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ABSTRACT
Physical Unclonable Functions (PUFs) are increasingly be-
coming a well-known security primitive for secure key storage
and anti-counterfeiting. For both applications it is imperative
that PUFs provide enough entropy. The aim of this paper
is to propose a new model for binary-output PUFs such as
SRAM, DFF, Latch and Buskeeper PUFs, and a method to
accurately estimate their entropy. In our model the measur-
able property of a PUF is its set of cell biases. We determine
an upper bound on the ‘extractable entropy’, i.e. the number
of key bits that can be robustly extracted, by calculating the
mutual information between the bias measurements done at
enrollment and reconstruction.
In previously known methods only uniqueness was studied

using information-theoretic measures, while robustness was
typically expressed in terms of error probabilities or distances.
It is not always straightforward to use a combination of these
two metrics in order to make an informed decision about
the performance of different PUF types. Our new approach
has the advantage that it simultaneously captures both of
properties that are vital for key storage: uniqueness and
robustness. Therefore it will be possible to fairly compare
performance of PUF implementations using our new method.
Statistical validation of the new methodology shows that

it clearly captures both of these properties of PUFs. In other
words: if one of these aspects (either uniqueness or robust-
ness) is less than optimal, the extractable entropy decreases.
Analysis on a large database of PUF measurement data shows
very high entropy for SRAM PUFs, but rather poor results
for all other memory-based PUFs in this database.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and reliability—Performance
Analysis and Design Aids
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1. INTRODUCTION
Due to deep-submicron manufacturing process variations

every transistor in an integrated circuit (IC) has slightly dif-
ferent physical properties that lead to measurable differences.
Examples of such physical properties are threshold voltages
and gain factors of the IC’s transistors. The submicron varia-
tions are uncontrollable during manufacturing, which ensures
that these physical properties cannot be copied or cloned.
Therefore these properties can be used to derive a unique
fingerprint of an electronic circuit, similar to human biomet-
rics. It is very hard, expensive and economically not viable
to create a device with a specifically chosen fingerprint.
The functions used to derive unique fingerprints for ICs

are known as Physical Unclonable Functions (PUFs). Imple-
menting a PUF requires an electronic circuit that measures
the responses of the hardware to certain given inputs or chal-
lenges, which depend on the unique physical properties of the
device. In order for a PUF implementation to be practically
useful the PUF should be easy to challenge and the response
easy to measure, but very hard to reproduce by construction1.
Common applications for PUFs are to use them as identifica-
tion or authentication primitives [6, 11], storing secret keys
“without actually storing them” [5, 10] (for IP protection or
as a “root of trust” in secure environments), and random
number generation [6, 26].

1.1 Physical Unclonable Functions
Pappu [16] introduced the concept of PUFs in 2001 un-

der the name Physical One-Way Functions. The proposed
technology was based on obtaining a response (scattering
pattern) when shining a laser on a bubble-filled transparent
epoxy wafer. In 2002 the first physical random function for
silicon devices was introduced by Gassend et al. [4]. This
function makes use of the manufacturing process variations
in ICs, with identical masks, to uniquely characterize each
IC. For this purpose the frequencies of ring oscillators were
measured. Using this method (now known as a Ring Os-
cillator PUF), they were able to characterize ICs. In 2004
Lee et al. [11] proposed another PUF that is based on delay
measurements, the Arbiter PUF. In 2010 Suzuki et al. [21]
introduced the Glitch PUF, which exploits glitch waveforms
from delay variation between gates.
Besides intrinsic PUFs based on delay measurements, a

second type of PUF in ICs is known: the memory-based
1Note that the way a PUF is implemented is vital to the
security of this PUF. E.g. in case of a memory-based PUF
there should be no interface on which the start-up pattern
can be read by an attacker (PUF response is kept secret).



PUF. These PUFs are based on the measurement of start-
up values of memory cells. This memory-based PUF type
includes SRAM PUFs, which were introduced by Guajardo
et al. in 2007 [5]. Furthermore, so-called Butterfly PUFs were
described in 2008 by Kumar et al. [10]. In the same year
Maes et al. [14] introduced D Flip-Flop PUFs and Su et
al. [19] published about Latch PUFs. Recently, Buskeeper
PUFs were demonstrated by Simons et al. [18] in 2012.

