iteration, we independently iterate over the values of B1 and B2.5 Thus, we
force the key suggestions obtained from both sides of the attack to agree on B3

(rather than randomly achieving agreement). The resultant attack (described for
two arbitrarily columns i, j in the forward direction and three arbitrary columns
l,m, n in the backward direction) is as follows:

1. For each value of the 16 expressions of B3:

(a) For each value of the 16 expressions of B1:

i. Compute K\i,j\, and use it to compute X̂0,\i,j\.
ii. Compute the values of the 16 expressions of A, and store them in a

sorted list L, next to the value of the 16 expressions of B1.

(b) For each value of the 32 expressions of B2:

i. ComputeK ′/l,m,n/, and use it to computeMCS−1(ARK−1(C))/l,m,n/.
ii. Compute the values of the 16 expressions ofA, and search for matches

in the list L.
iii. For each match:

A. Obtain the value of the 16 expressions of B1.
B. Compute K using linear algebra, given the values of B1, B2 and

B3.

4 There are many options for the basis B1, and we choose one arbitrarily.
5 We note that the approach of taking out shared bits to an outer loop is a very

common practice in saving memory. The main novelty in this attack is the fact that
we take out shared linear expressions.

8



C. Test K using a trial encryption, and if it succeeds, return the
key.

The list L contains 216 values, and thus we expect a single match for each
value of the 16 expressions of A in Step 1.(b).ii. This implies that the expected
time complexity of each iteration of Step 1 is about 232, and thus the expected
time complexity of the whole attack is 248, which is faster than exhaustive search
by a factor of 216. The memory complexity of the attack is about 216, which is
required in order to store the list L. Note that the memory needed for storing L
in each iteration of Step 1 can be reused.

4.2 The Improved Chosen Plaintext Single-Key Attack on 2-Step
LED-64

Our attack on 2-Step LED-64 follows the same general structure as the previous
one of [10, 13]. We use the splice-and-cut technique in combination with a MITM
attack on 4 rounds (1 step) of the cipher. The advantage of our attack comes from
the linear key sieve (missing from [10]), i.e., using the linear relations between
K and K ′ = MCS−1(K).

In order to apply splice-and-cut to 2-step LED-64, we (as in the previous
attack [10]) partition the indices of 64-bit state into two lexicographically ordered
sets, S1 and S2. The attack requires the encryptions of 2|S1| plaintexts P 1, P 2, . . .
in which all the bits of S2 are fixed to zero (or any arbitrary constant), and the
bits of S1 range over all the possible values. Independently, we evaluate the first
4 key-less rounds of LED-64 (i.e., F1) on 2|S2| inputs Ŷ 1

0 , Ŷ
2
0 , . . . in which the

bits of S1 are fixed to zero (or any other constant), and the bits of S2 range over
all the possible values, and obtain the corresponding outputs Y 1

4 , Y
2
4 , . . ..

In the splice-and-cut technique, we look for a plaintext P i = Xi
0 and an

internal state Ŷ j
0 such that X̂i

0 = Xi
0 ⊕ K = Ŷ j

0 . This occurs if and only if

P i and K “agree” on the bits of S1 and Ŷ j
0 and K “agree” on the bits of S2,

or formally P i|S1 = K|S1 and Ŷ j
0 |S2 = K|S2 (where W |S denotes the |S|-bit

value of the word W on the indices of the ordered set S.). In other words, each
plaintext P i is associated with a potential value of K|S1, and each state Ŷ j

0 is
associated with a potential value of K|S2. Using splice-and-cut, there is only one
such correct pair, and we denote its plaintext by P , and its evaluated state by
Ŷ0 = P ⊕K. Thus, the knowledge of i and j is equivalent to the knowledge of
the key K.

Consider the correct pair (P, Ŷ0). Applying F1 to Ŷ0 gives Y4 = X4. Thus,
if we consider all F1(Ŷ j

0 ) = Y j
4 values, one of them is indeed X4. As a result,

given the ciphertext C that corresponds to P and X4, the splice-and-cut tech-
nique reduces the problem to attacking 4 rounds of LED-64. Hence, as shown in
Figure 3, we choose the bits of S2 to be the 48 bits of 3 inverse-shifted columns
(and thus S1 contains the 16 bits of the remaining inverse-shifted column). As
a result, we can take each Y j

4 value (associated with a suggestion for 3 inverse-
shifted columns of K) and continue its partial encryption (as per Observation 2),
resulting in the knowledge of three shifted columns before the MCS operation of

9



round 6. This knowledge gives rise to suggestions for the values of 48 linear ex-
pressions of Y6. Independently, we try all possible values of 32 bits of two shifted
columns of K ′, and partially decrypt all the ciphertexts to obtain suggestions of
32 bits of X6.

