
DFA-Based Functional Encryption:

Adaptive Security from Dual System Encryption

Somindu C. Ramanna
Indian Statistical Institute

203, B. T. Road, Kolkata - 700108
somindu_r@isical.ac.in

Abstract

We present an adaptively secure functional encryption (FE) scheme based on deterministic finite
automata (DFA). The construction uses composite-order bilinear pairings and is built upon the selec-
tively secure DFA-based FE scheme of Waters (Crypto 2012). The scheme is proven secure using the
dual system methodology under static subgroup decision assumptions. A dual system proof requires
generating of semi-functional components from the instance. In addition, these components must be
shown to be properly distributed in an attacker’s view. This can be ensured by imposing a restriction on
the automata and strings over which the scheme is built i.e., every symbol can appear at most once in a
string and in the set of transition tuples of an automata. First a basic construction with the restrictions
is obtained and proved to be adaptively secure. We then show how to extend this basic scheme to a
full scheme where the restrictions can be relaxed by placing a bound on the number of occurrences of
any symbol in a string and in the set of transitions. With the relaxed restrictions, our system supports
functionality defined by a larger class of regular languages.

1 Introduction

Functional encryption (FE) is a sophisticated form of public key encryption that provides access control
on secret data based on certain policies. A more general form of FE also provides the ability to compute
functions over encrypted data (formalised in [BSW12]). In a functional encryption (FE) systems that
provide access control, a ciphertext encrypts a message m and an associated attribute or index Ψ that
describes the user’s credentials. In a public index model, the quantity Ψ is revealed in the ciphertext. A
key encodes a predicate or an access policy Φ. Decryption succeeds and outputs m if relation R(Ψ,Φ)
holds. User secret keys are issued by a trusted authority called the private key generator (PKG). The
form of FE described above is called key-policy functional encryption since the policy is encoded in the
key. A complementary form called ciphertext-policy FE is also studied where the policy is embedded in
the ciphertext and index in the key.

Functional encryption schemes with different kinds of functionalities have been studied. These include
attribute-based encryption (ABE) [SW05, GPSW06, OSW07, BSW07, Wat11, LW12], inner-product en-
cryption [KSW08, OT09, OT10] and many others in both the ciphertext-policy and key-policy settings. All
of these schemes have one property in common – the functions only deal with fixed-size inputs. Moreover,
only a few ABE constructions [LOS+10, OT10, LW12, OT12] are known to have adaptive security with-
out random oracles. Waters [Wat12] went beyond fixed-size inputs and proposed a functional encryption
scheme that operates over arbitrary-sized inputs. In this system, a secret key is associated with a deter-
ministic finite automaton (DFA) M and the index Ψ is a string w over the input alphabet of the DFA.

1



Decryption succeeds ifM accepts w. As a result, the system supports the class of regular languages. This
construction was shown to be selectively secure without random oracles based on the eXpanded Decisional
Bilinear Diffie-Hellman Exponent (XDBDHE) assumption parametrised by `, the length of the challenge
string. Over arbitrary sized inputs, there are no known schemes that achieve adaptive security.

Our Contribution. We construct a DFA-based FE scheme that achieves adaptive security without ran-
dom oracles. The scheme is built upon composite order pairings that have natural structure (orthogonality
and parameter hiding) suitable for dual system proofs. Using the dual system technique, the scheme is
proved secure under three static subgroup decision assumptions over composite-order pairings.

First of all, let us see why a direct adaptation of dual system method fails. Consider a system with
Σ as the alphabet. Since most DFAs used in practice have small alphabets, we can pick a group element
Hσ corresponding to each symbol Hσ and include these elements in the public parameters. Let w =
w1⋯w` be a string over Σ to which a ciphertext C is encrypted and SKM, a secret key for an automaton
M = (Q,Σ, q0, qf , δ). String w is encoded in C in such a way that the order of symbols is also maintained.
Suppose that we attempt defining semi-functional components in the usual way. In the dual system method,
semi-functional components for ciphertexts and keys usually mimic the structure of the normal ciphertexts
and keys respectively. But these are generated using some secret elements so that their distribution is
statistically hidden from the adversary. Since there is a single group element (hash Hσ) for each symbol σ,
there will be a corresponding scalar in the semi-functional portion for each symbol during simulation. If
symbols are repeated, then so are these scalars. But giving out too many copies of these values will reveal
them information theoretically to the attacker which defeats the dual system proof. This holds for both
strings and automata.

The solution to this problem is to restrict the number of occurrences of symbols in transitions and
strings during system setup. We adapt a technique previously used by Lewko et.al. [LOS+10] in the
context of attribute-based encryption over monotone access structures. A string w can contain at most
one occurrence of each σ ∈ Σ. Similarly, at most one transition can contain a symbol σ. We call the
resulting construction the basic construction, denoted BFE . This scheme supports only an extremely small
class of languages. For instance, consider the alphabet {0,1}. With the single-use restriction, then the
scheme works for only 4 strings - 0,1,01,10! Nevertheless, this restriction can be relaxed and we show this
by via our next (full) construction, FFE . This scheme is obtained by putting a bound on the number of
occurrences of each symbol in strings as well as transitions at setup. Suppose a symbol can appear at most
smax times in a string and at most tmax times in the set of transitions. Then our public parameters will
contain smax × tmax group elements corresponding to each symbol. Essentially Hσ is replaced by a matrix
Hσ of order smax × tmax. Ciphertext and key are defined for w and M (respectively) in such a way that
only one acceptance path and hence decryption sequence exists if M accepts w. Also, if M rejects w,
then there is no way to decrypt. Since each entry in Hσ is distinct, simulating semi-functional components
will no longer be a problem. If we assume smax and tmax to be linear in κ, the security parameter, then
this scheme supports a significantly large class of functionalities. Although the selectively secure scheme
of [Wat12] supports unbounded functionality, security is only limited to bounded functionality for otherwise
the `-XDBDHE assumption becomes meaningless. On the other hand, our system is limited to bounded
functionality in the construction itself and in addition is adaptively security.