1.2 PUF properties
In order for the IC to be uniquely identifiable, the PUF

must be reliable and unique. In this case reliable means that
one is able to reproduce the same behaviour of the function
when challenged with the same input over and over again.
The characteristics of electronic components depend on the
environment they are exposed to (ambient temperature, volt-
age ramp-up curves, etc.), but also on the ageing process
of CMOS. It is of crucial importance that the function has
a stable behaviour across a range of environmental condi-
tions during the lifetime of the IC. Typically it is observed
that PUFs exhibit a noisy behaviour. Therefore the PUF
implementation must include an error correction process to
stabilize the PUF responses both over environmental condi-
tions and over time.
The second important parameter for PUFs is entropy. At

the time of PUF manufacture, there is an uncontrollable pro-
cess that leads to the creation of stably measurable challenge-
response properties. The uncontrollability of the manufac-
turing process ensures the physical unclonability of the PUF,
provided that there is enough entropy. We require that the
entropy of the uncontrollable stable PUF properties2 is suf-
ficiently high. When this requirement is met, the following
properties hold:

• Uniqueness. The probability that two PUFs have closely
resembling properties is exponentially small.

• Unpredictability. The probability of correctly predicting
an unknown PUF’s set of responses is exponentially
small. Furthermore, knowledge of one PUF’s responses
does not help in the prediction of another PUF’s re-
sponses and knowledge of part of PUF response does
not help predicting the other bits from this particular
response.

1.3 Contribution
The focus of this paper is on demonstrating a novel method

for quantifying the usable (‘extractable’) entropy of PUF
responses. Mutual information provides a fundamental upper
bound on the amount of key material that can be reliably
extracted from a PUF using a helper data scheme (a.k.a.
Fuzzy Extractor) [3, 8, 15, 22].
We calculate the mutual information between the enroll-

ment measurements and later reconstruction measurements.
Here the bias of a memory cell / flip-flop / latch serves as
the measurable PUF property; multiple enrollment measure-
ments (k) and multiple reconstruction measurements (`) are
performed on each cell in order to estimate the bias. The
mutual information between the k enrollment measurements
and the ` reconstruction measurements is an upper bound
on the usable entropy.
2 Entropy of controllable part is irrelevant, since this part
can be cloned. Entropy of unstable part is also irrelevant here
since we cannot exploit it for reproducible key extraction.

In order to validate our approach and to quantify the results
of our approach in a real-life setting we used a large data
set from the European project UNIQUE. This statistical
validation of the new methodology shows that it clearly
captures both the uniqueness and robustness of PUFs. In
other words: if one of these aspects is less than optimal, the
extractable entropy calculated with this method will decrease.
The analysis using the UNIQUE PUF measurement data
shows very high entropy for SRAM PUFs, but rather poor
results for all other memory-based PUFs of this database.

2. RELATED WORK
This paper has been derived from the work in the M.Sc.

thesis of Robbert van den Berg [24] in 2012. In his work a
new method is proposed for calculating (extractable) entropy
for memory-based PUFs. In this section we briefly list known
methods.
Extensive entropy analyses of optical PUFs by Tuyls et

al. [23] and of coating PUFs by S̆korić et al. [27] exist, but
these analyses are not applicable to memory-based PUFs.
A simple first indication of uniqueness involves the calcula-

tion of Hamming Weights of PUFs. The Hamming weight of
a PUF, the number of cells that return non-zero upon start-
up, can be used to determine if a PUF is biased [9, 17, 25].
When sampling multiple PUFs, the minimum or maximum
Hamming weight can be used to estimate an upper bound
on the bias.
The inter-device (or between-class) Hamming distance is a

measure of the uniqueness of PUFs; it indicates how easy it is
to distinguish or identify different devices [20]. For uniqueness,
it is desirable to have a fractional3 inter-device distance close
to 0.5 which means that on average half the cells prefer a
different start-up state [2, 9, 10, 17, 25]. It indicates a low
correlation between responses of different devices.
A method to derive a conservative lower bound on the

