Obfuscation for Evasive Functions

Boaz Barak* Nir Bitansky' Ran Canettit
Yael Tauman Kalai* Omer Paneth® Amit Sahai¥

October 18, 2013

Abstract

An evasive circuit family is a collection of circuits C such that for every input x, a random circuit
from C outputs 0 on x with overwhelming probability. We provide a combination of definitional,
constructive, and impossibility results regarding obfuscation for evasive functions:

1. The (average case variants of the) notions of virtual black box obfuscation (Barak et al,
CRYPTO °01) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO ’10) co-
incide for evasive function families. We also define the notion of input-hiding obfuscation
for evasive function families, stipulating that for a random C' € C it is hard to find, given
O(C), a value outside the preimage of 0. Interestingly, this natural definition, also motivated
by applications, is likely not implied by the seemingly stronger notion of average-case virtual
black-box obfuscation.

2. If there exist average-case virtual gray box obfuscators for all evasive function families, then
there exist (quantitatively weaker) average-case virtual gray obfuscators for all function fami-
lies.

3. There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is
there an average-case virtual gray box obfuscator for evasive Turing machine families.

4. Let C be an evasive circuit family consisting of functions that test if a low-degree polynomial
(represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime
p. Then under a natural analog of the discrete logarithm assumption in a group supporting
multilinear maps, there exists an input-hiding obfuscator for C. Under a new perfectly-hiding
multilinear encoding assumption, there is an average-case virtual black box obfuscator for the
family C.

*Microsoft Research.

Tel Aviv University. Email: nirbitan@tau.ac.il. Supported by an IBM Ph.D. Fellowship, the Check Point Institute
for Information Security, and an ISF grant 20006317.

¥Boston University and Tel Aviv University. Email: canetti@bu.edu. Supported by the Check Point Institute for
Information Security, an ISF grant 20006317, an NSF EAGER grant, and an NSF Algorithmic foundations grant 1218461.

$Boston University. Work done while the author was an intern at Microsoft Research New England. Supported by the
Simons award for graduate students in theoretical computer science and an NSF Algorithmic foundations grant 1218461.

TDepartment of Computer Science, UCLA. Work done in part while visiting Microsoft Research, New England. Research
supported in part from a DARPA/ONR PROCEED award, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Re-
search Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract NO0014-11-1-0389. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

1 Introduction

The study of Secure Software Obfuscation — or, methods to transform a program (say described as a
Boolean circuit) into a form that is executable but otherwise completely unintelligible — is a central
research direction in cryptography. In this work, we study obfuscation of evasive functions— an evasive
function family is a collection C,, of Boolean circuits mapping some domain D to {0, 1} such that for
every z € D the probability over C' < C, that C'(x) = 1 is negligible. Focusing on evasive functions
leads us to new notions of obfuscation, as well as new insights into general-purpose obfuscation.

Why Study Obfuscation of Evasive Functions? To motivate the study of the obfuscation of evasive
functions, let us consider the following scenario taken from [GCRI12]: Suppose that a large software
publisher discovers a new vulnerability in their software that causes the software to behave in undesirable
ways on certain (rare) inputs. The publisher then designs a software patch P that tests the input z to
see if it falls into the S of bad inputs, and if so outputs 1 to indicate that the input x should be ignored.
If x ¢ S, the patch outputs O to indicate that the software can behave normally. Were the publisher to
release the patch P, an adversary could potentially study the code of P and learn bad inputs x € S that
give rise to the original vulnerability. Since it can take months before a majority of computers install a
new patch, this would give the attacker plenty of time to exploit this vulnerability on unpatched systems
even when the set S of bad inputs was evasive to begin with. If instead, the publisher could obfuscate
the patch P before releasing it, then intuitively an attacker would gain no advantage in finding an input
x € S from studying the obfuscated patch. Indeed, assuming that without seeing P the attacker has
negligible chance of finding an input « € S, it makes sense to model P as an evasive function.

Aside from the motivating scenario above, evasive functions are natural to study in the context of
software obfuscation because they are a natural generalization of the special cases for which obfuscation
was shown to exist in the literature such as point functions [Can97], hyperplanes [CRV10], and conjunc-
tions [BR13a]EI Indeed, as we shall see, the study of obfuscation of evasive functions turns out to be
quite interesting from a theoretical perspective, and sheds light on general obfuscation as well.

What notions of obfuscation makes sense for evasive functions? As the software patch problem
illustrates, a very natural property that we would like is input hiding: Given an obfuscation of a ran-
dom circuit C' <— C,, it should be hard for an adversary to find an input x such that C'(z) = 1. It
also makes sense to consider (average case versions of) strong notions of obfuscation, such as “virtual
black box” (VBB) obfuscation introduced by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan
and Yang [BGIT01]], which, roughly speaking, states that any predicate of the original circuit C' com-
puted from its obfuscation could be computed with almost the same probability by an efficient simulator
having only oracle (i.e., black box) access to the function (see Section [2| for a formal definition). One
can also consider the notion of “virtual gray box” (VGB) introduced by Bitansky and Canetti [BC10],
who relaxed the VBB definition to allow the simulator to run in unbounded time (though still with only
a polynomial number of queries to its oracle). Another definition proposed in [BGIT01], with a recent
construction given by [GGH™ 13b], is of “indistinguishability obfuscation” (I0). The actual meaning of
10 is rather subtle, and we discuss it in Section[I.2]

1.1 Our results

We provide a combination of definitional, constructive, and impossibility results regarding obfuscation
for evasive functions. First, we formalize the notion of input-hiding obfuscation for evasive functions (as
sketched above). We give evidence that this notion of input-hiding obfuscation is actually incomparable
to the standard definition of VBB obfuscation. While it is not surprising that input-hiding obfuscation
does not imply VBB obfuscation, it is perhaps more surprising that VBB obfuscation does not imply

!Conjunctions are not necessarily evasive, however the interesting case for obfuscation is large conjunctions which are
unlearnable and also have few accepting inputs.

input-hiding obfuscation (under certain computational assumptions). Intuitively, this is because VBB
obfuscation requires only that predicates of the circuit being obfuscated are simulatable, whereas input
hiding requires that no complete input string z that causes C'(z) = 1 can be found.

Second, we formalize a notion of perfect circuit-hiding obfuscation, which asks that for every predi-
cate of the circuit C' <— C,,, the probability that the adversary can guess the predicate (or its complement)
given an obfuscation of C' is negligibly close to the expected value of the predicate over C < C,,. We
then show that for any evasive circuit family C, this simple notion of obfuscation is equivalent to both
average-case VBB obfuscation and average-case VGB obfuscation. Thus, in particular, we have:

Theorem 1 (Informal). For every evasive function collection C and obfuscator O, it holds that O is an
average-case VBB obfuscator for C if and only if it is an average-case VGB obfuscator for C.

We also show that evasive functions are at the heart of the VGB definition in the sense that if it
is possible to achieve VGB obfuscators for all evasive circuit families then it is possible to achieve a
slightly weaker variant of VGB obfuscation for all circuits:

Theorem 2 (Informal). If there exists average-case VGB obfuscator for every evasive circuit family then
there exists a weak average-case VGB obfuscator for every (not necessarily evasive) circuit family.

The notion of “weak” VGB obfuscation allows the simulator to make a slightly super-polynomial
number of queries to its oracle. It also allows the obfuscating algorithm to be inefficient. The latter
relaxation is not needed if we assume the existence of indistinguishability obfuscators for all circuits, as
conjectured in [GGH™13b].

