Efficient Modular Arithmetic for SIMD Devices

Wilke Trei
Department of Mathematics, University of Oldenburg, 26111 Oldenburg, Germany, Phone: +494417983219

Abstract

This paper describes several new improvements of modular arithmetic and how to exploit
them in order to gain more efficient implementations of commonly used algorithms, especially
in cryptographic applications. We further present a new record for modular multiplications
per second on a single desktop computer as well as a new record for the ECM factoring
algorithm. This new results allow building personal computers which can handle more than
3 billion modular multiplications per second for a 192 bit module at moderate costs using
modern graphic cards.

Keywords: Fast Modular Arithmetic, Improvements of Montgomery Reduction, Graphics
Processing Unit, Factoring using Elliptic Curves

Introduction

Parallelization of computational intensive algorithms has always been an important task
in computational number theory.
This task becomes even more crucial during the last years, since the clock rate of ordinary
processors stagnates. Therefore the chip vendors begin to rise the numbers of computational
units on a single chip in order to keep the performance increases high.

Simultaneously graphic cards — which classically have many computational units but lack
of control flow units — got more and more programmable. With the introduction of NVidia’s
CUDA technology and later the OpenCL platform, graphic cards came more and more into
focus of programmers and security institutions, attracted by the high level of performance
these chips may offer.

for efficient use of these chips, it is important to keep the chip’s internal parallelization
high because these devices often adapts one single instruction to multiple data (SIMD). In
this paper we present some algorithmic improvements to optimize modular arithmetic for
this type of devices. This improvements are generic in the sense that they are neither specific
for one special number theoretical algorithm, nor are they limited to SIMD use only.

Email address: wilke.trei@uni-oldenburg.de (Wilke Trei)
October 4, 2012

In order to test our improvements in practice, we applied them to an highly efficient
version of Lenstra’s ECM algorithm. Our implementation breaks the old record in terms of
modular multiplication per second stated at Eurocrypt 2009 [1] and SHARKS 2009 [2].

We decided to use OpenCL for our implementation. Since OpenCL is a free standard and
widely available, it is easy to keep compatibility with many soft- and hardware platforms.
A detailed description of OpenCL can be found in Section 1. Descriptions of the ECM
algorithm and our implementation are given in Section 3.

1. Heterogeneous Computing using OpenCL

1.1. Overview

OpenCL is an open programming model and standard for heterogeneous hardware plat-
forms. Its first version was released in December 2008 by the Khronos Group [3] and is
especially designed for parallel computations. The latest version of the standard was re-
leased in November 2011 [4].

OpenCL is designed to offer a unified programming model for different hardware plat-
forms. Like the NVidia CUDA platform OpenCL can for instance be used to program
modern graphic cards. Furthermore it can be used to program ordinary x86 CPUs as well
as IBM Cell Processors and several special purpose hardware. At the end of this section we
give an overview on the commonly used OpenCL devices and its computational capabilities.
We will describe the OpenCL programming platform briefly. An elaborate description can
be found in [5].

The OpenCL platform model consists of two hardware components — a host and an
OpenCL device — that may or may not be the same. While the host must be a directly
programmable device like a CPU, the OpenCl device must not have a stand-alone function-
ality at all. An OpenCL device has its own memory location and offers several OpenCL
Compute Units (CU). A compute unit can be an SIMD (single instruction multiple data)
computational unit, thus compute units are the finest granularity for control flow in the
OpenCL platform.

A compute unit is furthermore the location of so called local memory that can be used to
share data among threads quickly. Every compute units may hold arbitrarily many stream
cores that are essentially arithmetical logical units (ALU). The stream core is the finest
granularity for independent work threads, i.e. every stream core gets at least one ore more
consecutive computational tasks.

A typical OpenCL program consists of two parts. The host code is an ordinary program
running on the host and is written in an arbitrary programming language. It binds the
OpenCL libraries, loads work data and launches the so called OpenCL kernel. An OpenCL
kernel is a program that can be executed on a stream core. It describes what operations are

2

applied to a single work item data. Kernels are usually executed in parallel on all available
stream cores of an entire OpenCL device processing many work threads simultaneously.