entropy is calculating min-entropy based on the enrollment
measurements of a set of PUFs. This is a very conservative
entropy estimation, but a good one for measuring uncertainty
about a cryptographic key [1, 2, 9, 18, 26]. However, it does
not take into account how much entropy is lost due to noise.
An optimal compression algorithm can compress a PUF

response to a description with length at least equal to the
entropy of the PUF data. By reversing this principle, an
optimal compression algorithm can be used to provide an
estimate for the PUF entropy. In PUF entropy analysis, the
Context-Tree Weighting algorithm (CTW) [28] is regularly
used to estimate an upper bound on the entropy of PUFs [1,
2, 7, 17].
Furthermore, in [12] a model was developed for Silicon

PUFs, but no entropies were computed. We work with a
somewhat similar model and use it to estimate entropies.

3. MODELING BINARY-OUTPUT PUFS
Random variables are written with capitals, and their real-

izations in lower case. Vectors are in boldface. The number
of components (memory bits / flip-flops / latches / ...) in the
PUF is denoted as n. The components will be referred to as
cells. We define the set [n] = {1, . . . , n}. At enrollment, the
PUF is fully characterized by a vector of biases: b = (bi)n

i=1.
When an enrollment measurement is done on cell i, the result
3A fractional Hamming distance is the Hamming distance
between two strings divided by the length of the strings.



is ‘1’ with probability bi. For every cell, k enrollment mea-
surements are done (with k ≥ 1). The number of ‘1’ results
in cell i is denoted as xi. We define x = (xi)n

i=1. The random
variable Xi is binomial-distributed with parameters k and
bi: Pr[Xi = x] = px|bi

:=
(

k
x

)
bx

i (1 − bi)k−x. We denote the
joint probability as px|b =

∏
i∈[n] pxi|bi

.
In the reconstruction phase the environmental circum-

stances are in general different than during enrollment, which
leads to modified cell biases b′i. A number ` of measurements
is done on each cell; the number of ‘1’ results in cell i is
denoted as yi. The variable Yi is binomial-distributed with
parameters ` and b′i. We define qy|b′

i
=
(

`
y

)
(b′i)y(1 − b′i)`−y

and qy|b′ =
∏

i∈[n] qyi|b′
i
. Note that x/k is an estimate of b,

and y/` is an estimate of b′. The estimates become more
accurate by increasing k and `, respectively.
Biases b and b′ are themselves the result of probabilistic

processes: (i) Random variable B has a distribution ρ dic-
tated by the randomness in PUF manufacturing. (ii) After
enrollment there are random influences that alter B to B′.
This is modeled as a set of transition probabilities τ(b′|b).
The amount of common key material that can be reli-

ably extracted from the enrollment and reconstruction mea-
surements is upper bounded by the mutual information
I(X; Y ) = H(X) + H(Y ) − H(X,Y ). Note that I(X; Y )
depends on k and `. We have

Pr[X =x] =
∫ 1

0
dnb ρ(b) px|b (1)

Pr[Y =y] =
∫ 1

0
dnb′[

∫ 1

0
dnb ρ(b)τ(b′|b)] qy|b′ (2)

Pr[X =x,Y =y] =
∫ 1

0
dnb ρ(b)px|b

∫ 1

0
dnb′ τ(b′|b)qy|b′ .(3)

(In our notation the an integral is an operator acting on
everything to the right.) Our aim is to estimate ρ and τ from
our set of measurements on the UNIQUE PUFs, and then use
Eqs. (1–3) to compute I(X; Y ). However, the space in which
the biases live is very large due to the large number of cells
(b, b′ ∈ B = [0, 1]n), no matter how we discretize the interval
[0, 1]. This makes estimation of probability distributions
difficult, since any histogram we construct is based on only
N points in the whole space B, where N is the number of
PUFs we have at our disposal; the density of points is so low
that typically each bin will contain at most one point.
We introduce the following, rather crude, approximation,

ρ(b) ≈
∏

i∈[n]

ρi(bi) ; τ(b′|b) ≈
∏

i∈[n]

τ0(b′i|bi). (4)

In words: (i) At manufacture, each cell has its own probability
distribution (ρi) for the bias, independent of the other cells.
(ii) We use global transition probabilities τ0( · |· ), indepen-
dent of the cell index, to model the effect of environmental
influences on the biases.
The functions ρi and τ0 are defined on small domains: [0, 1]

and [0, 1]2 respectively. Hence they can be estimated fairly
accurately. Note that our approximation for ρ is not capable
of modeling correlations between cells. Our approach (4) is
motivated by (a) the lack of correlation we observe between
cells in most of the PUF types (see Section 4.3), and (b) a
feeling that the physics of the transitions bi 7→ b′i should not
depend on the cell index i.

