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Abstract. In this note we describe some general-purpose, high-efficiency
elliptic curves tailored for security levels beyond 2'28. For completeness,
we also include legacy-level curves at standard security levels. The choice
of curves was made to facilitate state-of-the-art implementation tech-
niques.

1 Introduction

General-purpose elliptic curves are necessary to attain high-efficiency implemen-
tations of the most common cryptographic protocols like asymmetric encryption
and plain digital signatures (but setting aside less conventional application like
identity-based encryption). The standard NIST curves [14], though fairly effi-
cient overall, arguably no longer represent the state of the art in the area [4,7].

More efficient general-purpose curves have been recently proposed to address
this situation [3,4,8], but for the 2128 security level at most, which corresponds
to the expected security level of the standard NIST curve P-256 (or its binary
counterpart, B-283). This is the case of Curve25519 [3] and Curvell74 [4]. How-
ever, while there is reason to look for higher security curves [15], no similar
curves seem to have been proposed in the literature for higher security levels?,
matching the presumed levels of the standard NIST curves P-384 and P-521, as
well as their binary counterparts, B-409 and B-571.

In this note we address this need, adopting the same settings as Curve25519
and Curvell74, respectively. Specifically, we describe Elligator (1 and 2) curves
with target security levels roughly matching the presumed levels of all standard
NIST curves.

2 Curve choice

The curves Curve25519 and Curvel174 have been engineered to facilitate simple,
efficient and secure implementation of general-purpose elliptic curve cryptosys-

* Supported by CNPq research productivity grant 306935,/2012-0.
3 However, since the initial version of this note was made public the SafeCurves site [5]
has appeared with an extensive treatment of the subject.



tems, with impressive results [8]. On these grounds, it makes sense to look for
similar curves at higher security levels. At the same time, one can take the oppor-
tunity to provide curves matching the expected security levels of other standard
NIST curves, the most prominent case being P-224 (and its binary counterpart,
B-233), corresponding approximately to the security level of 3DES [12].

Curve25519 [3] is an Elligator type 2 curve with the following properties
(among others):

— It is a Montgomery curve [13] over a large prime field Fp;

— The prime p has the form p = 2™ — § where 0 < § < [lg(p)] = m;

— The prime p satisfies p = 5 (mod 8), hence square root computation in F,
can be done with the Atkin method [2];

— The value { = 2 is a quadratic non-residue in F,, and hence can used to
define a non-trivial quadratic twist of an elliptic curve over Fp;

— The curve equation is E : y2 = 23 + Az? + 2 and the twist equation is
E':v? = ud + 2Au? + 4u, where |(A — 2)/4| > 0 is as small as possible (so
as to improve arithmetic performance), and A% — 4 is not a square (so that
the curve has a unique point of order 2 and the Montgomery ladder yields a
complete addition law).

— The curve order has the form n = 8 where r > 2™~3 is prime;

— The order of the non-trivial quadratic twist of the curve has the form n’ = 4’
where 7/ > 2m~3 is prime, with |r'| = |r| + 1;

Curvell74 [4] is an Elligator type 1 curve with the following properties
(among others):

— It is an Edwards curve [6,10] over a large prime field F,;

— The prime p has the form p = 2™ — § where 0 < § < [lg(p)] = m;

— The prime p satisfies p = 3 (mod 4), hence square root computation in F,
can be done with the Cippolla-Lehmer method [11];

— The curve equation is E : 22 + y? = 1 + dz?y? and the equation of a non-
trivial quadratic twist of F is E' : u? + v? = 1 + (1/d)u?v?, where |d| > 1 is
as small as possible (so as to improve arithmetic performance);

— The curve order has the form n = 4r where r > 2™3 is prime;

— The order of the non-trivial quadratic twist of the curve has the form n’ = 47’
where 7/ > 2™73 is prime, with |r/| = |r|;

Besides, for the most part the bit sizes m were chosen to be the largest
values strictly smaller than the commonplace sizes {224, 256, 384,512} such that
a prime p = 2™ — § as required above exists (except for previously existing
Curvell74 which was defined with a slightly smaller bit size, namely, m = 251
rather than m = 254).

3 The curves

We now list curves for several security levels, up to the level roughly comparable
to the presumed security level of the NIST curves P-521 and B-571. The primes



have the general form p = 2™ — § for § as small as possible. While it would be
desirable that § < 32 (see [4]), this is not always possible. Yet, insisting that
0 < lgp increases the likeliness that any attack advantage this setting might
cause is negligible (exponentially small).

