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Abstract. Groth-Sahai proofs are efficient non-interactive zero-knowledge proofs that have found widespread use in pairing-
based cryptography. We propose efficiency improvements of Groth-Sahai proofs in the SXDH setting, which is the one that
yields the most efficient non-interactive zero-knowledge proofs.

– We replace some of the commitments with ElGamal encryptions, which reduces the prover’s computation and for some
types of equations reduces the proof size.

– Groth-Sahai proofs are zero-knowledge when no public elements are paired to each other. We observe that they are also
zero-knowledge when base elements for the groups are paired to public constants.

– The prover’s computation can be reduced by letting her pick her own common reference string. By giving a proof she has
picked a valid common reference string this does not compromise soundness.

– We define a type-based commit-and-prove scheme, which allows commitments to be reused in many different proofs.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88] can be used to demonstrate the truth of a statement without
revealing any other information but the truth of the statement. NIZK proofs are fundamental building blocks in
cryptography and are used in numerous cryptographic schemes. It is therefore important to increase their efficiency
since even small improvements will lead to significant performance gains when aggregated over many applications.

NIZK proofs were invented more than two decades ago but early constructions [BFM88,FLS99,Dam92,KP98]
were very inefficient. This changed when Groth, Ostrovsky and Sahai [GOS12] introduced pairing-based techniques
for constructing NIZK proofs. In a series of works [BW06,Gro06,BW07,GS12] pairing-friendly NIZK proofs were
developed. This line of research culminated in Groth and Sahai [GS12] that gave efficient and practical NIZK proofs
that are now widely used in pairing-based cryptography.

Groth-Sahai proofs [GS12] can be instantiated in many ways with either symmetric or asymmetric pairings and
over groups that may have either composite order or prime order. The asymmetric setting with prime order groups
yields the smallest group elements [GPS08]. We will therefore focus on improving Groth-Sahai proofs for prime
order asymmetric bilinear groups, since the better efficiency makes it the most important setting for use in practice.

Let us give some more details of what can be done with Groth-Sahai proofs. The setting they consider is a
bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ,T are prime order p groups, ĝ and ȟ are generators of Ĝ and Ȟ
respectively and e : Ĝ × Ȟ → T is a non-degenerate bilinear map. The prover wants to show that there are values
x̂i ∈ Ĝ, y̌j ∈ Ȟ, xi, yj ∈ Zp simultaneously satisfying a set of equations. Groth and Sahai formulate four types of
equations, which using additive notation for group operations and multiplicative notation for the bilinear map e can
be written as follows.

Pairing-product equation: Public constants âj ∈ Ĝ, b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T.∑
i

x̂i · b̌i +
∑
j

âj · y̌j +
∑
i

∑
j

γij x̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ: Public constants âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ.∑
i

x̂ibi +
∑
j

âjyj +
∑
i

∑
j

γij x̂iyj = t̂.



Multi-scalar multiplication equation in Ȟ: Public constants aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ.∑
i

xib̌i +
∑
j

aj y̌j +
∑
i

∑
j

γijxiy̌j = ť.

Quadratic equation in Zp: Public constants aj ∈ Zp, bi ∈ Zp, γij ∈ Zp, t ∈ Zp.∑
i

xibi +
∑
j

ajyj +
∑
i

∑
j

γijxiyj = t.

These four types of equations express in a direct way statements arising in pairing-based cryptography. For this reason
Groth-Sahai proofs are used in numerous pairing-based protocols including group signatures [Gro07], anonymous
credentials [BCKL08,BCC+09], e-cash [FPV09], etc.

Groth-Sahai proofs are witness-indistinguishable proofs, i.e., they enable a prover to convince a verifier that a
statement is true in a way such that the verifier cannot tell which witness the prover has used. For a slightly more
restricted set of statements where all pairing-product equations have tT = 0T, Groth-Sahai proofs are actually zero-
knowledge proofs, i.e., they leak no information besides the truth of the statement.

There have been several papers that extend or improve the Groth-Sahai proof system in different directions.
[Mei09] suggested how to create perfectly extractable commitments, something which is not given by the commit-
ments used by Groth and Sahai. [CHP07,BFI+10] reduced the computational cost of the verification of the proofs
using batch techniques, at the cost of trading perfect soundness for statistical soundness. [Seo12] gave another map
for verifying proofs in the symmetric setting which reduces the computational cost of the verification of the proofs.
On the other hand, they prove that the map proposed by Groth and Sahai in the asymmetric setting is optimal.
[GSW10] proposed another assumption on which Groth-Sahai proofs can be based. [BCKL08,BCC+09] exploited
rerandomization properties of Groth-Sahai proofs, which they used in anonymous credentials. Recently, [CKLM12]
introduced a new notion of malleable proof systems, which can be built from Groth-Sahai proofs. While there has
been significant research effort devoted to pairing-based NIZK proofs, Groth-Sahai proofs still remain the most ef-
ficient NIZK proofs that are based on standard intractability assumptions and there has not been any progress in
reducing their size or the prover’s computation.

1.1 Our contributions

We focus on improving efficiency and propose several ways to fine-tune Groth-Sahai zero-knowledge proofs in the
asymmetric bilinear group setting.

– Groth-Sahai proofs use public constants and committed variables. We introduce two new types of values: public
base elements and encrypted variables. This reduces the size of proofs for statements involving these values.

– We recast Groth-Sahai proofs as a commit-and-prove scheme. This makes it possible to reuse commitments in
the proofs of different statements even when these statements depend on previous commitments and proofs.

– We show that the prover’s computation can be reduced by letting her pick her own provably correct common
reference string.

Encrypted variables. The common reference string in Groth-Sahai proofs contains a public commitment key that
the prover uses to commit to variables. The prover then proceeds to prove that the committed variables satisfy the
equations in the statement. The commitment key can be set up to be perfectly binding, in which case it is impossible
to cheat in the proof (perfect soundness). Alternatively, the commitment key can be set up to be perfectly hiding, in
which case the NIZK proof can be simulated without knowledge of the witness (perfect zero-knowledge).

In our scheme we allow the prover to encrypt variables using ElGamal encryption as an alternative to the com-
mitment scheme. ElGamal encryption requires two scalar multiplications and commitments in Groth-Sahai proofs
require four scalar multiplications so this reduces the prover’s computation. Moreover, equations that use ElGamal
ciphertexts instead of commitments have simpler proofs and we save two group elements for each of those equations.

We must be careful when using ElGamal encryption though since it will always be perfectly binding regardless
of the key. We can therefore not set up the common reference string to give us perfect zero-knowledge any more.
Instead, we rely on the Decision Diffie-Hellman (DDH) assumption to get computational zero-knowledge and we
place some restrictions on the types of equations where ElGamal encryptions can be used.



Base elements. Groth-Sahai proofs are zero-knowledge if all pairing-product equations have tT = 0T and no public
constants are paired with each other. Groth and Sahai gave a technique to rewrite the equations to enable zero-
knowledge proofs when tT =

∑n
i=1 t̂i · ťi, however, this comes at a cost of O(n) group elements.

We observe that the commitment keys can be set up to allow simulation in the special case where the public
constants are the base elements ĝ or ȟ. In the context of Groth-Sahai proofs this makes zero-knowledge simulation
possible when tT = â · ȟ+ ĝ · b̌ for public constants â ∈ Ĝ and b̌ ∈ Ȟ. This extension of Groth-Sahai proofs comes
at no extra cost, so we save the costly rewriting of the equations to get zero-knowledge.

In addition, Groth-Sahai zero-knowledge proofs for multi-scalar multiplications equations in Ĝ or in Ȟ in which
all the field elements are constants consist of 6 group elements unless t̂ = 0̂ or ť = 0̌, in which case the size of the
proof is reduced to 2 group elements. We observe that if t̂ = ĝ or ť = ȟ then we can still have zero-knowledge proofs
which consist of 2 group elements.

Using commitment keys with known discrete logarithms. In Groth-Sahai proofs, the prover uses a common
reference string shared between the prover and the verifier to create NIZK proofs. This common reference string is
created by a trusted entity and, in particular, the discrete logarithms of the commitment keys with respect to ĝ and ȟ
are unknown to both the prover and the verifier.

In this paper we show how to reduce the prover’s computation by allowing her to choose her own common
reference string, which we think of as her public key. This change reduces the cost of computing her commitments
from 4 scalar multiplications to 2 scalar multiplications and it also reduces the cost of computing proofs.

The verifier does of course need a guarantee that the prover’s public key is formed as a perfectly binding common
reference string, otherwise the proofs would not be sound any more. This can be accomplished by letting the prover
give a Groth-Sahai proof, using a common reference string the verifier does trust, for the public key being correct.
We show that the prover can communicate her public key and prove it is correct using 12 group elements in total,
which is a one-off cost as the public key can be used for many commitments and proofs.

Seeing the common reference string as the prover’s public key also gives us some flexibility in the setup. In-
stead of proving the public key correct in the common reference string model, the prover could use the multi-string
model [GO07] where the setup assumption is relaxed to assuming a majority out of n common reference strings are
honest. Alternatively, the prover could give a zero-knowledge proof of knowledge to a trusted third party that the
public key is correct and get a certificate on the public key.

Type-based commit-and-prove schemes. A commit-and-prove scheme [Kil90,CLOS02] is a natural generalization
of a zero-knowledge proof, where the prover can commit to values and prove statements about the committed values.
Commit-and-prove schemes provide extra flexibility and reduce communication; the same commitments can for
instance be used in different proofs for adaptively chosen statements about the committed values.

Groth-Sahai proofs can be used to build a non-interactive commit-and-prove scheme in a natural way. Fuchs-
bauer [Fuc11] defined a witness-indistinguishable Groth-Sahai based commit-and-prove scheme and used it in the
construction of delegatable anonymous credentials.

We will formulate our construction as a non-interactive commit-and-prove scheme because it allows for greater
flexibility. It is for instance possible to choose values to be committed to in an adaptive fashion that depends on
previous commitments or proofs, while the traditional definition of NIZK proofs would require the prover to make
an entirely new set of commitments for each statement to be proven.

Our results are natural extensions of Groth-Sahai proofs and our definition of a non-interactive commit-and-
prove scheme will resemble Fuchsbauer’s [Fuc11]. However, we are in a different situation because we have more
types of elements that we want to commit to. A group element in Ĝ may for instance be committed using the
perfectly binding/perfectly hiding commitment scheme or using ElGamal encryption. We could resolve this by using
multiple commitment schemes, i.e., define and construct a many-commitment-scheme-and-prove system. However,
the definition would quickly become unwieldy as the number of commitment schemes grows.