Now, we can apply the 4-round attack (as Y6 = X6), obtaining a linear state
sieve of 48+32−64 = 16 linear expressions on the state bits (each independently
computed from a different side), denoted by A. To obtain more filtering condi-
tions, we again use the linear key sieve: each ciphertext is associated with 16 bits
of K, and thus each suggestion for the 32 bits of X6 is associated with the values
of 16 + 32 = 48 linear expressions on the bits of K. Since each suggestions for
Y6 depends on 48 bits of K, we have 48 + 48− 64 = 32 expressions which we use
as a linear key sieve (denoted by B3). Similarly to our basic MITM attack, we
complement the 32 linear expressions of B3 to a basis of the subspace spanned
by the 48 bits of S2 using 16 additional expressions, denoted by B2. Similarly,
we complement B3 to a basis of the 48-dimensional subspace spanned by the 16
bits of S1 and the 32 bits of the 2 shifted columns of K ′, using 16 additional
expressions, denoted by B1.

The attack proceeds as follows (see figure 3):

1. Request the encryptions of the 216 plaintexts P i such that P i
\0,1,2\ = 0, and

store all plaintext-ciphertext pairs.
2. For each value of the 32 linear expressions of B3:

(a) For each value of the 16 linear expressions of B2:
i. Using the values of B2 and B3, compute a suggestion for K\0,1,2\.

ii. Let Ŷ j
0 be the state such that Y j

0,\3\ = 0 and Y j
0,\0,1,2\ = K\0,1,2\.

iii. Compute F1(Ŷ j
0 ) = Y j

4 , and use the partial knowledge of K\0,1,2\ to
obtain a suggestion for the values of the 16 linear expressions of A.
Store the suggestion for the values of A in a sorted list L, next to
the value of B2.

(b) For each value of the 16 linear expressions of B1:
i. Using the values of B1 and B3, compute a suggestion for K\3\ and
K ′/0,1/.

ii. Let (P i, Ci) be the plaintext-ciphertext pair such that P i
\3\ = K\3\

(recall that P i
\0,1,2\ = 0).

iii. Compute a suggestion for the values of the 16 linear expressions of
A using Ci and K ′/0,1/.

iv. Search for the suggestion for the values of A in the list L.
v. For each match, obtain the value of B2, use it to obtain a suggestion

for the key K and test it using a trial encryption. If the trial succeeds,
return the key.

The data complexity of the attack is 216 chosen plaintexts. The memory
complexity of the attack is about 217, required in order to store the plaintext-
ciphertext pairs, and in order to store the list L. Since L contains 216 values
per iteration of Step 2.(a), we expect one match in Step 2.(b).iv, and a total of
216 matches per iteration of Step 2. Thus, the time complexity of an iteration of

10



Step 2 is equivalent to about 216 2-step LED-64 encryptions, and the total time
complexity of the attack is about 248 encryptions.

⊕ F1 ⊕ R5
AC,SC,SR

MCS R7
AC,SC,SR

⊕ MCS0
0

0

0

Match on the linear subspace A

K (derived
from B1, B3)

K
K ′ = MCS−1(K)
(derived from B2, B3)

P i Ci

i to be determined by key material derived from B2, B3
(using splice-and-cut)

0 0 0
00 0

0 00

000

Fig. 3. Our Improved Chosen Plaintext Attack on 2-Step LED-64

5 A Known Plaintext Single-Key Attack on 2-Step
LED-64

In this section, we describe the first splice-and-cut attack (which was believed
to be inherently a chosen message technique) in the known plaintext model. In
particular, we devise the first known plaintext attack on 2-step LED-64. Due to
the efficient sieving techniques, this attack has the same time complexity as our
chosen plaintext attack, presented in the previous section.