Substitution of (4) into (1–3) gives factorized equations,

Pr[X =x] ≈
∏

i∈[n]

∫ 1

0
dbi ρi(bi)pxi|bi

(5)

Pr[Y =y] ≈
∏

i∈[n]

∫ 1

0
db′i[
∫ 1

0
dbi ρi(bi)τ0(b′i|bi)]qyi|b′

i
(6)

Pr[X =x,Y =y] ≈
∏

i∈[n]

∫ 1

0
dbiρi(bi)pxi|bi

∫ 1

0
db′iτ0(b′i|bi)qyi|b′

i
.(7)

The mutual information then consists of independent parts,
I(X; Y ) ≈

∑
i∈[n] I(Xi;Yi) =

∑
i∈[n] H(Xi)+H(Yi)−H(Xi, Yi).

4. RESULTS

4.1 Data set
To test the results of our proposed method, a large data

set of PUF measurements has been used. This data set was
created in the EU funded FP7 programme project UNIQUE
(contract number 238811). The UNIQUE project yielded 192
ASICs featuring six different PUF types: SRAM, D Flip-Flop
(DFF), Latch, Buskeeper, Arbiter and Ring Oscillator.

We analyze the four memory-based PUF types. Each ASIC
has four instantiations of the Latch, DFF and SRAM PUF
and two instantiation of the Buskeeper PUF. Unfortunately
two Latch PUFs per ASIC are unusable due to faults in the
addressing logic. Furthermore, during preliminary testing,
one DFF instance was found to be very unreliable when
compared to the other instances (also noted in [9, 13]). This
instance we also excluded from the test data. This leaves a
total of 2 · 192 = 384 Latch and Buskeeper PUFs, 3 · 192
= 576 DFF and 4 · 192 = 768 SRAM PUFs for analysis.
All these PUF types provide 8192 bits of output, except

the SRAM PUF which has 65536 bits of output. However,
during the entropy analysis we used only 8192 out of these
65536, in order to reduce the required memory for processing.
In the UNIQUE project, several different test (such as

temperature and voltage variation) were done to determine
reliability (e.g. in [9] and [12]). In this paper, we use the data
from the temperature variation test for the uniqueness anal-
ysis, since it provides PUF responses obtained both at room
temperature and at the standard operational temperature
limits of electronics. The room temperature measurements
are ideal candidates for enrollment, while the measurements
at other temperatures provide reconstruction conditions. The
data set contains a total of 60 measurements per PUF instan-
tiation at +25◦C (used as enrollment measurements) and
40 measurements at -40◦C and +85◦C respectively (used as
reconstruction measurements). The two temperatures used
for reconstruction have been chosen because the industrial
standard for temperature testing of ICs ranges from -40◦C
to +85◦C. Therefore, these two temperatures are the corner
cases for using PUFs in industrial grade devices.
The analysis of the data has been performed on a 32-bit

3GHz dual core PC with 2GB RAM, using Matlab. To pro-
cess the PUF data with Matlab, data matrices were created
with cells as columns and measurements as rows. This was
repeated for each PUF, creating a #Measurements × #Cells
× #PUFs three-dimensional matrix per PUF instance. The
memory size required for these matrices can become rather
large as the number of elements of these matrices increases.
For example, if all cells of the SRAM PUF would be used, a



60 × 65536 × 192 = 754,974,720 element matrix would be
required to store enrollment data. However, as some Matlab
functionality only works with (64-bit) doubles, these matrices
cannot be stored and processed efficiently.