To give a generally applicable definition of non-interactive commit-and-prove schemes, we instead propose the
notion of type-based commitments. A type-based commitment scheme enables the prover to commit to a message m
with a publicly known type t. One example of a type could for instance be t = encĜ meaning the value m should be
encrypted (as opposed to using the more expensive commitment operation) and it should be done in group Ĝ. Type-
based commitments resemble tag-based commitments, where a message m can be committed under an arbitrary tag



tag, but a crucial difference is that while tags can be arbitrary bit-strings, types may be restricted. More precisely, we
require that the type and message pair (t,m) belong to a message spaceMck. We consider the type as being part of
the message, so another way of looking at a type-based commitment scheme is to say a message consists of public
part t and a private part m. This increases the flexibility of the commitment scheme, we can for instance create a
type (pubĜ, x) that publicly declares the committed value x. Since the type is public this commitment is no longer
hiding, however, as we shall see it simplifies our commit-and-prove scheme because we can now commit to both
public constants and secret variables without having to treat them differently.

Armed with type-based commitments we provide a formal definition of commit-and-prove schemes, where the
prover may commit to values and prove statements about the values. We stress that commitments and proofs can
be arbitrarily interleaved so at any given point a new value or statement may depend on previous commitments
and proofs, which makes them more flexible than standard Groth-Sahai proofs. The commit-and-prove scheme is
defined to be sound if it is impossible to prove a false statement about the committed values and it is defined to be
zero-knowledge if there exists a simulator that can simulate commitments and proofs.

Applications. To illustrate the advantages of our fine-tuned Groth-Sahai proofs we will give an example based on
the weak Boneh-Boyen signature scheme [BB04], which is widely used in pairing-based protocols. The verification
key is an element v̂ ∈ Ĝ and a signature on a message m ∈ Zp is a group element σ̌ ∈ Ȟ such that

(v̂ +mĝ) · σ̌ = ĝȟ.

Suppose the prover has commitments to v̂ and σ̌ and wants to demonstrate that they satisfy the verification
equation for a (public) message m. With traditional Groth-Sahai proofs the commitments c and d to v̂ and σ̌ would
be treated as part of the statement and one would carefully demonstrate the existence of openings of c and d to v̂
and σ̌ satisfying the pairing-product equation. With a commit-and-prove system, we can instead jump directly to
demonstrating that the values inside v̂ and σ̌ satisfy the verification equation without having to treat the openings
of the commitments as part of the witness. This saves several group elements each time one of the commitments is
used.

Next, observe that the pairing-product equation has tT = ĝ · ȟ. A direct application of Groth-Sahai proofs would
therefore not yield a zero-knowledge proof but only give witness-indistinguishability. To get zero-knowledge we
could use the workaround suggested by Groth-Sahai, which would consist of committing to a new variable y̌, prove
that y̌ = ȟ and simultaneously (v̂+mĝ) · σ̌− ĝy̌ = 0T. This work-around would increase the cost of the proof from
8 group elements to 16 group elements, so we save 8 group elements by enabling a direct proof.

Now assume the prover has created her own common reference string pk and has already sent it together with
the well-formedness proof to the verifier. The prover could now use pk to compute the zero-knowledge proof for
the equation (v̂ + mĝ) · σ̌ = ĝȟ . By using pk, she would need to do 10 scalar multiplications in Ĝ and 6 scalar
multiplications in Ȟ to compute the proof. In contrast, if she was computing the proof using the commitment key
ck, she would need to do 12 scalar multiplications in Ĝ and 10 scalar multiplications in Ȟ. As the operations in
Ȟ are usually significantly more expensive than the operations in Ĝ, the prover is essentially saving 4 expensive
operations of the 10 that she would need to do if she used ck. Therefore, our techniques reduce the computational
cost of creating the zero-knowledge proof by roughly 40%. In addition, the computational cost of computing the
commitments to v̂ and σ̌ would also be reduced by 50%.

Finally, we can obtain a saving by encrypting one of the variables instead of committing to it. If we encrypt v̂
for instance, the ciphertext is still 2 group elements just as the commitment in a Groth-Sahai proof would be, but the
cost of the proof for the pairing-product equation is reduced from 8 group elements to 6 group elements. In total we
have reduced the cost of the proof by 63% from 16 group elements to 6 group elements.

In Sec. 8 we give two concrete examples of existing schemes using Groth-Sahai proofs where our techniques can
improve efficiency.

2 Commit-and-prove scheme definitions

Let RL be a polynomial time verifiable relation containing triples (ck, x, w). We will call ck the commitment key or
the common reference string, x the statement and w the witness. We define the key-dependent language Lck as the
set of statements x for which there exists a witness w such that (ck, x, w) ∈ RL.



We will now define a commit-and-prove scheme for a relation RL. In the commit-and-prove scheme, we may
commit to different values w1, . . . , wN and prove for different statements x that a subset of the committed values
w = (wi1 , . . . , win) constitute a witness for x ∈ Lck, i.e., (ck, x, w) ∈ RL.

We will divide each committed value into two parts wi = (ti,mi). The first part ti can be thought of as a public
part that does not need to be kept secret, while the second part mi can be thought of as a secret value that our
commit-and-prove scheme should not reveal. The first part ti will be useful later on to specify the type of value mi

is, for instance a group element or a field element, and to specify which type of commitment we should make to mi.
This is a natural and useful generalization of standard commitment schemes.

A commit-and-prove scheme CP = (Gen,Com,Prove,Verify) consists of four polynomial time algorithms.
The algorithms Gen,Prove are probabilistic and the algorithms Com,Verify are deterministic.

Gen(1k): Generates a commitment key ck. The commitment key specifies a message space Mck, a randomness
spaceRck and a commitment space Cck. Membership of either space can be decided efficiently.

Comck(t,m; r): Given a commitment key ck, a message (t,m) ∈ Mck and randomness r such that (t, r) ∈ Rck

returns a commitment c such that (t, c) ∈ Cck.
Proveck(x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a commitment key ck, statement x and commitment openings

such that (ti,mi) ∈Mck, (ti, ri) ∈ Rck and (ck, x, t1,m1, . . . , tn,mn) ∈ RL returns a proof π.
Verifyck(x, (t1, c1), . . . , (tn, cn), π): Given a commitment key ck, a statement x, a proof π and commitments (ti, ci) ∈
Cck returns 1 (accept) or 0 (reject).

Definition 1 (Perfect correctness). The commit-and-prove system CP is (perfectly) correct if for all adversaries A

Pr

[
ck ← Gen(1k) ; (x,w1, r1, . . . , wn, rn)← A(ck) ; ci ← Comck(wi; ri) ;
π ← Proveck(x,w1, r1, . . . , wn, rn) : Verifyck(x, (t1, c1), . . . , (tn, cn), π) = 1

]
= 1,

where A outputs wi, ri such that wi = (ti,mi) ∈Mck, (ti, ri) ∈ Rck and (ck, x, w1, . . . , wn) ∈ RL.

We say a commit-and-prove scheme is sound if it is impossible to prove a false statement. Strengthening the
usual notion of soundness, we will associate unique values to the commitments, and these values will constitute a
witness for the statement. This means that not only does a valid proof guarantee the truth of the statement, but also
each commitment will always contribute a consistent witness towards establishing the truth of the statement.

Definition 2 (Perfect soundness). The commit-and-prove system CP is (perfectly) sound if there exists a determin-
istic (unbounded) opening algorithm Open such that for all adversaries A

Pr

[
ck ← Gen(1k) ; (x, t1, c1, . . . , tn, cn, π)← A(ck) ; mi ← Openck(ti, ci) :
Verifyck(x, t1, c1, . . . , tn, cn, π) = 0 ∨ (ck, x, (t1,m1), . . . , (tn,mn)) ∈ RL

]
= 1.

Extending the notion of soundness we may define knowledge as the ability to efficiently extract a witness for the
truth of the statement proven when given an extraction key xk. Actually, the commit-and-prove schemes we construct
will not allow the extraction of all types of witnesses due to the hardness of the discrete logarithm problem. However,
we can specify a function F such that we can extract F (ck, w) from a commitment. Efficient extraction of a witness
corresponds to the special case where F (ck, w) = m, with m being the secret part of the witness w = (t,m).

Definition 3 (Perfect F -knowledge). Let in the following ExtGen and Ext be two algorithms as described below.

– ExtGen is a probabilistic polynomial time algorithm that on 1k returns (ck, xk). We call ck the commitment
key and xk the extraction key. We require that the probability distributions of ck made by ExtGen and Gen are
identical.

– Ext is a deterministic polynomial time algorithm that given an extraction key xk and (t, c) ∈ Cck returns a value.

The commit-and-prove scheme CP with perfect soundness for opening algorithm Open has F -knowledge for a
function F if for all adversaries A

Pr

[
(ck, xk)← ExtGen(1k) ; (t, c)← A(ck, xk) :
(t, c) /∈ Cck ∨ Extxk(t, c) = F (ck, t,Open(t, c))

]
= 1.



We say a commit-and-prove scheme is zero-knowledge if it does not leak information about the secret parts of the
committed messages besides what is already leaked by the public parts. This is defined as the possibility to simulate
commitments and proofs without knowing the secret parts of the messages (the types are known) if instead some
secret simulation trapdoor is known about the commitment key ck.

Following [Gro06,GOS12] we define a strong notion of zero-knowledge called composable zero-knowledge.
Composable zero-knowledge says the commitment key can be simulated, and if the commitment key is simulated it
is not possible to distinguish real proofs from simulated proofs even if the simulation trapdoor is known.

