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Abstract. SIMON is a family of lightweight block ciphers that was proposed by U.S National
Security Agency (NSA). A cipher in this family with K-bit key and N -bit block is called SIMON
N/K. In this paper we analyze the security of SIMON against linear cryptanalysis. We present
several linear characteristics for all variants of SIMON with reduced number of rounds. Our
best linear characteristic covers SIMON 32/64 reduced to 13 rounds out of 32 rounds with the
bias of 2−16.
In addition, we describe a connection between linear and differential characteristics for SIMON.
This connection is then exploited by using the differential characteristics of the previous work
of Abed et al. to construct linear characteristics presented in this work. Our attacks extend to
all variants of SIMON covering more number of rounds compared to the previous results on
linear cryptanalysis. We have implemented our attacks for small scale variants of SIMON and
our experiments confirm the theoretical bias of various characteristics presented in this work.
So far, our results are the best known with respect to linear cryptanalysis for any variant of
SIMON.

keywords: SIMON, Linear Characteristic, Linear Cryptanalysis.

1 Introduction

SIMON is a family of lightweight block ciphers designed by the U.S National Security Agency
(NSA) to provide an optimal hardware performance [3]. In order to meet hardware imple-
mentation flexibility (efficient implementations across a wide variety of platforms as well as
several implementations on a single platform), SIMON was designed to support block sizes
of 32, 48, 64, 96 and 128 bits, with up to three key sizes for each block size. SIMON N/K
denotes a variant of SIMON that has the plaintext block length of size N and the key size of
length K. For example, SIMON 32/64 refers to one variant of SIMON with 32-bit plaintext
block and 64-bit key. There are 10 variants of SIMON, forming a family of lightweight block
ciphers, which are described in Table 2.

Till date, the best cryptanalytic attacks on the round-reduced variants of SIMON were
presented by Abed et. al. [1]. These attacks include both differential and linear cryptanalytic
results. In the direction of differential cryptanalysis, authors have presented key-recovery
attacks on all variants of SIMON with up to 18,19,26,35 and 46 rounds for the block sizes
of 32, 48, 64, 96, and 128 bits respectively. They have also presented related-key rectangle
and impossible differential attacks against few variants of SIMON, but these attacks do
not extend beyond the rounds covered by the differential attacks. In the direction of linear
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cryptanalysis, Abed et al. presented key-recovery attacks on the variants of SIMON reduced
to 11, 14, 16, 20 and 23 rounds for the respective block sizes of 32, 48, 64, 96 and 128
bits respectively. In an independent work a differential attack on SIMON was presented by
Alkhazaimi and Lauridsen [2] that works up to 16, 18, 24, 29 and 40 rounds of SIMON for
block sizes of 32, 48, 64, 96 and 128-bits respectively. In addition, authors have discussed
impossible differential rotational and weak key analysis in their work.

Linear Cryptanalysis is a well-known cryptanalytic technique that has been employed on
several block ciphers such as DES, Serpent and Shannon [ [7], [5], [6]]. An important fact
about linear cryptanalysis is that it is a known plaintext attack, making it more practical and
realistic attack model than an attack based on differential cryptanalysis which requires an
attack to choose plaintexts for a successful attack. In this paper we investigate the security
of SIMON family against linear cryptanalysis. We present several approaches to produce
linear characteristics for SIMON32/64 and present the best known linear characteristic for
11-round SIMON 32/64 with the bias of 2−16. We then extend this characteristic to 13
rounds of the cipher.

We present several approaches to produce an LC for SIMON32/64, as a case study, and
present the best known 11-round LC for this cipher with the bias of 2−16 (expendable to 13
rounds of the cipher). In addition, we show a direct connection between linear characteristic
(LC) and differential characteristic (DC) on SIMON and use it to present linear character-
istics for different variants of SIMON that can be used to attack reduced round versions
of these ciphers. We also experimentally verified the theoretical results for SIMON32/64
and the results of implementation are represented in Appendix C. With respect to linear
cryptanalysis, our results cover more rounds for any variant of SIMON compared to the
previously known results of Abed et al [1]. The summary of the results and the comparison
with the results of Abed et. al. [1] are given in Table 1. The comparison shows that our
results covers more number of rounds for the same success probability and data complexity
is also comparable to previous result.

Table 1. Comparison of our results with the previous results when the success probability
of key recovery attack is 0.997. N= Block size, ε= Bias from 1/2 probability that the linear
expression holds, # approximation= number of times biased linear characteristic used to
attack cipher.

Variant of SIMON 32/64 48/96 64/128 96/144 128/256

This work # rounds with ε ≥ 2−
N
2
+2 10 13 17 26 33

# rounds attacked 12 15 19 28 35
# approximation 13 19 28 44 59
Data Complexity 231 243 261 293 2123

Abed et. al. [1] # rounds with ε ≥ 2−
N
2
+2 9 12 14 18 21

# rounds attacked 11 14 16 20 23
# approximation 10 21 28 45 60
Data Complexity 225 247 261 295 2125
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The paper is structured as follows: In section 2 we present a brief description of SIMON
family. In section 3 we present the idea of linear attack on SIMON and apply it to the
SIMON32/64. Section 4 shows the connection between linear cryptanalysis and differential
cryptanalysis of SIMON and its application to extends the attack to the other variants of
SIMON. Finally, we conclude the paper in section 5.

2 SIMON family

SIMON has a classical Feistel structure (see Figure 1) with the round block size of 2n bits,
where n is word size. The number of rounds of cipher is denoted by r and depends on the
variant. In addition, we denote the right part and the left part of the plaintext P by PR and
PL respectively. Similarly, we denote the right part and the left part of the ciphertext C by
CR and CL respectively. The output of round r is denoted by Xr = Xr

R‖Xr
L and the subkey

used in round r is denoted by Kr. Given an string X, (X)i denotes the i-th bit of X. Bitwise
circular rotation of string a by b position to the left is denoted by a≪ b. Further, ⊕ and &
denote bitwise XOR and AND operations respectively.