4.2 Applying the proposed model
In order to apply the model as proposed in Section 3 we

need to investigate whether individual PUF cells are corre-
lated with each other. Since the proposed method requires
PUF cells to be independent, it should be made sure that this
is indeed the case for the PUFs from the UNIQUE database.
This verification is described in Section 4.3.
In order to make contact with the approaches in the lit-

erature, we first separately investigate PUF uniqueness and
reliability, before presenting the mutual information results. A
measure of device uniqueness is calculated in Section 4.4. For
this purpose we use the inter-device distance. As stated be-
fore, the extractable entropy derived by the proposed model is
based, besides uniqueness, also on the reliability of the PUFs.
The robustness of the biases is calculated in Section 4.5.

We compute the mutual information in Section 4.6. This
mutual information contains aspects of both the uniqueness
and the reliability. The mutual information computed ac-
cording to our model provides an estimated upper bound
on the extractable entropy per cell. Finally we calculate the
amount of extractable entropy per mm2 for each PUF type.
Note that all results in this paper are taken from the M.Sc.

thesis of Robbert van den Berg [24]. For more details on the
results and for comparisons of our method with results from
methods in literature, we refer the reader to this thesis.

4.3 Correlations
Pearson’s product-moment coefficient is calculated for ev-

ery PUF to determine if there is any correlation among cells.
Although 0 correlation does not directly imply independence,
any correlation found during testing would indicate that
there exists linear dependencies between cells. In literature,
PUF cells are generally assumed independent (e.g. [2, 18]).
For this test, the first 1024 cells of each PUF are used.

Pairwise, the covariance of two cells is divided by the product
of their standard deviations as shown in Eq. (8). The result
is a value between −1 and 1, where 1 denotes a very strong
positive relation and −1 denotes a very strong negative
relation, which means that when the bias of cell i increases,
the bias of cell j decreases. The closer this value lies to zero
the weaker the relationship between the two cells.

Corr(xi, xj) = Cov(xi, xj)
σxiσxj

(8)

Furthermore, we calculated the probabilities of getting a
correlation as large as observed under the hypothesis that
there is no correlation. When this probability is less than
0.01, a correlation is considered significant.
For all PUF instances, the percentage of cells failing the

hypotheses of no correlation lies around 0.010 with a maxi-
mum of 0.014 for the Latch PUF. This amount of significant
correlations is exactly what can be expected by chance. Fur-
thermore, from the significant correlations, the strength of the
correlation is approximately 0.2. When the same correlation
test is applied to synthetically generated PUF data (known
to be independent), similar values are observed. These results
indicate that linear dependence among cells is very low or
non-existent. We cannot exclude nonlinear dependences.

Figure 1: Inter-device distances ∆p,p′ . Device numbers 1–
192 refer to the set of devices at −40◦C, 193–384 denote the
same devices at +25◦C, and 385–576 at +85◦C. From top
to bottom: SRAM, DFF, Latch and Buskeeper.



4.4 Inter-device distance
Let x(p)

i be the x-count in cell i of PUF p. We define the
inter-device distance ∆p,p′ between PUFs p and p′ as the
cell-average of the absolute bias difference,

∆p,p′ := 1
n

n∑
i=1

∣∣∣∣∣x(p)
i

k
− x

(p′)
i

k

∣∣∣∣∣ . (9)

Fig. 1 shows inter-device distances. Here the device numbers
1–192 refer to the set of devices at −40◦C, while 193–384
denote the same set of devices at +25◦C, and 385–576 at
+85◦C. For the SRAM PUFs the temperature seems to have
no effect on the inter-device distances, which are all close
to 50%. This indicates a close to optimal inter-device dis-
tance (around 50% is optimal), which is also very stable over
different environmental conditions.
For DFF PUFs the distances become smaller with decreas-

ing temperature. This happens because the average Hamming
Weight of the DFF PUFs rises with decreasing temperature.
At −40◦C this value gets close to 100%, which leaves little
room for differences between devices.
In Latch PUFs the opposite happens: distances become

smaller with increasing temperature. In this case Hamming
Weight rises with temperature (close to 100% at +85◦C).