The naming convention we adopt follows the pattern “M-m” for the Mont-
gomery curve uniquely defined by the conditions in Section 2 over an m-bit prime
field, and “E-m” for the similarly unique Edwards curve. This is reminiscent of
the NIST naming convention for curves. The literature [4,7] suggests two other
naming conventions, namely, “Curvemd” for the uniquely defined Montgomery
curve over Faom_5 (where ¢ is, in turn, uniquely defined by m), and “Curve|d|”
for an Edwards curve with coefficient d (in this case, the underlying field is not
apparent in the name). So, for instance, M-383 could also be called Curve383187,
and E-521 could also be called Curve376014.

Table 1 contains curves in the Montgomery model, while Table 2 contains
curves in the Edwards model. For completeness, we include Curve25519 and
Curvell74 (which, by definition, satisfy the requirements in Section 2, but are la-
belled here as originally published). The prime group order is r. For the Edwards
(Elligator 1) curves, the suggested base point of order r is given by its y coordi-
nate while for Montgomery (Elligator 2) curves, is given by its z-coordinate. In
each case, the given coordinate is as small as possible when viewed as a natural
number. The ‘p-sec’ column indicates the security level as measured by the cost
of a Pollard p attack.

Table 1. Montgomery curves

curve D A p-sec T r

M-221 2221 _ 3 117050 2'9%-% 4 42124916667422874679167211073468\
21679268950819803963049443350528\
91

Curve25519 22°° — 19 486662 2'2°® 9 72370055773322622139731865630429\

94240857116359379907606001950938\
285454250989

M-383 2383 _ 187 2065150 21898 12 24626253872746549507674400062589\
75862817483704404090416746934574\
04128898423468088300832718308361\
5266784870011007447

M-511 25" — 187 530438 27538 5 83798799562141231872337656238786\
53829674603637870245861077225902\
32610251879607410804876779383055\
50876214105925849744893498705250\
8775626162460930737942299

A proof-of-concept implementation of all these curves is available as part of
the RELIC library [1]. Work on a production-quality implementation is ongoing.
See [5] for more properties of these and other equally safe curves.



Table 2. Edwards curves

curve p d p-sec y r

E-222  2%22 117 160102 2'99® 4 16849966666969149871666884429387\
26735569737456760058294185521417\
407

Curvell74 2%'—9 1174 2'**3 4 90462569716653277674664832038037\

42800923390352794954740234892617\
73642975601

E-382 2382 _ 105 —67254 21898 13 24626253872746549507674400062589\
75862817483704404090416745738034)\
55766305456464917126265932668324\
4604346084081047321

E-521 2521 _ 1 —376014 2293 6 17161994150326524287454751997703\
48304317358825035826352348615864\
79638579584941367547587665166365\
78496366936590652341426043192829\
48702542317993421293670108523

4 Conclusion

We have described general-purpose high-efficiency curves roughly matching the
expected security of the standard NIST curves P-384 and P-521, and as a bonus,
also curves roughly matching the expected security of the standard NIST curve
P-224. All curves provided herein follow the Elligator (1 and 2) strategy, which is
arguably the state of the art for the design of cryptographically-oriented elliptic
curves.

This is work in progress. Better curves may be suggested as they become
available.
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A Legacy-level curves

Under certain circumstances, typically on legacy systems, where one needs a
lower but still reasonable security level, or must adhere to layout constraints of
existing applications, or simply cannot afford higher-security curves for lack of
computational resources (as may be the case on certain very constrained plat-
forms typical of the Internet of Things), curves matching the expected security
level of (say) the NIST curves B-163 or P-192 may be useful.



Though the primary purpose of this note is to suggest some curves at high
security levels, for completeness we list a few possible alternatives for those
legacy-level curves on Tables 3 and 4. It is noteworthy to mention that one
of the examples we provide here was inspired by the Telex system [16], where
arithmetic is performed over the field F, with p = 2168 — 28 — 1. Although this
prime does not strictly satisfy the criterion 2™ — p < m, it fails to do so only
slightly, and it has the merit of enabling very efficient modular reduction, so we
relax the criterion to 2™ — p < 2m in that case.