Each round of SIMON includes a non-linear and non-invertible function F (see Figure 2).
The F function is an n-bit to n-bit function. Given X ∈ {0, 1}n, F (X) is calculated as follows:

F (X) = (X ≪ 2)⊕ ((X ≪ 1)&(X ≪ 8)).

Given an 2n-bit internal state, the input of the F -function is the left half of the internal
state and its output is Xor’ed with the right half of the internal state and a subkey. The
subkeys are driven from an unknown master key. Depending on the size of the master key,
the key schedule of SIMON operates on two, three or four n-bit word registers. Assuming
that the number of words for the master key K is m (see Table 2), the first m subkeys are
directly driven from K, i.e., K0, . . . ,Km−1. The subkey for round i, for m ≤ i ≤ r − 1, is
calculated as follows:

m = 2 : Ki = Ki−2 ⊕ (Ki−1 ≫ 3)⊕ (Ki−1 ≫ 4)⊕ c⊕ (Zj)i−m,
m = 3 : Ki = Ki−3 ⊕ (Ki−1 ≫ 3)⊕ (Ki−1 ≫ 4)⊕ c⊕ (Zj)i−m,
m = 4 : Ki = Ki−4 ⊕Ki−3 ⊕ (Ki−1 ≫ 3)⊕ ((Ki−3 ⊕ (Ki−1 ≫ 3)) ≫ 1)

⊕c⊕ (Zj)i−m.

 (1)

where, c = (2n − 1)⊕ 3 =0xFF...FFC is a constant value, (Zj)i−m denotes the ith bit of Zj

and i−m is taken module 62. Zj are five constant sequence Z0, . . . , Z4 depicted in Table 3
and j is a parameter of the cipher (see Table 2).

3 Linear Cryptanalysis of SIMON 32/64

Linear cryptanalysis [7] is a known plaintext attack that tries to find a high probability linear
expressions involving “plaintext” bits, “ciphertext” bits and the “subkey” bits. In contrast
to differential attack, which requires chosen plaintexts/ciphertexts, the linear attack is a
more practical and realistic technique in many scenarios. In this paper we use this technique
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Table 2. Details of variants of SIMON. n is the input size of one word, m is the number of
words for master key and j is the parameter of cipher.

Variant Block size Key size Number n m j
(bits) (bits) of rounds

SIMON32/64 32 64 32 16 4 0

SIMON48/72 48 72 36 24 3 0

SIMON48/96 48 96 36 24 4 1

SIMON64/96 64 96 42 32 3 2

SIMON64/128 64 128 44 32 4 3

SIMON96/92 96 92 52 48 2 2

SIMON96/144 96 144 54 48 3 3

SIMON128/128 128 128 68 64 2 2

SIMON128/192 128 192 69 64 3 3

SIMON128/256 128 256 72 64 4 4

Table 3. Five constant sequence of Zj vectors used in SIMON key-schedule.

j Zj

0 11111010001001010110000111001101111101000100101011000011100110

1 10001110111110010011000010110101000111011111001001100001011010

2 10101111011100000011010010011000101000010001111110010110110011

3 11011011101011000110010111100000010010001010011100110100001111

4 11010001111001101011011000100000010111000011001010010011101111

F

i 1
LX − i 1

RX −

i
LX i

RX

iK

Fig. 1. A round function of SIMON.
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Fig. 2. A round function of SIMON.

to analyze SIMON family of block ciphers. So far the only result on linear cryptanalysis of
SIMON is by Abed et. al [1], where an attack on 11 rounds of SIMON 32/64 is shown with
the bias being 2−11.

The round function of SIMON can be represented as follows:

Xr
L = F (Xr−1

L )⊕Xr−1
R ⊕Kr

Xr
R = Xr−1

L

}
(2)

where (F (X))i = (X)i−2 ⊕ ((X)i−1&(X)i−8) with subtractions being performed modulo
n. In the round function of SIMON, the only non-linear operation is the bitwise AND. Note
that, given single bits A and B, the output of (A&B) is 0 with probability 0.75. Hence, we
can extract the following highly biased linear expressions for the F -function:

Approximation 1 : Pr[(F (X))i = (X)i−2] = 3
4

Approximation 2 : Pr[(F (X))i = (X)i−2 ⊕ (X)i−1] = 3
4

Approximation 3 : Pr[(F (X))i = (X)i−2 ⊕ (X)i−8] = 3
4

Approximation 4 : Pr[(F (X))i = (X)i−2 ⊕ ((X)i−1 ⊕ (X)i−8)] = 1
4 .

 (3)

Given Equations 2 and 3 we can extract the following linear expression for the first
round of the SIMON:

(PR)2 ⊕ (K1)2 ⊕ (X1
L)2 = (PL)0 (4)

Equation 4 holds with probability 3
4 . With the help of the above expression, we can

extract a 3-round linear expression as follows (see Figure 3):

(Xi−1
R )2 ⊕ (Ki)2 ⊕ (Xi−1

L )0 = (Xi+2
R )0 ⊕ (Ki+2)2 ⊕ (Xi+2

L )2. (5)

As shown in Figure 4, Equation 5 can be used to produce a 7-round linear expression as
follows: (

(Xi−1
R )2 ⊕ (Ki)2 ⊕ (Xi−1

L )0
⊕(Xi+2

R )0 ⊕ (Ki+2)2 ⊕ (Xi+2
L )2

)
=

(
(Xi+3

R )2 ⊕ (Ki+4)2 ⊕ (Xi+3
L )0

⊕(Xi+6
R )0 ⊕ (Ki+6)2 ⊕ (Xi+6

L )2.