One could expect the transformation of the splice-and-cut attack to the
known plaintext model to be as follows: similarly to the chosen plaintext at-
tack, collect 2|S2| inputs Ŷ 1

0 , Ŷ
2
0 , . . . such that Ŷ i

0 |S1 = 0 and Ŷ i
0 |S2 range over

all the possible values. Then, find a plaintext P i such that P i⊕K = Ŷ j
0 for some

(i, j), and repeat the same attack procedure. However, in the known plaintext
model, P |S2 is not fixed, and thus we “lose” the association of an input Ŷ j

0 to a
potential value of K|S2. Consequently, it is not clear how to continue the (par-
tial) evaluation of Ŷ j

0 beyond the 4’th (keyed) round of LED in order to obtain

the suggestions for the values of the linear expression on Y6. Thus, for each Ŷ j
0 ,

we need to guess additional key bits in order to obtain these necessary filtering
conditions.

Since an input Ŷ j
0 is now associated with many key guesses, we are forced to

evaluate fewer such inputs in order to obtain an efficient attack. Indeed, while
in the chosen plaintext attack, we evaluated 248 such inputs, here we evaluate
only 216 inputs, and for each one we guess the 32 bits of K\0,1\ and obtain a
suggestion for the values of 32 linear expressions on Y6. According to the birthday
paradox (assuming that the plaintexts are uniformly distributed6), in order to

6 In case that the plaintexts are not uniformly distributed, we can apply a similar
attack assuming that the ciphertexts are uniformly distributed (by exchanging the
roles of encryption and decryption).

11



obtain a pair (P i, Ŷ j
0 ) such that P i ⊕K = Ŷ j

0 with good probability, we need
248 known plaintexts-ciphertext pairs (P i, Ci) (i ∈ {1, 2, . . . , 248}). The values
Ŷ 1
0 , Ŷ

2
0 , . . . which we evaluate are defined by the 16-dimensional linear subspace

{Ŷ j
0 |MCS−1(Ŷ j

0 )/1,2,3/ = 0}. Thus, a plaintext P i is implicitly associated with
a partial key value P i

/1,2,3/ = K ′/1,2,3/. This implies that we can partially decrypt

Ci in order to obtain the values of 48 bits of Xi
6 without additional key guesses.

Note that this is not the traditional way in which splice-and-cut is applied,
as all previous attacks (including our previous chosen plaintext attack) directly
partitioned the bits of the state into two groups S1 and S2. Instead, in this attack
we work with linear subspaces constructed to exploit the linear dependency
between K and K ′ in order to be able to partially decrypt Ci without additional
key guesses (whereas our previous chosen plaintext attack did not directly exploit
this dependency).

As in the chosen plaintext attack, we have a linear state sieve of 32+48−64 =
16 expressions on the bits of X6 = Y6 which are independently computable from
each side, and we denote it by A1. Each value of the expressions of A1, computed
from an input Ŷ j

0 , is associated with a suggestion for K\0,1\, and as a result, we

can also compute Y j
0,\0,1\ = Ŷ j

0,\0,1\ ⊕ K\0,1\. Since P i = Xi
0, the 32-bit value

of Y j
0,\0,1\ can be directly matched with each plaintext, and we denote this sieve

by A2. We note that since MCS−1(Ŷ j
0 )/1,2,3/ = 0, then Y j (and Y j

0,\0,1\), can

only attain 216 values, and thus effectively, the 32 bits of A2 give only 16 bits of
filtering.

From the decryption side, each value computed from (P i, Ci) is associated
with a suggestion for K ′/1,2,3/. Thus, we can identify 32 + 48 − 64 = 16 linear

expressions (i.e., a linear key sieve) which are independently computable from
each side, and we denote this sieve by B. In total, we have 48 bits of filtering,
as A1 gives us 16 bits, A2 (effectively) gives us 16 bits of filtering, and B gives
us additional 16 bits.

The attack proceeds as follows:

1. For each of the 216 possible values of Ŷ j
0 such that MCS−1(Ŷ j

0 )/1,2,3/ = 0:

(a) Compute F1(Ŷ j
0 ) = Y j

4

(b) For each of the 232 values of K\0,1\:
i. Compute the values of the 16 linear expressions of A1, the values of

the bits of A2, and the values of the 16 linear expressions of B. Store
these values in a sorted list L, next to the values of K\0,1\.

