
Parallel authenticated encryption with the
duplex construction

Pawe l Morawiecki1 and Josef Pieprzyk2

1 Section of Informatics, University of Commerce, Kielce, Poland

2 Department of Computing, Macquarie University, Australia

Abstract. The authentication encryption (AE) scheme based on the
duplex construction can no be paralellized at the algorithmic level. To
be competitive with some block cipher based modes like OCB (Offset
CodeBook) or GCM (Galois Counter Mode), a scheme should allow par-
allel processing. In this note we show how parallel AE can be realized
within the framework provided by the duplex construction. The first vari-
ant, pointed by the duplex designers, is a tree-like structure. Then we
simplify the scheme replacing the final node by the bitwise xor operation
and show that such a scheme has the same security level.

1 Duplex construction

In 2010 Bertoni et al. introduced the duplex construction which provides
the framework for an authenticated encryption scheme [3]. In this sec-
tion we briefly discuss the construction with focus on the authenticated
encryption. The duplex construction can be seen as a particular way to
use the sponge construction [2], hence it inherits its security properties.
The construction is based on the fixed permutation (or transformation)
and allows the alternation of input and output blocks at the same rate
as the sponge construction. Figure 1 shows the duplex construction.
Similarly as in the sponge construction, there are two parameters: r
(bitrate) and c (capacity). The sum of those two parameters makes the
state size. Different values for bitrate and capacity give trade-offs between
speed and security. A higher bitrate gives a faster construction at the
expense of a lower security. Upon initialization all the bits of the state
are set to zero. The duplex construction accepts input calls (denoted
by in in Figure 1) to the underlying permutation f . The padded input
strings have the size of r bits. After a call to the permutation f , an
output r-bit string is returned (denoted by zn in Figure 1). Please note
that the capacity part of the state is never directly manipulated by an
input string in, nor is included in output strings zn.
The authentication encryption scheme with associated data (AEAD) can
be realized with the duplex construction. A secret key K, and message
blocks Bi (optionally with associated data Ai) are processed as follows.

Fig. 1. Duplex construction

r
f

c

pad

i0 z0

pad

i1

f

z1

pad

i2

f

z2

….

duplexing duplexing duplexing

1. The key K (optionally concatenated with nonce) is absorbed.

2. r-bit block of associated data Ai is absorbed (and remains unen-
crypted). Then r-bit block of message Bi is absorbed and encrypted
with the r-bit block squeezed from the current internal state.

3. A tag T is returned as the r-bit block squeezed after the last B
block processed. (Empty blocks are processed if more than r bits are
needed for tag T .)

Fig. 2. Authentication encryption scheme based on the duplex construction

r
f

c

pad

K || nonce

pad

Ao

f

ciphertext Co

pad

Bo

f

Tag T

We assume that all blocks are properly padded and frame bits are in-
cluded. We refer to Algorithm 3 in [3] for a formal description.
Figure 2 illustrates a simple scenario where a pair of (A0, B0) is processed
and the T is produced.

2 Parallel encryption with the duplex
construction

To be competitive with some block cipher based modes like OCB (Offset
CodeBook) or GCM (Galois Counter Mode), the AEAD scheme should
allow parallel processing. However, the AEAD based on the duplex con-
struction can no be paralellized at the algorithmic level. In [3] the authors
just briefly state that tree-like processing (described in detail for hashing,
see Section 3.3.2 in [2]) could be used also for the duplex-based AEAD
providing parallel streams with some overhead. But no more details are
given.