We then proceed to give new constructions of obfuscators for specific natural families of evasive
functions. We focus on functions that test if a bounded (polynomial) degree multivariate polynomial,
given by an arithmetic circuit, evaluates to zero modulo some large prime p. We provide two con-
structions that build upon the approximate multilinear map framework developed by Garg, Gentry, and
Halevi [GGH13a] and continued by Coron, Lepoint, and Tibouchi [CLT13]]. We first construct an input-
hiding obfuscator whose security is based on a variant of a discrete logarithm assumption in the mul-
tilinear setting. We then construct a perfect circuit-hiding obfuscator for arithmetic formulas based on
a new assumption, called perfectly-hiding multilinear encoding. Very roughly, we assume that given
encodings of k and r - k, for a random r and k, the value of any predicate of k£ cannot be efficiently
learned.

Theorem 3 (Informal). Let C be the evasive function family that tests if a bounded (polynomial) degree
multivariate polynomial, given by an arithmetic circuit, evaluates to zero modulo some large prime
p. Then: (i) Assuming the existence of a group supporting a multilinear map in which the discrete
logarithm problem is hard there exists an input-hiding obfuscator for C and (ii) Under the perfectly-
hiding multilinear encoding assumption, there exists an average-case VBB obfuscator for all log-depth
circuits in C.

These constructions can be combined to obtain a single obfuscator for testing if an input is in the
zero-set of a bounded-degree polynomial, that simultaneously achieves input-hiding and average-case
VBB obfuscation. We give an informal overview of our construction in Section 3]

Finally, we complement our constructive results by giving two impossibility results regarding the
obfuscation of evasive functions. First, we show impossibility with respect to evasive Turing Machines:

Theorem 4 (Informal). There exists a class of evasive Turing Machines M such that no input-hiding
obfuscator can exist with respect to M and no average-case VGB obfuscator can exist with respect

to M.

We also show that there exist classes of evasive circuits for which VBB obfuscation is not possible.
However, here we only rule out worst case obfuscation:

Theorem 5 (Informal). There exists a class of evasive circuits C such that no worst-case VBB obfuscator
can exist with respect to C.

1.2 Alternative approaches to obfuscation

We briefly mention two other approaches to general program obfuscation. One is to use the notion of
indistinguishability obfuscation (10) [BGIT01]]. Indeed, in a recent breakthrough result Garg, Gentry,
Halevi, Raykova, Sahai and Waters [GGH™ 13b] propose a candidate general obfuscation mechanism
and conjecture that it is IO for all circuits. Improved variants of this construction have been proposed
in [BR13b, BGK™13]]. Roughly speaking, IO implies that an obfuscation of a circuit C' hides “as much
as possible” about the circuit C' in the sense that if O is an 10 obfuscator, and there exists some other
obfuscator O’ (with not too long output) that (for instance) achieves input hiding or VBB obfuscation
for C, then O(C') will achieve the same security as well [GRO7|]. However, while IO obfuscators have
found uses for many cryptographic applications [GGH™ 13bl, [SW13, [HSW13], its hard to quantify what
security is obtained by directly obfuscating a function with an IO obfuscator since for most classes of
functions we do not know what “as much as possible” is. In particular, IO obfuscators are not known
to imply properties such as input hiding or VBB/VGB for general circuits. For insance, the “totally
unobfuscatable functions” of [BGIT01]] (which are functions that are hard to learn but whose canonical
representation can be recovered from any circuit) can be trivially I0-obfuscated, but this clearly does
not give any meaningful security guarantees. Furthermore, we do not know whether 10 obfuscators give
guarantees such as input hiding or VBB on any families of evasive functions beyond those families that
we already know how to VBB-obfuscate. Thus our work here can be seen as complementary to the
question of constructing indistinguishability obfuscators. Furthermore, the hardness assumptions made
in this work are much simpler than those implied by the 10 security of any of the above candidates.

Another approach is to consider obfuscation mechanisms in idealized models where basic group
operations are modeled as calls to abstract oracles. Works along this line, using different levels of
abstraction, include [GGH™13b| [CV 13|, BR13b, BGK™13]. It should be stressed however that, as far as
we know, proofs of security in any of these idealized models bear no immediate relevance to the security
of obfuscation schemes in the plain model.

1.3 Organization of the paper

In Section [2| we formally define evasive function families and the various notions of obfuscation that
apply to them, and show equivalence between several of these notions. Section [3] contains our con-
structions for obfuscating zero-testing functions for low degree polynomials. In Section {4 we show
that obtaining virtual gray box obfuscation for evasive functions implies a weaker variant of VGB for
all functions. Section [5] contains our impossibility results for worst-case VBB obfuscation of evasive
circuits and average-case VGB obfuscation of evasive Turing machines.

2 Evasive Circuit Obfuscation

Let C = {Cp},,cn be a collection of circuits such that every C' € C,, maps n input bits to a single output
bit, and has size poly(n). We say that C is evasive if on every input, a random circuit in the collection
outputs 0 with overwhelming probability

To avoid confusion, we note that the notion here is unrelated (and quite different) from the notion of evasive relations in
[CGHO4].

Definition 2.1 (Evasive Circuit Collection). A collection of circuits C is evasive if there exist a negligible
function i such that for every n € N and every x € {0,1}":
Pr [C(x) =1] < u(n) .
P [C(@) = 1] < u(n)
An equivalent definition that will be more useful to us states that given oracle access to a random
circuit in the collection it is hard to find an input that maps to 1.

Definition 2.2 (Evasive Circuit Collection - Alternative Definition). A collection of circuits C is evasive
if for every adversary A and for every polynomial q there exist a negligible function . such that and for
everyn € N:

(Pr [CATHON(17) = 1] < u(n) -

Where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries.

Note that the definition remains unchanged regardless of whether A is restricted to polynomial time
or is computationally unbounded.

2.1 Definitions of Evasive Circuit Obfuscation

We start by recalling the syntax and functionality requirement for circuit obfuscation as defined in
[BGITO1].

Definition 2.3 (Functionality of Circuit Obfuscation). An obfuscator O for a circuit collection C is a
PPT algorithm such that for all C' € C, O(C') outputs a description of a circuit that computes the same
function as C.

We suggest two new security notions for obfuscation of evasive collections: perfect circuit-hiding
and input-hiding. Both notions are average-case notions, that is, they only guarantee security when the
obfuscated circuit is chosen at random from the collection.

The notion of input hiding asserts that given an obfuscation of a random circuit in the collection, it
remains hard to find input that evaluates to 1.

Definition 2.4 (Input-Hiding Obfuscation). An obfuscator O for a collection of circuits C is input-hiding
if for every PPT adversary A there exist a negligible function p such that for every n € N and for every
auxiliary input z € {0,1}P°% () 1o A:

P, [C(A(=.0(0) = 1) < u(n) .

where the probability is also over the randomness of O.

Our second security notion of perfect circuit-hiding asserts that an obfuscation of a random circuit
in the collection does not reveal any partial information about original circuit. We show that for evasive
collections, this notion is equivalent to existing definitions of average-case obfuscation such as average-
case virtual black-box (VBB) [BGIT01], average-case virtual gray-box (VGB) [BCI0], and average-
case oracle indistinguishability [Can97].

Definition 2.5 (Perfect Circuit-Hiding Obfuscation). Let C be a collection of circuits. An obfuscator
O for a circuit collection C is perfect circuit-hiding if for every PPT adversary A there exist a neg-
ligible function 1 such that for every balanced predicate P, every n € N and every auxiliary input
z € {0,1}P° ™) 10 A:
Pr [A(=,0(C)) = P(O)] < 3 +pln) |
C+Chn 2

where the probability is also over the randomness of O.

4

Remark 2.1 (On Definition[2.5). The restriction to the case of balanced predicates is made for simplicity
of exposition only. We note that the proof of Theorem [2.1]implies that Definition [2.5]is equivalent to a
more general definition that considers all predicates.