2. For each plaintext-ciphertext pair (P i, Ci):

(a) Assume that K ′/1,2,3/ = MCS−1(P i)/1,2,3/, compute the values of A1,
A2 and B, and search the list L for matches.

(b) For each match, obtain K\0,1\, compute a suggestion for the full key K,
and test it using a trial encryption. If the trial succeeds return the key.

Since we evaluate 216 inputs Ŷ j
0 , we expect that after obtaining the encryp-

tions of about 248 arbitrary plaintexts, we will have a pair (P i, Ŷ j
0 ) satisfying

12



P i⊕K = Ŷ j
0 , which will enable us to recover the correct key.7 Thus, the expected

data complexity of the attack is 248 known plaintexts. Since the size of L is 248,
and (effectively) we have 48 bits of filtering conditions, we expect one match for
each plaintext in Step 2.(a), and thus the time and memory complexities of the
attack are 248 as well.

6 An Improved Related-Key Attack on 3-Step LED-64

In this section, we describe a related-key attack on 3-step LED-64 using two re-
lated keys. The attack improves the previously best known attack on this scheme,
described in [11], in all the complexities parameters of time/memory/data from
260 to 249. The 3-step attack uses the linear key sieve technique on top of a
rather involved differential MITM attack. Before describing the full attack, we
describe a simple differential MITM attack on 1-step LED-64 in the single-key
model, which serves as background to our 3-step related-key attack. We note
that in the case of 1-step LED-64, our simple attack is closely related to the
attack on Pelican-MAC described in [4].

6.1 A Differential Single-Key Meet-in-the-Middle Attack on 1-Step
LED-64

The simple differential MITM attack on 4-round (1-step) LED-64 requires 2
chosen plaintexts, and its memory and time complexities are slightly more than
216. In order to obtain an efficient attack, we compute and use the difference
distribution tables for the LED Super-Sboxes (spanning the third round and
part of the forth round). Namely, given an entry [δin, δout], specifying a 16-bit
input/output difference to the Super-Sbox, the table stores the actual pairs of
values that conform to this entry. A single full table can be easily computed
during preprocessing in 232 simple operations, and it requires about 232 words
of memory. However, in this simple attack, the output difference δout to each
Super-Sbox is fixed by the ciphertexts, and thus we only need a single column
in each table. Such a column is computed in the online phase (after obtaining
the encryptions of the plaintexts) in 216 time, using 216 storage.

The details of the attack are given below.

1. Obtain the encryptions of P 1 and P 2, chosen such that (P 1⊕P 2)\0,1,2\ = 0.
Denote ∆r = X1

r ⊕X2
r , i.e., ∆r is the 64-bit state difference after round r.

2. Compute 3 columns in the difference distribution tables of the LED Super-
Sboxes, corresponding to the output differences specified by the three shifted
columns MCS−1(∆4)/1,2,3/.

3. For each value of K ′/0/:

7 We note that unlike our chosen plaintext attack (that succeeds in finding the key
with probability 100%), our known plaintext attack succeeds with probability of
about 63%, which is the probability suggested by the birthday paradox (given 248

known plaintext-ciphertext pairs).

13



(a) Use C1 to compute X1
2,\0\ and C2 to compute X2

2,\0\, and calculate
∆2,\0\.

(b) Given ∆2,\0\, and the fact that MCS−1(∆2)/0,1,2/ = 0, calculate the
full ∆2 by solving a system of linear equations.

(c) Given the input difference ∆2 and MCS−1(∆4), use the Super-Sbox
(partial) difference distribution tables to obtain the possible values for
ARK ′(MCS−1(C1))/1,2,3/, and use these values to obtain suggestions
for the full K ′, thus obtaining suggestions for K.

(d) Test each suggestion for K using a trial encryption, and if it succeeds
return the key.

Since we expect, on average, a single suggestion for K in Step 3.(c), the time
complexity of Step 3 is about 216, which is the time complexity of the full attack.
The memory complexity is about 216, required in order to store the columns of
the difference distribution tables for the Super-Sboxes.

We note that this attack is faster than the attack of Section 4.1 since the
collision on the shifted columns of P allows us to obtain a suggestion for the full
key after guessing only 16 bits (enabling us to compute the full state difference
∆2). This observation will be further exploited in the next section.