2 Preliminaries

This section provides basic notation, definitions and complexity assumptions in composite-order pairings.
Definition and security model for DFA-based functional encryption can be found in Appendix A.

2



Definition 2.1 (Deterministic Finite Automaton). A deterministic finite automaton (DFA)M is a 5-tuple
(Q,Σ, q0, F, δ) where Q ≠ ∅ is a finite set of states, Σ ≠ ∅ denotes the input alphabet, q0 ∈ Q is the start
state, ∅ ≠ F ⊆ Q is the set of final states and δ ∶ Q ×Σ→ Q is called the transition function.

It is well-known [HMU00] that any DFA M, one can construct M′ such that M′ has a unique final
state and both M and M′ accept the same set of languages.

2.1 Notation

A composite order pairing is represented as a tuple (p1, p2, p3,G,GT , e,G) where p1, p2, p3 prime, ∣G∣ =
∣GT ∣ = N = p1p2p3, G = ⟨G⟩ and e ∶ G × G → GT is the pairing function. Define Gpub = (N,G,GT , e,G)
where N = p1p2p3. Also let GB denote the subgroup of order B of G. This representation is particular
to those pairings where the group order is a product of three distinct primes. In general, the order could
be any composite number that is hard to factor. We denote elements of groups Gp2 ,Gp3 with subscripts
2 and 3 respectively. Elements of Gp1 and G are written without a subscript. The meaning will be clear
from the context.

Our construction is based on DFAs that have a unique final state. We thus use the notation
M = (Q,Σ, q0, qf , δ) with qf being the final state. Transitions of an automaton M = (Q,Σ, q0, qf , δ)
are represented as 3-tuples of the form t = (qx, qy, σ) where δ(qx, σ) = {qy}. Let T denote the set of all
transition tuples t.

The notation [a, b] represents the set {a, a+1, a+2, . . . , b} for two integers a < b. For a set X , the notation

x1, . . . , xk
R←Ð X symbolises x1, . . . , xk being sampled independently from X according to distribution R.

We use this interchangeably with the notation x1, . . . , xk ∈R X . The uniform distribution is denoted by U.
For a (probabilistic) algorithm A, x ←Ð A(⋅) means that x is chosen according to the output distribution
of A (which of course may be determined by its input).

2.2 Complexity Assumptions

We state three Decisional SubGroup (DSG) assumptions in composite order groups equipped with
a bilinear pairing. Each of the following problems is defined based on a composite order pairing
G = (p1, p2, p3,G,GT , e,G) generated according to some distribution.

Assumption DSG1

Define a distribution D as follows: P
U←Ð Gp1 , P3

U←Ð Gp3 , D = (Gpub, P,P3). For an algorithm A that
returns a bit, define its advantage in solving the DSG1 problem as

AdvDSG1
G (A ) = ∣Pr[A (D, T1) = 1] −Pr[A (D, T2) = 1]∣ ,

where T1 ∈U Gp1 and T2 ∈U Gp1p2 . The (t, ε)-DSG1 assumption is said to hold if for every algorithm A
running in time at most t,

AdvDSG1
G (A ) ≤ ε.

Assumption DSG2
Define a distribution D as follows:

P,X
U←Ð Gp1 , P2,X2

U←Ð Gp2 , P3,X3
U←Ð Gp3 ,

3



D = (Gpub, P,P3,X + P2,X2 +X3).

For an algorithm A that returns a bit, define its advantage in solving the DSG1 problem as

AdvDSG1
G (A ) = ∣Pr[A (D, T1) = 1] −Pr[A (D, T2) = 1]∣ ,

where T1 ∈U Gp1p2 and T2 ∈U G. The (t, ε)-DSG2 assumption is said to hold if for every algorithm A
running in time at most t,

AdvDSG2
G (A ) ≤ ε.

Assumption DSG3
Define a distribution D as follows:

α, s
U←Ð ZN , P

U←Ð Gp1 , P2,X2, Y2
U←Ð Gp2 , P3

U←Ð Gp3 ,

D = (Gpub, P,P2, P3, αP +X2, sP + Y2).

For an algorithm A that returns a bit, define its advantage in solving the DSG1 problem as

AdvDSG1
G (A ) = ∣Pr[A (D, e(P,P )αs) = 1] −Pr[A (D,XT ) = 1]∣ ,

where T1 ∈U GT . The (t, ε)-DSG3 assumption is said to hold if for every algorithm A running in time at
most t,

AdvDSG3
G (A ) ≤ ε.

3 Basic Construction

Described here is a basic construction of DFA-based functional encryption scheme BFE =
(BFE .Setup,BFE .KeyGen,BFE .Encrypt,BFE .Decrypt) in the composite order pairing setting. We impose
the following restrictions on automata and strings over which the scheme is built.

Restriction 1: Keys are created only for automata with a unique final state and a single transition
corresponding to each symbol

Restriction 2: Input string (part of the ciphertext) can contain only a single occurrence of each symbol

These restrictions are required for the proof to go through. In Section 5, we describe how to extend the
basic scheme BFE to a full scheme FFE with relaxed restrictions and similar security guarantee.

The construction is similar to that of Waters [Wat12]. Encryption is done in the group Gp1 but the
structure is different from that of [Wat12]. Components of the key are elements of Gp1p3 and have the
same structure as the keys in [Wat12] except that they are additionally randomised by elements of Gp3 .
The group Gp2 forms the semi-functional space.