)
(6)

The above expression can be simplified to the following.(
(Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0⊕

(Ki+2)2 ⊕ (F (Xi+2
L ))0 ⊕ (Ki+3)0

)
=
(

(Ki+4)2 ⊕ (Xi+6
R )0 ⊕ (Ki+6)2 ⊕ (Xi+6

L )2
)

(7)
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Fig. 3. A 3-round linear charateristic for SIMON.
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Fig. 4. A 7-round linear characteristic for SIMON.
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Table 4. The biases for a 11-round LC

Bias of 7 round linear expression 2−10

Bias of (F (Xi+6
L ))0 approximate 2−6

Bias of approximate 7-11 2−3

In Equation 7, the only intermediate value is the term (F (Xi+2
L ))0. We can approximate

(F (Xi+2
L ))0 with some bits of plaintext (Considering Figure 4) as follows.

Pr[(F (Xi+2
L ))0 = (Xi+2

L )14)] = 3
4

Pr[(Xi+2
L )14 = (Xi+1

R )14 ⊕ (Ki+2)14 ⊕ (Xi+1
L )12)] = 3

4

Pr[(Xi+1
R )14 = (Xi−1

R )14 ⊕ (Ki)14 ⊕ (Xi−1
L )12] = 3

4

Pr[(Xi+1
L )12 = (Xi−1

L )12 ⊕ (Ki+1)12 ⊕ (Xi
L)10] = 3

4

Pr[(Xi
L)10 = (Xi−1

R )10 ⊕ (Ki)10 ⊕ (Xi−1
L )8] = 3

4

 . (8)

Then, with probability (3/4)5 and bias 2−6, we get the following expression for F (Xi+2
L ))0.

(F (Xi+2
L ))0 = (Xi−1

R )14⊕(Ki)14⊕(Xi−1
L )12⊕(Ki+2)14⊕(Xi

R)12⊕(Ki+1)12⊕(Xi−1
R )10⊕(Ki)10⊕(Xi−1

L )8
(9)

Using Equation 9 in Equation 7, we can extract a 7 round linear expression with bias
2−10. It is possible to use Equation 7 and produce a 11-round linear expression as follows
(see Fig. 5):

(Xi−1
R )2 ⊕ (Ki)2 ⊕ (Xi−1

L )0 ⊕ (Ki+2)2 ⊕ (F (Xi+2
L ))0 ⊕ (Ki+3)0 =

(Ki+4)2 ⊕ (Xi+6
R )0 ⊕ (Ki+6)2 ⊕ (Xi+6

L )2
(10)

where,

(Xi+6
L )2 = (Xi+7

R )2
(Xi+6

R )0 = (Xi+7
L )0 ⊕ (Ki+7)0 ⊕ (F (Xi+6

L ))0
Pr[(Xi+8

L )2 = (Xi+7
R )2 ⊕ (Ki+8)2 ⊕ (Xi+7

L )0] = 3
4

Pr[(Xi+9
R )2 = (Xi+10

L )2 ⊕ (Ki+10)2 ⊕ (Xi+10
R )0] = 3

4

 . (11)

Thus, Equation 12 will be a 11-round linear expression with bias 2−17 (We note that
similar to (F (Xi+2

L ))0, we can approximate (F (Xi+6
L ))0 with some bits of Xi+10 with prob-

ability (3/4)5 and bias 2−6). The bias is calculated using biases given in Table 4 and the
pilling up lemma.

(
(Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0⊕

(Ki+2)2 ⊕ (F (Xi+2
L ))0 ⊕ (Ki+3)0

)
=

 (Ki+4)2 ⊕ (Ki+7)0 ⊕ (Ki+6)2⊕
(F (Xi+6

L ))0 ⊕ (Ki+8)2 ⊕ (Xi+10
L )2⊕

(Ki+10)2 ⊕ (Xi+10
R )0

 (12)
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Fig. 5. A 11-round LC for SIMON.
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Table 5. The biases for a 10-round LC

Bias of 7 round linear expression 2−10

Bias of (F (Xi+6
L ))0 approximate 2−4

Bias of approximate 7-10 2−2

Unfortunately this linear expression can’t yield a successful linear attack because the
required number of plaintexts exceeds the possible values, i.e. 232. Although we will introduce
a 11-round linear expression with bias 2−16 later, but in this section we use the above method
and calculate a 10-round linear expression. The bias of the 10-round linear characteristic is
2−14 as given in Table 5 and the expression is as follows:

(
(Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0⊕

(Ki+2)2 ⊕ (F (Xi+2
L ))0 ⊕ (Ki+3)0

)
=

(
(Ki+4)2 ⊕ (Ki+7)0 ⊕ (Ki+6)2⊕
(F (Xi+6

L ))0 ⊕ (Ki+8)2 ⊕ (Xi+9
R )2

)
(13)

where approximate of (F (Xi+6
L ))0 is as follows:

Pr[(F (Xi+6
L ))0 = (Xi+6

L )14] = 3
4

Pr[(Xi+6
L )14 = (Ki+8)14 ⊕ (Xi+8

R )12 ⊕ (Xi+9
R )14] = 3

4

Pr[(Xi+8
R )12 = (Xi+9

L )12 ⊕ (Ki+9)12 ⊕ (Xi+8
L )10 =

(Xi+9
L )12 ⊕ (Ki+9)12 ⊕ (Xi+9

R )10] = 3
4

 . (14)

Hence, the approximation of (F (Xi+6
L ))0 can be simplified as follows, with bias 2−4:

(F (Xi+6
L ))0 = (Ki+8)14 ⊕ (Xi+9

L )12 ⊕ (Ki+9)12 ⊕ (Xi+9
R )10 ⊕ (Xi+9

R )14 (15)

Then the 10-round linear expression gets simplified as follows:
(Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0⊕

