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Abstract. In January 2013, the Stribog hash function officially replaced GOST
R 34.11-94 as the new Russian cryptographic hash standard GOST R 34.11-2012.
Stribog is an AES-based primitive and is considered as an asymmetric reply to the
new SHA-3 selected by NIST. In this paper we investigate the structural integral
properties of reduced version of the Stribog compression function and its internal
permutation. Specifically, we present a forward and backward higher order integrals
that can be used to distinguish 4 and 3.5 rounds, respectively. Moreover, using the
start from the middle approach, we combine the two proposed integrals to get
6.5-round and 7.5-round distinguishers for the internal permutation and 6-round
and 7-round distinguishers for the compression function.
Keywords: Cryptanalysis, Hash functions, Start from the middle, Integral dis-
tinguisher, GOST R 34.11-2012, Stribog.

1 Introduction

The attacks by Wang et al. on MD5 [24] and SHA-1 [23] followed by the
SHA-3 competition [4] have led to a flurry in the area of hash function
cryptanalysis. Modern cryptanalytic approaches target both hash function
primitives and underlying ciphers or permutations. Internal components are
expected to provide certain properties and verifying their ideal behaviour is
important to evaluate the resistance of the hash function to distinguishing
attacks [3]. Particularly, the analysis of hash functions underlying block ci-
phers or permutations has resulted in new attack models for block ciphers,
e.g., known key [8]. Such model is due to the fact that there is no secret key
when block cipher based structures are used as the hash function building
blocks.

Stribog [1] has an output length of 512/256-bit. The compression func-
tion employs a 12-round AES-like cipher with 8× 8-byte internal state pre-
ceded with one round of nonlinear whitening of the chaining value. The
compression function operates in Miyaguchi-Preneel mode and is plugged
in Merkle-Damg̊ard domain extender with a finalization step [6]. Stribog
officially replaces the previous standard GOST R 34.11-94 which has been
theoretically broken in [15] and further cryptanalyzed in [14, 12].



In this work, we mainly focus on integral properties and their applications
in the known key setting to present the first known Integral distinguishers
for the Russian cryptographic hash standard compression function and its
internal permutation. We present a four round eighth order integral for the
forward direction and a three and a half round eighth order integral for the
backward direction, where both integrals are satisfied by 264 inputs. Finally,
we present a seven and a half round distinguisher for the internal permuta-
tion using 2120 middle inputs and six and seven round integral distinguishers
for the compression function that are satisfied by 264 and 2120 middle input
states, respectively.

The rest of the paper is organized as follows. In the next section, the specifi-
cation of the Stribog hash function along with the notation used throughout
the paper are provided. A brief overview of integral cryptanalysis is given
in Section 3. Afterwards, in Sections 4, we provide detailed description of
the integral patterns and the complexities of the distinguishers. Finally, the
paper is concluded in Section 5.

2 Specification of Stribog

Stribog outputs a 512 or 256-bit hash value and can process up to 2512-bit
message. The compression function iterates over 12 rounds of an AES-like
cipher with an 8×8 byte internal state and a final round of key mixing. The
compression function operates in Miyaguchi-Preneel mode and is plugged
in Merkle-Damg̊ard domain extender with a finalization step. The input

Fig. 1. Stribog’s compression function gN

message M is padded into a multiple of 512 bits by appending one followed
by zeros. Given M = mn‖..‖m1‖m0, the compression function gN is fed with
three inputs: the chaining value hi−1, a message block mi−1, and the block



size counter Ni−1 = 512 × i. (see Figure 1). Let hi be a 512-bit chaining
variable. The first state is loaded with the initial value IV and assigned to
h0. The hash value of M is computed as follows:

hi ← gN(hi−1, mi−1, Ni−1) for i = 1, 2, .., n+ 1

hn+2 ← g0(hn+1, |M |, 0)

h(M)← g0(hn+2,
∑

(m0, .., mn), 0),

where h(M) is the hash value ofM . As depicted in Figure 1, the compression
function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-
bit chaining variable hi−1 and the block size counter Ni−1 and outputs a
512-bit key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in
addition to a finalization key mixing round. The cipher E takes a 512-bit
key K and a 512-bit message block m as a plaintext. As shown in Figure
2, it consists of two similar parallel flows for the state update and the
key scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8× 8 byte key state K. E updates an addi-
tional 8× 8 byte message state M . In one round, a state is updated by the
following sequence of transformations

– AddKey(X): XOR with either a round key, a constant, or a block size
counter (N)

– SubBytes (S): A nonlinear byte bijective mapping.

– Transposition (P): Byte permutation.

– LinearTransformation (L): Left multiplication by an MDS matrix in
GF(2). (The transformation updates state rows but it is equivalent to
the AES MixColumn transformation as mentioned in [6])



Initially, state K is loaded with the chaining value hi−1 and updated by KN

as follows:
k0 = L ◦ P ◦ S ◦X(Ni−1)

Now K contains the key k0 to be used by the cipher E. The message state
M is initially loaded with the message block m and E(k0, m) runs the key
scheduling function on state K to generate 12 round keys k1, k2, .., k12 as
follows:

ki = L ◦ P ◦ S ◦X(Ci−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X(ki−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0, m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN(hi−1, Ni−1), mi−1)⊕mi−1⊕hi−1 as
shown in Figure 1. For further details, the reader is referred to [1].