BFE .Setup(Σ, κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to the security

parameter κ. Choose elements P,Hstart,Hend, (Hσ, Uσ)σ∈Σ
U←Ð Gp1 , P3

U←Ð Gp3 and α
U←Ð ZN . The public

parameters and master secret are given by

PP : (Gpub,Σ, P,Hstart,Hend,Hλ, (Hσ, Uσ)σ∈Σ, e(P,P )α),
MSK: (−αP,P3).

4



In [Wat12], only a single element U was uses to maintain the link between consecutive symbols but here we
require an separate group element Uσ corresponding to each symbol σ. This is helpful in the dual system
proof.

BFE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ciphertext

elements as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,1 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,1 = siP, Ci,2 = siHwi + si−1Uwi ,

Cend,1 = C`,1 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w).

BFE .KeyGen(MSK,M = (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements rstart,

for all t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2,
(Rt,1,Rt,2,Rt,3)t∈T and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements of the
key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = −Dx + rtUσ +Rt,1, Kt,2 = rtP +Rt,2, Kt,3 =Dy + rtHσ +Rt,3,

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).
BFE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a sequence
of transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption consists of several
stages of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows.

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi)si

The last intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )αs`e(Df , P )s` .

Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A−1
`+1 ⋅A`.

5



Correctness. To show that decryption is correct, we need to show that the intermediate values A0,A`+1

and Ai for i ∈ [1, `] have the claimed structure. It is enough to show that if Ai−1 has the right structure,
then so does Ai. By induction on i, it follows that A` = e(P,Dx`)s` for i ∈ [1, `].

A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(s0P,D0 + rstartHstart +Rstart,1)e(soHstart, rstartP +Rstart,2)−1

= e(P,D0)s0e(P,Hstart)s0rstarte(Hstart, P )−s0rstart

= e(P,D0)s0

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi−1)si−1e(si−1P,−Dxi−1 + rtiUwi−1 +Rti,1)e(siHwi + si−1Uwi , rtiP +Rti,2)−1

e(siP,Dxi + rtiHwi +Rti,3)
= e(P,Dxi−1)si−1e(P,Dxi−1)−si−1e(P,Uwi−1)si−1rti e(Hwi , P )−sirti e(Uwi , P )−si−1rti e(P,Dxi)sie(P,Hwi)sirti
= e(P,Dxi)si

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1

= e(s`P,−αP +Df + rendHend +Rend,1)e(s`Hend, rendP +Rend,2)−1

= e(P,P )−αs`e(P,Df)s`e(P,Hend)s`rende(Hend, P )−s`rend

= e(P,P )αs`e(Df , P )s`

Note that Gp3 components get cancelled due to the orthogonality property of composite order groups.

Ciphertext-Policy FE. It is possible to obtain a ciphertext-policy FE scheme by constructing a dual
of the above scheme. The structure of the ciphertext and key get interchanged. A key will encode a string
w and a ciphertext will encode an automatonM. Also, randomisation in Gp3 is done only for the key (i.e.,
components corresponding to the input string w). The same assumptions can also be used for the proof of
security.

4 Security Proof

We prove security of BFE using the method of dual system encryption [Wat09]. This requires defining
semi-functional ciphertexts and keys.

4.1 Defining Semi-Functionality

Two types of semi-functional keys need to be defined for our proof of security – Type-1 and Type-2. Let
P2 be a random generator of the group Gp2 and

πstart, (πh,σ, πu,σ)σ∈Σ
U←Ð ZN .

These scalars are common to both semi-functional keys and ciphertexts.

Semi-functional Ciphertext

Pick γ0, . . . , γ`, πend
U←Ð ZN . Semi-functional ciphertext is obtained by modifying normally generated

ciphertext C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w) as:

Cstart,1 ← Cstart,1 + γ0P2, Cstart,2 ← Cstart,2 + γ0πstartP2,

6



For i = 1, . . . , `,
Ci,1 ← Ci,1 + γiP2, Ci,2 ← Ci,2 + (γiπh,wi

+ γi−1πu,wi)P2,

Cend,1 ← Cend,1 + γ`P2, Cend,2 ← Cend,1 + πendP2.

Cm remains unchanged. Restriction 2 mentioned in Section 3 is required here to ensure that only one
value of πh,σ or πu,σ is revealed for any σ ∈ Σ in the challenge ciphertext. Keeping value of π⋅,σ statistically
hidden is very essential for the security argument. On the other hand, providing too many copies of π⋅,σ
would information theoretically reveal its value to the adversary.

Type-1 Semi-functional Key

Let µstart, µend, (µt)t∈T , τend
U←Ð ZN , (zx)qx∈Q

U←Ð ZN and SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2) be a normal key generated by the BFE .KeyGen
algorithm. Its components are modified as:

Kstart,1 ←Kstart,1 + (z0 + µstartπstart)P2, Kstart,2 ←Kstart,2 + µstartP2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 ←Kt,1 + (zx + µtπu,σ)P2, Kt,2 ←Kt,2 + µtP2, Kt,3 ←Kt,3 + (zy + µtπh,σ)P2 ,

Kend,1 ←Kend,1 + (zf + τend)P2, Kend,2 ←Kend,2 + µendP2.

The first restriction plays a crucial role here. It ensures that the π-values are statistically hidden from the
adversary.

Type-2 Semi-functional Key
Type 2 semi-functional keys are similar to Type-1 except that the components
Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T will no longer have any semi-functional terms. Also, Kend,1

does not contain the scalar zf .

In the proof, it is ensured that at most one key can be Type-1 semi-functional at any point in the
hybrid sequence of games. The rest of the semi-functional keys are Type-2. Otherwise, multiple copies
of the π-values would have to be provided to the adversary and the whole purpose of imposing the two
restrictions would be defeated.