Remark 2.2 (On extending the definitions for non-evasive functions). The definitions of input-hiding
and perfect circuit-hiding obfuscation are tailored for evasive collections and clearly cannot be achieved
for all collections of circuits. For the case of input-hiding, this follows directly from Definition [2.2] of
evasive collections. For the case of perfect circuit-hiding, consider the non-evasive collection C such
that for every C' € C, C(0™) outputs the first bit of C'. Clearly, no obfuscator can preserve functionality
while hiding the first bit of the circuit.

2.2 On the Relations Between the Definitions

An input-hiding obfuscation is not necessarily perfect circuit-hiding since an input-hiding obfuscation
might always include, for example, the first bit of the circuit in the output. In the other direction we do
not know if every perfect circuit-hiding obfuscation is also input hiding. The reason is that the perfect
circuit-hiding obfuscation only prevents the adversary from learning a predicate of the circuit. Note
that there may be many inputs on which the circuit evaluates to 1. Therefore, even if the obfuscation
allows the adversary to learn some input that evaluates to 1, it is not clear how to use such an input
to learn a predicate of the circuit. In Section [2.2.1] we give an example of an obfuscation for some
evasive collection that is perfect circuit-hiding but not input-hiding. The example is based on a worst
case obfuscation assumption for hyperplanes [CRV10]. Nonetheless, in Section[2.2.2] we prove that for
evasive collections where every circuit only evaluates to 1 on a polynomial number of inputs, then every
perfect circuit-hiding obfuscation is also input-hiding.

2.2.1 Counterexample for General Evasive Collection

Let IF be some finite field with 29(") elements and let d € N be some small constant. We consider
the collections of hyperplanes in F¢ defined as follows: C,, = {Cy},epa such that for every & € [,
Cy(Z) = 1iff # # 04 and (v,) = 0. Since the field is exponentially large the collection is evasive.

We will construct an obfuscator O for C that is perfect circuit-hiding but not input hiding. In the
construction of O we will assume the existence of an obfuscator O’ for C that is worst-case VBB secure
with auxiliary input. That is, O satisfies the following definition of [GK03|]. We note that a candidate
construction for such obfuscation can be found in [CRV10].

Definition 2.6 (Worst-Case VBB with Auxiliary Input). An obfuscator @) for a collection of circuits C
is perfect circuit-hiding in the worst-case if for every PPT adversary A there exists a PPT simulator
Sim and a negligible function i such that for every predicate P, every n € N, every C € C,, and every
auxiliary input z € {0,1}P°V() 1o A:

‘Pr[A(z, A(C)) = P(C)] — Pr[SimC (2, 1") = 73(0)]\ < u(n) .

We define O(Cy) to output O(CY,) together with a random point & such that (v, #) = 0. Clearly
O is not input hiding. We show that O is perfect circuit-hiding. we need to show that for every PPT
adversary A there exists a PPT simulator Sim such that for every predicate P:

Pr [A(O(Cy)) =P(v)] — Pr [Sim™(1") = P(V)]‘ < negl(n) .

vTFd vIFd

Since O(Cy) = (O(Cy), &), we need to show that:

Pr [A(O(Cy),Z) = P(v)]— Pr [Sim&v(1") = ’P(v)]’ < negl(n) .

vTFd vIFd

We can interpret Z as auxiliary input to .A. Now, since O is worst-case VBB secure with auxiliary input
there exist a simulator Sim such that:

Pr [A(O(Cy),7) = P(v)] — Pr [Sim"* (&, 1) :P(v)]‘ < negl(n) .

v«IFd vIFd

Since C is evasive we can write the above as

Pr [A(O(Cy), %) =P(v)]— Pr [Sfmz(f, 1" = P(v)]‘ < negl(n) ,

vIFd v«Fd

where Z is an oracle computing the constant zero function. We define the simulator Sim to simply
) -~ 7, .
sample a random vector 27 € F? and execute Sim” (Z, 17). It is left to show that

Pr [Sfmz(f, 1")y=P(v)]— Pr [Sfmz(f’, 1" = P(v)]’ < negl(n) .

vTFd v, & +IFd

Plugging in the definition of & we need to show that:

Pr [Sim”(7,1") = P(v)|(v,®) =0] — Pr [Sim”(Z,1") = P(v)]

v,ZTd v, 7 TFd

< negl(n) .

The above follows from the fact that inner product is a two-source extractor [[CG88]. Concretely, for a
sufficiently large constant d it follows as a corollary from [DF11, Lemma 23], [GR12, Lemma 3.11].

2.2.2 Proof for the Case of Polynomially-Sparse Evasive Collection

Let C be an evasive collection such that every C' € C,, outputs 1 on at most p(n) inputs for some
polynomial p. Let O be a perfect circuit-hiding obfuscator for C. Assume towards contradiction that
O is not input-hiding, that is, there exist and adversary A, a polynomial p and a sequence {zy }, . of
poly-size auxiliary inputs to A such that for infinitely many values of n € N:

Pr [C(A(z,,0(C))) = 1] > p(n) .
C—Cn

Next we show that O cannot be average-case VBB, and by Theorem [2.1|this contradicts the fact that
O is perfect circuit-hiding. Let m = m(n) be a bound on the input length of all circuits in C,,. For every
i € [p(n)],r € {0,1}™, Consider the inefficient predicate P; ,.(C) that is defined as follows: P; ,(C)
first generates the lexicographically sorted list (z7, . .. ,a:p(n)) of all the inputs on which C evaluates to
1. Then, P; »(C) outputs (r, ;). Let A’ be an adversary that given an obfuscation O(C') and auxiliary
input (z,r), first executes A(z, O(C')) and obtains an input = and then outputs (r, z). In the case A
outputs the input x; we have that:

/ . o
e, oA (), 0(C)) = P (Ol = 2] = 1.

Otherwise we have that:

1
/ _ D. I
C’<—Cn71r36r{0,1}m[A (z,7), OC)) = Pir (Ol # 1] = 3

Fix i € [p(n)] such that:

1
Pr [t =] > — .
C4+Cn,re{0,1}m p(n)

It follows that:

—

/ — . = — 1
e P A (7). 0(C) = Pir(O)) = 5 4 5

ey

Conversely, since the function is evasive we have that for every PPT simulator algorithm Sim and
every i € [p(n)]:
Pr [Sim©(z,,1") = z;] < negl(n) .
C+Cn

And by Goldreich-Levin [[GL89] we also have that for every PPT simulator algorithm Sim and every

i€ [p(n)]:

1
imC ny _ p. < Z
C(_cn7£’€1r{071}m[5|m ((zn,7),1™) =P r(C)] < 5 + negl(n) . (2)

Combining Equations[T[2] we conclude:

Procc,[A'((zn, 1), 0(C)) = Pir(C)]— 1
refo1ym | Proec, [Sim%((2n,7),17) = Pir(C)] dp(n) -

And therefore, there exist € {0, 1}" such that:

oL [A'((zn,7), O(C) = P (C)] = CEgn[SimC((zm r),1") = Pir(C)] =

Proving that O is not average-case VBB.

2.3 Perfect Circuit-Hiding Obfuscation is Equivalent to Existing Notions
We start by recalling the average-case versions of existing security definitions of obfuscation.

Definition 2.7 (Average-Case Virtual Black-Box (VBB) from [BGIT01]). An obfuscator O for a col-
lection of circuits C is average-case VBB if for every PPT adversary A there exists a PPT simulator

Sim and a negligible function p such that for every predicate P, every n € N and every auxiliary input
z € {0,1}P° ™) 10 A:

JPr [A(z,0(0)) = P(C)] = Pr, [SimC(=,1") = P(C))| < () .

where the probability is also over the randomness of O and Sim.

The notion of VGB relaxes VBB by considering a computationally unbounded simulator, however,
the number of queries the simulator makes to its oracle is bounded.