The work items are normally grouped into so called work groups. A single work group
is atomically executed on one compute unit and can use the local memory of this unit to
share data among its work items. To share data with all other threads the devices memory,
also called global memory, has to be used.

There are many different OpenCL devices on the market. The most commonly used are
graphic cards. Table 1 gives a short overview of some common OpenCL devices and their
computational capabilities.

Vendor Intel NVidia AMD
Device i7-3960X GTX 580 HD 5870
Type x86 CPU GPU GPU
Compute Units 6/ 12 16 20
Cores / CU 1 32 16
Clock (MHZ) 3300 1544 850
GFlops (SP) 1375 1581.1 2720
Global Memory configurable | 1-2 GB 1-2GB
Local Memory configurable | 32 kbyte 32 kbyte
Hardware Registers | 32 - 64 bit | 256 - 32 bit | 124 - 128 bit

Table 1: On Market OpenCL Devices

1.2. Limitations

The most common OpenCL devices are so called SIMD devices, i.e. devices that have
many computational cores working on data in parallel, but sharing the instructional data
and the control flow. There are several bottlenecks on this type of devices, especially on
graphic cards.

One major aspect are the so called race conditions. For example on a modern AMD
graphic card at least 64 computational threads have to follow the same execution path in-
dependent of their data. Thus in case of branches, that are not coherent among all glued
units, every occurring path of the branch has to be calculated sequentially while those units
not taking this path remain idle. [5, p. 135]

Another important aspect is the control of memory consumption and pressure on the
memory bus system. While a single CPU has very few registers but several megabyte cache
per compute core, a GPU has a lot of general purpose register space per thread available but
only a very small cache, if any. For example one has 124 registers of 128 bit size available
per thread for general purpose on a AMD Radeon HD 5000 series graphic card, but only

3

constant data is cached within the L2 cache. [6, appendix table D4]

There are two memory locations available for synchronizing work items. First of all
there is the so called local memory that offers fast access and high throughput. This local
memory is placed within the compute unit and has a size of roughly 16-32 kb depending on
the OpenCl device used. The local memory is designed to share data among all work items
that belong to the same work group, i.e. are running on the same compute unit.

The other memory usable for synchronization is the global memory and can be up to a
few gigabytes in size. This memory offers much slower access than local or register space,
but can share data among all work items. Furthermore this memory location is the place
where initial data and result data is stored. One crucial task in programming with OpenCl
is to control the use of the global memory carefully, because it is easily going to be the
bottleneck in any parallelized algorithm.

Even when all this limitations are considered, the programming itself is not as simple
as on ordinary processors due to more architectural differences. This affects especially
programming AMD graphic cards prior to the HD7000 series. On this cards every compute
core itself is a vector processor able to handle up to 4 or 5 low level operations in parallel.
For example on a HD5800 type card one core can perform a single integer multiplication and
up to 4 independent integer additions in parallel. The need of splinting a single task into
vectorized operations is one of the main difficulties when dealing with these graphic cards.
In order to make programming more similar to ordinary CPU programming or working with
NVidia graphic cards, AMD changed the architecture from the HD7000 series onwards to
compute a single operation per core per clock. [6, section 1.2]

2. Efficient Modular Arithmetic

2.1. Common Modular Arithmetic

For most computationally difficult number theoretic algorithms it is needed to chain a
lot of modular operations with fixed module.

Currently there exist two important algorithms for modular reduction using the fact
that the modulus is fixed in most cryptographic applications, namely the Barret and the
Montgomery reduction algorithms.

Algorithm 1. Barret Reduction [7]
Let a,m € N with a < m? and m be an odd integer of binary length n = [logy m]. Further-
more, let R =2" and p = L%QJ The following algorithm computes a (mod m).