Consider decryption of a ciphertext C for message m and string w = w1⋯w` by a key SKM where
Accept(M,w) = 1. Decryption succeeds unless both C and SKM semi-functional. This is because Gp2

(semi-functional) components get cancelled when paired with elements of Gp1 (by orthogonal property of
composite order pairing groups). When both C and SKM are semi-functional, the message is masked by
an extra factor - e(P2, P2)(µendπend−γ`τend). To see this, note that all other semi-functional components get
cancelled since they only mimic the structure of the ciphertext and key, in addition to having π-values
common. Decryption will succeed only if µendπend = γ`τend. We will call such a pair of ciphertext and key
as nominally semi-functional.

We require algorithms ReRandCT and ReRandK for randomising ciphertexts and keys respectively in the
proof to ensure correct distribution of components. Essentially, these algorithms additively rerandomise
ciphertexts and keys. These are defined in Appendix B.

4.2 Reductions

We prove IND-STR-CPA-security of BFE under the three assumptions DSG1, DSG2 and DSG3.

7



Theorem 4.1. If the (ε1, t′)-DSG1, (ε2, t′)-DSG2, (ε3, t′)-DSG3 assumptions hold, then BFE is (ε, t, ν)-
IND-STR-CPA secure where

ε ≤ ε1 + 2νε2 + ε3
and t = t′ −O(νΣρ), where ρ is an upper bound on the time required for one scalar multiplication in G.

Proof. The proof is organised as a hybrid argument over a sequence of 2ν + 3 games –
Gamereal,Game0,1, (Gamek,0,Gamek,1)νk=1,Gamefinal. Gamereal denotes the actual CPA-security game
for DFA-based FE ind-cpa. Game0,1 is just like Gamereal except that the challenge ciphertext is semi-
functional. In Gamek,0 (for 1 ≤ k ≤ ν), challenge ciphertext is semi-functional, the first k − 1 keys returned
to the adversary are Type-2 semi-functional, k-th key Type-1 semi-functional and the rest are normal.
Gamek,1 (1 ≤ k ≤ ν) is such that first k keys are Type-2 semi-functional and rest are normal. Gamefinal
is similar to Gameν,1 except that now the challenge ciphertext is a semi-functional encryption of a ran-
dom message. Let E◻ denote the events that the adversary wins in Game◻. Note that, in Gamefinal, the
challenge ciphertext is an encryption of a random message and hence bit β is statistically hidden from the
adversary’s view implying that Pr[Efinal] = 1/2.

The advantage of an t-time adversary A in winning the ind-cpa against the FE scheme in the ind-cpa,
is given by

Advind-cpa
FE (A ) = ∣Pr[Eactual] −

1

2
∣ .

We have

Advind-cpa
BFE (A ) = ∣Pr[Eactual] −Pr[Efinal]∣

≤ ∣Pr[Eactual] −Pr[E0,1]∣ +
ν

∑
k=1

(∣Pr[Ek−1,1] −Pr[Ek,0]∣ + ∣Pr[Ek,0] −Pr[Ek,1]∣)

+ ∣Pr[Eν] −Pr[Efinal]∣
≤ εDSG1 + 2νεDSG2 + εDSG3

The last inequality follows from the lemmas 4.2, 4.3, 4.4 and 4.5.

In all the lemmas, A is a t-time adversary against the FE scheme and B is an algorithm running in
time t′ that interacts with A and solves one of the three problems DSG1, DSG2 or DSG3.

Lemma 4.2. ∣Pr[Eactual] −Pr[E0,1]∣ ≤ ε1.

Proof. B receives an instance of problem DSG1, (Gpub, P,P3, T ), where T = θP + θ2P2 and its task is to
decide whether θ2 = 0 or θ2 ∈U Zp2 . The different phases of the game are simulated as described below.

Setup: B picks α, vstart, vend,{vh,σ, vu,σ}σ∈Σ
U←Ð ZN , sets Hstart = vstartP , Hend = vendP , Hσ = vh,σP and

Uσ = vu,σP . It provides PP to A and computes MSK.

Key extraction queries: For a query on automaton M, B runs the BFE .KeyGen algorithm with input
M and returns the output to A . No generator of Gp2 is provided to B and hence semi-functional keys
cannot be generated.

Challenge: A provides two messages m0,m1, challenge string w∗
1⋯w∗

`∗ . B chooses β
U←Ð {0,1},

s′0, . . . , s
′
`∗

U←Ð ZN and encrypts mβ to w∗ as follows.

Cm =mβ ⋅ e(P,T )αs′`∗ ,

8



C0,1 = s′0T, Cstart,2 = s′0vstartT,

For i = 1, . . . , `∗,
Ci,1 = s′iT, Ci,2 = (s′ivh,wi

+ s′i−1vu,wi)T,

Cend,1 = C`,1, Cend,2 = s′`vendT.

Randomiser si is inherently set to s′iθ for i = 0, . . . , `∗. Let C∗ =
(Cm,Cstart,1,Cstart,2,{Ci,1,Ci,2}i∈[1,`],Cend,1,Cend,2,w). B returns ReRandCT(C∗) to A .

Guess: A returns its guess β′.

If θ2 = 0, then C∗ is a normal encryption of mβ. Otherwise θ2 ∈U Zp2 making C∗ a semi-functional
ciphertext for mβ with γi = s′iθ2 for i = 1, . . . , `∗, πstart = vstart, πend = s`′vend, πu,σ = vu,σ and πh,σ = vh,σ for
all σ ∈ Σ. The ciphertext is well-formed. For instance,

Ci,2 = (s′ivh,wi
+ s′i−1vu,wi)T

= s′ivh,wi
θP + s′i−1vu,wiθP + s′ivh,wi

θ2P2 + s′i−1vu,wiθ2P2

= siHwi + si−1Uwi + (γiπh,wi
+ γi−1πu,wi)P2

The rest of the components can be shown to be well-formed in a similar way. The v’s are embedded in
the public parameters and hence their values modulo p1 are revealed to the adversary in an information
theoretic sense. However their values modulo p2 remain hidden (by Chinese remainder theorem) thus
resulting in the proper distribution of the π’s. The si’s are merely scaled by θ2 to obtain γi’s and hence the
γi’s are uniformly and independently distributed. The randomisers for the ciphertext’s normal components
are also properly distributed since it is rerandomised.