Definition 2.8 (Average-Case VGB Obfuscation from [BCI10]). An obfuscator O for a collection of
circuits C is average-case VGB if for every PPT adversary A there exists a negligible function yu, a
polynomial q and a (possibly inefficient) simulator Sim such that for every predicate P, every n € N
and every auxiliary input z € {0, 1}P°Y (™) 1o A:

P [A(,0(0) = P(O)] = Pr, (SimCl10)(2,17) = P(C)] < u(n) .

where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries and where the
probability is also over the randomness of O and Sim.

The notion of oracle indistinguishability was originally formulated in the context of point functions,
and here we give a variation of it for general collections. Similarly to our new notions, this definition is
meaningful for evasive collections, but not for arbitrary collections.

Definition 2.9 (Average-Case Oracle-Indistinguishability Obfuscation from [[Can97l)). An obfuscator O
for a collection of circuits C is average-case oracle indistinguishable if for every PPT adversary A that
outputs one bit:

{(C,A(z,0(0) | €+ Ca} nen, me {(C,A(z,0(C")) [C.C" = Cn} nen,

z€{0,1}poly(n) z€{0,1}Poly(n)

We prove the following theorem showing that, for evasive collections, the above notions are all
equivalent to perfect circuit-hiding. We note that, for general circuits, average-case VBB and average-
case VGB are not equivalent (follows from [BC10, Proposition 4.1]). The equivalence of average-case
VBB and average-case oracle-indistinguishability was proven for point functions by Canetti [Can97].
We generalize the claim for all evasive functions.

Theorem 2.1. Let O be an obfuscator for an evasive collection C. The following statements are equiv-
alent:

1. O is perfect circuit-hiding (Definition 2.5).

2. O is average-case VBB (Definition[2.7).

3. O is average-case VGB (Definition[2.8)).

4. O is average-case oracle-indistinguishability (Definition [2.9).

Remark 2.3 (On evasive obfuscation with a universal simulator). It follows from Claim [2.1]in the proof
of Theorem [2.1] that every obfuscator O for an evasive collection C that is average-case VBB-secure (or
average-case VGB-secure) can be simulated as follows: given an adversary A, the simulator Sim simply
executes A on a random obfuscation O(C”) of a circuit C’ sampled uniformly from the collection C.
The simplicity of the above simulator can be demonstrated as follows:

e The simulator is universal, that is, the same algorithm Sim can simulate every obfuscator O and
family C given only black box access to O and the ability to sample uniformly from C.

e The simulator only makes black-box use of the adversary A. This is in contrast to the case of
worst-case VBB-security where non-black simulators are required ([Can97, Wee03|).

e The simulator does not make any calls to its oracle. This is in contrast to the case of non-evasive
function where, for example, the possibility of obfuscating learnable functions can only be demon-
strated by a simulator that queries it oracle.

Proof of Theorem[2.1] We prove that (I) = @) = @) = @) = (1).

Perfect circuit-hiding implies average-case oracle-indistinguishability ((I) = (@)). Let O be a
perfect circuit-hiding obfuscator, and assume toward contradiction that O is not average-case oracle-
indistinguishable. Namely, suppose there exists a PPT adversary .4 that outputs a single bit, a sequence
{zn} ey Of poly-size auxiliary inputs to A, a poly-size distinguisher D, and a polynomial p, such that
for infinitely many values of n € N,

, 1
P D(C AL, O(C)) =1 = | Pr | [DC Alz, O(C)) =1]) = o

Fix such n and set z = z,,. We can write the above as:

| 1
— _ [—
E. [Pr[D(C,A(z, O(C)) =11 = Pr. [D(C, A(,0(C"))) 1]_ ’ >3
By the triangle inequality we have:
1
— _ ! —
cE. [Pr{D(C, Az, 0(0)) =1] = Pr, [D(C,A(z, 0(C")) =1]] Ok
Since A only outputs one bit, we conclude that:
1
N . ! —
JE, { PrlA(z, 0(0) =1] = Pr [A(z,0(C") 1]H O

For every C, denote by pc the probability Pr[A(z, O(C)) = 1]. Denote by p the average value of pc
and by p the median value of po. Assume WLOG that p < p (otherwise flip A’s answer). We can
rewrite the above as:

1
E [pc—pll> — .
C+Cn lIpe =Pl 2 p(n

~—

And therefore also:

E [p— <pl- P < pl—
E Cn[p pc | pe < P cﬁén[pc <P

1
E [p— pl- P Bl > —— .
C(_Cn[P pc | pc > D C(_%n[Pc>p]_p(n)

However, since:

E [p— <pl- P <5
C{_cn[p pc | pc < Pl C{_gn[pc < pl+

E [p— 5. P H= E [p—po] =0 .
C(_cn[P pc | pe > D C{_rCn[pc>p] C(_Cn[P pc)

‘We have that:

E - ol- P 5| >
E cn[pc P|pc > pl Cegn[pc > p| >

2p(n)

Now, since p < p

1
< E -5 5. P p| <
250 = cE Cn[pc 7| pc > P Cﬁgn[po >p] <

E [pc—plpc>pl- Pr [pc>p| <
«—Cp, C<+Cn

c
E —D | .
C(_cn[Pc Plpc > D
That is:
E. [pc|pc > 5> 5+ — @)
cic, FC bPc =Pl =P 2p(n)

We next define a balanced predicate P such that:

1
Pr A 0(C) = PO 2 5+ s

Contradicting the perfect circuit-hiding property of O. To this end, define P such that P(C) = 1 if and
only if po > p. P is balanced by the definition of p and from Equation [3| and the definition of po we
have:

_ 1
o1 AEOO) =1PO) =1 25+ 5o

“)

Combining Equation 4] with the definition of p we get:

= 5 P, MG, 000) = 1O = 11+ 5 Pr [4(=,0(0) = 1P(0) =]

D 1 1 B B
> 5+ Do 3 P A 0(C) =11P(0) = 0]
And therefore:
_ 1
CEI(“:H[A(%O(C)) =1|P(C)=0]<p- o)
Combining this with Equation 4] we get:
Pr [A(z,0(C)) = P(C)] =
C+Cn
1 1
5 P [A(,0(0) = 1| P(C) = 11+ 5 _Pr, [A(=0(C)) = 0] P(C) = 0] =

1 < n 1 1 (1 >> 1 n 1

S\PtT 57+ —\P—5 = =35

2 2p(n) 2p(n) 2 2p(n)
Contradicting the fact O is perfect circuit-hiding.

Average-case oracle-indistinguishability implies average-case VBB (@I) = @)). Let O be oracle-
indistinguishable. Fix an adversary .4 and a sequence {2y}, of poly-size auxiliary inputs to .A. We
consider an efficient simulator Sim that given auxiliary input z samples a random circuit from the col-
lection C’ <~ Cn and outputs A(z, O(C")). To show that O average-case VBB we prove the following
claim.

Claim 2.1. If O is oracle indistinguishable then:

PE A 0(0) = P(C)) - Pr [A(z0,0(C) = 7><c>]\ < negl(n) .