2.1 Notation

Let M be (8×8)-byte states denoting an input message state. The following
notation will be used throughout the paper:

– Mi: A state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where
U ∈ {X,S, P, L}.

– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.

3 Integral cryptanalysis

Integral cryptanalysis was proposed by Knudsen and Wagner in [9]. It is con-
sidered as a dual to differential cryptanalysis and is efficient against ciphers
that are resistant to differential attacks. While In differential cryptanalysis,
one considers the propagation of differences between pairs of values to ob-
tain probable differentials. Integral cryptanalysis considers the propagation
of sums of many values to obtain integrals. Integral cryptanalysis is specifi-
cally designed for block ciphers which use only bijective transformations. An
Integral is a set of values with a specific input and output sums. It covers
several rounds of the cipher and describes how the summation properties of
a set of input values would be affected by each successive round.



Integrals properties. For a given collection of (8×8)-byte states, a typical
integral uses m chosen input states, where m equals 28× (number of active
bytes). A state byte position can have any of the following properties:

– C: A constant byte, where all the bytes at this position in the m states
are equal. However, If two byte position at the same state have the C

property, that does not necessarily mean that they are equal.
– A: An active byte, where all the bytes at this position in the m states are

different. Specifically, if m = 28, then each byte in that position takes a
value between 0 and 28 − 1 only once.

– Ad: An active byte that participates in a dth-order integral. If a byte
takes 28 different values, then Ad means that this particular byte takes
all values exactly 28(d−1) times. A byte with the Ad property also satisfies
the A property.

– Ad
i : An active byte that participates in a dth-order integral within a group.

In particular, the string concatenation of all bytes with subscript i take
the 28d values exactly once. A byte with the Ad

i property satisfies both
the Ad and A property.

– S: The sum of all bytes at this position can be predicted. All the C, A,
Ad, and Ad

i properties satisfies the S property where their predictable
sum is zero. The S property is the weakest of them all as it reveals so
little about the relation between bytes at similar positions in a set of
states.

In order to be able to use an integral as a distinguisher, we expect that
at least one entry in the output set of values satisfies a predictable prop-
erty. Similar to truncated differentials [10] where one cares only if a specific
entry is active or not, in a given integral we care if an input has an A

property or not, i.e., a C property. As mentioned earlier, a typical integral
uses 28×# active bytes. An integral having one active byte is called a first or-
der integral and can be satisfied with 28 chosen inputs. On the other hand
considering an integral with a group of active bytes results in a higher order
integral. An example of a 3-round first order integral for Rijndeal is given in
the first proposal [9] by Knudsen and Wagner and is shown in Figure 3. To
further explain the idea of integral propagation through successive rounds,
we give a detailed example on the above Rijndeal first order integral. One
round applies 4 transformations on a state , which are byte substitution
(SB), row cyclic shifting (SR), linear transformation (MC), and Key addi-
tion (AK). Consider a set of 28 input states, such that they have different
values in M [0, 0] and equal values in the rest of the fifteen bytes. the trans-
formation SB keeps the same property because it is bijective so each byte



Fig. 3. A 3-round first order integral for Rijndael

is substituted with a unique one. Afterwards, the SR transformation affects
only the constant bytes keeping the state of the integral as is, then the MC
transformation mixes the active byte with three constant bytes in column 0
and results in a column full of active bytes. Finally, due to the fact that the
AK transformation XORs the same key with all the 256 state, the sum of all
states remain the same at the end of the round. As with differential propa-
gation, after two encryption rounds all the sixteen bytes in all the 256 states
become active. However, this integral can go one more encryption round and
we get a 256 states that sum to zero in all the sixteen byte positions.

Constructing a integral distinguisher can be viewed as a zero sum problem.
Accordingly, to estimate the expected complexity of having a random set
of states produce a distinguisher with a final balanced properties, the k-
sum problem [22] was introduced in [8] to model this complexity. The k-
sum problem finds a set of k inputs x1, ...., xk such

∑k
i=1 f(xi) = 0 for a

given permutation f . This problem has a time and memory complexity of
O(k2n/(1+log2k)), where n is the size of the state in bits. The k-sum problem
is the best generic known approach suited to this case to find the zero sum.
However, it does not provide the structured propertied of the distinguisher
as hashing rounds progress and has high memory requirements.

Before being formalized in [9], the idea of integral attacks has been explored
under several names [13]. It was first discovered during the analysis of the
square cipher [5] and named the square attack. Following this, the attack was
generalized into the saturation attack and was used to analyze the Twofish
cipher [11]. Ever since higher order integrals have been introduced in [9],
integral cryptanalysis has been used to anlyze block ciphers in the known
key setting [18, 8, 20] and to present distinguishers for the components of
hash functions.