Definition 4 (Composable zero-knowledge). The commit-and-prove system CP is (computationally) composable
zero-knowledge if there exist probabilistic polynomial time algorithms SimGen, SimCom,SimProve such that for
all non-uniform polynomial time stateful interactive adversaries A 3

Pr
[
ck ← Gen(1k) : A(ck) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k) : A(ck) = 1

]
and

Pr

[
(ck, tk)← SimGen(1k); (x, i1, . . . , in)← AComck(·)(ck, tk);
π ← Proveck(x,wi1 , ri1 , . . . , win , rin) : A(π) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k); (x, i1, . . . , in)← ASimComtk(·)(ck, tk);
π ← SimProvetk(x, ti1 , si1 , . . . , tin , sin) : A(π) = 1

]
,

where

– tk is a trapdoor key used to construct simulated proofs
– Comck(·) on wi = (ti,mi) ∈ Mck picks uniformly random ri such that (ti, ri) ∈ Rck and returns ci =

Comck(wi; ri)
– SimComtk(·) on wi = (ti,mi) ∈Mck runs (ci, si)← SimComtk(ti) and returns ci, where si is some auxiliary

information used to construct simulated proofs
– A picks (x, i1, . . . , in) such that (ck, x, wi1 , . . . , win) ∈ RL

Comparison to standard zero-knowledge proofs. The commit-and-prove functionality defined above is a generaliza-
tion of standard zero-knowledge proofs. The commitment key corresponds to a common reference string. To give a
proof for x ∈ Lck the prover could commit to the witness and then give a proof. The correctness, soundness and
zero-knowledge properties given above imply that this would yield a non-interactive zero-knowledge proof system
for RL.

The generalization to a commit-and-prove functionality is quite useful for efficiency reasons. Using a traditional
zero-knowledge proof system the prover has to start from scratch every time a new statement has to be proved. In a
commit-and-prove system, commitments to values can be reused in multiple proofs, which reduces both computation
and communication.

There are also conceptual advantages to using a commit-and-prove functionality. One is that it is convenient that
the same committed values can be used across multiple proofs. Another one is that we capture in a natural way that
statements may be related to commitments and proofs that have been made before.

3 Preliminaries

3.1 Bilinear group

Let G be a probabilistic polynomial time algorithm that on input 1k returns (p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T
are groups of prime order p, ĝ and ȟ generate Ĝ and Ȟ respectively, and e : Ĝ× Ȟ→ T is an efficiently computable,
non-degenerate bilinear map.

3 Given two functions f, g : N→ [0, 1] we write f(k) ≈ g(k) when |f(k)− g(k)| = O(k−c) for every positive integer c. We say that f is
negligible when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1.



Notation: We will write elements x̂ ∈ Ĝ with a hat and elements y̌ ∈ Ȟ with an inverted hat to make it easy to
distinguish elements from the two groups. We denote the neutral elements in the groups Ĝ, Ȟ and T with 0̂, 0̌ and
0T.

It will be convenient to use additive notation for all three groups Ĝ, Ȟ and T. This notation deviates from standard
practice (Ĝ, Ȟ are sometimes written multiplicatively and T is usually written multiplicatively) but will greatly
simplify our paper and make it possible to use linear algebra concepts such as vectors and matrices in a natural way.
We stress that even though we are using additive notation it is hard to compute discrete logarithms in the groups.

It will also be convenient to write the pairing e with multiplicative notation. So we define

x̂ · y̌ = e(x̂, y̌).

Writing the pairing multiplicatively allows us to use linear algebra notation in a natural way, we have for instance

x̂ ·
(

0̌ y̌
ž 0̌

)
e> =

(
x̂y̌
0T

)
,

for x̂ ∈ Ĝ, y̌, ž ∈ Ȟ and e = (0, 1). Note that as x̂a· y̌ = x̂·ay̌ we will use the simpler notation x̂ay̌ = x̂a· y̌ = x̂·ay̌.

3.2 SXDH assumption

Let (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1k) be a bilinear group. The Decision Diffie-Hellman (DDH) problem in Ĝ is to
distinguish the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ, κĝ), where ξ, ρ, κ← Zp. The DDH problem in Ȟ is
defined in a similar way.

Definition 5. The Symmetric eXternal Diffie-Hellman (SXDH) assumption holds relative to G if the DDH problems
are computationally hard in both Ĝ and Ȟ for (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k).

3.3 ElGamal encryption

The ElGamal encryption scheme [EG84] is a public key encryption scheme given by the following algorithms:

– Setup: on input a security parameter 1k, output a cyclic group Ĝ of prime order p, an element ĝ ∈ Ĝ and an
element ξ ← Z∗p. Then, define the public key as pk = (Ĝ, v̂), where v̂ = (ξĝ, ĝ)> ∈ Ĝ2×1 and the secret
decryption key as xk = (pk, ξ), where ξ = (−ξ−1 mod p, 1).

– Encrypt: the encryption algorithm takes as input the public key pk and a message x̂ ∈ Ĝ, picks a random r ← Zp

and outputs the ciphertext ĉ = e>x̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).
– Decrypt: the decryption algorithm takes as input the secret key xk and a ciphertext ĉ ∈ Ĝ2×1 and outputs
x̂ = ξĉ. Note ξe> = 1 and ξv̂ = 0 so simple linear algebra shows decryption is correct.

The ElGamal encryption scheme is IND-CPA secure if the DDH problem is computationally hard in Ĝ [TY98].
ElGamal encryption can be defined similarly in Ȟ and if the SXDH assumption holds we then have IND-CPA secure
encryption schemes in both Ĝ and Ȟ.

3.4 Pairing-product equations and other types of equations

Using the linear algebra friendly additive notation for group operations and multiplicative notation for the pairing,
we can express the four types of equations given in the introduction (Sec. 1) in a compact way.

Consider elements x̂1, . . . , x̂m ∈ Ĝ and y̌1, . . . , y̌n ∈ Ȟ, which may be publicly known constants (called âj and
b̌i in the introduction) or secret variables. Let furthermore the matrix Γ = {γij}m,n

i=1,j=1 ∈ Zm×n
p and tT ∈ T be

public values. We can now write the pairing product equation simply as

x̂Γ y̌ = tT,

where x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n)>.



We can in a similar fashion write multi-scalar multiplication equations in Ĝ, multi-scalar multiplication equations
in Ȟ, and quadratic equations in Zp as

x̂Γy = t̂ xΓ y̌ = ť xΓy = t

for suitable choices of m,n ∈ N, Γ ∈ Zm×n
p , x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m

p ,y ∈ Zn×1
p , t̂ ∈ Ĝ, ť ∈ Ȟ and

t ∈ Zp. The vectors x̂, y̌,x,y may contain a mix of known public values and secret variables.
Groth and Sahai [GS12] made the useful observation that by subtracting t̂ · 1, 1 · ť and 1 · t on both sides of

the respective equations we may without loss of generality assume t̂ = 0̂, ť = 0̌ and t = 0 in all multi-scalar
multiplication equations and quadratic equations. For multi-scalar multiplication equations this has an implicit cost,
though: we need to treat the field element 1 as a variable, as the simulator will need to equivocate it to the field element
0. This means that if all the field elements that appear in the multi-scalar multiplication equation are constants, the
equation will not be treated as a linear equation any more, which have witness-indistinguishable proofs which consist
of 2 group elements. Instead, the zero-knowledge proof will consist of 6 group elements. However, in the special
case where t̂ = ĝ or ť = ȟ we will show that we can still treat the equation as a linear equation, which have
zero-knowledge proofs consisting of 2 group elements.

To get zero-knowledge proofs, we will in addition like Groth and Sahai restrict ourselves to tT = 0T in all
pairing product equations. Groth and Sahai [GS12] do not allow pairings of public constants in the pairing product
equations in their zero-knowledge proofs, which we express by requiring the matrix Γ to contain entries γi,j = 0
whenever x̂i and y̌j both are public values. This is because their zero-knowledge simulator breaks down when public
values are paired. Groth and Sahai offers a work-around to deal with public values being paired with each other but
it involves introducing additional multi-scalar multiplication equations and therefore increases the complexity of the
zero-knowledge proof by many group elements. We will show that zero-knowledge simulation is possible when base
elements ĝ or ȟ are paired with each other or other public values. Since we do not need the additional multi-scalar
multiplication equation used in Groth and Sahai’s work-around this yields a significant efficiency gain whenever ĝ
or ȟ are paired with each other or other public values.

4 Commitment keys and commitments

Like in Groth-Sahai proofs, commitment keys come in two flavours: extraction keys that give perfect soundness and
simulation keys that give zero-knowledge. The two types of key generation algorithms are given in Fig. 1 and by the
SXDH assumption extraction keys and simulation keys are computationally indistinguishable.4

ExtGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k)
ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂ ← (ξĝ, ĝ)> v̌ ← (ψȟ, ȟ)
ŵ ← ρv̂ w̌ ← σv̌

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)
ξ ← (−ξ−1 mod p, 1) ψ ← (−ψ−1 mod p, 1)>

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
xk ← (ck, ξ,ψ)
Return (ck, xk)

SimGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k)
ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂ ← (ξĝ, ĝ)> v̌ ← (ψȟ, ȟ)

ŵ ← ρv̂ − (0̂, ĝ)> w̌ ← σv̌ − (0̌, ȟ)

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
tk ← (ck, ρ, σ)
Return (ck, tk)

Fig. 1: Generator algorithms

The column vectors v̂, ŵ, û ∈ Ĝ2×1 will be used to make commitments ĉ to group elements x̂ ∈ Ĝ and scalars
x ∈ Zp. Commitments to group elements and scalars are computed as

ĉ← e>x̂+ v̂r + ŵs and ĉ← ûx+ v̂r,

4 The commitment keys are not defined exactly as in [GS12]: by defining v̂ as (ξĝ, ĝ)> instead of (ĝ, ξĝ)> we will be able to reduce
the computational cost of the prover, as explained in Sec. 9. Besides this small difference, the keys v̂, ŵ, û, v̌, w̌ and ǔ correspond to
u1, u2, u, v1, v2 and v in [GS12].



where r, s ∈ Zp. Commitments, usually denoted ď, to group elements ŷ ∈ Ȟ and scalars y ∈ Zp are made analo-
gously using the row vectors v̌, w̌, ǔ ∈ Ȟ1×2.

The commitment scheme is similar to [GS12], however, we will have several different types of commitments and
the randomness r, s ∈ Zp we use will depend on the type. Fig. 2 summarizes the commitment types and describes
the message, randomness and commitment spaces specified by the public key ck.

t m (r, s) ĉ

(pubĜ,m) m̂ ∈ Ĝ r = s = 0 ĉ = (0̂, m̂)>

encĜ m̂ ∈ Ĝ r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

comĜ m̂ ∈ Ĝ r, s ∈ Zp ĉ ∈ Ĝ2×1

baseĜ m̂ = ĝ r = s = 0 ĉ = (0̂, ĝ)>

scaĜ m ∈ Zp r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

unitĜ m = 1 r = s = 0 ĉ = û

t m (r, s) ď

(pubȞ,m) m̌ ∈ Ȟ r = s = 0 ď = (0̌, m̌)
encȞ m̌ ∈ Ȟ r ∈ Zp, s = 0 ď ∈ Ȟ1×2

comȞ m̌ ∈ Ȟ r, s ∈ Zp ď ∈ Ȟ1×2

baseȞ m̌ = ȟ r = s = 0 ď = (0̌, ȟ)
scaȞ m ∈ Zp r ∈ Zp, s = 0 ď ∈ Ȟ1×2

unitȞ m = 1 r = s = 0 ď = ǔ

Fig. 2:Mck,Rck and Cck.