Proof. Assume towards contradiction that there exists a predicate P and a polynomial p such that for
infinitely many values of n:

, 1
P, [, 0C) = P(C) =, B, A, OC) = PICN| > o
Fix such n and set z = z,,. We can write the above as:
ey | 1
JE, [PrAG0) = P(@) - P (4G o) =P 2 o

And by the triangle inequality we have:

E
C(—Cn C'+Cp

Pr[A(2,0(C)) = P(O)] = Pr [A(z,0(C") :79(0)]} > p(ln) :

10

Since C determines the value of P(C'), we can rewrite the above as:
1
E |IP =1- P M =1]|| > — .
JE, |[Priac.oen = 1= pr e o =] >

For every C, denote by p¢ the probability Pr[A(z, O(C)) = 1]. Denote by p the average value of pc.
Using these notation we write the above as:

1
E —B > — .
B [lpc —pl] > o)

Let BAD be the set of all C € C,, such that:

1
pc—Dpl = = -
| | 2p(n)
We have that:
1
Pr [C € BAD| >)
C+Cn 2p(n)

Let BAD' be the set of all C' € BAD such that:

1
pc— D= .
2p(n)

Assume WLOG that BAD’ contains at least half of the circuits in BAD (otherwise, the rest of the proof
will use the set BAD \ BAD' instead of the set BAD). That is:

1
/
> .
CEICn [C < BAD] ~ 4p(n)

)

Next we define an distinguisher D such that

oy 1
oFr ID(C AR 0(O)) =1] = | Pr [D(C Az 0C) =1]| 2 s -

Contradicting the oracle-indistinguishability property of O. WLOG , we define D to be a randomized
non-uniform algorithm. D gets as input a pair (C, b) taken from one of the distributions:

{(C, A(2,0(C))) | € + o} or {(C, A(z,0(C"))) | C,C" Cy)} .

Additionally, D gets the value 4n - p(n) - p, rounded to the nearest integer as advice. D will distinguish
as follows:

e D executes A(z,O(C)) for 4n - p*(n) times with independent randomness. Let ¢ be the number
of times A(z, O(C')) outputs 1.

e Ifc > 4n-p3(n)-p+n-p(n), D outputs b. Otherwise, D outputs a random bit b’ € {0,1}.
Denote the distinguishing probability of D for a circuit C' by Adve. That is:
Adve = Pr[D(C, A(z,0(C))) = 1] — CPrC [D(C, A(z,0(C"))) =1] .
'C,

1

By the definition of D we have
Adve = (pc —p) - Prle > 4n - p*(n) - p+n - p(n)] (©6)
+ (Pr[t/ = 1] = Pr[t/ = 1]) - Prle < 4n - p*(n) - p+ n - p(n)]
= (pc —p) - Prlc>4n-p*(n) - p+n-p(n)) .
We bound the value of Adv¢ for C' € BAD' and for C ¢ BAD'.

11

1

e For C' € BAD' we have that pc > p + 5-+—. Since E[c] = 4n - p?(n) - pc we have by Chernoff:

2p(n)

Pric < 4n-p*(n) -p+n-p(n)] <

Prlc < 4n - p*(n) - (pc —) +n-p(n)] =

1
2p(n)
Prlc < 4n-p*(n) -pc —n-p(n)] <
)4n - p2(n ‘po)] <

_®<nlp2(n)'PCQ’)
e e)-pe)?) < o=OM) — negl(n) .

Prle < (1 — 74]9(”) o

Plugging this into Equation[6| we get:

1 1
20(n) - (1 — negl(n)) >

Adve = (po — P) - Prle > 4n - p*(n) - 5 +n - p(n)] >

e For C' ¢ BAD’ we separate the case where pc < p and the case where pc > p. If pc > p:
Adve = (pc — p) - Prlc > 4n-p*(n) -5 +n-p(n)] >0 .
When pc < p, we have E[¢] = n - p?(n) - pc. By Chernoff:
Prlc > 4n - p*(n) - p+n-p(n)] < Prle > 4n - p*(n) - pc + n - p(n)]

=Pr [c> (1+)4n - p*(n) - pe

4p(n) - pc

_ (n-pQ(n)-pg)
e \0M207) < o=0M) — peol(n) .

Plugging this into Equation[6| we get:
Adve = (pc — p) - Pr[c > 4n - p*(n) -+ n - p(n)] > —negl(n) .
In any case, for C' ¢ BAD' we have Adve > —negl(n).
Combining the bounds on Adv¢ for C' € BAD' and C' ¢ BAD’ with Equationwe get:

E [Adve| = E —negl - Pr [C ¢ BAD'

B, [Advc] C(_Cn\BAD,[negl(n)] - Pr, [C' ¢]
+ E {1 . Pr [C € BAD/]
C«BAD' [4p(n)| C+Cn

1
> —negl(n) + W = poly(n) .

~ dp(n)

O

Average-case VBB implies average-case VGB ((2) = (3)). This implication follows directly from the
definitions since average-case poly-VGB is a relaxation of average-case VBB allowing for the simulator

to be computationally unbounded.

Average-case VGB implies perfect circuit-hiding ((3) = (I)). Let O be an average-case VGB secure.
Fix an adversary A and a sequence {2, },, . of poly-size auxiliary inputs to .A. We will prove a stronger
statement considering also non-balanced predicates. Let /P be a (not necessarily balanced) predicate.

We denote:
p(P) = Pr [P(C) =10], p(P)=max(po(P),p1(P))

12

Claim 2.2. If O is average-case VGB, then there exist a negligible function u such that for every predi-
cate ‘P and for everyn € N:

Pt [A(z0,0(C)) = PO)] < p(P) + () -

Proof. Six n and set z = z, Since O is average-case VGB secure, there exists a negligible function p/,
polynomial g and a (possibly inefficient) simulator Sim such that:

Pr [A(z,0(C)) = P(C)] — Pr [SimCla](z, 1“):73(0)]‘ <u'(n) . @)

C(—Cn C<_Cn

Since C is evasive, if follows from Definition that there exists a negligible function p” such that:

Pr [SimCl7)(z,1") = P(C)] — Pr [Sim”(z,1") = P<c>]] <u'(n) . ®)
C+Cn C+Cnp

where Z is the constant zero function. Note that the circuit C' is information theoretically hidden from
Sim?Z and therefore:

C(lzlén[SimZ(z, 1") =P(C)] <p(P) .)

Combining Equations [7[8]and [9] we get the required:

P [AO(C)) = P(O)] < p(P) + ' (n) + 1(n) -

3 Obfuscating Root Sets of Low Degree Polynomials

In this section, we present constructions of input-hiding obfuscation and of perfect circuit-hiding ob-
fuscation for a subclass of evasive collections. We will be able to obfuscate collections that can be
expressed as the zero-set of some low-degree polynomial. More concretely, we say that a collection C is
of low arithmetic degree if for every n, there is prime p, |p| = 6(n), and a polynomial size low degree
arithmetic circuit U (k, z), k € Zf;, r € Z," such that C,, = {Ck}kezf, and Cy(z) = 1iff U(k,z) = 0.

Note that the Schwartz-Zippel Lemma, together with the fact that U (k, x) is of low degree implies
that for every « € Z;" either

Pr [Ck(z) =0] =negl(n) or, Pr [Cx(z)=0=1.

k174 k7§

Thus, there exists a single function & such that the collection {C}, — h}; ;. is evasive, where h(z) = 1
p
iff:
Pr [Cx(z)=0]=1 .
k<—Zf,[k(x) = 0]

In other words, a collection of low arithmetic degree is either evasive or it is a “translation” of an evasive
collection by a fixed, efficiently computable (in RP) function that is independent of the key. Therefore,
we can restrict ourselves WLOG to evasive collection of low arithmetic degree.

Both constructions will be based on graded encoding as introduced by Garg, Gentry, and Halevi
[GGH13al. The high-level idea behind both constructions is as follows. The obfuscation of a circuit CY,
will contain some encoding of the elements of k. Using this encoding, an evaluator can homomorphically

13

evaluate the low-degree polynomial U (k, x). Then, the evaluator tests whether the output is an encoding
of 0 and learns the value of Cj(z).

The two constructions will encode the key £ in two different ways, and their security will be based
on two different hardness assumptions. The security of the input-hiding construction will be based on a
discrete-logarithm-style assumption on the encoding. The obfuscation will support evasive collections
of low arithmetic degree defined by a polynomial size circuit U(k, x) of total degree poly(n). This
class of circuits is equivalent to polynomial size arithmetic circuits of depth (’)(logz(n)) and total degree
poly(n) [VSBR83]. The security of the perfect circuit-hiding construction will be based on a new
assumption called the perfectly-hiding multilinear encoding assumption. The obfuscation will support
evasive collections defined by a polynomial size circuit U (k, z) of depth O(log(n)). We also discuss
a stronger variant of this assumption, which like in the input-hiding construction, supports arbitrary
arithmetic circuits with total polynomial degree.