The Buskeeper behaves differently. There is a marked
difference between +85◦C and the other temperatures. This
is because the Buskeeper memories are slightly biased towards
0 at −40◦ and +25◦, while there is a significant bias towards
1 at +85◦. The result is a lower inter-device distance when
comparing devices at an equal temperature and comparing
−40◦ to +25◦. Comparing devices at +85◦ to any other
temperature results in a higher inter-device distance, since
the Hamming Weight is very different in these cases.

4.5 Robustness of the biases
We denote the vector x associated with the a’th PUF as

x(a), and similarly y(a). The robustness of a cell’s bias can
be characterized using the following distance measure,

Di := 1
N

N∑
a=1

∣∣∣∣x(a)
i

k
− y

(a)
i

`

∣∣∣∣ . (10)

Here i ∈ [n] is the cell index. Values for large k and ` are
listed in Table I.

Table I. Bias robustness of UNIQUE PUFs. Listed values
are average and maximum Di values, with k and ` very large.

Av. distance Max. distance
Instance -40◦C +85◦C -40◦C +85◦C
SRAM 1 0.054 0.050 0.059 0.056
SRAM 2 0.053 0.050 0.060 0.057
SRAM 3 0.053 0.050 0.059 0.057
SRAM 4 0.053 0.050 0.061 0.058
DFF 1 0.125 0.176 0.158 0.194
DFF 2 0.153 0.174 0.318 0.217
DFF 3 0.122 0.178 0.157 0.196
DFF 4 0.120 0.177 0.166 0.197
Latch 1 0.231 0.103 0.274 0.171
Latch 2 0.233 0.117 0.277 0.182
Buskeeper 1 0.09 0.172 0.099 0.196
Buskeeper 2 0.092 0.171 0.101 0.20

Figure 2: Bias changes in the DFF PUFs at +85◦C. Top:
Histogram of (xi, yi) pairs, for k = 60, ` = 40, on a loga-
rithmic scale. The vertical axis counts the number of cells in
which a combination (x, y) occurs. Bottom: The transition
probabilities τ0( y

`
|x

k
) derived from the histogram, plotted as a

function of x and y.



In Fig. 2 we show observed bias transition counts and the
transition model derived from them (transition probabilities
τ0). The figure shows the result for DFF PUFs; the other
PUF types behave similarly. We see that biases far away
from 0 and 1 practically never occur (not even when the
enrollment bias lies around 0.5). Note that the top figure is
logarithmically scaled in order to make the low parts of the
histogram visible. Hence, the typical bias changes that occur
are jumps to 0 or 1.
Furthermore, as expected, in the bottom figure we see that

the probability mass of y given x is concentrated at small
y when x is small, and at large y when x is large. In DFF
PUFs at +85◦C, bias jumps to 0 are more likely than jumps
to 1.

4.6 Mutual information
For each of the four PUF types we have estimated the

mutual information I(X; Y ) using the independent-cell ap-
proximation (4), with empirical ρi and τ0. The results are
shown in Fig. 3, as an average per cell, as a function of k
and `. Unsurprisingly, (i) the mutual information grows with
increasing k and `; and (ii) saturation occurs at large k,`.
The rate of growth is not the same for all PUF types.

SRAM PUFs benefit most from increasing k and `. Note
that SRAM PUFs can achieve a mutual information of more
than one bit per cell. This is entirely natural, since this
mutual information is calculated based on the values of the
cell biases (and not on the binary start-up values of these
cells). These cell biases are continuum variables which in
theory can have infinite entropy. Note also that even at k = 1
(a single enrollment measurement) it is advantageous to take
` > 1.
Finally, based on the mutual entropy results and known size

of the PUF instances on the UNIQUE ASIC (based on [13])
the minimum number of extractable bits per mm2 of each
PUF type can be calculated. The results of the calculation
can be found in Table III.
From these results it becomes very clear that the SRAM

PUF by far has the highest extractable entropy out of all
these PUF types. This is no surprise, since SRAM PUFs were
found to be the most reliable and unique PUFs in [9, 13].
Furthermore, the number of PUF cells per mm2 is also highest
for the SRAM PUF. Hence there are multiple reasons why
none of the other PUFs even comes close to the performance
of the SRAM PUF.
Out of the other (memory-based) PUF types, the Buskeeper

PUF can be ranked in second place (fairly good uniqueness,
but much less robust over temperature variations). Both
the DFF and Latch PUFs (ranked third and fourth respec-
tively) perform much worse, because for these PUFs both
the uniqueness and robustness are poor. All of these results
are comparable to the conclusions drawn in [9, 13] about the
UNIQUE data set.