1. Calculate r = a — [[%] %] m.

2. Return r —2m,r —m orr depending which is in the range [0, m].

4

Algorithm 2. Montgomery Reduction [8]

Let a,m € N with a < m?* and m be an odd integer of binary length n = [log, m].
Furthermore, let R = 2" and m' < R such that m-m/ = —1 (mod R).

The following algorithm computes R~* - a (mod m).

1. Calculate b= a-m' (mod R).
2. Calculate r = a+£'m over the integers.

3. If r > m return r — m, else return r.

While the Barret Reduction gives the desired result immediately, the Montgomery Re-
duction is usually used with a modified residue system modulo m. In this case every element
modulo m is multiplied by R. Using this transformation the modular addition is untouched
and the multiplication can be done by multiplying zR - y R over the integers and then exe-
cuting the Montgomery Reduction giving zyR.

Both reduction themselves cost at most 2M (n) if we define M (n) to be the cost of a
multiplication with input operands of size at most n in terms of arithmetic operations. This
claim holds, because the reduction modulo R and the division operations are only binary
representation cutoffs, and since p, R and m’ can be pre-calculated.

Although the Montgomery reduction consumes more addition operations than the Bar-
ret reduction, we choose the latter algorithm for our implementation of modular reduction.
This is especially due to the improvements provided in sections 2.2 and 2.3. For the rest of
this paper we assume the size of the modulus m is given by n = [log, m]|.

We recall that the cost of a modular multiplication is bounded by the cost of an ordinary
multiplication of integers. Thus, it is crucial to know the integer multiplication methods
when dealing with modular multiplication.

The classical schoolbook multiplication splits the input operands a, b of size n into two
parts a = a; - 2121 +ag, b = by - 2[31 4+ by where ay, ag, by, by are integers of size at most (51
Then it performs the entire multiplication by calculating four products of half-size integers

ab = a16122’—%-‘ + (a1b0 + a0b1)2[%] + aobo.

This operation is used recursively until the machine word size is reached, i.e. the multipli-
cations can be performed by the machine directly. The cost of this method is asymptotically

O(n?).

With growing n it becomes continuously harder to multiply in sufficiently short time.
The first approach to decrease the complexity of the integer multiplication was due to A.
Karatsuba and Y. Ofman [9]. Based on the idea of Karatsuba and Ofman and the use of
polynomial multiplication, A. Toom and S. Cook later developed a family of multiplication
algorithms. The runtime of those algorithms depends on the family’s parameter k and a

5

complexity class of O(n¢) can be obtained with e arbitrarily close to 1 for increasing k. The
algorithm makes use of the evaluation homomorphism and the possibility to interpolate a
polynomial of degree k when k + 1 points on its graph are known.

Algorithm 3. Toom-Cook-k [10]
Let a,b be integers of length n and k a fized positive integer. Assume the binary represen-
tation of a and b is split into k parts

k—1

a= Z a; 2% 1
=0
k—1

b= b 2Tl
=0

Then define the polynomaials

Ql

k1
= Zai 7' € Zl7]
=0

[y
1
™
&
&@
m
N
=

Obviously a = a(2'%!) and b = b(2'%¥") and due to the evaluation homomorphism ab =
(- b)(2I%1). Since the product polynomial of @ and b has degree 2k — 2, this product can be
calculated as follows.

1. Select 2k — 1 small distinct integers xq, ..., Tor_o and calculate the evaluations y; =
a(x;) and z; = b(x;).

2. For all 0 <1 < 2k — 1, calculate the products w; = y;2;.

3. If the evaluation points z; are selected carefully, one can interpolate @ - b from the
known points w; = (a - b)(x;) using linear algebra.

4. Fvaluate @-b at 2% to obtain the integer product of a and b.

Remark 1. Usually the first one of the evaluation points in Algorithm 3 is chosen to be 0,
s0 wy 18 essentially agby. Furthermore one often assumes that the polynomials are evaluated
at Top_o = 00, i.e. their highest coefficients are multiplied.

Using this notation the Toom-Cook-2 algorithm with evaluation at 0,1 and oo is exactly the
Karatsuba-Ofman algorithm.