The type t = (pubĜ, x̂) corresponds to a commitment to a public value x̂ using randomness r = s = 0.
It is easy for the verifier to check whether a commitment ĉ = e>x̂ is indeed a correct commitment to a public
value x̂. Explicitly allowing public values in the commitments simplifies the description of the proofs because we
can now treat all elements x̂1, . . . , x̂m in a pairing product equation as committed values regardless of whether
they are public or secret. Suppose some of the elements x̂ ∈ Ĝ1×m that appear in a pairing-product equation
are committed as constant and others as Groth-Sahai commitments. The matrix consisting of all the commitments
Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m can be written in a compact way as Ĉ = e>x̂+ v̂rx + ŵsx, where for a constant x̂i we
just have rxi = 0 and sxi = 0.

In a standard Groth-Sahai proof, group element variables are committed as type t = comĜ using randomness
r, s ← Zp. We will for greater efficiency also allow commitments of type t = encĜ where s = 0. A type t = encĜ
commitment to a group element x̂ is ĉ← e>x̂+ v̂r, which is an ElGamal encryption of x̂ as described in Sec. 3.3.
Using encryption of variables instead of commitments reduces the computation and in some instances the size of the
proofs. However, even on a simulation key the encryptions are only computationally hiding, so we must take care to
ensure that it is possible to simulate proofs.

We also introduce the type t = baseĜ for a commitment to the base element ĝ using r = s = 0. This type allows
us to differentiate ĝ from other public values, which is important because the simulation becomes problematic when
public values are paired with each other. However in the special case when ĝ is paired with ȟ or public constants
it is possible to simulate. In addition, one can get shorter zero-knowledge proofs for certain equations by using the
special properties of ĝ and ȟ.

Scalars have the type t = scaĜ and we use the type t = unitĜ for a commitment to the scalar 1 using r = s = 0.
Please note that t = unitĜ suffices to incorporate any public value a ∈ Zp into our equations by multiplying the
corresponding row in the matrix Γ with a. With these two types we can therefore commit to both variables and
constants in Zp, which simplifies the description of the proofs.

We have now described the types of commitments in Ĝ and similar types for commitments in Ȟ are given in
Fig. 2. The commitment algorithm is described in Fig. 3.

Input Randomness Output
(pubĜ, x̂), x̂ r ← 0, s← 0 ĉ← e>x̂
encĜ, x̂ (?) r ← Zp, s← 0 ĉ← e>x̂+ v̂r
comĜ, x̂ r ← Zp, s← Zp ĉ← e>x̂+ v̂r + ŵs
baseĜ, ĝ (?) r ← 0, s← 0 ĉ← e>ĝ
scaĜ, x r ← Zp, s← 0 ĉ← ûx+ v̂r
unitĜ, 1 r ← 0, s← 0 ĉ← û

Input Randomness Output
(pubȞ, y̌), y̌ r ← 0, s← 0 ď← y̌e
encȞ, y̌ (?) r ← Zp, s← 0 ď← y̌e+ rv̌
comȞ, y̌ r ← Zp, s← Zp ď← y̌e+ rv̌ + sw̌
baseȞ, ȟ (?) r ← 0, s← 0 ď← ȟe
scaȞ, y r ← Zp, s← 0 ď← yǔ+ rv̌
unitȞ, 1 r ← 0, s← 0 ď← ǔ

Fig. 3: Commitment algorithm. The commitments marked with (?) were not defined in [GS12].



The extraction key xk includes a vector ξ such that ξv̂ = ξŵ = 0̂ and ξe> = 1, ξû = ĝ. On a commitment to
a group element ĉ = e>x̂ + v̂r + ŵs or on an encryption to a group element ĉ = e>x̂ + v̂r we can extract x̂ by
computing x̂ = ξĉ. On a commitment to a scalar ĉ = ûx+ v̂r we extract ĝx = ξĉ, which uniquely determines the
committed value x. The extraction algorithm is given in Fig. 4.

Extxk(t, ĉ) where ĉ ∈ Ĝ2×1

Return x̂← ξĉ

Extxk(t, ď) where ď ∈ Ȟ1×2

Return y̌ ← ďψ

Fig. 4: Extraction algorithm.

The simulated commitment algorithm SimComtk(t) is described in Fig. 5. Essentially it commits honestly to
public constants, base elements ĝ, ȟ and units 1, which is easy to verify using public information. For all other types
it commits to 0.

Input Randomness Output
(pubĜ, x̂) r ← 0, s← 0 ĉ← e>x̂
encĜ r ← Zp, s← 0 ĉ← v̂r
comĜ r ← Zp, s← Zp ĉ← v̂r + ŵs
baseĜ r ← 0, s← 0 ĉ← e>ĝ
scaĜ r ← Zp, s← 0 ĉ← v̂r
unitĜ r ← 0, s← 0 ĉ← û

Input Randomness Output
(pubȞ, y̌) r ← 0, s← 0 ď← y̌e
encȞ r ← Zp, s← 0 ď← rv̌
comȞ r ← Zp, s← Zp ď← rv̌ + sw̌
baseȞ r ← 0, s← 0 ď← ȟe
scaȞ r ← Zp, s← 0 ď← rv̌
unitȞ r ← 0, s← 0 ď← ǔ

Fig. 5: Simulation algorithm for commitments.

On a simulation key, the commitments of types comĜ or scaĜ are perfectly hiding. Commitments of types
(pubĜ, x̂) or encĜ on the other hand are perfectly binding. However, by the SXDH assumption commitments of
type encĜ cannot be distinguished from commitments to other elements. Commitments of type (pubĜ, x̂) are public,
so we do not require any hiding property.

Commitments to ĝ and 1 of types baseĜ and unitĜ are interesting. The secret simulation key specifies ρ such that
û = ρv̂ and e>ĝ = ρv̂ − ŵ. This means that commitments of types baseĜ and unitĜ can be equivocated as either
commitments to ĝ and 1 or as commitments to 0̂ and 0. The zero-knowledge simulator will use the equivocations to
simulate proofs involving the base element ĝ or constants in Zp.

5 Proofs

We will first explain how the proofs work using the example of pairing product equations to give intuition. We want
to prove that committed values x̂, y̌ satisfy the equation

x̂Γ y̌ = 0T.

Assume that we have committed to x̂, y̌ as Ĉ = e>x̂+ v̂rx + ŵsx and Ď = y̌e+ ryv̌ + syw̌. We then have

ĈΓ Ď =(e>x̂+ v̂rx + ŵsx)Γ (y̌e+ ryv̌ + syw̌)

=e>x̂Γ y̌e+ v̂rxΓĎ + ŵsxΓĎ + e>x̂Γryv̌ + e>x̂Γsyw̌

=0T + v̂π̌′v̂ + ŵπ̌′ŵ + π̂′v̌v̌ + π̂′w̌w̌

where π̌′v̂ = rxΓĎ, π̌
′
ŵ = sxΓĎ, π̂

′
v̌ = e>x̂Γry, π̂

′
w̌ = e>x̂Γsy.

The prover randomizes π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′v̂ + αv̌ + βw̌, π̌ŵ = π̌′ŵ + γv̌ + δw̌, π̂v̌ = π̂′v̌ − v̂α− ŵγ,

π̂w̌ = π̂′w̌ − v̂β − ŵδ. This gives us a randomized proof π̌v̂, π̌ŵ, π̂v̌, π̂w̌ satisfying the verification equation

ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.



Soundness and F -knowledge. An extraction key xk contains ξ,ψ such that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌.
Multiplying the verification equation by ξ and ψ on the left and right side respectively, we get

ξĈΓ Ďψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.

Observe, x̂ = ξĈ are the values the extractor Extxk gets from the commitments Ĉ and y̌ = Ďψ are the values
the extractor Extxk gets from the commitments Ď. The extracted values from the commitments therefore satisfy
x̂Γ y̌ = 0T. This gives us perfect soundness and perfect F -knowledge, where F on group elements in Ĝ and Ȟ is
the identity function.

Zero-knowledge. The simulator will simulate proofs by equivocating the commitments to values x̂, y̌ that satisfy
the equation x̂Γ y̌ = 0T. On a simulation key, commitments with types comĜ, comȞ are perfectly hiding. The
simulator can therefore use x̂i = 0̂ or y̌j = 0̌. Commitments with types baseĜ, baseȞ are also equivocable to 0̂

or 0̌ since on a simulation key e>ĝ = v̂ρ − ŵ and ȟe = σv̌ − w̌. By using equivocations to 0̂ and 0̌ we can
now ensure that x̂iγi,j y̌j = 0T whenever txi ∈ {baseĜ, comĜ} or tyj ∈ {baseȞ, comȞ}. Commitments of type
txi ∈ {(pubĜ, x̂), encĜ} and tyj ∈ {(pubȞ, y̌), encȞ} cannot be equivocated and, to get zero-knowledge, we will
therefore assume γi,j = 0 whenever such types are paired (as is also the case in [GS12]).

We now have that the simulator can equivocate commitments and base elements to 0̂ and 0̌ such that the resulting
x̂, y̌ satisfy x̂Γ y̌ = 0T. The randomization of the proofs ensures that they will not leak information about whether
we are giving a real proof or simulating. Recall the prover randomized π̌′v̂, π̌

′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′v̂ + αv̌ + βw̌,

π̌ŵ = π̌′ŵ + γv̌ + δw̌, π̂v̌ = π̂′v̌ − v̂α − ŵγ, π̂w̌ = π̂′w̌ − v̂β − ŵδ. On a simulation key this means regardless
of whether we are giving a real proof or a simulated proof π̌v̂, π̌ŵ are uniformly random and π̂v̌, π̂w̌ are the unique
values that make the verification equation true. Finally, the encrypted elements are computationally hidden by the
SXDH assumption, so here the simulator may use encryptions of 0̂ and 0̌ instead of the witness and as we shall show
the proofs can be constructed on top of the ciphertexts such that they do not reveal whether the underlying plaintext
are part of a real witness or are set to zero by the simulator.