Previous literature related to integral cryptanalysis of hash functions
include the analysis of Minier et al. of the three SHA-3 candidates; Hamsi-
256, LANE-256 and Grøstl-512 in [17] and recently Grøstl-512 in [19], and



Knudsen’s attack on whirlpool internal block cipher [7]. As for the Stribog
hash function, cryptanalytic results against its collision resistance have been
presented by AlTawy et al. in [2] and by Wang et al. in [25] . In the following
section, we present 6.5-round and 7.5-round integral distinguishers for the
internal permutation of the Stribog hash function, and 6-round and 7-round
integral distinguishers for the reduced Stribog compression function.

4 Distinguishers for the Stribog compression function

and internal permutation

The compression function of the Stribog hash function employs an AES-
based cipher. In Figure 4, we present an 8th order integral distinguisher for
the stribog internal cipher. In this distinguisher, the sum of all the bytes in
all the states after four rounds of encryption with the same key is equal zero.
To build this distinguisher, we consider 264 input states M1 that have equal

Fig. 4. An example for a forward 4-round 8th order integral for the Stribog permutation, where
S means the sum is equal zero

values in 56 bytes and differ in only eight bytes. These states differs in the
eight bytes in column three such that each state M1[col 3] (out of the 264)



state takes a value between 0 and 264−1 only once (the place of the column
is arbitrary). After four complete rounds of hashing forward (encryption) we
get 264 states M5, such that all the 64 bytes sum to zero.

The fact that integrals apply to primitives with bijective transformations
allows us to build integrals in the backward direction (decryption). In Figure
5, we present a backwards integral for three and a half rounds of Stribog
internal permutation. Although the third round integral properties are still
giving a lot of information about the integral, i.e., M2[col 0, 1, ..7] all have
grouped 8th order properties, we only get S property integral at statesMS

1 af-
ter applying the inverse linear transformation that processes the state row by
row. Consequently, extending the backwards integral to four rounds does not
preserve the S property because the nonlinear substitution transformation
does not preserve this property. To construct the backwards distinguisher,

Fig. 5. An example for a backward 3.5-round 8th order integral for the Stribog permutation,
where S means the sum is equal zero

we consider 264 input states M4 that have equal values in 56 bytes and differ
in only eight bytes. These states differs in the eight bytes in row three such
that each state row M [row 3] takes a value between 0 and 264−1 only once.
Following three and a half rounds of hashing backwards (decryption) we get
264 states, such that all the 64 bytes sum to zero.



In order to cover more rounds, we employ the start from the middle
approach that is used in both the boomerang [21] and rebound [16] attacks.
Using this approach we can combine the forward and backward integrals
over more than seven rounds of the Stribog internal permutation. In Figure
6, a 15th order integral 7.5-round distinguisher for the Stribog permutation
is given. Moreover, we can obtain an 8th order integral to distinguish 6.5
rounds of the internal permutation by using 264 middle states only. Such
integral is obtained by combining the forward integral shown in Figure 4
with only the two rounds that with states M4 from the backward integral
shown in Figure 5.

Fig. 6. An example for a 7.5-round 15th order integral for the Stribog internal permutation,
where S means the sum is equal zero

The seven and a half round integral is constructed by choosing a set of 2120

middle states M4 a structure that have equal values in 49 bytes and differ in
15 bytes. Each middle state different bytes takes a value between 0 and 2120−
1 only once. Finally, hashing forward for 4 rounds and backward for three and
a half rounds we obtain the seven and a half round integral distinguisher for
the Stribog internal permutation. Although both the forward and backward
integrals are 8th order integrals, One can perceive the set of 2120 middle
states used for the 15th order integral as a set of 256 sets of the forward
four round integral and also 256 sets of the backwards three and half round
integral.

Compression function distinguishers. A 7-round 15th distinguisher for
the reduced compression function can be obtained after applying the Miyaguchi-
Preneel feedforward and we would still have a fully balanced integral. The
compression function distinguisher is shown in Figure 7. Additionally, one
can construct a compression function integral distinguisher that covers 6



Fig. 7. An example for a 7-round 15th order integral for the Stribog compression function, where
S means the sum is equal zero

rounds which are equivalent to half of the compression function rounds us-
ing 264 middle states only (See Figure 8). This distinguisher is obtained by
combining the forward integral shown in Figure 4 with only the two rounds
that with states M4 from the backward integral shown in Figure 5.

5 Conclusion

In this paper, we have analyzed the integral properties of the compression
function and the internal permutation of the new Russian cryptographic
hashing standard GOST R 34.11-2012. As for the internal permutation, we
have proposed two integral distinguishers that cover 4 and 3.5 rounds in the
forward and backward directions, respectively. Moreover, we have shown that
using the start from the middle approach, we are able to combine these two
integrals to obtain a 7.5-round and 6.5-round distinguishers for the internal
permutation in the known-key setting that holds with probability 1 and are
satisfied by 2120 and 264 middle states, respectively. Finally, we have shown
that we can extend this approach based on the integral output properties
to the compression function after applying the feed forward to distinguish 6
and 7 rounds out of 12 rounds with probability 1 and 264 and 2120 middle
states, respectively.



Fig. 8. An example for a 6-round 8th order integral for the Stribog compression function, where
S means the sum is equal zero
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