Figure 3: Mutual information between Xi and Yi as a func-
tion of k and `, for the four PUF types, at reconstruction
temperatures −40◦C and +85◦C. From top to bottom:
SRAM, DFF, Latch and Buskeeper.



Table II. Mutual information for different k and `. In-
stance and condition giving the lowest mutual information
per PUF type is marked with *.

Cond. Instance Mutual Information (per cell)
k=1, k=60, k=60,
`=1 `=1 `=40

SRAM 1* 0.61 0.77 1.08
SRAM 2 0.61 0.77 1.08
SRAM 3 0.61 0.77 1.08
SRAM 4 0.62 0.77 1.08
DFF 1 0.33 0.39 0.46

−40◦C DFF 3 0.33 0.39 0.45
DFF 4* 0.33 0.38 0.44
Latch 1* 0.18 0.21 0.24
Latch 2 0.20 0.23 0.26
Busk. 1 0.53 0.63 0.77
Busk. 2 0.52 0.62 0.75
SRAM 1 0.62 0.77 1.12
SRAM 2 0.62 0.77 1.12
SRAM 3 0.62 0.77 1.12
SRAM 4 0.62 0.77 1.12
DFF 1 0.33 0.40 0.46

+85◦C DFF 3 0.32 0.39 0.46
DFF 4 0.33 0.40 0.46
Latch 1 0.29 0.33 0.40
Latch 2 0.28 0.32 0.39
Busk. 1 0.43 0.53 0.66
Busk. 2* 0.42 0.52 0.65

Table III. Extractable bits per mm2 on the UNIQUE chip,
broken down to PUF type and depending on k and `. The
lowest numbers were taken from Table II.

PUF Area Cells/ Minimum #bits/mm2

type (mm2) mm2 k=1, k=60, k=60,
`=1 `=1 `=40

SRAM 0.213 ≈ 1.2M 0.75M 0.95M 1.3M
DFF 0.392 ≈ 84k 28k 32k 37k
Latch 0.272 ≈ 0.12M 22k 25k 29k
Busk. 0.076 ≈ 0.22M 91k 0.11M 0.14M

5. CONCLUSIONS AND FUTURE WORK
We have developed a model for memory-based PUFs that

treats the cell biases as the identifying property of the PUF.
The enrollment procedure, consisting of k measurements,
gives an estimate X/k of the cell biases b under enrollment
conditions; similarly the ` reconstruction measurements give
an estimate Y /` of the biases b′ at reconstruction conditions.
The mutual information I(X; Y ) is an upper bound on the
amount of key material that can be reliably extracted from
the PUF. The mutual information depends on the probability
distribution ρ(b), which models the uncontrollable manufac-
turing process, and on the transition probabilities τ(b′|b)
which model the various sources of noise.
This approach has the advantage that it simultaneously

captures two issues of vital importance for key storage: unique-
ness and robustness. (Usually only uniqueness is studied
using information-theoretic measures; robustness is typically
expressed in terms of error probabilities or distances.)

We have applied our model to the UNIQUE date set,
assuming that all cells are independent. Furthermore, we
have adopted a specific noise model in which the transition
probabilities τ0(b′|b) do not depend on the cell index. Our
analysis shows a very high entropy for the SRAM PUFs
in the UNIQUE database (especially when the number of
enrollment and reconstruction measurements increases, the
entropy per cell becomes more than 1). However, all other
PUFs contain significantly less entropy. The Latch PUFs
perform poorly, with values between 0.18 and 0.40 bits of
entropy per cell.

Based on the results from this paper, we foresee as future
work:

• Mutual information estimates including correlations
between cells. This requires dealing with an n × n
correlation matrix, which is cumbersome for large n.

• We have not addressed the question of Fuzzy Extractor
design. The mutual information I(X; Y ) is an upper
bound on the amount of extractable key material, but
knowing this number does not tell you how to achieve
this bound. Efficient Fuzzy Extractors have to be found.
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