3.1 Graded Encoding

We start by defining a variant of the symmetric graded encoding scheme from ([GGH13a]), used in our
construction, and by specifying hardness assumptions used.

Definition 3.1. A d-graded encoding system consists of a ring R and a collection of disjoint sets of
encodings {Si(o‘) la e R,0<i< d}. The scheme supports the following efficient procedures:

o Instance Generation: given security parameter n and the parameter d, Gen(1", 19) outputs public
parameters pp.

Encoding: given the public parameters pp and o € R, Enc(pp,) outputs u € S§O‘).

()

e Addition and Nagation: given the public parameters pp and two encodings uy € S; ', up €
Si(o@), Add(pp, u1, u2) outputs an encoding in Si(aﬁm), and Neg(pp, u1) outputs an encoding in
s,

e Multiplication: given the public parameters pp and two encodings u; € Si(lal),ug € SZ-(QQQ) such
that iy + i3 < d, Mul(pp, u1, us) outputs an encoding in Sl(fﬁlzq)

Zero Test: given the public parameters pp and an encodings u, Zero(pp, u) outputs 1 if u € S{go)

and 0 otherwise.

The main difference between this formulation and the formulation in [GGH13al| is that we assume
that there is an efficient procedure for generating level 1 encoding of every ring element. In [GGH13a],
it is only possible to obliviously generate an encoding of a random element in R, without knowing
the underlying encoded element. While we currently do not know how how to use the construction of
[GGH13a] to instantiate our scheme, we can get a candidate construction with public encoding based on
the construction of [CLT13]], by publishing encodings of all powers of 2 as part of the public parameters.
The known candidate constructions involve noisy encodings. Since in our construction we use at most
O(d) operations, we may set the noise parameter to be small enough so that it can be ignored. Therefore,
from hereon, we omit the management of noise from the interfaces of the graded encoding.

Our first hardness assumption (used in the construction of input-hiding obfuscation) is that the en-
coding function is one-way. That is, given the output of Enc(pp, «) for randomly generated parame-
ters pp and a random ring element o € R, it is hard to find a.

Our second hardness assumption (used in the construction of perfect circuit-hiding obfuscation) is a
new assumption called perfectly-hiding multilinear encoding. The assumption states that given level 1

14

encodings of r and r - k for random 7, k € R, the value of any one bit predicate of k cannot be efficiently
learned. The perfectly-hiding multilinear encoding assumption can be shown to hold in an ideal model
where the encoding is generic (such as the generic ideal models described in [BR13b, BGK™13])).

Assumption 3.1 (perfectly-hiding multilinear encoding). For every PPT adversary A that outputs one
bit, the following ensembles are computationally indistinguishable:

. {pp, k, A(Enc(pp,r), Enc(pp,r - k)) : k,r + R, pp < Gen(1", ld)} ,
e {pp,k, A(Enc(pp,), Enc(pp,r - k') : k, K',7 < R,pp < Gen(1",19)} .

We note that both of the above assumptions do not hold for the candidate construction of [GGHI13a]
(assuming there is an efficient encoding procedure for every ring element). However, they are possibly
satisfied by other constructions. In particular, to our knowledge there are no known attacks violating this
assumption for the candidate construction of [CLT13]].

3.2 Input-hiding Obfuscation

Let C,, be an evasive collection defined by the arithmetic circuit U (k, z), k € Zf;, x € Z," of degree d =
poly(n). The obfuscator will make use of a d-symmetric graded encoding scheme over the ring Z,,. For
every k € Zf; the obfuscation O(C},) generates parameters pp < Gen (1", 1¢) for the graded encoding,
and outputs a circuit that has the public parameters pp and the encodings {Enc(pp, k;)} for i € [(]
hardwired into it. The circuit O(C}), on input x € Z7", first generates encodings {Enc(pp, z;)} for
i € [m], and uses the evaluation functions of the graded encoding system to compute an encoding
u € SéU(k’z)). O(CY) then uses the zero test to check whether u € Séo). If so it outputs 1 and otherwise
it outputs 0.

Theorem 3.1. O is an input-hiding obfuscator for C, assuming Enc is one-way.

Proof. We need to prove that O satisfies both the functionality requirement and the security requirement.
The functionality requirement follows immediately from the guarantees of the graded encoding scheme.
Thus, we focus on proving the security requirement. To this end, fix any PPT adversary .4, and suppose
for the sake of contradiction that for infinitely many values of n,

Pr [CL(AO(CH) = 1] > —

. 10
ke ~ poly(n) (10

Next we prove that there exists a PPT adversary A’ that brakes the one-wayness of the encoding.
The adversary A" will make use of the the helper procedure Simplify described in the following claim:

Claim 3.1. There exists an efficient procedure Simplify that, given a multivariate non-trivial polynomial
D Zf; — 2y of total degree d, represented as an arithmetic circuit, outputs a set of multivariate
polynomials {p; }j el (represented as arithmetic circuits) such that:

1. pj is a multivariate non-trivial polynomial of total degree d.

2. For everyr € Zf; such that p(7) = 0 there exist j € [{] such that p;(r) = 0 but the univariate
polynomial q(x) = p(r1,...,7j—1,%,Tj41...,7¢) iS non-trivial.

We note that a very similar claim was proven by Bitansky et al. [BCI™ 13, Proposition 5.15]. For the
sake of completeness, we reprove this claim in Appendix

The adversary A’. A’ is given the public parameters pp, and an encoding u of a random element
r € Zy. A’ is defined as follows:

15

1. A’ samples a random index i € [¢] and a random element k; < Z, for every j € [¢] \ {}.

2. A’ generates a random obfuscation O(C}) from the encodings {Enc(kj)}je[z]\{i} and using his
input u as the encoding of k;.

3. A’ executes A(O(C})) and obtains an input z. If O(Cy)(z) # 1, A" aborts.

4. Otherwise, A’ executes the helper procedure Simplify on the polynomial U (-, z) with the values
of x fixed and obtains a polynomial p;.

5. A’ constructs the univariate polynomial ¢(x) = p;(k1,...,ki—1,2, ki+1,- .., k) (the rest of the
elements of k are known to 4).

6. If ¢ = 0, A’ aborts, otherwise it outputs a random root of q.

We show that A’ outputs the correct value of r with noticeable probability. By our assumption on A,
O(Ck)(x) # 1 with some noticeable probability e. In this case, it follows from the correctness of O
that U(k,x) = 0. Let j be the index guaranteed by Claim Since the distribution of k1, ..., ky is
independent from the choice of 4, it follows that conditioned on the event U(k,z) = 0, i = j with
probability 1/¢. In this case by Claim 3.1]it holds that p;(k) = 0 but the univariate polynomial p defined
above is not identically zero, which means that r is one of the at most d roots of p. Therefore, A’ will
output the correct root with probability at least €/(¢d). O

3.3 Perfect Circuit-Hiding Obfuscation

Let C,, be an evasive collection defined by the arithmetic circuit U (k,), k € Zf;, x € Z," of depth degree
h = O(log(n)). The obfuscator will make use of a d-symmetric graded encoding scheme for d = 2"
over the ring Z,. For every k € Z¢, the obfuscation O(C},) generates parameters pp < Gen(1",19)
for the graded encoding, samples random elements r;,...r; € Z,, and outputs a circuit that has the
public parameters pp hardwired into it, and for every for i € [¢], has the encodings Enc(pp, ;) and
Enc(pp, 7; - ki) hardwired into it.