(Ki+2)2 ⊕ (Xi−1
R )14 ⊕ (Ki)14⊕

(Ki+2)14 ⊕ (Ki+1)12 ⊕ (Xi−1
R )10⊕

(Ki)10 ⊕ (Xi−1
L )8 ⊕ (Ki+3)0

 =


(Ki+4)2 ⊕ (Ki+7)0 ⊕ (Ki+6)2⊕
(Ki+8)14 ⊕ (Xi+9

L )12 ⊕ (Ki+9)12⊕
(Xi+9

R )10 ⊕ (Xi+9
R )14 ⊕ (Ki+8)2⊕

(Xi+9
R )2

 (16)

3.1 13-Round Linear Characteristic

In this section we extend our attack by one more round to get some 11-round linear expres-
sions for SIMON 32/64. We present three different methods to get 11-round linear charac-
teristic with bias more than 2−17. Once we have any such 11-round linear characteristic we
can add another one round to the beginning and one round to the end of each characteristic
to extend the attack up tp 13-rounds. The added rounds are related to the plaintext and
ciphertext and free of any approximation, because we know the input of F functions for
these rounds. In this way we have a 13-round linear characteristic for SIMON 32/64.
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METHOD 1: We can consider the 10-round linear expression in the previous section and
add a single round at its beginning to achieve a 11-round characteristic. In this case we have
these changes:

(Xi−1
R )2 = (Xi−2

L )2
Pr[(Xi−1

L )0 = (Xi−2
R )0 ⊕ (Ki−1)0 ⊕ (Xi−2

L )14] = 3
4

(Xi−1
R )14 = (Xi−2

L )14
(Xi−1

R )10 = (Xi−2
L )10

Pr[(Xi−1
L )8 = (Xi−2

R )8 ⊕ (Ki−1)8 ⊕ (Xi−2
L )6] = 3

4

 . (17)

Since bias of added round is 2−3, hence the bias of the 11-round linear expression is 2−16.

METHOD 2: In this method we begin of Xi+3
R and Xi+3

L and backward to Xi−1
R and Xi−1

L :

(Xi+3
R )2 = (Xi+2

L )2
Pr[(Xi+3

L )0 = (Xi+2
R )0 ⊕ (Ki+3)0 ⊕ (Xi+2

L )14] = 3
4

Pr[(Xi+2
L )2 = (Xi+1

R )2 ⊕ (Ki+2)2 ⊕ (Xi+1
L )0] = 3

4

(Xi+2
R )0 = (Xi+1

L )0
Pr[(Xi+2

L )14 = (Xi+1
R )14 ⊕ (Ki+2)14 ⊕ (Xi+1

L )12] = 3
4

(Xi+1
R )2 = (Xi

L)2
Pr[(Xi+1

L )0 = (Xi
R)0 ⊕ (Ki+1)0 ⊕ (Xi

L)14] = 3
4

(Xi+1
R )14 = (Xi

L)14
Pr[(Xi+1

L )12 = (Xi
R)12 ⊕ (Ki+1)12 ⊕ (Xi

L)10] = 3
4

Pr[(Xi
L)2 = (Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0] = 3

4 (∗)
(Xi

R)0 = (Xi−1
L )0

Pr[(Xi
L)14 = (Xi−1

R )14 ⊕ (Ki)14 ⊕ (Xi−1
L )12] = 3

4 (∗∗)
(Xi

R)12 = (Xi−1
L )12

Pr[(Xi
L)10 = (Xi−1

R )10 ⊕ (Ki)10 ⊕ (Xi−1
L )8] = 3

4 (∗ ∗ ∗)



. (18)

If we assume that with control of the plaintext bits, we can establish 3 relations *, **,
and ***, then the 4-round linear expression will have bias 2−6.

Now we can attach the 3-round linear expression (Xi+3
R )2⊕(Ki+4)2⊕(Xi+3

L )0 = (Xi+6
R )0⊕

(Ki+6)2 ⊕ (Xi+6
L )2 with bias 2−3 to the 4-round linear expression and get a 7-round linear

expression with bias 2−8. Then we add another 4-round linear expression that begin of
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(Xi+6
R )0 and (Xi+6

L )2 to the 7-round linear expression. This new 4-round linear expression
is:

(Xi+6
L )2 = (Xi+7

R )2
Pr[(Xi+6

R )0 = (Xi+7
L )0 ⊕ (Ki+7)0 ⊕ (Xi+6

L )14] = 3
4

Pr[(Xi+7
R )2 = (Xi+8

L )2 ⊕ (Ki+8)2 ⊕ (Xi+7
L )0] = 3

4

(Xi+7
L )0 = (Xi+8

R )0
Pr[(Xi+6

L )14 = (Xi+8
L )14 ⊕ (Ki+8)14 ⊕ (Xi+7

L )12] = 3
4

(Xi+8
L )2 = (Xi+9

R )2
Pr[(Xi+8

R )0 = (Xi+9
L )0 ⊕ (Ki+9)0 ⊕ (Xi+9

R )14] = 3
4

(Xi+8
L )14 = (Xi+9

R )14
Pr[(Xi+7

L )12 = ((Xi+9
L )12 ⊕ (Ki+9)12 ⊕ (Xi+9

R )10] = 3
4

Pr[(Xi+9
R )2 = (Xi+10

L )2 ⊕ (Ki+10)2 ⊕ (Xi+10
R )0] = 3

4

(Xi+9
L )0 = (Xi+10

R )0
Pr[(Xi+9

R )14 = (Xi+10
L )14 ⊕ (Ki+10)14 ⊕ (Xi+10

R )12] = 3
4

(Xi+9
L )12 = (Xi+10

R )12
Pr[(Xi+9

R )10 = (Xi+10
L )10 ⊕ (Ki+10)10 ⊕ (Xi+10

R )8] = 3
4



. (19)

This expression has bias 2−9. So we have a 11-round linear expression of bias 2−16.