Optimizations. Now let us return to the prover. Observe that rx, sx, ry, sy may have some zero elements. In par-
ticular, assume that all elements in sx are 0. This happens if all x̂i in the statement have types encĜ, (pubĜ, x̂i) or
baseĜ. Moreover, assume that all elements y̌ have as types either comȞ or baseȞ so that a simulator uses y̌ = 0̌
in the simulated proof. This sets π̌′ŵ = 0̌. As π̌′ŵ is the same for all witnesses, even for “simulated witnesses”, we
might as well set γ = δ = 0. This gives us a proof that consists of 4 elements in Ĝ and 2 elements in Ȟ instead
of 4 elements both in Ĝ and Ȟ. For such equations, we therefore save 2 group elements or 25% of the proof size
compared to Groth and Sahai [GS12] where there is no encĜ or encȞ types. We refer to Fig. 9 for the list of equation
types and the corresponding proof sizes.

5.1 The full proof system
We divide the possible statements into 16 different types. They are summarized in Fig. 6, which provides an algorithm
for checking that the statement format is correct.

The relation RL is defined in Fig. 7, which provides an algorithm to check whether a statement is true. The
relation first checks that the types of the witnesses and the types of the equations match according to Fig. 6 and then
whether the relevant pairing product, multi-scalar multiplication or quadratic equation is satisfied.

The prover and verifier are given in Fig. 8. The prover constructs a proof for the relevant type of equation
assuming the input is a correctly formatted statement with valid openings of commitments to a satisfying witness.
The verifier uses the matching verification equation to check validity of a proof.

As described earlier there are some types of equations where parts of the proof are just 0 or can be compressed.
In Fig. 9 we show the parts of the proofs that allow reduced communication for each type of equation and, if the
proof is shortened, we explain how it is done.

Let F be given by

F (ck, t, x̂) = x̂ for t ∈ {(pubĜ, x̂), encĜ, comĜ, baseĜ}
F (ck, t, x) = ĝx for t ∈ {scaĜ, unitĜ}
F (ck, t, ŷ) = y̌ for t ∈ {(pubȞ, y̌), encȞ, comȞ, baseȞ}
F (ck, t, y) = yȟ for t ∈ {scaȞ, unitȞ}

.



CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Γ ∈ Zm×np

Check that the equation and message types match each other according to the table below

T tx1 , . . . , txm ty1 , . . . , tyn
PPE baseĜ, (pubĜ, x̂i), encĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ
PEncĜ baseĜ, (pubĜ, x̂i), encĜ baseȞ, comȞ
PConstĜ baseĜ, (pubĜ, x̂i) baseȞ, comȞ
PEncȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ
PConstȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j)
MEĜ baseĜ, (pubĜ, x̂i), encĜ, comĜ unitȞ, scaȞ
MEncĜ baseĜ, (pubĜ, x̂i), encĜ unitȞ, scaȞ
MConstĜ baseĜ, (pubĜ, x̂i) unitȞ, scaȞ
MLinĜ baseĜ, comĜ unitȞ
MEȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ
MEncȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ
MConstȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j)
MLinȞ unitĜ baseȞ, comȞ
QE unitĜ, scaĜ unitȞ, scaȞ
QConstĜ unitĜ unitȞ, scaȞ
QConstȞ unitĜ, scaĜ unitȞ

If T = PPE check Γi,j = 0 for all (i, j) where txi ∈ {(pubĜ, x̂i), encĜ} and tyj ∈ {(pubȞ, y̌j), encȞ}
Accept format if all checks pass, else abort

Fig. 6: Equation - message types check

RL(ck, (T, Γ ), ({(txi , xi)}mi=1, {(tyj , yj)}nj=1))
CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)
For all i, j check (txi , xi) ∈Mck and (tyj , yj) ∈Mck

If x ∈ Ĝm and y ∈ Ȟn check xΓy = 0T

If x ∈ Ĝm and y ∈ Znp check xΓy = 0̂
If x ∈ Zmp and y ∈ Ȟn check xΓy = 0̌
If x ∈ Zmp and y ∈ Znp check xΓy = 0
Accept if and only if all checks pass

Fig. 7: Relation that defines the key-dependent languages for our proofs

Proveck(T, Γ, {(txi , xi, (rxi , sxi))}mi=1, {(tyj , yj , (ryj , syj ))}nj=1)

If x ∈ Ĝm define Ĉ = e>x+ v̂rx + ŵsx else if x ∈ Zmp define Ĉ = ûx+ v̂rx
If y ∈ Ȟn define Ď = ye+ ryv̌ + syw̌ else if y ∈ Znp define Ď = yǔ+ ryv̌
Set α = β = γ = δ = 0
If T = PPE pick α, β, γ, δ ← Zp
If T ∈ {PEncĜ,MEȞ} pick α, β ← Zp
If T ∈ {PEncȞ,MEĜ} pick α, γ ← Zp
If T ∈ {MEncĜ,MEncȞ,QE} pick α← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

Return π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

Verifyck(T, Γ, {(txi , ĉi)}mi=1, {(tyj , ďj)}nj=1, π)
CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m and Ď =
(
ď1 · · · ďn

)> ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌
Return 1 if all checks pass, else return 0

Fig. 8: Prover and verifier algorithms



T π̌v̂ π̌ŵ π̂v̌ π̂w̌ Ĝ Ȟ Zp
PPE π̌v̂ π̌ŵ π̂v̌ π̂w̌ 4 4 0
PEncĜ (?) π̌v̂ 0̌ π̂v̌ π̂w̌ 4 2 0
PConstĜ 0̌ 0̌ e>(x̂Γry) e>(x̂Γsy) 2 0 0

PEncȞ (?) π̌v̂ π̌ŵ π̂v̌ 0̂ 2 4 0

PConstȞ (rxΓ y̌)e (sxΓ y̌)e 0̂ 0̂ 0 2 0

MEĜ π̌v̂ π̌ŵ π̂v̌ 0̂ 2 4 0

MEncĜ (?) π̌v̂ 0̂ π̂v̌ 0̂ 2 2 0

MConstĜ 0̌ 0̌ e>(x̂Γry) 0̂ 1 0 0

MLinĜ (rxΓy)ǔ (sxΓy)ǔ 0̂ 0̂ 0 0 2
MEȞ π̌v̂ 0̌ π̂v̌ π̂w̌ 4 2 0

MEncȞ (?) π̌v̂ 0̌ π̂v̌ 0̂ 2 2 0

MConstȞ (rxΓ y̌)e 0̌ 0̂ 0̂ 0 1 0
MLinȞ 0̌ 0̌ û(xΓry) û(xΓsy) 0 0 2

QE π̌v̂ 0̌ π̂v̌ 0̂ 2 2 0

QConstĜ 0̌ 0̌ û(xΓry) 0̂ 0 0 1

QConstȞ (rxΓy)ǔ 0̌ 0̂ 0̂ 0 0 1

Fig. 9: Size of an NIZK proof for each type of equation. The size of the NIZK proofs are the same
as in [GS12], except for the equation types marked with (?), which were not defined in [GS12].

Theorem 1. The commit-and-prove scheme given in Figs. 1,3,4 and 8 has perfect correctness, perfect soundness
and F -knowledge for the function F defined above, and computational composable zero-knowledge if the SXDH
assumption holds relative to G.

The description of the zero-knowledge simulator is given in Sec. 6. The proof of the theorem follows from Lem-
mas 1, 2 and 3 given in Sec. 7.

6 Zero-Knowledge simulator

Simulation. The simulator gets as input a well-formed statement where the equation and message types match.
Unlike the prover, the simulator does not know the witness. Some of the simulator’s inputs xi and yj will correspond
to public values, base elements and units, while others have been generated with the simulated commitments and are
0. Having the secret simulation key the simulator can equivocate the baseĜ, unitĜ and baseȞ, unitȞ type commitments
to 0. This enables it to get a satisfying witness for the statement and using this simulated witness it can now create
the proof as an honest prover would do. The simulator algorithm is detailed in Fig. 10.

7 Security proofs for the commit-and-prove scheme

Lemma 1. The commit-and-prove scheme has perfect correctness.

Proof. The prover gets a statement and valid witness (ck, (T, Γ ), {(txi , xi)}mi=1, {(tyn , yn)}nj=1) ∈ RL, which
guarantees the statement is correctly formatted, (txi , xi), (tyj , yj) ∈ Mck and the vectors x = (x1, . . . , xm) and
y = (y1, . . . , yn)> fall into one out of four cases given below.

Case Implication
x ∈ Ĝ1×m,y ∈ Ȟn×1 and xΓy = 0T e

>xΓye = 0T
x ∈ Ĝ1×m,y ∈ Zn×1

p and xΓy = 0̂ e>xΓyǔ = 0T
x ∈ Z1×m

p ,y ∈ Ȟn×1 and xΓy = 0̌ ûxΓye = 0T
x ∈ Z1×m

p ,y ∈ Zn×1
p and xΓy = 0 ûxΓyǔ = 0T

The prover’s input also satisfies (txi , (rxi , sxi)), (tyj , (ryj , syj )) ∈ Rck. For x ∈ Zm
p this gives us sx = 0 and we

can write Ĉ = ûx+ v̂rx + ŵsx. Similarly, for y ∈ Zn
p it gives us sy = 0 and we can write Ď = yǔ+ ryv̌+ syw̌.

This means that for each of the four cases

(Ĉ − v̂rx − ŵsx)Γ (Ď − ryv̌ − syw̌) = 0T.