The circuit O(Cy,), on input z € Z;", does the following: For i € [m], it generates the encodings
Enc(pp, }) and Enc(pp, 7; - ;) where ; = 1 (Note that when encoding the input we do not need 77, to
be random for security. We only use 7} the make the encoding of the input x and the key & have the same
format). Using the evaluation functions of the graded encoding system, O(C},) then computes a pair of

encodings ug € Sg) and u; € Sc(f'U(k‘,x))

for some 7 # 0 that is a function of r1, . . ., 4. Finally, it uses
the zero test to check whether u; € Sc(lo). If so it outputs 1 and otherwise it outputs O.

We next elaborate on how this encoded output is computed. The circuit O(C},) evaluates the arith-
metic circuit U (k, z) gate by gate, as follows: Fix any gate in the formula connecting the wires w; and

wy to wy. Suppose that for wires w; and wo we have the pairs of encodings
(w1, W1 S(fl) S(Fl'al) w2 W2 5(722) 5(52'042)
uy'tuyt) €857 xSy, o (ug?,ui®) € 85,° x Sy,)

where 71,79 # 0 (supposedly the value on the wire w; is a7 and the value on wire ws is aw). If the
gate is a multiplication gate, one can compute an encoding for wire ws, by simply computing the pair of
encodings:
w3, W3 (F1-72) (F1-T2-a1-a2)
(ug®,uy®) € Saytds X Sy +ds :
If the gate is an addition gate we compute u,* in the same way. We also compute the encodings:

w31 W32 (F1-T2-01) (F1-F2-ae2)
up Uy € Syha, Sditdy

16

which can then be added to get:
5(51'1:2'(011 +a2))

w3
ul € d1+ds

Note that in any case 7 - 7o # 0. Also note that in the evaluation of every level of the circuit U the
maximal degree of the encodings at most doubles and therefore it never exceeds d = 2".

Theorem 3.2. O is a perfect circuit-hiding obfuscator for C, assuming the encoding satisfies the perfectly-
hiding multilinear encoding assumption.

Proof. By Theorem [2.1] it suffices to prove that O is an average-case oracle indistinguishability obfus-
cator for C. Namely, it suffices to prove that for every PPT adversary A that outputs a single bit,

{(Ca0@) |k ez}~ {(©A0©C) | 1K « 7))

Suppose for the sake of contradiction there exists a PPT adversary A (that outputs a single bit), a distin-
guisher D, and a non-negligible function e, such that

Pr [D(k, A(O(Cy))) = 1] = Pr_ [D(k, A(O(Cy))) = 1]

> e(n)
ke ko k! T

Recall that the obfuscated circuit O(C},) consists of the public parameters pp and from the encod-
ings:
{Enc(pp, Ti)? Enc(pp, rg - kl)}ze[é])

where r1,...,7r; < Z. Since sampling encoding corresponding to random input wires is efficient,
the equation above, together with a standard hybrid argument, implies that there exists ¢ € [(], a PPT
adversary A’ (that outputs a single bit), a distinguisher D’, and a non-negligible function €', such that

Pry,z,[D'(pp, ki, A'(Enc(pp,), Enc(pp, i - k;))) = 1]—

> ¢ .
Py, gre 2, 1D/ (pp, ki, A'(Enc(pp, i), Enclpp, i - K))) = 1] | =€ (") -

contradicting the perfectly-hiding multilinear encoding assumption. O

Remark 3.1 (On unifying the constructions). Under a stronger variant of the perfectly-hiding multilinear
encoding assumption we can directly prove that the input hiding obfuscation construction presented in
Section is also perfect circuit-hiding. Intuitively, the stronger variant assumes that the the function
Enc given a random input k already hides every predicate of k (without adding any additional random-
ization).

Assumption 3.2 (strong perfectly-hiding multilinear encoding). For every PPT adversary A that outputs
one bit, the following ensembles are computationally indistinguishable:

e {pp,k, A(Enc(pp, k)) : k, < R,pp + Gen(1",19)},
° {pp, k, A(Enc(pp, k’)) : k, k', < R,pp + Gen(1", 1d)} .

Note that this strong perfectly-hiding multilinear encoding assumption cannot hold for a determinis-
tic encoding function (unlike with the perfectly-hiding multilinear encoding assumption). Using the
stronger assumption above, we can get perfect circuit-hiding obfuscation for a larger class of functions.
Specifically, U (k, x) can be any arithmetic circuit computing a polynomial of degree poly(n), removing
the logarithmic depth restriction.

17

4 Evasive Function and Virtual Grey Box Obfuscation

We show that average-case VGB obfuscation for all evasive functions implies a slightly weaker form of
average-case VGB obfuscation for a/l function.

We start by giving a slightly more general definition for VGB obfuscation that considers also com-
putationally unbounded obfuscators and allows for the query complexity of the simulator to be super-
polynomial. Note that when the obfuscator is unbounded, we need to explicitly require that it has a
polynomial slowdown, that is, the that the obfuscated circuit is not too large.

Definition 4.1 (Weak Average-Case VGB Obfuscation). Let C = {Cy},cy be a collection of circuits
such that every C' € C,, is a circuit of size poly(n) that takes n bits as input. A (possibly inefficient)
algorithm O is a weak average-case VGB obfuscator for C if it satisfies the following requirements:

e Functionality: for all C € C, O(C) outputs a description of a circuit that computes the same
Sfunction as C.

e Polynomial Slowdown: There exist a polynomial p such that for every C' € C, |O(C)| < p(|C|).

e Security: For every super-polynomial function ¢ = q(n) and for every PPT adversary A there exist
a (possibly inefficient) simulator Sim and a negligible function u such that for every predicate P,
every n € N and every auxiliary input z € {0, 1}p°13’(n) to A:

AL [Az0(0) =P(C)] - Pr. [Sim“lM(z,1m) = P(C)]] < u(n) .

Where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries.

Remark 4.1 (On obfuscation with inefficient obfuscator). The notion of obfuscation with computation-
ally unbounded obfuscators was first considered in [BGIT01]. To demonstrate the meaningfulness of this
notion we note that assuming the existence of indistinguishability obfuscation for a collection C with an
effficent obfuscator, the existence of a (weak) average-case VGB Obfuscation for C with a computation-
ally unbounded obfuscator already implies the existence of a (weak) average-case VGB Obfuscation for
C with an effficent obfuscator.

Theorem 4.1. If there exists an average-case VGB obfuscator for every collection of evasive circuits,
then there exists a weak average-case VGB obfuscator for every collection of circuits.

Proof overview of Theorem [4.1} Let C be a (non-evasive) collection of circuit that we want to VGB
obfuscate. We start by showing a computationally unbounded leaning algorithm £ that given oracle
access to a circuit C' € C tries to learn the circuit C'. Clearly, If £ can make unbounded number of
queries it can learn C exactly. However, if the number of queries £ makes to C' is bounded by some
super-polynomial function g(n), we show that £ can still learn a circuit C’ € C that is “close” to C.
That is, C' and C” only disagree on some negligible fraction of the inputs.

The learning algorithm £ will repeatedly query C' on the input that gives maximal information about
the circuit ', taking into account the information gathered from all the previous oracle answers. £ stops
when it learns C' or when there is no query that will give “enough” information about C' In this case, we
denote by K (C) the set of all circuits in C,, that are consistent with all the previous oracle answers. We
show that all the circuits in K (C) are close to C, and £ will just output a random circuit C’ € K(C).

The high-level idea behind the construction of the weak average-case VGB obfuscator O for C
is that given black box access to a random circuit C' a weak VGB simulator, that is, an unbounded
adversary that can make at most g(n) oracle queries to C, is able to run the learning algorithm £ and
learn the set K (C'). Therefore, a secure obfuscation O(C') of C' does not need to hide the set K(C).