Algorithm 3 divides a and b into k parts and needs 2k — 1 multiplications beside several
bit-shifts, multiplication with small constants etc. Thus the algorithm has an asymptotically
complexity of O(n'°&x2~1) and hence for every € > 1, a complexity of O(n¢) can be achieved
for sufficiently large k.

Due to the overhead in steps 1,3 and 4 the Toom-Cook algorithms are only practical in a
certain range. Usually after the inputs became 10-100 times the machine word size the arith-
metic switches from schoolbook multiplication to the Karatsuba-Ofman algorithm. Later
Toom-Cook-3 and Toom-Cook-4 become faster. Finally the Schonhage-Strassen algorithm
[11] — that has currently fastest asymptotically complexity of an multiplication algorithm,
i.e O(nlognloglogn) — is more often used than Toom-Cook-k for k exeeding 5.

2.2. Avoidance of Reduction Operations

As mentioned in the restrictions section it is necessary to avoid as many branches as
possible and to keep the existing ones short. For modular arithmetic there is at least one
barely avoidable branch dealing with reduction operations after over- or underflows.

On a SIMD device the branch times adds up, thus it does not matter if a reduction
operation is performed every times when possible. The correct result simply can be selected
afterwards. Therefore it is a common optimization to substitute the decision and reduction
operations after additions or subtractions by the following algorithms.

Algorithm 4. Reduction after Addition
Let a be an integer with 0 < a < 2m. Then the reduction of a (mod m) can be computed by

1. Calculate a’ = a — m.
2. If ' <0 return a, else return a'.

Algorithm 5. Reduction after Subtraction
Let a be an integer with —m < a < m. Then the reduction of a (mod m) can be computed

by

1. Calculate o’ = a+ m.
2. If a <0 return a, else return a'.

These algorithms have the advantage of very simple decisions depending only on a single
bit. Furthermore they are simple to implement using OpenCl, since OpenCl offers very
efficient selection operations and thus they cause only very short branches.

For our implementation we also use an observation on the Montgomery reduction that
helps avoiding reduction operations after every multiplication step.

Lemma 1. Reduction Capabilities of the Montgomery Reduction

Let m € N be an odd integer of binary length n = [logy, m]| and R, R’ being powers of 2 with
R > 4R = 2". Then the following observations can be made for the Montgomery Reduction
algorithm (redc) applied to R and m.

1. Let a,b be integers with a,b < 2R'. Then redc(a-b) < R'+m < 2R’.
2. Let a,b be integers with a,b < 3R'. Then redc(a -b) < 2R’

Proof. The product of @ and b is less or equal to 4R"* which is bounded by RR’. Due to the
function principle of the REDC algorithm this implies that
mN +ab RN + RR'

de(a, b) = =R + N.
redc(a, b) 7 < 7 +

The second claim can be proven analogously. O]

The Lemma allows to build multiplication chains without any intermediate reduction. In
order to use this improvement, we ensure in our implementation, that our total work width
is at least two bit wider than our modulus. That is why our OpenCL implementation of the
ECM algorithm is currently limited to use integers up to 224 instead of 22°°. Furthermore
we decided to allow representatives between 0 and 292 ™ +1 — 1 instead of 0 and m where m
is our modulus. Hence it may be required to add 2m instead of m after a subtraction. Since
after nearly every subtraction a multiplication follows, it causes no disadvantage to add the
precomputed 2m.

In this fashion we are able to limit the Reduction after Addition/Subtraction operations
from total 19 to 11 executions within our algorithms main loop.

2.3. Faster Truncated Multiplication

One key task of both reduction algorithms described in Section 2.1 is to use truncated
multiplications, i.e. to perform multiplications where only one half of the results binary
representation is needed for further use. In order to make the reduction operations as cheap
as possible, it is a natural attempt to use the fact that one half of the product may be
easier to calculate. For the lower half multiplication result there are well known methods to
compute it in less time than the time for the full product.