SimProvetk(T, Γ, {(txi , (xi, rxi , sxi))}mi=1, {(tyj , (yj , ryj , syj ))}nj=1)
Modify some values according to the following tables

T txi xi, rxi , sxi
PPE, PEncȞ, PConstȞ,MLinĜ baseĜ xi ← 0̂, rxi ← ρ, sxi ← −1
MEȞ,MEncȞ,MConstȞ,QE,QConstȞ unitĜ xi ← 0, rxi ← ρ, sxi ← 0

T tyj yj , ryj , syj
PPE, PEncĜ, PConstĜ,MLinȞ baseȞ yj ← 0̌, ryj ← σ, syj ← −1
MEĜ,MEncĜ,MConstĜ,QE,QConstĜ unitȞ yj ← 0, ryj ← σ, syj ← 0

If x ∈ Ĝm define Ĉ = e>x+ v̂rx + ŵsx else if x ∈ Zmp define Ĉ = ûx+ v̂rx
If y ∈ Ȟn define Ď = ye+ ryv̌ + syw̌ else if y ∈ Znp define Ď = yǔ+ ryv̌
Set α = β = γ = δ = 0
If T = PPE pick α, β, γ, δ ← Zp
If T ∈ {PEncĜ,MEȞ} pick α, β ← Zp
If T ∈ {PEncȞ,MEĜ} pick α, γ ← Zp
If T ∈ {MEncĜ,MEncȞ,QE} pick α← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

Return π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

Fig. 10: Simulator algorithm

This fact gives us that the verification equation used by the verifier holds.

ĈΓ Ď = (Ĉ − v̂rx − ŵsx)ΓĎ + v̂rxΓĎ + ŵsxΓĎ

= (Ĉ − v̂rx − ŵsx)Γ (Ď − ryv̌ − syw̌) + (Ĉ − v̂rx − ŵsx)Γryv̌ + (Ĉ − v̂rx − ŵsx)Γsyw̌

+ v̂rxΓĎ + ŵsxΓĎ + v̂(α− α)v̌ + v̂(β − β)w̌ + ŵ(γ − γ)v̌ + ŵ(δ − δ)w̌

= 0T +
(

(Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
)
v̌ +

(
(Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

)
w̌

+ v̂(rxΓĎ + αv̌ + βw̌) + ŵ(sxΓĎ + γv̌ + δw̌)

= π̂v̌v̌ + π̂w̌w̌ + v̂π̌v̂ + ŵπ̌ŵ.

ut

Lemma 2. The commit-and-prove scheme has perfect soundness and perfect F -knowledge.

Proof. The verifier checks that the statement is correctly formatted, the commitments are valid and the proof is
well-formed. Finally, the verifier checks that the commitments organized into matrices Ĉ and Ď satisfy

ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.

Recall ExtGen returns ξ,ψ such that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌. Multiplying by ξ and ψ on the left and
right side respectively, we get

ξĈΓ Ďψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.

Observe, x̂ = ξĈ are the values the extractor Extxk gets from the commitments (tx1 , ĉ1), . . . , (txm , ĉn) and y̌ =
Ďψ are the values the extractor Extxk gets from the commitments (ty1 , ď1), . . . , (tyn , ďn). The extracted values
from the commitments therefore satisfy

x̂Γ y̌ = 0T.

If the equation is a pairing product equation, this directly gives us both perfect soundness and perfect F -knowledge.
If the equation is a multi-scalar multiplication equation in Ȟ, then the committed value is x = logĝ x̂. Then the

opened values satisfy xΓ y̌ = 0̌, which gives us perfect soundness and perfect F -knowledge. The case of a multi-
scalar multiplication in Ĝ is similar. Finally, for quadratic equations over Zp the committed values are x = logĝ x̂,
y = logȟ y̌ and they satisfy xΓy = 0, which gives us perfect soundness and perfect F -knowledge. ut



Lemma 3. The commit-and-prove scheme is composable zero-knowledge if the SXDH assumption holds relative to
G.

Proof. We first recall what the Gen and SimGen algorithms are. Both algorithms output a commitment key which
specifies a prime order bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ) and elements v̂, ŵ, û, v̌, w̌, ǔ. The only difference be-
tween Gen and SimGen (besides the fact that SimGen outputs a simulation trapdoor) is that in Gen, the elements
are of the form v̂ = (ĝ, ξĝ)>, v̌ = (ȟ, ȟψ), ŵ = ρv̂, w̌ = σv̌, û = ρv̂ + e>ĝ, ǔ = σv̌ + eȟ, whereas in SimGen
the elements are of the form v̂ = (ĝ, ξĝ)>, v̌ = (ȟ, ψȟ), ŵ = ρv̂ − e>ĝ, w̌ = σv̂ − eȟ, û = ρv̂, ǔ = σv̌.

Under the SXDH assumption, the distribution of the elements v̂, ŵ, û, v̌, w̌, ǔ generated by Gen is computa-
tionally indistinguishable from the distribution of the elements v̂, ŵ, û, v̌, w̌, ǔ generated by SimGen. This shows
that the first requirement of composable zero-knowledge is satisfied.

For the second requirement, we first give a high level description of the simulator in Fig. 10.

– For elements in the witness such that t ∈ {comĜ, scaĜ, comȞ, scaȞ}, the simulator will create commitments to
m = 0̂,m = 0̌ or m = 0 according to the type. These commitments are perfectly hiding under the commitment
key output by SimGen.

– For elements in the witness such that t ∈ {baseĜ, unitĜ, baseȞ, unitȞ}, the simulator will use the simulation
trapdoor tk to be able to treat them as commitments to 0̂, 0̌ or 0 according to t.

– For elements in the witness such that t ∈ {encĜ, encȞ}, the commitments are computed as encryptions of 0̂ and
0̌ respectively.

– Having obtained satisfying openings of the commitments the simulator creates the proof as an honest prover
would do with those values.

We now argue that a simulated proof is computationally indistinguishable from an honestly generated proof when
the commitment key is output using SimGen. To show that, we define three games and use a hybrid argument.

– Game 1 is the game where the commitment key is output using SimGen and the proof is done using a valid
witness.

– Game 2 is as Game 1, but instead of using a valid witness, commitments with t ∈ {comĜ, scaĜ, comȞ, scaȞ}
are done to m = 0̂,m = 0̌ or m = 0, and commitments with t ∈ {baseĜ, unitĜ, baseȞ, unitȞ} are equivocated
as commitments to 0̂, 0̌ or 0, according to t and T as described in Fig. 10.

– Game 3 is as Game 2, but commitments with t ∈ {encĜ, encȞ} are changed for encryptions of 0̂, 0̌ according to
t. Note that Game 3 is equivalent to the simulation.

Game 1 and Game 2 are perfectly indistinguishable due to the fact that commitments with t ∈ {comĜ, scaĜ, comȞ,
scaȞ} are perfectly hiding and the uniformity of the randomized proofs, which we prove in Lemma 4. Equivocating
the commitments with t ∈ {baseĜ, unitĜ, baseȞ, unitȞ} as commitments to 0̂, 0̌ or 0 only changes the proofs and not
the commitments themselves, so this case is also indistinguishable by Lemma 4.

Game 2 and Game 3 are computationally indistinguishable due to the IND-CPA security of ElGamal. Note that, in
Game 2 and Game 3, the equation is satisfied for any value of the elements in the witness such that t ∈ {encĜ, encȞ}.
Actually, for each element x̂i and y̌j we can just get the corresponding ciphertext ĉi or ďj and build the proof on top
of it. We can do this because all the terms of the proof which have to be computed using the ciphertext’s randomness
will be 0 as the element paired to the randomness is going to be 0 due to the restrictions on the equation5. This allows
us to reduce the computational indistinguishability of Game 2 and Game 3 to the IND-CPA security of ElGamal. ut

Lemma 4. Proofs are uniformly random over solutions to the verification equations when the commitment key is
generated using SimGen.

Proof. In all games from Game 1 to Game 3, all witnesses will yield proofs satisfying the verification equation by
perfect completeness. Let us now argue that these proofs are uniformly random over the possible solutions to the
verification equation. Observe that, as the commitment key is generated using SimGen, we have that v̂, ŵ generate

5 Strictly speaking, if the proofs are computed using the algorithm given in Fig. 10, then this argument is only true for encryptions of
elements in Ȟ. However, the proofs can be written in an alternative way by changing the role of Ĝ and Ȟ so that the same argument holds
for encryptions of elements in Ĝ



Ĝ1×2, v̌, w̌ generate Ȟ2×1, û ∈ 〈v̂〉 and ǔ ∈ 〈v̌〉. From now on, let us define the pre-proofs as those proofs that
satisfy the verification equation but haven’t been randomized yet, for instance, π̂′v̌ = e>x̂Γry.

We will prove either that there is only one proof which is accepted by the verification equation or that when
there are many possible proofs both honestly generated and simulated proofs will be uniformly distributed among
all valid proofs, i.e., among all solutions to the verification equations. In the first case, by using the techniques used
in [GS12] it is easy to see that when π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) are 0 there is only one value for π̂v̌, π̂w̌ (resp. π̌v̂, π̌ŵ)
which satisfies the verification equation. In the latter case, we will show that π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) are uniformly
random, and using the techniques from [GS12] it is easy to see that for fixed values for π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) there
is only one value for π̂v̌, π̂w̌ (resp. π̌v̂, π̌ŵ) which satisfies the verification equation. If some of π̌′v̂, π̌

′
ŵ, π̂

′
v̌, π̂

′
w̌ are

already 0 due to the type of equation, we will not randomize them. The reason is that due to the restrictions on the
equation types, if for a honestly generated proof some of π̌′v̂, π̌

′
ŵ, π̂

′
v̌, π̂

′
w̌ are 0 then the zero-knowledge simulator

will be able to construct simulated proofs such that the same parts of the proof are 0. Therefore, all valid proofs will
be such that the same parts of the proof are 0, so these components will not need to be randomized.

For each type of equation, we now detail whether π̌v̂, π̌ŵ (or π̂v̌, π̂w̌) are 0 or whether π̌v̂, π̌ŵ (or π̂v̌, π̂w̌) are
uniformly random, where we assume that α, β, γ, δ ← Zp:

For T = PPE, π̌v̂ = π̌′v̂ + αv̌ + βw̌, π̌ŵ = π̌′ŵ + γv̌ + δw̌ are uniformly distributed. For T = PEncĜ,
π̌v̂ = π̌′v̂ + αv̌ + βw̌ is uniformly distributed and π̌ŵ = 0 (similarly for T = PEncȞ). For T = PConstĜ,
π̌v̂ = π̌ŵ = 0 (similarly for T = PConstȞ).

For T = MEĜ, π̂v̌ = π̂′v̌ + αv̂ + βŵ is uniformly distributed and π̂w̌ = 0. For T = MEncĜ, π̌v̂ = π̌′v̂ + αv̌ is
uniformly distributed and π̌ŵ = 0. For T = MConstĜ, π̌v̂, π̌ŵ = 0. For T = MLinĜ, π̂v̌, π̂w̌ = 0. (Similarly for
T ∈ {MEȞ,MEncȞ,MConstȞ,MLinȞ}).