Table 3. Legacy-level Montgomery curves

curve P A p-sec T r

M-159 2'%% —91 197782 27"% 3 01343852333181432387730411159116\
468190437625759

M-191 2'9' —19 —281742 2938 11 39231885846166754773973683895833\
3908942434975704595311597

Table 4. Legacy-level Edwards curves

curve P d p-secy r

E-157 2'%7 — 133 —42000 2773 5 45671926166590716193865246478592\
509883108923719

E-168 2'% —257 715 2%%% 3 93536104789177786765035835538253\
283032607241942227

E-191 2'9° — 33 —15584 2938 3 39231885846166754773973683896145\
3290575684318090919900773

B Verifying the curves

The following Magma [9] script checks that the curves presented in this note
do indeed satisfy the requirements in Section 2, except the condition that the
coefficients A and d in the curve equations F : 3% = 234+ Az?+z and E : 22442 =
1+ dz?y? are as small as possible in absolute integer value. Extending the script
so as to check this last condition is straightforward, but the processing time can
be very long (several weeks for the highest security levels, if run sequentially).
Independent verification has been kindly provided by Samuel Neves in Sage
(script at http://eden.dei.uc.pt/~sneves/647.sage), and by Mike Scott in
C/C++ using the Miracl™ library.

procedure MontyGenBasept(m, A)
P = 27m;



repeat

p := PreviousPrime(p : Proof := false);
until p mod 8 eq 5;
F := GF(p);
A := F!A;
E := EllipticCurve([0, A, 0, 1, 01);
n := #E;
r := n div 8;

assert n mod 8 eq O and IsProbablePrime(r);

// find generator:

x := F!0;
repeat
repeat
X +:= F!1;

until IsSquare(x~3 + A*x"2 + x);
G := El[x, Sqrt(x~3 + A*xx"2 + x)];
until not IsZero(2*G) and not IsZero(4*G) and not IsZero(8*G)
and not IsZero(r*G) and not IsZero(2*r*G) and not IsZero (4*rxG)
and IsZero(n*G) ;
"Monty Generator:", G;

// find base point:

x := F!10;
repeat
repeat
x +:= Fl1;

until IsSquare(x~3 + A*x"2 + x);

P := El[x, Sqrt(x~3 + A*x"2 + x)];
until not IsZero(8*P) and IsZero(r*P);
"Monty Base Point:", P;

end procedure;

function MontyCurve(m, A)
P = 27m;
repeat
p := PreviousPrime(p : Proof := false);
until p mod 8 eq 5;
delta := 2°m - p;
if delta gt m then
return false;

end if;
F := GF(p);
sgnA := (A 1t 0) select "- "*Sprint(-A) else "+ "*Sprint(A);

z := F!12;



assert not IsSquare(z);

if IsSquare(F!A - 2) or IsSquare(F!A"2 - 4) then
return false;

end if;

// NB: now (A - 2)/(A + 2) is not a square either

// check curve y~2 = x~3 + A*x"2 + x:

ok, E := IsEllipticCurve([0, F!'A, 0, 1, 0]);

if not ok then
return false;

end if;

n := #E;

if (n mod 8 ne 0) or not IsProbablePrime(n div 8) then
return false;

end if;

r := n div 8;

if r 1t 2°(m - 3) then
return false;

end if;

// check twist v™2 = u~3 + A*xz*u~2 + z~2*u:

ok, Et := IsEllipticCurve([0, A*z, 0, z~2, 0]);

if not ok then
return false;

end if;

nt := #Et;

if (nt mod 4 ne 0) or not IsProbablePrime(nt div 4) then
return false;

end if;

rt := nt div 4;

if rt 1t 2°(m - 3) then
return false;

end if;

t :=p+1-n;

if nt ne p + 1 + t then
return false;

end if;

r :=n div 8; // "|lrl =", Round(Log(2, 1));

sec := Log(2, Sqrt(Pi(RealField())*r/4));

"Good Elligator 2 curve: y~2 = x"3 " * sgnA * "*x"2 + x"

"over GF(2~" * Sprint(m) * " - " x Sprint(delta) x*")",
"at sec level 2°" * Sprint(sec),
" with r =", r;

assert IsProbablePrime(r);
return true;
end function;



procedure MontyTests()

m := 159; A := 197782;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;
m := 191; A := -281742;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;
m := 221; A := 117050;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;

m := 255; A := 486662;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;
m := 383; A := 2065150;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;
m := 511; A := 530438;
if MontyCurve(m, A) then
MontyGenBasept (m, A);
else
"LOGIC ERROR!";
end if;

n n

end procedure;



MontyTests () ;

procedure EddieGenBasept(m, d)

P = 27m;
repeat
p := PreviousPrime(p : Proof := false);
until p mod 4 eq 3;
F := GF(p);
d := Fld;
E := EllipticCurve([0, 2%d + 2, 0, (1 - d)~2, 01);
n := #E;
r := n div 4;

assert n mod 4 eq O and IsProbablePrime(r);