METHOD 3: In this method we begin of (Xi+3
R )2 and (Xi+3

L )0 and use a 7-round linear
expression (see equation 6):

(Xi+3
R )2 ⊕ (Ki+4)2 ⊕ (Xi+3

L )0 ⊕ (Ki+6)2 ⊕ (F (Xi+6
L ))0 ⊕ (Ki+7)0 =

(Ki+8)2 ⊕ (Xi+10
R )0 ⊕ (Ki+10)2 ⊕ (Xi+10

L )2.
(20)

Then we add the 4-round linear expression that we get in method 2 at first of the 7-
round linear expression and provide a 11-round linear expression with bias 2−15 (2−6 of first
4-round linear expression and 2−10 of second 7-round linear expression). Note that we can
approximate (F (Xi+6

L ))0 with some bits of Xi+10 with bias 2−6 as follows:

Pr[(F (Xi+6
L ))0 = (Xi+6

L )14] = 3
4

Pr[(Xi+6
L )14 = (Ki+8)14 ⊕ (Xi+8

R )12 ⊕ (Xi+9
R )14] = 3

4

Pr[(Xi+8
R )12 = (Xi+10

R )12 ⊕ (Ki+9)12 ⊕ (Xi+9
R )10] = 3

4

Pr[(Xi+9
R )14 = (Xi+10

L )14 ⊕ (Ki+10)14 ⊕ (Xi+10
R )12] = 3

4

Pr[(Xi+9
R )10 = (Xi+10

L )10 ⊕ (Ki+10)10 ⊕ (Xi+10
R )8] = 3

4

 (21)

4 Connections between LC and DC for SIMON and its application on
the other variants of SIMON

Differential cryptanalysis [4] is a widely used known chosen plaintext/ciphertext cryptana-
lytic attack technique. In differential cryptanalysis an attacker tries to exploit a high probable
input/output difference propagation through the cipher structure. This differential charac-
teristic can be used to detect the non-random behavior of the cipher or recover a part of the



Linear Cryptanalysis of Round Reduced SIMON 13

secret key with a certain success probability. Hence, in a differential attack we look for an
input pair with difference ∆X that propagates to an output pair with difference ∆Y with
a high probability pr and for certain number of rounds of the cipher. We denote this differ-
ential characteristic by ∆X

pr→ ∆Y . In the round function of SIMON, the only non-linear
operation is the bitwise AND. Given two bits A and B, the output of (A&B) would be “0”
with the probability of 0.75. Hence, we can extract the following highly probable differential
expressions for the F -function:

Differential Characteristic 1 : (∆X)i
1
4→ (∆F (X))i+2

Differential Characteristic 2 : (∆X)i
1
4→ (∆F (X))i+2,i+1

Differential Characteristic 3 : (∆X)i
1
4→ (∆F (X))i+2,i+8

Differential Characteristic 4 : (∆X)i
1
4→ (∆F (X))i+2,i+1,i+8


(22)

where (∆F (X))i+1,i+8 denotes differences in (i+ 1)-th and (i+ 8)-th bits for ∆F (X) to be
1 and remaining bit positions of ∆F (X) are 0, similarly for the other expressions. On the
other hand, to produce a linear characteristic we approximate bits from output of F by bits
from its input and to produce a differential characteristic we propagate differences in bits of
input to the bits of output of F . Hence, it is possible to drive a unique connection between
Equations 3 and Equations 22. In other words, each approximation in Equation 3 can be
mapped to a differential characteristic in equation 22. Given this observation, for an r-round
differential characteristic we can construct an equivalent r-round linear characteristic by
employing the related approximation of each specific differential characteristic of F -function
which has been used through r-round differential characteristic. For example we consider a
3-round differential characteristic depicted in Figure 6 and use the above rule to generate a
3-round linear characteristic depicted in Figure 7.

Now we investigate the strength of different variants of SIMON against linear attack,
given the above observation and the known results on differential cryptanalysis of variants
of SIMON from [1]. In Appendix B, Tables 8, 9, 10, 11 and 12 the propagation of our
linear characteristics for SIMON32/64, SIMON48/96, SIMON64/128, SIMON96/192 and
SIMON128/256 are presented respectively (for the detail of each used approximation, see
equation 3). In Tables 11 and 12 we used the approach of Abed et. al. [1, Table 7] for
producing their differential characteristic as the main core of the presented paths. It is
clear from these tables that the propagation of number of required approximations in our
characteristics are far better than the pattern presented by Abed et. al. [1]. Note that their
pattern is as follows (excluding SIMON32/64 for which we have the same pattern as theirs,
as far as they have included in the paper):

. . . , 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, . . .

On the other hand, for SIMON32/64 reduced to 11 rounds, a linear characteristics based on
the Abed et. al. [1] approach will have bias of 2−17. However, we considered the propagation
of number of approximations for this variant of SIMON on more rounds and received the
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( )( )i 1
L 1,2,8
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iK

i 1K +

i 2K +
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X∆ −

( ) ( )( )
1

i 1 i 14
L L0 1,2,8

X F X− −→∆ ∆

( )( )i 1
L 1,2,8

F X +∆
( )i 1

L 0
X∆ +

( ) ( )( )
1

i 1 i 14
L L0 1,2,8

X F X+ +→∆ ∆

0
( )i 1

L 0
X∆ −

( )i 1
R 1,2,8

X −∆

( )i 2
L 1,2,8

X +∆ ( )i 2
R 0
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Fig. 6. A 3-round DC for SIMON connected with the 3-round LC in Fig. 7.
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i 1 i
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3Pr X K X X X X ,
4
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+ + + + + +

+

⊕ ⊕ ⊕ ⊕ = =

=

i 1
LX − i 1

RX −

i
LX i

RX

iK

i 1K +

i 1
LX + i 1

RX +

i 2K +

i 2
LX + i 2

RX +

Fig. 7. A 3-round LC for SIMON connected with the 3-round DC in Fig. 6.
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following pattern, see Table 8:

. . . , 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3 . . .