6.2 The Improved Related-Key Attack on 3-Step LED-64

In this section, we describe the details of our related-key attack on 12-round
(3-step) LED-64 which assumes that we can obtain the encryptions of plaintexts
with keys K1 and K2, such that K1 ⊕K2 = ∆ is known (in fact, as explained
below, we need the ability to partially choose the value of ∆). During the online
phase of the attack, we request the encryptions of 248 chosen plaintexts encrypted
with K1 and 248 (different) chosen plaintexts encrypted with K2. The time and
memory complexities of the attack are about 249.

Our attack uses the basic framework of [11] for related-key attacks on it-
erated Even-Mansour schemes. Namely, we ask for the encryptions of pairs of
plaintexts P i,1 and P i,2 = P i,1 ⊕ ∆, encrypted with K1 and K2, respectively.
Considering the encryption process of these two plaintexts, the input difference
to the public F1 function is zero, which implies that the output difference of F1

is zero, and after the second key addition, the input difference to F2 is ∆̂4 = ∆
(namely, X̂i,1

4 ⊕ X̂i,2
4 = ∆̂4 = ∆). At this point, our algorithm diverges from

[11] (which assumes that the function F2 has some high-probability differential
characteristic).

Our attack is based on the 4-round differential MITM attack of the previous
section. Here, we apply a similar attack to F3 by processing plaintext pairs whose
ciphertexts collide on a shifted column (before the MCS operation). However,
unlike the 4-round attack, we do not know the input difference to the public
function on which we perform the MITM attack (F3 in this case). Thus, we
preprocess F2 by computing and storing pairs of inputs to this function with an
input difference of ∆, and we use a birthday argument to claim that one of the
input pairs will collide with a plaintext pair with high probability. However, this

14



is insufficient, as we were not able to find parameters for which the differential
MITM algorithm yields an efficient attack, under the constraint that we store
sufficiently many pairs of inputs to F2 (in order to obtain a collision with a
processed plaintext pair). The problem is that we need to guess too many key
bits before we can compute filtering conditions and eliminate some key guesses.

In order to reduce the number of key guesses, we again exploit collisions on
(inverse) shifted columns, but this time at the input of F3. Namely, we require
that the difference at the output of F2 on some (inverse) shifted columns cancels
out after the key addition. More specifically, we preprocess F2, and find 231 pairs
of inputs to this function, (Ŷ j,1

4 and Ŷ j,2
4 = Ŷ j,1

4 ⊕ ∆), such that their output

difference is equal to ∆ in two inverse-shifted columns (i.e., (Y j,1
8 ⊕ Y j,2

8 )\0,1\ =

∆\0,1\, implying that (Ŷ j,1
8 ⊕ Ŷ j,2

8 )\0,1\ = 0). We expect that 231 such pairs
indeed exist, since there are 263 unordered input pairs to F1 with an input
difference of ∆, and based on standard randomness assumptions, about 231 of
them satisfy the 32-bit condition on the output difference (a slightly smaller
number will only slightly increase the complexity of the attack). The trivial
algorithm to find these pairs is to exhaustively enumerate all the 263 input pairs,
however, this is wasteful as it requires 264 time (and our model does not allow
free precomputation). Instead, we use yet again a MITM approach, and devise
an auxiliary preprocessing algorithm that finds the required pairs in about 248

time. In order to run efficiently, our algorithm requires that 48 specific bits of
∆ are zero, and thus we have to assume that we can partially choose the key
difference8 ∆. The details of this preprocessing step are specified in Appendix A.

The full preprocessing algorithm (which calls the algorithm of Appendix A)
is given below.9 In this attack, we assume that we have computed during prepro-
cessing the full difference distribution tables for the LED Super-Sboxes, using
about 232 simple operations and 232 memory.

1. Use the auxiliary preprocessing algorithm of Appendix A to obtain 231 pairs
(Ŷ j,1

4 , Ŷ j,2
4 = Ŷ j,1

4 ⊕∆), such that (Y j,1
8 ⊕ Y j,2

8 )\0,1\ = ∆\0,1\.