Algorithm 6.
Let a,b be integers of length n and let p be a parameter in the interval [0.5,1]. Then one
can calculate a - b (mod 2"™) the following way.
n—1 -1 [p(n—1)] ~Ip(n=1)]
1. Ifa= > a;2" and b = Z b;2" calculate Py = Y. a;2°- Y. b2
i=0 i=0 i=0
2. Calculate the lower halves of the products Py, Py satisfying

n—1 n—1-[p(n—1)]
i=[p(n—1)] =0
n—1—[p(n—1)] n—1

Po= > a2 > b2l

i=0 i=lp(n—1)]

3. Calculate the sum a-b= Py + (P, + P,)2/*"1 (mod 2/™1)
8

The case p = 1 in Algorithm 6 is exactly the case where the full product is calculated
during step 1 and afterwards is reduced mod 2". The case p = 0.5 is the average case when
dealing with the classical schoolbook multiplication. In this case Fy is equal to agby and
P, respectively P, are the products a1bg and agb;. The optimal choice of p depends on the
efficiency of the underlying multiplication algorithm.

Theorem 2. Optimal p for Algorithm 6 [12, Section 2]
Given a multiplication algorithm with complexity O(n®), o € |1,2]. Then the runtime S(n)
of Algorithm 6 is at most

S(n) = M(pn) +2S((1 — p)n) < C,M(n), with

. P
R Ty

(0}

The minimum value of C, is reached at
~ =1
p = 1 — 2(171 .

It is easy to see that for decreasing o the quantity C, of Algorithm 6 is tending to one.
Thus a more efficient multiplication algorithm is less advantageous to calculating only half
products. Table 2 gives some values for p and C, in the case of the multiplication algorithms
discussed in Section 2.1.

Complexity Class p),
Schoolbook O(n?) 0.500 | 0.500
Karatsuba-Ofman O(n'5%) 0.694 | 0.808
Toom-Cook-3 O(n'169) 0.775 | 0.888
Toom-Cook-4 O(n!404) 0.820 | 0.923

Table 2: p and C, for several multiplication algorithms

Due to the missing carry bits from the lower half product, a method similar to Algorithm
6 is hard to achieve for the more significant bits of a multiplication. First attempts where
to calculate some additional guard bits to correct the error of missing carry bits [13].

As an alternative Bentahar and Smart suggested an procedure called wooping [14]. The
idea is that most calculations in the reduction algorithm are calculations over the integers
and thus the error can be measured by doing analogous calculations modulo a small prime
bigger than the maximal error. Using the idea of wooping one can obtain the same asymp-
totic speed for the calculation of high half truncated products as for the low half ones by
costs of certain overhead.

For our purpose we found an astonishingly simple to use way to save operations in the
calculation of the high half truncated product in step 2 of the Montgomery Reduction algo-
rithm.

In the setting of the Montgomery multiplication it is necessary to calculate the most
significant bits of the integer a + b - m. By proving the correctness of the Montgomery
reduction algorithm one already knows that b-m = —a (mod R) for any input number a.
This fact can be used to save operations during the calculation of b-m, since the lower half
of its binary representation is already known.

We will demonstrate this advantage in the case of the schoolbook multiplication.

Theorem 3.

Let n, M (n) be defined as before. Then the Montgomery Reduction algorithm for a modulus
m of size n can be computed in 1.25M (n) plus a few addition operations without the need of
wooping or quard bits.

Proof. Let the lower half product b = am’ (mod R) already be calculated and let m =
m12'21 +mg and b = b12/31 4 b, be the split binary representations of m and b respectively.
Then we know that

b-m= m1b122|—%-‘ + (m1b0 -+ m0b1)2(%1 + mobo = —a (IﬂOd R)

from the definition of the schoolbook multiplication and our observation. We assume
R = 22131 holds since n is often ceiled to the next multiple of the machine word size, thus
we can calculate

mObO = —(CL + (m1b0 + m0b1)2[%]) (HlOd R)

instead of multiplying mgby directly. This way one saves one of the four multiplications
giving 0.5M (n) + 0.75M (n) as approximate total runtime. O

This method is theoretically slower than wooping-based attempts for schoolbook mul-
tiplications. Since there is no need for an error correction it may be more practicable for
small operand sizes. For growing n one can even outperform whooping based attempts.