Based on tis pattern, it is possible to generate a pattern that has bias of 2−16 for 11-round,
as follows:

2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1,

This is actually the pattern that we used in the previous section to provide a 13-round
linear characteristic for SIMON32/64. Based on a similar strategy, it is possible to present
linear characteristics for other variants of SIMON. We summarize the parameters of our
linear attacks for the different variants of SIMON in Table 6. On the other hand, to use
an approximation with the bias of ε to mount a linear attack the expected complexity is
O(ε−2) [7]. Hence, we consider a case where ε ≥ 2−n+2, where |P | = 2n and for the complexity
of 8× ε−2 the success probability of key recovery attack would be ‘0.997’ [1, 7]. Our results
for different variants of SIMON when ε ≥ 2−n+2 have been represented in Table 7.

Table 6. Summary of our linear analysis for the different variants of SIMON. In this table
KR denotes a linear characteristic that can be used trough a key recovery attack, Dis
denotes a linear characteristic that can be used trough a distinguishing attack and App.
denotes approximation.

Linear Expression
SIMON Start End # Rounds # App. Bias Attack

Active bits in Active bits in Active bits in Active bits in
the left side the right side the left side the right side

32/64 10,6,2,6,14 8,0 2,10,6,2 4 11 15 2−16 KR

32/64 4,8,4,0 10,6,2 2,14,10 12 22 31 2−32 Dis

48/96 2,18,14,10 12 20,0,20,16 2,22,18 14 22 2−23 KR

48/96 2,18,14,10 12 10,22,6,6 8 23 46 2−47 Dis

64/128 2,26,22,18 20 2,26,22,18 20 17 28 2−29 KR

64/128 2,26,18,28,14 30,0,26,12 2,26,18,28,14 30,0,26,12 25 60 2−61 Dis
,28,62,24,10 ,28,62,24,10

96/144 2,46,42,46,38 0,40 2,46,42 44 27 46 2−47 KR

96/144 2,42,38,34 0,40,32 36,0,40,36,32 2,42,38,34 36 70 2−71 Dis
,46,38,30

128/256 52,0,56,52,48 2,58,54,50 2,58,54,50 52 34 63 2−64 KR

128/256 36,0,48,40,36,32 2,50,42,38,34 2,50,42,38,34 0,48,40,32 52 127 2−128 Dis
,62,46,38,30

Assuming that (X)i1,...,im = (X)i1 ⊕ . . .⊕ (X)im and given Tables 8, 9, 10, 11 and 12 it is
possible to extract the linear expression related to each variant of SIMON that include only
input, output and key bits as follows:
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Table 7. Summary of our linear analysis for the different variants of SIMON such that we
can mount a linear attack with the success probability of ‘0.997’. In this table App. denotes
approximation.

Linear Expression
SIMON Start End # Rounds # App. Bias

Active bits in Active bits in Active bits in Active bits in
the left side the right side the left side the right side

32/64 10,6,2 4 0,8,0,8,4 2,10,6 10 13 2−14

48/96 2,18,14,10 12 2,22,18 20 13 19 2−20

64/128 2,26,22,18 20 2,26,22,18 20 17 28 2−29

96/144 2,46,42,46,38 0,40 0,0,4 2,46 26 45 2−46

128/256 2,58,54,50 52 2,58,54,50 52 33 59 2−60

11-Round Linear Expression for SIMON 32/64:

(
(PL)10,2,14 ⊕ (PR)8,0 ⊕ (CL)4
⊕(CR)10,6

)
=


(K1)8,0 ⊕ (K2)10,6,2 ⊕ (K3)4
⊕(K4)10,6 ⊕ (K5)8 ⊕ (K6)10
⊕(K8)10 ⊕ (K9)8 ⊕ (K10)10,6
⊕(K11)4

 (23)

14-Round Linear Expression for SIMON 48/96:

(
(PL)2,18,14,10 ⊕ (PR)12
⊕(CL)2,22,18 ⊕ (CR)0,16

)
=


(K1)12 ⊕ (K2)2,18,14 ⊕ (K3)0,16
⊕(K4)2,22,18 ⊕ (K5)20 ⊕ (K6)2,22
⊕(K7)0 ⊕ (K8)2 ⊕ (K10)2
⊕(K11)0 ⊕ (K12)2,22 ⊕ (K13)20
⊕(K14)2,22,18

 (24)

17-Round Linear Expression for SIMON 64/128:

(
(PL)2,26,22,18 ⊕ (PR)20 ⊕ (CL)20
⊕(CR)2,26,22,18

)
=


(K1)20 ⊕ (K2)2,26,22 ⊕ (K3)0,24
⊕(K4)2,30,26 ⊕ (K5)28 ⊕ (K6)2,30
⊕(K7)0 ⊕ (K8)2 ⊕ (K10)2 ⊕ (K11)0
⊕(K12)2,30 ⊕ (K13)28 ⊕ (K14)2,30,26
⊕(K15)0,24 ⊕ (K16)2,26,22 ⊕ (K17)20

 (25)

27-Round Linear Expression for SIMON 96/144:

(
(PL)2,42,38 ⊕ (PR)0,40 ⊕ (CL)44
⊕(CR)2,46,42

)
=



(K1)0,40 ⊕ (K2)2,46,42 ⊕ (K3)44 ⊕ (K4)2,46
⊕(K5)0 ⊕ (K6)2 ⊕ (K8)2 ⊕ (K9)0
⊕(K10)2,46 ⊕ (K11)44 ⊕ (K12)2,46,42
⊕(K13)0,41,40 ⊕ (K14)2,42,38 ⊕ (K15)42,41,36
⊕(K16)2,42,39,38 ⊕ (K17)0,40 ⊕ (K18)2,46,42
⊕(K19)44 ⊕ (K20)2,46 ⊕ (K21)0 ⊕ (K22)2
⊕(K24)2 ⊕ (K25)0 ⊕ (K26)2,46 ⊕ (K27)44