If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε1 ≥ AdvDSG1
G (B) = ∣Pr[B returns 1 ∣ T ∈U Gp1] −Pr[B returns 1 ∣ T ∈U Gp1p2]∣

= ∣Pr[A wins ∣ T ∈U Gp1] −Pr[A wins ∣ T ∈U Gp1p2]∣
= ∣Pr[A wins in Gameactual] −Pr[A wins in Game0,1]∣
= ∣Pr[Eactual] −Pr[E0,1]∣

as required.

Lemma 4.3. ∣Pr[Ek−1,1] −Pr[Ek,0]∣ ≤ ε2 for 1 ≤ k ≤ ν.

Proof. An (Gpub, P,P3,X + P2,X2 + X3, T ) of DSG2 is given to B and the goal is to decide whether
T ∈U Gp1p3 or T ∈U G. In other words, if T = θP + θ2P2 + θ3P3 then B has to determine whether θ3 = 0 or
θ3 ∈U Zp3 .

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the uniform
distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and Uσ = vu,σP .
PP is given to A and B keeps MSK.

Key extraction queries: Suppose A makes key extraction queries onM1, . . . ,Mν . B generates key for
Mi depending on i as follows.

Case i > k : B runs the BFE .KeyGen algorithm and returns the resulting (normal) key to A .

Case i < k : B first obtains SKMi ←Ð BFE .KeyGen(MSK,Mi) and then modifies its components to
obtain a Type-2 semi-functional key for Mi as follows. Since a generator of Gp2 is not available, B
uses element X2 +X3 to construct the semi-functional components.

9



µ′end, τ
′
end

U←Ð ZN ,
Kend,1 ←Kend,1 + τ ′end(X2 +X3), Kend,2 ←Kend,2 + µ′end(X2 +X3).

The term µendP2 is set to µ′endX2. Similarly, τendP2 = τ ′endX2. The components Kend,1,Kend,2 already
have uniform random elements of Gp3 embedded in them. Hence adding multiples of X3 will not
change the distribution of the Gp3 components.

Case i = k : B computes SKMk
embedding the challenge T from the instance.

For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvh,σ)T ,

Kend,1 = −αP + (df + r′endvend)T, Kend,2 = r′endT.

Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns ReRandK(SKMk
) to A .

We have T = θP +θ2P2+θ3P3 where θ2 could be zero. Hence every component is made up of elements
of Gp1 , Gp3 and possibly elements of Gp2 . The Gp1 and Gp3 elements are properly distributed due to
the invocation of ReRandK algorithm. If θ2 = 0, SKMk

is normal. Otherwise, θ2 ∈U Gp2 making SKMk

Type-1 semi-functional. The randomisers for the semi-functional components are set as: zx = dxθ2

for all qx ∈ Q, µstart = r′startθ2, µend = r′endθ2, µt = r′tθ2 for all t ∈ T ; πstart = vstart, πu,σ = vu,σ,
πh,σ = vh,σ for each σ ∈ Σ and τend = r′endvendθ2. Although v’s are provided to the adversary via the
public parameters, their values modulo p2 remain hidden from the adversary (by Chinese remainder
theorem). The µ’s are uniformly distributed by the choice of r′’s. Hence the π’s and τend are uniformly
distributed in A ’s view.

Challenge: B receives messages m0,m1 and challenge string w∗ = w∗
1⋯w∗

`∗ from A . It chooses β
U←Ð {0,1}

and constructs ciphertext C∗ as follows.

γ0, . . . , γ`∗
U←Ð ZN

Cm =mβ ⋅ e(P,X + P2)αγ`∗ ,

C0,1 = γ0(X + P2), Cstart,2 = γ0vstart(X + P2),

For i = 1, . . . , `∗,
Ci,1 = γi(X + P2), Ci,2 = (γivh,wi

+ γi−1vu,wi)(X + P2),

Cend,1 = C`,1, Cend,2 = γ`vend(X + P2),
setting si = θγi for i ∈ [0, `∗]. The output of ReRandCT(C∗) is returned to A . The π values (except πend)
are set to the corresponding v’s modulo p2. These are equal to the π-values of the k-th key thus satisfying
the requirements for Type-1 semi-functionality. Also πend is set to γ`vend which is uniformly distributed
(by the choice of γ`) and also independent of τend. This is because vend is randomised by r′end in τend. Note
that after calling ReRandCT the randomisers for the Gp1 components will have the proper distribution.

Guess: A sends B its guess β′.

10



We now argue that the challenge ciphertext and k-th key combined, do not reveal any information
about the π-values to the adversary. For this consider a transition t = (qx, qy, σ) and suppose the i-th set
of components in C∗ are for the symbol σ (i.e., w∗

i = σ). Then Ci,⋅ and Kt,⋅ components will share the same
π-values. Assume that the µt and γi, γi−1 values are statistically revealed to the adversary. It essentially
gets hold of 3 equations (corresponding to semi-functional components of Kt,1,Kt,3,Cw,2) in 4 unknowns
(πh,σ, πu,σ, zx, zy). Using these the adversary cannot gain any information about these quantities. They
remain information theoretically hidden and thus appear uniformly distributed in the attackers’ view.

B could attempt to create a semi-functional ciphertext for a string w′ accepted by Mk and check
whether SKMk

is semi-functional or not. But any such attempt will end up setting

µendπend − τendγ` = (r′endθ2)(γ`vend) − (r′endvendθ2)γ` = 0 (mod p2).