Theorem 4. Let the notation from Algorithms 2 and 3 be given. Then one easily can
calculate the full product in step 2 of Algorithm 2 using 2k — 2 instead of 2k — 1 sub-
multiplications.

Proof. The idea is to avoid the calculation of the lowest significant bits in the binary repre-
sentation of b - m. In detail the calculation of b(0)m(0) can be replaced using the following
algorithm.

1. Assume zy = 0 and w; = b(x;)m(x;) were calculated for all ¢ > 0 using 2k — 2
multiplications.

10

2. Compute wp = —a (mod 2[31). Since wy = b(0)m(0) is an integer less than 2231
wo 1, is exactly the lower half of the binary representation of wy.

3. Use wy, ..., wa,—_2, wp r in order to compute the lower order digits ly of the linear term
of the polynomial b - m. This works because the full linear term can be obtained from
the full representations of wy, ..., war_s.

4. Now one can recover the full product b(0)m(0) = —a — [p2/21 (mod 22/21).

]

Table 2 shows the theoretical relative runtime C'M(n) of the methods described in The-
orems 3 and 4 compared to the classical approach combined with guard bits or wooping.

c, | C
Schoolbook 0.500 | 0.750
Karatsuba-Ofman | 0.808 | 0.667
Toom-Cook-3 0.888 | 0.800
Toom-Cook-4 0.923 | 0.857

Table 3: Wooping compared to theorems 3 and 4

Note that this optimizations makes the computation of our higher half truncated products
faster than for the lower half ones. Furthermore from Toom-3 onwards there are more unused
bits that may be used for further optimizations. This is one of the subjects of future work
on this topic.

3. ECM on Graphic Cards

For the evaluation of our arithmetical ideas we choose the ECM algorithm as a testing
application. The ECM algorithm was first described by H.W. Lenstra Jr. in 1987 [15] and
was later improved by P. L. Montgomery [16] and many others. A single staged version of
the algorithm is stated below.

Algorithm 7. Elliptic Curve Method, Stage 1 [15]
Let n be a composite integer and By a suitable bound. The following probabilistic algorithm
can be used to find a factor of n.

1. Calculate the constant k =[] p® with p®» < By < e®*! ¢, € N.
peP,p<B1

2. Pick a random elliptic curve E over Z/nZ and a point O # P € Ez).

3. Calculate kP on Ez)nz. If this fails one denominator within the group law formulas is
not invertible modulo n and its ged gives a factor of n. If no factor is found return to
step 2 and pick a new curve.

11

There are several ways to implement this algorithm. One important choice is the model
of the used curves. A common way is to use projective curves in Montgomery coordinates
[17] or Edwards coordinates [18].

Although elliptic curves in Edwards coordinates may have a slightly more efficient group
law we decided to use Montgomery curves for our first prototype in order to keep compat-
ibility with common implementations, especially the Brent-Suyama parametrization [19].
Previous implementations of the ECM algorithm on graphic cards by Bernstein et al. used
floating point arithmetic [1] or 24 bit multiplication [2] for building their long integer arith-
metic. Although even for our used AMD HD 5000 series graphic cards the 24 bit performance
is roughly 5 times higher than for the ordinary 32 bit multiplication, we decided to use the
latter to build up our arithmetic. This is done because in contrast to the 24 bit case OpenCL
offers an easy to use command to get the higher order bits of an 32 bit multiplication. Fur-
thermore during a 32 bit multiplication several additions can be performed in parallel, hence
our code is designed to process carry bit calculations of previous multiplications in parallel
to our current ones.