(26)
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34-Round Linear Expression for SIMON 128/256:

(
(PL)0,48,56 ⊕ (PR)2,58,54,50
⊕(CL)52 ⊕ (CR)2,58,54,50

)
=



(K1)2,58,54,50 ⊕ (K2)52 ⊕ (K3)2,58,54
⊕(K4)0,56 ⊕ (K5)2,62,58 ⊕ (K6)60
⊕(K7)2,62 ⊕ (K8)0 ⊕ (K9)2 ⊕ (K11)2
⊕(K12)0 ⊕ (K13)2,62 ⊕ (K14)60 ⊕ (K15)2,58,62
⊕(K16)0,56,57 ⊕ (K17)2,58,54 ⊕ (K18)52,57,58
⊕(K19)2,54,55,58 ⊕ (K20)0,56 ⊕ (K21)2,62,58
⊕(K22)60 ⊕ (K23)2,62 ⊕ (K24)0 ⊕ (K25)2
⊕(K27)2 ⊕ (K28)0 ⊕ (K29)2,62
⊕(K30)60 ⊕ (K31)2,58,62 ⊕ (K32)0,56
⊕(K33)2,58,54 ⊕ (K34)52


(27)

5 Conclusion

In this paper we analyzed the security of SIMON family against linear attack. We presented
several characteristics for different variants of SIMON. We have shown that there is a direct
connection between LC and DC for SIMON and given a DC for r-rounds of a variant of
SIMON it is possible to generate an r-round LC (however the probability of characteristics
would not be necessarily the same). The significant of this approach is that any progress on
providing a better differential characteristic may be directly used to provide a better linear
characteristic. Although the presented results are advanced, compared to the previously
known results on the linear cryptanalysis of SIMON, it only covers less than half of the
rounds of the cipher.
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extra rounds that do not include any intermediate values. For example, concatenating these
figures gives a 6-round characteristic that includes the input, output and several sub-keys
bits. However, the probability of such characteristic is expected to be 1

2 + 2−17. If we extend
the number of rounds to nine rounds then the probability of such characteristic is expected
to be 1

2 + 2−25. Although such characteristic can not be used to recover the key but maybe
considered as a distinguisher for the reduced cipher. It must be noted, based on the same
argument, it is possible to extract similar linear characteristics for any variant of SIMON.

In addition, following an approach used in METHOD 3 of section 3.1, it is possible to
use equation 7 to produce a 15-round linear expression as follows (see Figure 10):


(Xi−1

R )2 ⊕ (Ki)2 ⊕ (Xi−1
L )0⊕

(Ki+2)2 ⊕ (F (Xi+2
L ))0 ⊕ (Ki+3)0⊕

(Ki+4)2 ⊕ (Xi+6
R )0 ⊕ (Ki+6)2⊕

(Xi+6
L )2

 =


(Xi+7

R )2 ⊕ (Ki+8)2 ⊕ (Xi+7
L )0⊕

(Ki+10)2 ⊕ (F (Xi+10
L ))0 ⊕ (Ki+11)0⊕

(Ki+12)2 ⊕ (Xi+14
R )0 ⊕ (Ki+14)2⊕

(Xi+14
L )2

 (28)

which can be simplified as follows:

 (Xi−1
R )2 ⊕ (Ki)2 ⊕ (Xi−1

L )0⊕
(Ki+2)2 ⊕ (F (Xi+2

L ))0 ⊕ (Ki+3)0
⊕(Ki+4)2 ⊕ (Ki+6)2

 =


(F (Xi+6

L ))0 ⊕ (Ki+7)0 ⊕ (Ki+8)2⊕
(Ki+10)2 ⊕ (F (Xi+10

L ))0 ⊕ (Ki+11)0
⊕(Ki+12)2 ⊕ (Xi+14

R )0 ⊕ (Ki+14)2
⊕(Xi+14

L )2

 (29)

In Equation 29, the only intermediate values are the term (F (Xi+2
L ))0, (F (Xi+6

L ))0 and
(F (Xi+10

L ))0. This approach can be repeated to extend the number of rounds of the linear
characteristic.

B Sequences of approximation used through driving the linear
characteristic of each variant of SIMON

Tables 8, 9, 10, 11 and 12 represent the propagation of our linear characteristics for SI-
MON32/64, SIMON48/96, SIMON64/128, SIMON96/192 and SIMON128/256 are presented
respectively. In each table, entries under used App. column denotes approximation used for
corresponding active bit of column 2 of the table.

C Experimental results

We evaluated the theoretical results presented in equation 23 for 11-round SIMON 32/64
experimentally. Table 13 represents the results. In this table N is the number of known
plaintexts, C is the number of palintext and ciphertext pairs that satisfied equation 23, Pr
is the probability that equation 23 holds. It shows that, experimental results justify the
theory and the bias of the presented path is not less than 2−16
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Fig. 10. A 15-round LC for SIMON.
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Table 8. Sequences of approximation for SIMON 32/64.

Active bits in the left side Active bits in the right side Used App. # App.