// find generator:

y := F10;
repeat
repeat
y +:= F!1;

U:=1-dx1Q - /@ +y);
ok, V := IsSquare(U~3 + (2xd + 2)*U~2 + (1 - d)~2*U);
until ok;
G := E![U, V];
until not IsZero(2*G) and not IsZero(4*G)
and not IsZero(r*G) and not IsZero(2*rxG)
and IsZero(n*G);
x := 2%U/V;
assert x72 + y"2 eq 1 + d*x"2%xy~2;
"Eddie Generator: (", x, ",", y, ")";

// find base point:

y := F10;
repeat
repeat
y +:= F!1;

U:=({1-dx1Q - /L +y);
ok, V := IsSquare(U~3 + (2xd + 2)*U~2 + (1 - d)~2+U);
until ok;
P := E![U, V];
until not IsZero(4*P) and IsZero(r*P);
x := 2xU/V;
assert x72 + y~2 eq 1 + d*x"2%y"2;
"Eddie Base Point: (", x, ",", y, ")";
end procedure;



function EddieCurve(m, d)
P = 27m;
repeat
p := PreviousPrime(p);
until p mod 4 eq 3;
delta := 2°m - p;
mO := (m ne 168) select m else 2*m; // see discussion on Telex
if delta gt mO then
return false;

end if;

F := GF(p);

sgnd := (d 1t 0) select "- "#Sprint(-d) else "+ "*Sprint(d);
d := F!d;

if IsSquare(d) /* not complete Edwards */ then
return false;
end if;
if IsSquare(l - d) /* trivial quad twist */ then
return false;
end if;
assert IsSquare(-d);
u := Sqrt(-d);
if not IsSquare(2*(u - 1)/(u + 1)) /* injective map undefined */ then
return false;
end if;
// check curve x~2 + y"2 = 1 + dx~2y~2,
// or equivalently y~2 = x~3 + (2d + 2) x"2 + (1 - d)"2 x:
ok, E := IsEllipticCurve([0, (2*d + 2), 0, (1 - d)~2, 0]);
if not ok then
return false;
end if;
n := SEA(E : AbortLevel := 2, MaxSmooth := 4);
if (n mod 4 ne 0) or not IsProbablePrime(n div 4) then
return false;
end if;
r := n div 4;
if r 1t 2°(m - 3) then
return false;
end if;
// check twist x"2 + y"2 = 1 + (1/d)x"2y"2,
// or equivalently v~2 = u~3 + 2(1 + d)/(1 - d)u~2 + u:
ok, Et := IsEllipticCurve([0, 2*%(1 + d)/(1 - d), 0, 1, 01);
if not ok then
return false;
end if;



nt := #Et;
if (nt mod 4 ne 0) or not IsProbablePrime(nt div 4) then
return false;
end if;
rt := nt div 4;
if rt 1t 2°(m - 3) then
return false;
end if;
t :=p+1-n;
if nt ne p + 1 + t then
return false;
end if;
r :=n div 4; // "lr| =", Round(Log(2, r));
sec := Log(2, Sqrt(Pi(RealField())*r/4));
"Good Elligator 1 curve: x72 + y~2 = 1 " * sgnd * "*x"2xy~2",
"over GF(2~" * Sprint(m) * " - "x Sprint(delta) * ")",
"at sec level 2°" * Sprint(sec),
" with r =", r;
assert IsProbablePrime(r);
return true;
end function;

procedure EddieTests()
m := 157; d := -42000;
if EddieCurve(m, d) then
EddieGenBasept(m, d);

else

"LOGIC ERROR!";
end if;
m := 168; d := -715;

if EddieCurve(m, d) then
EddieGenBasept (m, d);

else
"LOGIC ERROR!";
end if;
e — n ;
m := 190; d := -15584;

if EddieCurve(m, d) then
EddieGenBasept(m, d);
else
"LOGIC ERROR!";

end if;
n n




m := 222; d := 160102;
if EddieCurve(m, d) then
EddieGenBasept(m, d);

else

"LOGIC ERROR!";
end if;
m := 251; d := -1174;

if EddieCurve(m, d) then
EddieGenBasept(m, d);

else

"LOGIC ERROR!";
end if;
m := 382; d := -67254;

if EddieCurve(m, d) then
EddieGenBasept(m, d);
else
"LOGIC ERROR!";
end if;
m := 521; d := 376015;
if EddieCurve(m, d) then
EddieGenBasept(m, d);
else
"LOGIC ERROR!";
end if;

end procedure;

EddieTests();