This implies that the ciphertext-key pair is nominally semi-functional. Decryption succeeds and provides
no information to B about the distribution of T .

If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε2 ≥ AdvDSG2
G (B) = ∣Pr[B returns 1 ∣ T ∈U Gp1p3] −Pr[B returns 1 ∣ T ∈U G]∣

= ∣Pr[A wins ∣ T ∈U Gp1P3] −Pr[A wins ∣ T ∈U G]∣
= ∣Pr[A wins in Gamek−1,1] −Pr[A wins in Gamek,0]∣
= ∣Pr[Ek−1,1] −Pr[Ek,0]∣

as required.

Lemma 4.4. ∣Pr[Ek,0] −Pr[Ek,1]∣ ≤ ε2 for 1 ≤ k ≤ ν.

The proof is similar to that of Lemma 4.3 except for the simulation of the k-key. The end components
of this key are additionally rerandomised in Gp2 to ensure that it remains semi-functional with its type
depending on whether the instance is real or random. The proof is provided in Appendix C.

Lemma 4.5. ∣Pr[Eν,1] −Pr[Efinal]∣ ≤ ε3.

The idea of the proof is as follows. Let (Gpub, P,P2, P3, αP +X2, sP + Y2, T ) be the instance of DSG3
using which the game needs to be simulated. α from the instance is the α of the system master secret.
The scalar s from the instance will be mapped to the randomiser that is used to mask the message i.e.,
s`∗ , where `∗ is the length of the challenge string. Since generators of subgroups corresponding to all three
primes, (semi-functional) keys and ciphertexts can be generated. The main trick lies in generating the
Kend,1 components of the keys since they have α embedded in them and also in computing the ciphertext
terms corresponding to the randomiser s`∗ . Due to lack of space, the proof details are given in Appendix D.

5 Full Construction

The restrictions on BFE scheme confines the functionality support to a small subclass of regular languages.
It is possible to expand the supported class of languages via an extension of BFE . The extension provides
the ability to deal with multiple occurrences of symbols both in the input string and transitions of the
automata. The number of occurrences is however bounded at setup time. As a result, the sizes of public
parameters, keys and ciphertexts increase by a factor proportional to these bounds.

We shall first define some notation. For a matrix A ∈ ZNm×n, A[i, j] denotes the entry in i-th row and
j-column of A. Let w = w1 . . .w` be a string over the alphabet Σ and T be the (ordered) set of transitions
of an automaton M.

11



• smax: bound on the number of occurrences of each symbol in a string

• tmax: the maximum number of transitions on any particular symbol

• nc[w, i]: contains k if position i is the k-occurrence of the symbol wi in w

• nk[σ, t]: contains k if t is the k-transition on σ

The extended construction FFE = (FFE .Setup,FFE .Encrypt,FFE .KeyGen,FFE .Decrypt) is described below.

FFE .Setup(Σ, κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to the security

parameter κ. Choose elements P,Hstart,Hend
U←Ð Gp1 , P3

U←Ð Gp3 , α
U←Ð ZN and

Hσ,Uσ
U←Ð (ZN)smax×tmax for all σ ∈ Σ.

The public parameters and master secret are given by

PP : (Gpub,Σ, P,Hstart,Hend,Hλ, (Hσ,Uσ)σ∈Σ, e(P,P )α),
MSK: (−αP,P3).

FFE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ciphertext

elements as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,0 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,0 = siP, (Ci,j = siHwi[nc[w, i], j] + si−1Uwi[nc[w, i], j])j∈[1,tmax],

Cend,1 = C`,0 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,0,Ci,j)i∈[1,`],j∈[1,tmax],Cend,1,Cend,2,w).

FFE .KeyGen(MSK,M = (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements rstart,

for all t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2,
(Rt,1,Rt,2,Rt,3)t∈T and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements of the
key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,2 = rtP +Rt,2,

(Kt,1,i = −Dx + rtUσ[i,nk[σ, t]] +Rt,1, Kt,3,i =Dy + rtHσ[i,nk[σ, t]] +Rt,3)i∈[1,smax],

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).
FFE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a sequence
of transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption consists of several
stages of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,1,Kstart,2)−1

= e(P,D0)s0

12



Then compute intermediate values Ai (for i = 1, . . . , `) as follows. Pick Ci,nk[wi,ti] and
Kti,1,nc[wi,i],Kti,3,nc[wi,i]. Such components exist and are unique.

Ai = Ai−1 ⋅ e(Ci−1,0,Kti,1,nc[wi,i])e(Ci,nk[wi,ti],Kti,2)−1e(Ci,0,Kti,3,nc[wi,i])
= e(P,Dxi)si

With any other pair of Ci,j and Kti,1,k,Kti,3,k it is not possible to cancel out e(P,Dxi−1)si−1 . The last
intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )αs`e(Df , P )s` .

Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A−1
`+1 ⋅A`.

Discussion. The construction essentially converts a DFA and string to a basic form by mapping each
occurrence of a symbol σ to a different representation in the group. Consider a ciphertext for string w
and automaton M. In the full FE scheme, w and M are encoded so that there exists a unique sequence
of decryption operations that result in the correct message if M accepts w. Given this, correctness of
decryption follows. While arguing about security, the existence of smax × tmax distinct representations for
a symbol σ ensures that the semi-functional components for all occurrences of σ are independent of each
other. Furthermore, the same rerandomisation technique can be employed to ensure proper distribution of
keys and ciphertexts in the proof.

6 Conclusion

Using the dual system technique, we have obtained a DFA-based functional encryption scheme that has
adaptive security under static assumptions in composite order pairings. The cost of achieving this is an
increase in the sizes of the ciphertext and keys along with bounded functionality. It would be interesting
to obtain adaptive security without restricting the number of occurrences of symbols in either the strings
or transitions of automata. Another natural question is whether selective security can be achieved using
static assumptions but without imposing the restrictions on the system.