10,6,2,6,14 8,0 1;1 2

4,8,4,0 10,6,2 1;1;1 3

10,6,2 4 1 1

8,8,4 10,6 1;1 2

10,6 8 1 1

8 10 1 1

10 - - 0

8,8 10 1 1

10,6,6 8 1 1

4,8,4 10,6 1;1 2

2,10,6,2 4 1 1

0,8,0,8,4 2,10,6 1;1;1 3

2,14,10,14,6 0,8 1;1 2

12,0,12,8 2,14,10 1;1;1 3

2,14,10 12 1 1

0,0,12 2,14 1;1 2

2,14 0 1 1

0 2 1 1

2 - - 0

0 2 1 1

2,14 0 1 1

0,0,12 2,14 1;1 2

2,14,10 12 1 1

12,0,12,8 2,14,10 1;1;1 3
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Table 9. Sequences of approximation for SIMON 48/96.

Active bits in the left side Active bits in the right side Used App. # App.

12,0,16,12,8 2,18,14,10 1;1;1;1 4

2,18,14,10 12 1 1

0,16,0,16,12 2,18,14 1;1;1 3

2,22,18,22,14 0,16 1;1 2

20,0,20,16 2,22,18 1;1;1 3

2,22,18 20 1 1

0,0,20 2,22 1;1 2

2,22 0 1 1

0 2 1 1

2 - - 0

0 2 1 1

2,22 0 1 1

0,0,20 2,22 1;1 2

2,22,18 20 1 1

20,0,20,16 2,22,18 1;1;1 3

2,22,18,22,14 0,16 1;1 2

0,16,0,16,12 2,18,14 1;1;1 3

2,18,14,10 12 1 1

12,0,16,12,8 2,18,14,10 1;1;1;1 4
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Table 10. Sequences of approximation for SIMON 64/128.

Active bits in the left side Active bits in the right side Used App. # App.

20,30,24,20,16 2,26,22,18 1;1;1;1 4

2,26,22,18 20 1 1

0,24,0,24,20 2,26,22 1;1;1 3

2,30,26,30,22 0,24 1;1 2

28,0,28,24 2,30, 26 1;1;1 3

2,30,26 28 1 1

0,0,28 2,30 1;1 2

2,30 0 1 1

0 2 1 1

2 - - 0

0 2 1 1

2,30 0 1 1

0,0,28 2,30 1;1 2

2,30,26 28 1 1

28,0,28,24 2,30, 26 1;1;1 3

2,30,26,30,22 0,24 1;1 2

0,24,0,24,20 2,26,22 1;1;1 3

2,26,22,18 20 1 1

20,30,24,20,16 2,26,22,18 1;1;1;1 4
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Table 11. Sequences of approximation for SIMON 96/144.

Active bits in the left side Active bits in the right side Used App. # App.

36,0,40,36,32 2,42,38,34 1;1;1;1 4

2,42,38,34 36 1 1

0,40,0,40,36 2,42,38 1;1;1 3

2,46,42,46,38 0,40 1;1 2

44,0,44,40 2,46,42 1;1;1 3

2,46,42 44 1 1

0,0,44 2,46 1;1 2

2,46 0 1 1

0 2 1 1

2 - - 0

0,0 2 1 1

2,46,46 0 1; 1

44,0,44 2,46 1;1 2

2,46,42,42 44 1 1

0,41,40,0,44,41,40, 2,46,42 1;1;2 3

2,42,38,46,39,39,38 0,41,40 1;1;2 3

42,41,36,0,42,40,36 2,42,38 3;1;1; 3

2,42,39,38,40,34,40,39,34 42,41,36 3;2;1 3

0,40,0,42,41,40,37,37,36 2,42,39,38 3;2;1;2 4

2,46,42,46,39,38 0,40 1;2 2

44,0,44,40 2,46,42 1;1;1; 3

2,46,42 44 1 1

0,0,44 2,46 1;1 2

2,46 0 1 1

0 2 1 1

2 - - 0

0 2 1 1

2,46 0 1 1

0,0,44 2,46 1;1 2

2,46,42 44 1 1

44,0,44,40 2,46,42 1;1;1 3

2,46,42,46,38 0,40 1;1 2

0,40,0,40,36 2,42,38 1;1;1 3

2,42,38,34 36 1 1
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Table 12. Sequences of approximation for SIMON 128/256.

Active bits in the left side Active bits in the right side Used App. # App.

52,0,56,52,48 2,58,54,50 1;1;1;1 4

2,58,54,50 52 1 1

0,56,0,56,52 2,58,54 1;1;1 3

2,62,58,62,54 0,56 1;1 2

60,0,60,56 2,62,58 1;1;1 3

2,62,58 60 1 1

0,0,60 2,62 1;1 2

2,62 0 1 1

0 2 1 1

2 - - 0

0,0 2 1 1

2,62,62 0 1; 1

60,0,60 2,62 1;1 2

2,62,58,58 60 1 1

0,57,56,0,60,57,56, 2,62,58 1;1;2 3

2,58,54,62,55,55,54 0,57,56 1;1;2 3

58,57,52,0,58,56,52 2,58,54 3;1;1; 3

2,58,55,54,56,50,56,55,50 58,57,52 3;2;1 3

0,56,0,58,57,56,53,53,52 2,58,55,54 3;2;1;2 4

2,62,58,62,55,54 0,56 1;2 2

60,0,60,56 2,62,58 1;1;1; 3

2,62,58 60 1 1

0,0,60 2,62 1;1 2

2,62 0 1 1

0 2 1 1

2 - - 0

0 2 1 1

2,62 0 1 1

0,0,60 2,62 1;1 2

2,62,58 60 1 1

60,0,60,56 2,62,58 1;1;1 3

2,62,58,62,54 0,56 1;1 2

0,56,0,56,52 2,58,54 1;1;1 3

2,58,54,50 52 1 1
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Table 13. Experimental results for the linear characteristic of 11-round SIMON 32/64,
equation 23.

N Log (N) C Pr Log(Bias)

179702664 27.42 89867759 0.5000914 -14.00378

1073741824 30 536877274 0.500005925 -12.63526

2526206249 31.2343 1263137717 0.50001369 -15.07817

4294967296 32 2147550464 0.500015557 -16.02790
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