For T = QE, π̂v̌ = π̂′v̌ + αv̂ is uniformly distributed and π̂w̌ = 0. For T = QConstĜ, π̌v̂ = π̌ŵ = 0 (similarly
for T = QConstȞ). ut

8 Applications of our results

In [BCKL08] the authors give a construction of a P-Signature scheme in asymmetric bilinear groups. This construc-
tion uses Groth-Sahai proofs based on the SXDH instantiation. The statements that have to be proven are such that
our techniques can be applied to have better efficiency. Concretely, in the construction given in the paper each P-
signature proof consists of 18 elements in Ĝ and 16 elements in Ȟ. Using our techniques, we can get 16 elements
in Ĝ and 16 elements in Ȟ. In the full version of [BCKL08], they give another construction in which our techniques
could be applied too, bringing the 12 elements in Ĝ and 10 elements in Ȟ that they need to 10 elements in Ĝ and
10 elements in Ȟ. In addition, in the equations that appear in their scheme, the constant terms in T that appear are
of the form e(ĝ, ȟ). Using Groth-Sahai proofs, to get NIZK proofs they would need to add extra commitments and
proofs. This is why they do not use NIZK proofs but NIWI proofs. However, using our techniques the same proofs
are actually NIZK proofs, without increasing the number of elements needed. It would be interesting to see if this
would result in more efficient P-signature schemes.

Another example is [AFG+10], which defines structure-preserving signatures, i.e., signature schemes where the
messages, signatures and verification keys are group elements and where the verification predicate is a conjunction
of pairing-product equations. This definition makes structure-preserving signatures particularly well-suited for the
application of Groth-Sahai proofs. One of their applications of structure-preserving signatures given in [AFG+10]
is a blind signature scheme in which Groth-Sahai proofs are used. To obtain a blind signature, the user commits to
several elements and proves in zero-knowledge that some relations are satisfied. These are relations in which we
can apply our techniques to get better efficiency. Concretely, the output of the Obtain protocol of the blind signature
scheme consists of 18 elements in Ĝ and 16 elements in Ȟ, and using our techniques the output of the protocol can
be reduced to 16 elements in Ĝ and 14 elements in Ȟ.

9 NIZK proofs with prover-chosen CRS

In Groth-Sahai proofs, the prover uses a common reference string shared between the prover and the verifier to
construct NIZK proofs. We can improve efficiency by letting the prover choose her own common reference string,
which we will refer to as her public key. The public key has to be created as a perfectly binding key, otherwise the



soundness of the NIZK proof could be easily broken by the prover. The prover will then have to prove to the verifier
that her public key has been created as a perfectly binding key. To do that the prover will give an NIZK proof using
the shared common reference string. The definitions for commit-and-prove schemes with prover-chosen CRS are
given in Sec. 9.1. In Secs. 9.2 to 9.4 we explain how the prover creates her public key, proves its well-formedness
and we detail what the efficiency improvement obtained is. Finally, in Sec. 9.5 we prove the security of our scheme.

9.1 Definitions for prover-chosen CRS commit-and-prove schemes

The definitions given in Sec. 2 are not suitable for the scenario where the prover chooses her own common reference
string . The reason is that the prover will only communicate her public key pk to the verifier once, and the public key
pk will be used to generate and verify commitments and proofs.

Therefore, we define extended commit-and-prove schemes for a relation RL, which capture the fact that the
prover chooses her own public key. We will only consider the common reference string model, where the prover
makes a well-formedness NIZK proof for her pk by using the shared common reference string between the prover
and the verifier. In particular, we are not considering the multi-string model [GO07] nor the scenario where the prover
gets a certificate on her public key. The definitions can be naturally extended to those settings.

The definitions share many elements with the definitions given in Sec. 2. We may commit to different values
w1, . . . , wN and prove for different statements x that a subset of the committed values w = (wi1 , . . . , win) constitute
a witness for x ∈ Lck, i.e., (ck, x, w) ∈ RL. We will also divide each committed value into two parts wi = (ti,mi).

An extended commit-and-prove scheme ECP = (Gen,CreatePK,VerifyPK,Com,Prove,Verify) consists of
six algorithms. The algorithms Gen,CreatePK,Prove are probabilistic and the algorithms VerifyPK,Com,Verify
are deterministic.

Gen(1k): Generates a commitment key ck. The commitment key specifies a message space Mck, a randomness
spaceRck and a commitment space Cck. Membership of either space can be decided efficiently.

CreatePK(ck): Given a commitment key ck, returns a public key pk, a secret key sk and a well-formedness proof
πpk.

VerifyPKck(pk, πpk): Given a commitment key ck, a public key pk and a well-formedness proof πpk returns 1
(accept) or 0 (reject).

Comck,sk(t,m; r): Given a commitment key ck, a secret key sk, a message (t,m) ∈ Mck and randomness r such
that (t, r) ∈ Rck returns a commitment c such that (t, c) ∈ Cck.

Proveck,sk(x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a commitment key ck, a secret key sk, a statement x, and com-
mitment openings such that (ti,mi) ∈Mck, (ti, ri) ∈ Rck and (ck, x, t1,m1, . . . , tn,mn) ∈ RL returns a proof
π.

Verifyck,pk(x, (t1, c1), . . . , (tn, cn), π): Given a commitment key ck, a public key pk, a statement x, a proof π and
commitments (ti, ci) ∈ Cck returns 1 (accept) or 0 (reject).

Definition 6 (Perfect correctness). The extended commit-and-prove system ECP is (perfectly) correct if for all
adversaries A

Pr

ck ← Gen(1k) ; (pk, sk, πpk)← CreatePK(ck); (x,w1, r1, . . . , wn, rn)← A(ck, pk, sk, πpk) ;
ci ← Comck,sk(wi; ri) ;π ← Proveck,sk(x,w1, r1, . . . , wn, rn) :
VerifyPKck(pk, πpk) ·Verifyck,pk(x, (t1, c1), . . . , (tn, cn), π) = 1

 = 1,

where A outputs wi, ri such that wi = (ti,mi) ∈Mck, (ti, ri) ∈ Rck and (ck, x, w1, . . . , wn) ∈ RL.

Definition 7 (Perfect soundness). The extended commit-and-prove system ECP is (perfectly) sound if there exists
a deterministic (unbounded) opening algorithm Open such that for all adversaries A

Pr

[
ck ← Gen(1k) ; (pk, πpk, x, t1, c1, . . . , tn, cn, π)← A(ck) ; mi ← Openck(ti, ci) :
VerifyPKck(pk, πpk) ·Verifyck,pk(x, t1, c1, . . . , tn, cn, π) = 0 ∨ (ck, x, (t1,m1), . . . , (tn,mn)) ∈ RL

]
= 1.

Perfect F -knowledge is defined exactly as for commit-and-prove schemes. This means that we will be using a
global extraction key asscoiated with ck for all commitments regardless of which public keys are used to generate
the commitments.



Definition 8 (Composable zero-knowledge). The extended commit-and-prove system ECP is (computationally)
composable zero-knowledge if there exist probabilistic polynomial time algorithms SimGen,SimCreatePK, SimCom,
SimProve such that for all non-uniform polynomial time stateful interactive adversaries A

Pr
[
ck ← Gen(1k) : A(ck) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k) : A(ck) = 1

]
and

Pr
[
(ck, tk)← SimGen(1k); (pk, sk, πpk)← CreatePK(ck) : A(ck, tk, pk, πpk) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k); (pk, sk, πpk)← SimCreatePK(tk) : A(ck, tk, pk, πpk) = 1

]
,

and

Pr

[
(ck, tk)← SimGen(1k); (pk, sk, πpk)← SimCreatePK(tk);

(x, i1, . . . , in)← AComck,sk(·)(ck, tk, pk, sk, πpk);π ← Proveck,sk(x,wi1 , ri1 , . . . , win , rin) : A(π) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k); (pk, sk, πpk)← SimCreatePK(tk);

(x, i1, . . . , in)← ASimComck,sk(·)(ck, tk, pk, sk, πpk);π ← SimProveck,sk(x, ti1 , si1 , . . . , tin , sin) : A(π) = 1

]
,

where

– Comck,sk(·) on wi = (ti,mi) ∈ Mck picks uniformly random ri such that (ti, ri) ∈ Rck and returns ci =
Comck,sk(wi; ri)

– SimComck,sk(·) on wi = (ti,mi) ∈ Mck runs (ci, si) ← SimComck,sk(ti) and returns ci, where si is some
auxiliary information used to construct simulated proofs.

– A picks (x, i1, . . . , in) such that (ck, x, wi1 , . . . , win) ∈ RL

9.2 Creating the public key
Like commitment keys, public keys can be created in two ways: they can either be perfectly binding or perfectly
hiding. These two types of keys are computationally indistinguishable if the SXDH assumption holds. As we already
argued, we will require the prover to create her public key in a perfectly binding way. However, the zero-knowledge
simulator will create a perfectly hiding public key and simulate the NIZK proof for well-formedness.

ProverGen(ck)
ρP ← Zp σP ← Zp
v̂P ← v̂ v̌P ← v̌
ŵP ← ρP v̂P w̌P ← σP v̌P
ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )
sk ← (pk, ρP , σP )
Return (pk, sk)

SimProverGen(ck)
ρP ← Zp σP ← Zp
v̂P ← v̂ v̌P ← v̌

ŵP ← ρP v̂P − (0̂, ĝ)> w̌P ← σP v̌P − (0̌, ȟ)

ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )
sk ← (pk, ρP , σP )
Return (pk, sk)

Fig. 11: Public key generator algorithms

As shown in Fig. 11, the public key is created in a similar way to how the commitment key is created. The
main difference is that the bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ) is already fixed, and that we allow the prover to reuse
the elements v̂, v̌. This both reduces the size of the public key and also ensures that the prover’s commitments are
extractable even when using her own key.