The parallelization is straight forward. Every work-item is assigned to a single elliptic
curve plus a starting point and has to process the scalar multiplication of the point described
in step three of algorithm 7. Since we build our program to handle 254 bit integers — 8 - 32
minus the two bits described in section 2.2 — and every item has to store the curve param-
eters, three copies of point coordinates and some temporary space, we are using roughly
half of the 124 registers available. Thus if one is careful with scratch space even 510 bit
arithmetic should work the same way. Building wider arithmetic is one of the subjects for
further improvements of our implementation.

An important fact of this simple parallelization is the absence of need for synchronization
between two threads. Even if not crucial, this helps a lot exploiting the maximum modular
multiplication per second capabilities of modern graphic cards. Beside the arithmetic de-
scribed in Section 2 we use a carry select circuit on the low level.

An early version of the program lacking the improvements in Sections 2.2 and 2.3 and
several other improvements won a prize for innovative use of OpenCl assigned by AMD and

TopCoder [20].

4. Experimental Results

The tests of our implementation have been done on a standard personal computer using
a Intel Core 2 Duo E8400 and 4 gigabytes of RAM. During the development we used an
AMD Radeon HD5770 graphic card and for final measurements an AMD Radeon HD5870
type card. Note that the HD5770 has exactly half the compute units of the HD5870, thus it
was easy to estimate the performance on a high end graphic card without using one. All our
tests were performed using the AMD Catalyst Driver Version 11.08 among with the AMD

12

APP SDK 2.5 on Ubuntu 11.10 x64 as our software platform.

All tests have been done on a 254 bit module and B; fixed to 8192. For a better
comparison to previous attempts to implement the ECM algorithm we scaled the results by
(22)2. Table 4 shows this scaled results as well as the prize / performance ratio for our
implementations. In order to compare the prize / performance ratio it is necessary to know
that the previous records were achieved by using a 500$ NVidia Geforce GTX295 graphics

card while our HD5870 has an average market prize of 320$ as of January 2012.

MulMod-10° / Sec | MulMod-10° / (Sec - $)
Previous Record 2] 575 1.15
AMD Challenge Version [20)] 430.8 1.34
Recent Optimized Version 846.2 2.64

Table 4: 192 bit MulMod / sec in our implementations

Note that our implementation currently is able to handle 3756 scalar multiplications per
second on an elliptic curve over a 254 bit modulus. Scaled to 192 bit these are roughly 6575
curves per second. Although this also is a new record for ECM on a single-chip graphics card
it is not as much as it may be. The program of Bernstein et. al. [2] is capable of processing
4928 scalar multiplications per second by much less modular multiplications. We believe
this gap occurs since we do not multiply out our module and do not use the arithmetical
advantages of Edwards curves yet.

In order to evaluate the impact of our observations described in Sections 2.2 and 2.3
we ran about 51.200 scalar multiplications with By = 8192 and on a 254 bit modulus with
OpenCL kernels without these improvements. Note that we used an AMD Radeon HD 5770
graphic card for our experiments that has exactly half the computational capabilities of the
earlier described HD 5870 model.

Curves / Sec | MulMod-10° / Sec | Ratio

Without Optimizations 1691.5 217.7 100 %
Section 2.2 only 1744.6 224.6 103,1 %
Section 2.3 only 1818.6 234.1 107,6 %
Fully Optimized 1880.1 242.0 1112 %

Table 5: 254 bit MulMod / sec for different optimization stages on HD 5770

We see that our observations can deliver up to 11% more arithmetical throughput for
free, while being easy to implement.

By our experimental results we also see that even on a single chip graphics cards the
limit of one billion modular multiplications for 192 bit modulus is in reach. To be more
precise using two cards of type AMD Radeon HD 5970 — that is two HD 5870 typed chips
glued together at slightly lower clock rate — the bar can be raised to about 3 billion modular
multiplications per second. Setting up this kind of record breaking system costs two times

13

700% for the two graphic cards and additionally a few hundred $ for the peripheral compo-
nents. In total a total cost of 2000$ should not be exceed.