2.1 Parallel encryption with the final duplex node

First variant of parallel duplex-based AEAD is inspired by tree-hashing
with the following parameters: tree height H = 1, node degree D equals
to the number of ‘streams’. It was defined in [2, Section 3.3] in terms of a
sponge function as a compression function. Since the duplex construction
has been proven equivalent to a cascade of sponge functions it inherits
sponge security properties [3]. Consequently, tree-duplexing has the same
security properties as a tree-hashing based on sponge functions. What
is different though, is that a (parallel) authenticated encryption scheme
has to provide confidentiality which is not required in (parallel) hashing.
Let us first describe a variant of parallel duplex-based AEAD, where
beside a nonce we introduce a counter. Then we explain why a counter
(or some equivalent mechanism) is needed to provide full confidentiality
and prevent from leaking information about message blocks.
Message blocks (A0, B0), (A1, B1), . . . , (An, Bn) are processed in separate
duplex streams and they meet in the final node to produce a tag for the
whole message. An input to the first duplex (in each stream) is a secret
key concatenated with a nonce and a counter. Then for each stream i the
associated data Ai is processed followed by the message block Bi which
is encrypted. In each stream, after the last call of permutation f , r bits
are squeezed. They are concatenated and making an input for the final
duplex node which generates the tag T . Figure 3 illustrates the scheme.
For clarity we omit padding symbols in Figure 3 but we assume that
every input block to the duplex is properly padded. We also assume that
intermediate tags t0, t1, . . . , tn has the same length as the final tag T .
To simplify security analysis we let an attacker know intermediate tags
t0, t1, . . . , tn. This way we can analyze every stream separately. And it
was already shown by Bertoni et al. [2, ?] such a construction (a single
stream) is secure provided that the underlying permutation f has no
exploitable properties (structural distinguishers). Then the only ques-
tion remains whether the final duplex call (producing the tag T) can be

Fig. 3. Parallel authentication encryption scheme based on the duplex construction

f

key || nonce

Ao

f

Co
Bo

f
r

c

|| counter

r

c

|| counter+1

r

c

|| counter+n

f

A1

f

C1
B1

f

f f f

An Cn
Bn

to

t1

tn

Tag T to||t1||...||tn

f

somehow exploited by the attacker. As t0, t1, . . . , tn are already known,
the key recovery attack (recovery of the state) starting from T does not
make sense, it would only make the task harder. A forgery of T would
mean that the attacker can somehow control t0, t1, . . . , tn, e.g., can find
two messages giving the same t0. But as a length of each of t0, t1, . . . , tn
is the same as T such a control would contradict the security of a given,
single stream. Therefore we state that an addition of the final duplex call
does not help the attacker and the whole scheme is secure.

We introduce the counter to maintain full confidentiality on the message,
particularly on the relation between message blocks. If there were no
counter (which differentiates each stream), the attacker could deduce

some information on the message structure. For example, let B0 equal
to B1 and let A0 equal to A1. Then the attacker having only ciphertexts
C0 and C1 would deduce that message blocks B0 and B1 are the same.

2.2 Simpler scheme

The scheme can be simplified when the final duplex node is replaced by
the XOR operation. Figure 4 shows such a scheme.

Fig. 4. Parallel authentication encryption scheme based on the duplex construction
without the final duplex node

f

key || nonce

Ao

f

Co
Bo

f
r

c

|| counter

r

c

|| counter+1

r

c

|| counter+n

f

A1

f

C1
B1

f

f f f

An Cn
Bn

to

t1

tn tag T

The security analysis is basically the same as for the previous scheme.
The XOR of t0, t1, . . . , tn does not help in the key recovery attack as

we give the attacker knowledge of t0, t1, . . . , tn in advance. A tag forgery
would mean that the attacker can control the xor differences between
t0, t1, . . . , tn. This would contradict the security of a single stream. In par-
ticular we assume that the underlying f permutation has such differential
properties that after the first call (with an input of key‖nonce‖counter),
the attacker has no control of differences. Please note that exactly the
same argument is used in [1] by Keccak designers where they analyze
one of the duplex-based construction. They state:
“We rely on the initialization phase and its nonce to make differential
attacks infeasible: an attacker has no control whatsoever over state dif-
ferences between pairs of monkeyDuplex objects. This limits his attack
path to state reconstruction.”

3 Conclusion

We have shown how parallel AEAD can be realized within the framework
provided by the duplex construction. We have simplified the tree-like
scheme, suggested by the duplex designers, removing the final node and
replacing it by the xor operation. In both discussed variants we high-
light the importance of the counter (or some equivalent mechanism) for
providing confidentiality.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-
based encryption, authentication and authenticated encryption (July
2012)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic
sponges, http://sponge.noekeon.org/CSF-0.1.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing
the sponge: single-pass authenticated encryption and other ap-
plications. Cryptology ePrint Archive, Report 2011/499 (2011),
http://eprint.iacr.org/