Once the prover has created her pair of public key and secret key, she has to compute an NIZK proof to show that
her pk is perfectly binding. A valid public key is defined by the existence of some ρP , σP such that ŵP = ρP v̂ and
w̌P = σP v̌, which can be written as two equations of type MConstĜ involving public elements in Ĝ and a secret ρP
committed in Ȟ, and two equations of type MConstȞ involving public elements in Ȟ and a secret σP committed in
Ĝ. These are simple statements that each have a proof consisting of a single group element. In Fig. 12 we give the
exact NIZK proofs that have to be computed. The total cost of communicating the public key, which is determined
by ŵP , w̌P , the two commitments to ρP and σP and the four NIZK proofs is 12 group elements. Since we are using
a commit-and-prove scheme we can consider this as a one-off cost for each verifier engaging with the prover after
which the public key may be used for many commitments and proofs.



9.3 Proving the well-formedness of a prover-chosen CRS

As explained in Sec. 9.2, once the prover has chosen its own CRS a proof of well-formedness has to be given in order
to guarantee soundness. This is, the prover has to show that the values v̂P , ŵP , v̌P , w̌P satisfying

ŵP − v̂PρP = 0̂ and w̌P − σP v̌P = 0̌,

for some secret values ρP , σP . To prove that these relations are satisfied, the prover can use Groth-Sahai proofs. In
Fig. 12 we detail what proofs need to be done by the prover to prove the well-formedness of her pk, writing J ij for
the 2 × 2 matrix such that all its elements are 0 except the element in row i and column j, which takes the value 1.
Note that these are ordinary Groth-Sahai proofs, which can be verified using the commitment key ck.

ProvePublicKeyck(pk, sk)

Parse v̂P , ŵP , v̌P , w̌P as ((v̂P )1, (v̂P )2 = ĝ), ((ŵP )1, (ŵP )2), ((v̌P )1, (v̌P )2 = ȟ), ((w̌P )1, (w̌P )2))
Compute the commitments ďρ ← ρP ǔP + rρv̌; ĉσ ← ûPσP + v̂rσ; where rρ, rσ ← Zp
Define the following variables and types:
rx1 , sx1 , rx2 , sx2 , ry1 , sy1 , sy2 ← 0; ry2 ← rρ
tx1 = (pubĜ, (ŵP )1), x1 = (ŵP )1, tx2 = (pubĜ, (v̂P )1), x2 = (v̂P )1

ty1 = unitȞ, y1 = 1, ty2 = scaȞ, y2 = ρP
π1 ← Proveck(MConstĜ, (J

11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)
Redefine the following variables and types:
rx1 , sx1 , rx2 , sx2 , ry1 , sy1 , sy2 ← 0; ry2 ← rρ
tx1 = (pubĜ, (ŵP )2), x1 = (ŵP )2, tx2 = baseĜ, x2 = ĝ
ty1 = unitȞ, y1 = 1, ty2 = scaȞ, y2 = ρP
π2 ← Proveck(MConstĜ, (J

11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)
Redefine the following variables and types:
rx1 , sx1 , sx2 , ry1 , sy1 , ry2 , sy2 ← 0; rx2 ← rσ
tx1 = unitĜ, x1 = 1, tx2 = scaĜ, x2 = σP
ty1 = (pubȞ, (w̌P )1), y1 = (w̌P )1, ty2 = (pubȞ, (v̌P )1), y2 = (v̌P )1

π3 ← Proveck(MConstȞ, (J
11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Redefine the following variables and types:
rx1 , sx1 , sx2 , ry1 , sy1 , ry2 , sy2 ← 0; rx2 ← rσ
tx1 = unitĜ, x1 = 1, tx2 = scaĜ, x2 = σP
ty1 = (pubȞ, (w̌P )2), y1 = (w̌P )2, ty2 = baseȞ, y2 = ȟ
π4 ← Proveck(MConstȞ, (J

11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Return πpk = (ĉρ, ďσ, π1, π2, π3, π4)

Fig. 12: Algorithm to prove well-formedness of the public key

9.4 Computing commitments and NIZK proofs

Once the prover has created her public key pk and has proven its well-formedness, she can make commitments and
prove statements using pk instead of ck. The commitments and proofs are created and verified in exactly the same
way as described in Fig. 3 and Fig. 8, but the number of scalar multiplications needed to compute commitments and
NIZK proofs can be reduced using her knowledge of the discrete logarithms in sk. We have for instance

ĉ = e>x̂+ v̂r + ŵP s = e>x̂+ v̂(r + ρP s),

so the prover can compute a commitment with 2 scalar multiplications instead of 4 scalar multiplications.
As shown in Fig. 13, by using the secret key sk the prover can reduce the number of scalar multiplications by

50% for commitments to group elements and commitments to elements in Zp. Computing NIZK proofs is more
complicated and there are many operations that cannot be avoided by using the secret key sk. However, in some
cases the improvement is very noticeable as in the case of quadratic equations (T = QE) where the number of scalar



multiplications is reduced by 50%6. Furthermore, in most applications found in the literature there are only a few
variables in the equations, which makes our improvements more significant.

GS commitments This work
t Ĝ Ȟ Ĝ Ȟ
comĜ 4 0 2 0
comȞ 0 4 0 2
encĜ Undefined 2 0
encȞ Undefined 0 2
scaĜ 4 0 2 0
scaȞ 0 4 0 2

GS proofs This work
T Ĝ Ȟ Ĝ Ȟ
PPE 4|x̂|+ 8 2|y̌|+ 8 4|x̂|+ 4 2|y̌|+ 4
PEncĜ Undefined 4|x̂|+ 4 |y̌|+ 2
PConstĜ 2|x̂| 0 2|x̂| 0
PEncȞ Undefined 2|x̂|+ 2 2|y̌|+ 4
PConstȞ 0 2|y̌| 0 2|y̌|
MEĜ |x̂|+ 4 8 |x̂|+ 2 4
MEncĜ Undefined |x̂|+ 2 2
MConstĜ |x̂| 0 |x̂| 0
MLinĜ 0 0 0 0
MEȞ 8 |y̌|+ 4 4 |y̌|+ 2
MEncȞ Undefined 2 |y̌|+ 2
MConstȞ 0 |y̌| 0 |y̌|
MLinȞ 0 0 0 0
QE 4 4 2 2
QConstĜ 0 0 0 0
QConstȞ 0 0 0 0

Fig. 13: Scalar multiplications needed for computing commitments and NIZK proofs

9.5 Security proofs for the prover-chosen CRS commit-and-prove scheme

Lemma 5. The prover-chosen CRS commit-and-prove scheme has perfect correctness.

Lemma 6. The prover-chosen CRS commit-and-prove scheme has perfect soundness and perfect F -knowledge.

Perfect correctness, perfect soundness and perfect F -knowledge can be proven in a similar way to how they are
proven for our commit-and-prove scheme.

Lemma 7. The prover-chosen CRS commit-and-prove scheme is composable zero-knowledge if the SXDH assump-
tion holds relative to G.

Proof. (Sketch) The zero-knowledge simulator is quite straightforward given a zero-knowledge simulator for our
commit-and-prove scheme. First, the simulator will create the public key using the algorithm SimProverGen given
in Fig. 11. Then, instead of making NIZK proofs to show that the generated public key is binding, it will simulate
these proofs using the trapdoor key tk associated to ck. After simulating the well-formedness of pk, the simulator is
able simulate any proof by using the secret key sk.

It should be noted that the simulator is simulating an NIZK proof for a false statement as the public key generated
is no longer perfectly binding. In principle, the definition of zero-knowledge only guarantees that simulated proofs
are indistinguishable from honestly generated proofs as long as the statement is true. However, in our case the public
key and the simulated proof of well-formedness are computationally indistinguishable from a binding public key
generated with the algorithm ProverGen and an honestly generated well-formedness proof.

To see that, consider the following hybrid proof: the first game corresponds to the setting where the public key
is generated using ProverGen and the well-formedness proof is not simulated. The second game corresponds to
the same setting as the first game, but the well-formedness proof is simulated. Both games are computationally
indistinguishable due to the zero-knowledge property of Groth-Sahai proofs. In the third game, the public key is
generated using SimProverGen and the well-formedness proof is simulated. The second game and the third game
are computationally indistinguishable because the two types of public key are indistinguishable under the SXDH
assumption. ut

6 We assume that operations in Ȟ are more computationally expensive than operations in Ĝ, as usually Ĝ is an elliptic curve over a prime
order field and Ȟ is the same elliptic curve over an extension field [GPS08]. Therefore, we have tried to reduce the numbers of operations
in Ȟ as much as possible. In addition, we have for simplicity assumed that the commitments that appear in the NIZK proof have as many
randomization factors as possible conditioned to the equation type T .
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[DFMS04] Ivan Damgård, Serge Fehr, Kirill Morozov, and Louis Salvail. Unfair noisy channels and oblivious transfer. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 355–373. Springer, February 2004.

[EG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In CRYPTO 1984, pages 10–18.
Springer Berlin Heidelberg, 1985.

[Fuc11] Georg Fuchsbauer. Commuting Signatures and Verifiable Encryption. In Kenneth G.Paterson, editor, EUROCRYPT 2011, volume
6632 of LNCS, pages 224–245. Springer, May 2011.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs under general assumptions. SIAM
Journal on Computing, 29(1):1–28, 1999.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable Constant-Size Fair E-Cash. In Juan A. Garay, Atsuko
Miyaji and Akira Otsuka, editors, CANS 2009, volume 5888 of LNCS, pages 226–247. Springer, December 2009.

[GMPY06] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness and composability of cryptographic
protocols. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 404–428. Springer, March 2006.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the Multi-string Model. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 323–341. Springer, August 2007.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J. ACM, 59(3):11, 2012.
[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied Mathematics,

156(16):3113–3121, 2008.
[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia Lai and Kefei

Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, December 2006.
[Gro07] Jens Groth. Fully Anonymous Group Signatures Without Random Oracles. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume

4833 of LNCS, pages 164–180. Springer, December 2007.
[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,

pages 341–358. Springer, December 2010.
[GS12] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. SIAM Journal on Computing 41(5):

1193-1232, 2012.
[GSW10] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Groth-Sahai proofs revisited. In Phong Q. Nguyen and David Pointcheval,

editors, PKC 2010, volume 6056 of LNCS, pages 177–192. Springer, May 2010.
[Kil90] Joe Kilian. Uses of randomness in algorithms and protocols. MIT Press, 1990.
[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for NP with general assumptions. Journal

of Cryptology, 11(1):1–27, 1998.
[Mei09] Sarah Meiklejohn. An Extension of the Groth-Sahai Proof System. Master’s thesis, Brown University, Providence, RI, 2009.
[OPV08] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Constant-round concurrent non-malleable zero knowledge in the bare
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