This level of computational throughput is already in the range of being relevant for
modern security. For example the elliptic curve discrete logarithm problem with a 130 bit
module — as used in one of the Certicom ECC challenges — was believed to be infeasible for
long. Using our 400 of our described 3 billion modular multiplication per second computers,
this challenge is theoretically in range to be broken within a year under common runtime
assumptions [21].

Summarizing SIMD devices offer a lot of computational potential and significance whereas
there is still room left for more technical and algorithmical improvements.

References

[1] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, B.-Y. Yang, ECM on Graphics Cards, Cryptology
ePrint Archive, Report 2008/480 (2008).

[2] H-C.C.M.-S.C.C.-M. C.C.-H. H. T. L. Z.-C. L. B.-Y. Y. Daniel J. Bernstein, The billion-mulmod-per-
second PC, Workshop record of SHARCS’09: Special-purpose Hardware for Attacking Cryptographic
Systems (2009).

3] K. Group, The Khronos Group Releases OpenCL 1.0 Specification,
http://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification (2008).

[4] K. Group, Khronos Releases OpenCL 1.2 Specification, http://www.khronos.org/news/press/khronos-
releases-opencl-1.2-specification (2008).

[5] B. Gaster, D. Kaeli, L. Howes, P. Mistry, Heterogeneous Computing with OpenCL, Morgan Kaufmann
Pub, 2011.

[6] A. M. Devices, AMD Accelerated Parallel Processing Programming Guide, v1.3f]
http://developer.amd.com/sdks/AMDAPPSDK /assets/ AMD_Accelerated_Parallel_Process-
ing_OpenCL_Programming_Guide.pdf (2011).

[7] P. Barrett, Implementing the Rivest Shamir and Adleman public key encryption algorithm on a stan-
dard digital signal processor, in: Advances in CryptologyaCRYPTOAa86, Springer, 1987, pp. 311-323.

[8] P. Montgomery, Modular multiplication without trial division, Mathematics of computation 44 (170)
(1985) 519-521.

[9] A.Karatsuba, Y. Ofman, Multiplication of multidigit numbers on automata, in: Soviet physics doklady,
Vol. 7, 1963, p. 595.

[10] S. Cook, On the minimum computation time for multiplication, Doctoral diss., Harvard U., Cambridge,
Mass.

[11] A. Schonhage, Asymptotically fast algorithms for the numerical muitiplication and division of polyno-
mials with complex coefficients, Computer Algebra (1982) 3—15.

[12] T. Mulders, On Computing Short Products, Tech. rep. (1997).

[13] L. Hars, Fast truncated multiplication for cryptographic applications, Cryptographic Hardware and
Embedded Systems-CHES 2005 (2005) 211-225.

[14] K. Bentahar, N. Smart, Efficient 15,360-bit RSA using woop-optimised montgomery arithmetic, Cryp-
tography and Coding (2007) 346—363.

[15] H. W. Lenstra Jr., Factoring with Elliptic Curves, Annals of Mathematics 126 (1987) 649-673.

[16] P. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph.D. thesis, UNI-
VERSITY OF CALIFORNIA Los Angeles (1992).

[17] P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of
computation 48 (177) (1987) 243-264.

14

[18] D. J. Bernstein, P. Birkner, T. Lange, C. Peters, ECM using Edwards curves, IACR Cryptology ePrint
Archive 2008 (2008) 16.
URL http://eprint.iacr.org/2008/016
[19] P. Zimmermann, B. Dodson, 20 years of ECM., Hess, Florian (ed.) et al., Algorithmic number theory.
7th international symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006. Proceedings. Berlin:
Springer. Lecture Notes in Computer Science 4076, 525-542 (2006). (2006). doi:10.1007/11792086.
[20] A. M. Devices, AMD OpenCL Coding Competition, http://community.topcoder.com/amdapp/ (2011).
[21] A. K. Lenstra, E. R. Verheul, Selecting Cryptographic Key Sizes., in: H. Imai, Y. Zheng (Eds.), Public
Key Cryptography, Vol. 1751 of Lecture Notes in Computer Science, Springer, 2000, pp. 446-465.

15