2. For each of the 231 pairs (Ŷ j,1
4 , Ŷ j,2

4 ):

(a) For each value of (K1)\2\:

i. Compute (K2)\2\ = (K1)\2\ ⊕∆\2\. Assume that Ŷ j,1
4 is encrypted

with K1 and Ŷ j,2
4 is encrypted with K2, and let ∆r = Y j,1

r ⊕Y j,2
r . Use

the LED Super-Sbox to computeMCS−1(∆10)/2/ = MCS−1(Y j,1
10 )/2/⊕

MCS−1(Y j,2
10 )/2/.

ii. Since MCS−1(∆10)/0,1/ = 0 and MCS−1(∆10)/2/ is known, we
know 48 bits of MCS−1(∆10). We now assume that ∆10,\0\ = 0,
and compute the full MCS−1(∆10) using linear algebra (as MCS is
a linear operation).

8 The related key attack of [11] required that we can choose the full 64 bits of ∆, so
our attack is slightly more generic.

9 Since the preprocessing algorithm of this attack is more involved than in the previous
attacks, we describe it separately from the online algorithm.

15



iii. Use the difference distribution table for the LED Super-Sbox, and
the knowledge of ∆̂8,MCS−1(∆10) to compute suggestions for the
actual MCS−1(Y j,1

10 )/3/, MCS−1(Y j,2
10 )/3/ and (K1)\3\.

iv. We now have suggestions for 32 bits of K1, 32 bits of MCS−1(Y j,1
10 )

and 32 bits of MCS−1(Y j,2
10 ). During the online phase, we will obtain

suggestions for (specific) 48 bits of K ′1, 48 bits of Xi,1
10 and 48 bits of

Xi,2
10 (the encryption values of some P i,1 and P i,2 after 10 rounds).

Thus, we can compute the values of a total of 48 linear expressions to
serve as filtering bits: 16 expressions on the bits of K1 (a linear key
sieve), 16 expressions on Y j,1

10 and 16 expressions on Y j,2
10 . We store

the values of these expressions in a sorted list L, next to (K1)\2,3\.

As described in Appendix A, the time complexity of Step 1 is about 248

evaluations of 1-step LED. On average, we expect a single suggestion for the
values computed in Step 2.(a).iii (using the difference distribution table of the
LED Super-Sbox). Thus, we perform only a few simple operations for each of
the 231 pairs (computed in Step 1) and the 216 possible values of (K1)\2\, im-
plying that the total time complexity of the preprocessing algorithm is about
248 evaluations of 1-step LED. In order to slightly reduce the data complexity of
the online algorithm (at the expense of using slightly more memory), we repeat
Step 2.(a) twice for each ordered pair, exchanging the roles of Ŷ j,1

4 and Ŷ j,2
4 (i.e.,

by assuming that Ŷ j,1
4 is encrypted with K2). Thus, the time complexity of the

preprocessing algorithm is about 249 evaluations of 1-step LED, and its memory
complexity is about 249.

The online algorithm of the attack is given below.

1. For 248 arbitrary values of the plaintext P i,1:
(a) Ask for the encryption of P i,1 under the key K1, and for the encryption

of P i,2 = P i,1 ⊕∆ under the key K2 = K1 ⊕∆. Let Λr = Xj,1
r ⊕Xj,2

r .
(b) Compute C ′i,1 = MCS−1(Ci,1) and C ′i,2 = MCS−1(Ci,1). Check if

(C ′i,1 ⊕ C ′i,2)/0/ = 0, and if not, return to Step 1.
(c) For each value of (K ′1)/1/:

i. Compute (K ′2)/1/ = (K ′1)/1/ ⊕ MCS−1(∆)/1/ and use the LED

Super-Sbox to compute Λ10,\1\ = Xi,1
10,\1\ ⊕X

i,2
10,\1\.

ii. Assume that MCS−1(Λ10)/0,1/ = 0, and compute Λ10 (using the
fact that Λ10,\0\ = 0 and Λ10,\1\ is known).

iii. Use the difference distribution table for the LED Super-Sbox, and
the knowledge of Λ10 and (C ′j,1 ⊕ C ′j,2) to compute suggestions for
Xi,1

10,\2\, X
i,2
10,\2\ and (K ′1)/2/, and similarly compute suggestions for

Xi,1
10,\3\, X

i,2
10,\3\ and (K ′1)/3/.

iv. From the knowledge of 48 bits of K ′1, 48 bits of Xi,1
10 and 48 bits of

Xi,2
10 , compute the filtering values of the 48 linear expressions, and

look for matches in the list L.
v. For each match, obtain (K1)\2,3\, compute a suggestion for K1 and

test it.