Acknowledgement

We would like to thank Tapas Pandit and Prof. Palash Sarkar for helpful discussions and suggestions.

References

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society,
2007.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, 2012.

13



[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sab-
rina De Capitani di Vimercati, editors, ACM Conference on Computer and Communications
Security, pages 89–98. ACM, 2006.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2 edition, 2000.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT, volume
4965 of Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 62–91. Springer, 2010.

[LW12] Allison Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving
full security through selective techniques. In Safavi-Naini and Canetti [SNC12], pages 180–198.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM Conference on Computer and Communications Security, pages 195–
203. ACM, 2007.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-
products. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer
Science, pages 214–231. Springer, 2009.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 191–208. Springer, 2010.

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner-
product encryption. Cryptology ePrint Archive, Report 2011/543, 2011. http://eprint.iacr.
org/.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and
attribute-based encryption. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, vol-
ume 7658 of Lecture Notes in Computer Science, pages 349–366. Springer, 2012.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer,
2005.

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In
Automata, Languages and Programming, pages 560–578, 2008.

14



[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer
Science, pages 619–636. Springer, 2009.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages
53–70. Springer, 2011.

[Wat12] Brent Waters. Functional encryption for regular languages. In Safavi-Naini and Canetti
[SNC12], pages 218–235.

A DFA-based Functional Encryption

The definition of DFA-based functional encryption described in [Wat12] is provided here.

A.1 Definition

A functional encryption (FE) scheme over DFA’s consists of four probabilistic algorithms - Setup, KeyGen,
Encrypt and Decrypt.

• Setup: takes as input a security parameter κ, generates the public parameters PP and the master
secret MSK based on λ and the input alphabet Σ. Σ is part of PP.

• KeyGen: receives the description of a DFA M and master secret MSK and outputs a secret key
SKM corresponding to M.

• Encrypt: inputs a message m, a string w = w1w2⋯w` over Σ and returns a ciphertext C (which also
contains w).

• Decrypt: inputs a ciphertext C and secret key SKM. If Accept(M,w) = 1, the algorithm returns m;
otherwise, returns � indicating failure.

This is a key-policy functional encryption scheme. One can also define a ciphertext-policy scheme but we
do not consider it since the techniques will be more or less similar.

A.2 Security

Security is modelled based on the notion of indistinguishability of ciphertexts under a chosen plaintext
attack (CPA). It is defined via a game ind-cpa between an adversary A and a challenger consisting of
several stages.

Setup: The challenger runs the Setup algorithm of the FE scheme and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on automaton M, the
challenger runs the KeyGen algorithm of the FE scheme and returns its output SKM to A .

Challenge: A provides two messages pairs m0,m1 and a challenge string w∗ = w∗
1w

∗
2⋯w∗

` subject to the
condition that A does not request keys for any automaton that accepts w∗ in Phase 1 or Phase 2. The

challenger then picks β
U←Ð {0,1} and returns an encryption C∗ of mβ under the string w∗ to A .

15



Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that none of the
automata that are queried accept w∗.

Guess: A outputs a bit β′.

In the selective model, there is a stage Initialise before Setup in which the adversary commits to the
input alphabet Σ and the challenge string w∗. Call this game ind-s-cpa.

If β = β′, then A wins the game. The advantage of A in breaking the security of the FE scheme in
the ind-cpa game is given by

Advind-cpa
FE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The FE scheme is said to be (ε, t, ν)-IND-STR-CPA secure1 (secure under chosen plaintext attack) if for
every adversary A making at most ν queries and whose running time is t, it holds that AdvIND-STR-CPA

FE (A ) ≤
ε.

B Algorithms for Rerandomisation

We describe the rerandomisation algorithms here. Except for the Gp3 components of the keys the algorithms
are identical to those in [Wat12].

ReRandCT(C): This algorithm picks s′0, s
′
1, . . . , s

′
`

U←Ð ZN and modifies the ciphertext elements as shown
below.

Cm ← Cm ⋅ e(P,P )αs′` ,

Cstart,1 ← Cstart,1 + s′0P, Cstart,2 ← Cstart,2 + s′0Hstart,

For i = 1, . . . , `,
Ci,1 ← Ci,2 + s′iP, Ci,2 ← Ci,2 + s′iHwi + s′i−1P1,

Cend,1 ← Cend,1 + s′`P, Cend,2 ← Cend,2 + s′`Hend.

The new randomisers for the ciphertext will be si + s′i (i = 0, . . . , `). The string w remains the same.

ReRandK(SKM): Choose uniform and independent random scalars r′start, for all t ∈ T , r′t and r′end from

ZN . Also choose D′
x

U←Ð Gp1 for every qx ∈ Q and R′
start,1,R

′
start,2,{R′

t,1,R
′
t,2,R

′
t,3}t∈T ,R′

end,1,R
′
end,2

U←Ð Gp3 .
Reconstruct components of the key as follows.

Kstart,1 ←Kstart,1 +D′
0 + r′startHstart +R′

start,1, Kstart,2 ←Kstart,2 + r′startP +R′
start,2

For t ∈ T with t = (qx, qy, σ) and σ ∈ Σ ,
Kt,1 ←Kt,1 −D′

x + r′tP1 +R′
t,1, Kt,2 ←Kt,2 + r′tP +R′

t,2, Kt,3 ←Kt,3 +D′
y + r′tHσ +R′

t,3,

Kend,1 ←Kend,1 +D′
f + r′endHend +R′

end,1 ,

Kend,2 ←Kend,2 + r′endP +R′
end,2.