16



A pair ((P i,1, Ci,1), (P i,2, Ci,2)) passes the 16-bit filtering condition of Step 1.(b)
with probability 2−16, and thus we expect to process about 248−16 = 232 pairs
in Step 1.(c). As we store 232 ordered input pairs of values for F2 with an input
difference of ∆, and each of the processed 232 plaintext pairs has a difference of
∆ at the input to F2, we expect a collision between these two groups of pairs.
For such a collision, the assumptions made during the online and preprocess-
ing algorithms hold (∆10,\0\ = 0 is assumed in preprocessing Step 2.(a).ii, and
MCS−1(Λ10)/0,1/ = 0 is assumed in online Step 1.(c).ii). Thus, this collision
will yield a match in Step 1.(c).iv, suggesting the correct value of K1.

Since we expect a single suggestion for the values computed in Step 1.(c).iii,
we perform a few simple operations for each of the 232 processed pairs in Step 1.(b)
and the 216 possible values of (K ′1)/1/, on which we iterate in Step 1.(c). Thus,
the total time complexity of the online algorithm is about 249 evaluations of
1-step LED. Including the preprocessing time, the total time complexity of the
attack is about 249 evaluations of 2-step LED (which is a bit less than 249 eval-
uations of the full 3-step scheme). The data complexity of the attack is 249, and
its memory complexity is 249, required in order to store the list L.

A Single-Key Attack on a Variant of 2-Step LED with Independent
Keys Consider a variant of 8-round LED, where the three round keys K1, K2

and K3 are independent. We now show how to adapt the above attack to this
scheme with about the same time/memory/data complexities. We note that
this construction has a similar structure to the block cipher AES2 [2], which
is composed of two key-less AES-128 permutations such that K1 and K2 are
added before and after the first permutation and K3 is added after the second
permutation. Since our techniques only exploit the AES structure of the LED
step function, this attack can also be applied to AES2, reduced from 20 rounds
to 8 rounds (with the complexity of the attack adjusted to the 128-bit cipher).

In this attack, we select ∆ in a similar way to the related-key attack above.
However, in the single-key attack we cannot inject a pair of different messages
such that they have a zero difference at the input to F1. Thus, we now preprocess
F1 (instead of F2) and find 231 pairs of inputs to this function, Ŷ j,1

0 , Ŷ j,2
0 =

Ŷ j,1
0 ⊕∆, such that (Ŷ j,1

4 ⊕ Ŷ j,2
4 )\0,1\ = 0. Consequently, in the online algorithm,

we request the encryptions of 248 pairs of plaintexts with an input difference of
∆, and apply the differential MITM technique to F2.

Another difference between this attack and the previous related-key attack
on LED-64, in that now K1, K2 and K3 are independent, and thus we do not
have any filtering conditions on the key when matching the suggestions during
the MITM phase (i.e., we do not have a linear key sieve). This implies that if
we use only one pair of plaintexts, the complexity of the attack will be at least
264. In order to speed up the attack, we use the same idea used in [6] in the
attack on AES2: we choose an arbitrary non-zero difference ∆′ 6= ∆, and ask for
the encryption of another plaintext P i,1 ⊕ ∆′ for each pair P i,1 and P i,1 ⊕ ∆.
Similarly, we attach another evaluation of Ŷ j,1

0 ⊕∆′ to each evaluated pair Ŷ j,1
0

and Ŷ j,1
0 ⊕ ∆. This allows us to obtain the required filtering values such that

17



the attack has similar time/memory/data complexities to the related-key attack.
The full details of the filtering technique are found in [6].

7 Conclusions

In this paper, we introduced various techniques in MITM attacks including the
linear key sieve technique, a known plaintext splice-and-cut attack, and new
techniques for differential MITM. We applied these techniques to step-reduced
LED-64 and obtained the best known results on this block cipher, both in the
single-key and related-key models. Although our techniques are mainly applied
to LED-64, we believe that they will be useful in the analysis of other cryptosys-
tems, in particular AES-based cryptosystems and lightweight block ciphers.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Roberto Avanzi, Liam Keliher, and Francesco Sica, editors,
Selected Areas in Cryptography, volume 5381 of Lecture Notes in Computer Science,
pages 103–119. Springer, 2008.

2. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert,
John P. Steinberger, and Elmar Tischhauser. Key-Alternating Ciphers in a Prov-
able Setting: Encryption Using a Small Number of Public Permutations - (Ex-
tended Abstract). In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT, volume 7237 of Lecture Notes in Computer Science, pages 45–62. Springer,
2012.

3. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In Wang and Sako [15], pages 208–225.

4. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search
of Attacks on Round-Reduced AES and Applications. In Phillip Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 169–187.
Springer, 2011.

5. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-Middle:
Improved MITM Attacks. In Ran Canetti and Juan A. Garay, editors, CRYPTO
(1), volume 8042 of Lecture Notes in Computer Science, pages 222–240. Springer,
2013.

6. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery Attacks
on 3-round Even-Mansour, 8-step LED-128, and Full AES2. IACR Cryptology
ePrint Archive, 2013:391, 2013. Accepted to Asiacrypt 2013. To appear in Lecture
Notes in Computer Science.

7. Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single
Pseudorandom Permutation. J. Cryptology, 10(3):151–162, 1997.

8. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block Ciphers that are Easier to Mask: How Far Can we Go? In CHES,
2013. To appear in Lecture Notes in Computer Science.

18



9. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

10. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block
Ciphers XTEA, LED and Piccolo. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP, volume 7372 of Lecture Notes in Computer Science, pages 71–86.
Springer, 2012.

11. Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential Anal-
ysis of the LED Block Cipher. In Wang and Sako [15], pages 190–207.

12. Ralph C. Merkle and Martin E. Hellman. On the Security of Multiple Encryption.
Commun. ACM, 24(7):465–467, 1981.

13. Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In Antoine Joux, editor, FSE, volume 6733 of Lecture
Notes in Computer Science, pages 378–396. Springer, 2011.

14. Yu Sasaki and Kazumaro Aoki. Preimage Attacks on Step-Reduced MD5. In
Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP, volume 5107 of Lecture
Notes in Computer Science, pages 282–296. Springer, 2008.

15. Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of Lecture Notes in Computer Science. Springer, 2012.

A The Auxiliary Preprocessing Algorithm of the
Related-Key Attack on 3-Step LED-64

Our goal in the auxiliary preprocessing algorithm is to find (about) 231 pairs
(Ŷ j,1

4 , Ŷ j,2
4 = Ŷ j,1

4 ⊕∆), such that (Y j,1
8 ⊕ Y j,2

8 )\0,1\ = ∆\0,1\. In order to run in
time of about 248 evaluations of 1-step LED, we assume that ∆\0,1,2\ = 0, and
the value of ∆\3\ is arbitrary (but non-zero).

Let ∆r = Y j,1
r ⊕ Y j,2

r . The difference ∆8 can obtain 232 − 1 non-zero values
(since we require that ∆8,\0,1\ = (Y j,1

8 ⊕Y j,2
8 )\0,1\ = ∆\0,1\ = 0), and in addition

MCS−1(∆6) can obtain (at most) 216−1 non-zero values, implying that ∆6 can
obtain 216 − 1 non-zero values. The algorithm is given below.

1. For each of the possible 216 − 1 non-zero value of ∆6:
(a) For each non-zero value of ∆8 such that ∆8,\0,1\ = 0:

i. Calculate MCS−1(∆8). Given ∆6, use the difference distribution ta-
bles for the LED Super-Sboxes to obtain the actual values Y j,1

8 , Y j,2
8 .

ii. Compute Ŷ j,1
4 = F−12 (Y j,1

8 ) and Ŷ j,2
4 = F−12 (Y j,2

8 ), and if (Ŷ j,1
4 ⊕

Ŷ j,2
4 )\3\ = ∆\3\, store the pair.

Since we obtain an average of one value for Y j,1
8 and Y j,2

8 in Step 1.(a).i (when
considering ordered pairs), the expected time complexity of the algorithm is 248.
The condition of Step 1.(a).ii holds for about 2−16 of the pairs, and thus we
expect to return 232 ordered pairs, or 231 unordered pairs as claimed. We note
that it is possible to implement the algorithm such that it always returns (at
least) 231 pairs. This can be achieved by storing all the 248 pairs in Step 1.(a).ii,
and finally setting the value of ∆\3\ to a value for which there is a maximal
number of pairs.

19