1The abbreviation “STR” stands for string. “sSTR” denotes that the challenge string is chosen selectively.

16



C Proof of Lemma 4.4

Let (Gpub, P,P3,X +P2,X2+X3, T ) be the instance of DSG2 that B has to solve i.e., decide whether θ2 = 0
or θ2 ∈U Zp3 where T = θP + θ2P2 + θ3P3.

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the uniform
distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and Uσ = vu,σP .
PP is given to A and B keeps MSK.

Key extraction queries: For key extraction queries onMi for i ≠ k, B answers the query as in proof of
Lemma 4.3. The secret key for Mk is generated as follows.

For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T , µ1, µ2

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvσ)T ,

Kend,1 = −αP + (df + r′endvend)T + µ1(X2 +X3), Kend,2 = r′endT + µ2(X2 +X3).
Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns ReRandK(SKMk

) to A . If
θ2 ∈U Gp2 , then SKMk

is Type-1 semi-functional; otherwise it is a Type-2 semi-functional key. Both
τend and µend are set to random quantities in either cases to prevent B from generating a nominally
semi-functional ciphertext to test SKMk

’s type of semi-functionality. The randomisers for the Type-1
semi-functional components are set as: µstart = r′startθ2, µt = r′tθ2 for all t ∈ T ; πstart = vstart, πu,σ = vu,σ
and πh,σ = vσ for each σ ∈ Σ. Furthermore, since the key is rerandomised, its Gp1 and Gp3 components are
properly distributed.

The Challenge and Guess phases are identical to Lemma 4.3. If the adversary wins (β ≠ β′), then B
returns 1; otherwise it returns 0. Therefore, we have ε2 ≥ ∣Pr[Ek,0] −Pr[Ek,1]∣.

D Proof of Lemma 4.5

Given an instance (Gpub, P,P2, P3, αP +X2, sP + Y2, T ) of DSG3, B has to decide whether T = e(P,P )αs
or T ∈U GT . The game is simulated as follows.

Setup: Randomisers vstart, vend,{vu,σ, vh,σ}σ∈Σ are sampled uniformly and independently from ZN . Then
set Hstart = vstartP , Hend = vendP , for all σ ∈ Σ, Hσ = vh,σP , Uσ = vu,σP and e(P,P )α = e(αP +X2, P ). The
public parameters PP are provided to A . Note that the simulator does not know the master secret key.

Key extraction queries: Since αP is masked with an element of Gp2 , B can generate only Type-2
semi-functional keys. For a query on an automaton M = (Q,Σ, q0, qf , δ), a key is constructed as follows.
Sample Dx ∈U Gp1 for all qx ∈ Q. Construct the components Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T just
as in the BFE .KeyGen algorithm. The master secret α is embedded only the term Kend,1 and the main
trick lies in generating this component. The encoding of α in Gp1 is masked by Gp2-component and

hence B cannot prevent Kend,1 from having semi-functional components. B chooses µend, rend
U←Ð ZN ,

Rend,1,Rend,2
U←Ð Gp3 , Z2

U←Ð Gp2 and computes

Kend,1 = −(αP +X2) +Df + rendHend +Rend,1 +Z2, Kend,2 = rendP +Rend,2 + µendP2

17



implicitly setting τendP2 = X2 + Z2. Scalars µend and Z2 are freshly chosen for each key. Therefore, the
values of τend for the keys remain properly distributed.

Challenge: B receives two messages m0,m1 along with a string w∗ = w∗
1⋯w∗

`∗ from A ; chooses β
U←Ð {0,1}

and constructs a ciphertext for mβ and w∗ as described below.

s0, . . . , s`∗−1, γ0, . . . , γ`∗−1
U←Ð ZN ;

πstart
U←Ð ZN , πu,σ

U←Ð ZN for all σ ∈ Σ;

for all σ ∈ Σ ∖ {w∗
`∗}, πh,σ

U←Ð ZN , set πh,w∗
`∗
= vh,w∗

`∗
,

Cm =mβ ⋅ T,
C0,1 = s0P + γ0P2, Cstart,2 = s0Hstart + γ0πstartP2,

For i = 1, . . . , `∗ − 1,
Ci,1 = siP + γiP2, Ci,2 = siHwi + si−1Uσ + (γiπwi + γi−1πu,wi)P2,

C`∗,1 = sP + Y2, C`∗,2 = vw∗
`∗
(sP + Y2) + si−1Uσ + γi−1πu,wiP2,

Cend,1 = C`∗,1, Cend,2 = vend(sP + Y2).
implicitly setting s`∗ = s, γ`∗P2 = Y2 and πendP2 = vendY2. The values of vh,w∗

`∗
and vend modulo p2 are

hidden from the adversary and hence πh,w∗
`∗
, πend are uniformly and independently distributed in A ’s view.

B returns C∗ consisting of the above components to A .

Guess: A makes its guess β′ of β.

If T = e(P,P )αs then we have Cm = mβ ⋅ T = mβ ⋅ e(P,P )αs`∗ making C∗ a semi-functional encryption
of mβ and thus playing Gameν,1. Otherwise T ∈U GT and (Cm = mβ ⋅ T ) ∈U GT . In this case, C∗ will be
a semi-functional encryption of a random message and B simulates Gamefinal. If the adversary wins the
game then B returns 1; otherwise it returns 0. We therefore have,

ε3 ≥ AdvDSG3
G (B) = ∣Pr[B returns 1 ∣ T = e(P,P )αs] −Pr[B returns 1 ∣ T ∈U GT ]∣

= ∣Pr[A wins ∣ T = e(P,P )αs] −Pr[A wins ∣ T ∈U GT ]∣
= ∣Pr[A wins in Gameν,1] −Pr[A wins in Gamefinal]∣
= ∣Pr[Eν,1] −Pr[Efinal]∣

as required.

18