18

In particular, O(C') may contain a random circuit C’ <— K (C') in the clear. To satisfy the functionality
requirement, the obfuscation cannot contain only C’. Additionally, O(C') will contain the circuit Cy;f,
where Cqir = C @ (' is a circuit that outputs 1 on every input on which C' and C’ differ. Now, to
evaluate C on an input z an evaluator can compute C(x) = C’'(x) & Cyif(z). Clearly, O(C') cannot
contain Cyf in the clear, since Cyifr depends on C'. instead, O(C') will obfuscate Cyis using the VGB
obfuscator for evasive collections. Since C’ is a random function in K (C) it only differs from C on a
negligible fraction of the inputs, and therefore Cy;s outputs 1 only on a negligible fraction of the inputs.

Unfortunately, this high-level idea does not quite work. The problem is that since O(C') contains
the circuit C” in the clear, we cannot argue that Cg; is taken at random from an evasive collection. In
particular, given C' it may be easy to find an input where Cyigr outputs 1. For example, if C outputs 1 only
on a single input z, and C’ outputs 1 only on a single input 2/, then Cy;r will output 1 on both inputs
and 2’. Now, given the circuit C" it is easy find the input 2’ such that Cy;¢(2') = 1 and therefore we do
not know how to securely obfuscate Cyif.

To fix this problem we do not choose C” to be a random circuit in the set K (C), but instead C” will
be a circuit computing the majority function on many random circuits taken from the set K (C'). Now
we can show that even given the circuit C” it is hard to find an input where C' and C’ differ, and therefore
the obfuscation of Cly; is secure.

Theorem Let O be an average-case VGB secure obfuscator for every collection of evasive circuits.
Let C = {Cn}, oy be a (not necessarily evasive) collection of circuits such that every C' € C, is a
circuit of size p(n), for some polynomial p, that takes n bits as input. Let ¢(n) be any super-polynomial
function. We construct a weak average-case VGB obfuscator OO’ for C where the simulator makes at
most g(n) queries to its oracle. O’ will make use of the following learning algorithm L as a subroutine.
The algorithm £ is an inefficient algorithm that has oracle access to C, it queries its oracle at most ¢'(n)
times for ¢’(n) = (fl(fi) , and outputs a circuit that is “close” to C.

Loosely speaking, algorithm L starts by setting K to be the set of all circuits in C,,. Then, in each
iteration L reduces the size of K so that at the end it contains only circuits that are “close” to C. The
number of iterations is at most ¢’(n) and in each iteration £ makes a single oracle call. However, the
computation that £ does in each iteration is inefficient.

Formally, algorithm L is defined as follows:

1. Set K + C,.

2. Forevery b € {0,1} and every x € {0, 1}" compute:

b ! : 0 1
pa=] rK[() =], p=min(p,,p;)

3. Set z* = arg max,, p,.
4. If ppr < %, then return ¢/ < K.
5. Else, query the oracle on z* and set:
K« Kn{C'|C(z*) = C'(m*)}
6. If K contains a single element C, return C'.

7. Else, goto Step[2]

19

We later argue that the output of £ is a circuit that is close to C, that is, the circuits only disagree on a
negligible fraction of the inputs. Next, we describe a weak average-case VGB obfuscator O’ for C. In the
description of O" we use the following notation: we denote by C & C the circuit that is composed from
the circuits C'; and C'y where the output wires of these circuits are connected by a XOR gate. Similarly,
we we denote by Majority;ci,; C; the circuit that is composed from the circuits C', . . ., C;,, where the
output wires of these circuits are connected by a Majority gate.

Note about notation. For any two circuits C, C’, we use the notation C' = C’ to mean that C' and C’
are functionally equivalent. That is, the circuits compute the same function, but may be very different
as “formal” circuits. We use the (non-standard) notation C' = C” to mean that C' and C” are not only
functionally equivalent, but are also equal as “formal” circuits.

The obfuscator @’ on input C' € C operates as follows:

1. Fori € [n] set C; < £ where all executions of £ use independent randomness.
2. Construct the circuit Craj = Majorityie[n} ;.
3. Construct the circuit Cyigt = Crmaj ® C.

4. Construct and output the circuit Cout = Cmaj @ O(Clifr).

The correctness and polynomial slowdown properties of O’ follow from those of O, and from the
fact that all the circuits in C,, are of (approximately) the same size.

To show that O’ is a weak average-case VGB secure, we demonstrate an inefficient simulator Sim.
For every PPT adversary A and for every auxiliary input z € {0, 1}1’013’(") to A, Sim is given z and
oracle access to C[g(n)]. Sim is defined as follows:

1. Fori € [n] set C; < L£C19' (™) where all executions of £ use independent randomness.

2. Construct the circuit C’r’naj

= Majority,c[,,) Ci.
3. Sample C’ < £C19'(")] and construct the circuit C'yy = Crnaj © C.
4. Construct the circuit Cgjy = C’,’mj & O(Cligr)-

5. Execute A(z, Csm) and output the result.

q(n)
(n+1)
queries to the oracle. Thus, in total Sim makes at most ¢(n) oracle calls. Sim is a valid simulator if for

every predicate P:

Sim makes n + 1 calls to the learning algorithm £, and each call may performs ¢'(n) =

P Az, Cow) = P(C)] = _Pr, [SimClaml(z 17y = P(C)]’ < negl(n) .

That is:

CEEn[A(Z, (Cmaj7 O<Cdiff))) = ,P(C)} - CEEn[A(Zj(r/naj7 O(C(/in‘F))) = P(C)]' < negl(n)) (11)

where Cyiff = Cmaj @ C and Clyie = C/ .. @ C’ as defined by O’ and by Sim.

maj

Before proving Equation we introduce the following notation. For every circuit C' € C,, let
K (C) be the value of the set K when £ terminates. Note that K (C') does not depend on the random-
ness of £ since randomness is only used in Step 4] Define GOOD(C, Ciyaj) to be the event that:

Crmaj = Majority C’
C'EK(C)

The following three lemmas imply Equation (I1)), and thus conclude the proof.

20

Lemma 4.1. For every circuit C € K, the circuits Crmaj computed by O'(C) and Cr,naj computed by
SimCla™)l are identically distributed
Lemma 4.2.
Pr [GOOD(C, Cmaj)] > 1 — negl(n) .

C+Cnp

Lemma 4.3. For every C’r’;aj such that:
oep, [Cmaj = Crmaj] > 0
We have:
Proc,[A(2, (Cmaj, O(Caifr))) = P(C) | Cmaj = Chaj N GOOD(C, C’r*naj)]— < negl(n)

Proce, [A(z, (C' .. O(Clig))) = P(C) | C!. . = C=

maj’ maj maj

A GOOD(C, C*)]

maj
where Cgiff = Cmaj @ C and Cli = Cmaj @ C' as defined by O and by Sim.

Proof of Lemmad.1} We start by showing that £ makes at most ¢'(n) queries to its oracle. By the
choice of z*, in every execution of Step [5|in L the size of the set K reduces by a factor of at least

(1-pt)>1- 5((2)). Since |C,,| < 2P(™), after ¢(n) queries K must contain a single element. It follows

that the output of £, executed by (', and the output of £Cl4(")] executed by Sim, are identically
distributed and therefore the circuits Cyaj computed by O’ and C:naj computed by Sim are identically

distributed. O

Proof of Lemma Fix C' and denote by Ci,; the circuit:

émaj = Majority C’
CIEK(C)

If K (C) contains a single element (corresponding to Step[6|of £) then GOOD must occur. Else, the
stopping condition in Step 4| of £ grantees that for every x € {0, 1}",

b
r — = P = ,
Pz = Po C<_Kr(c)[0(x) o < q(n)

8 p(n)
P C Chnai < .
CHE(C)[(@) # Cmaj(@)] q'(n)
The event GOOD does not occur if and only if there exist z € {0,1}" such that at least n/2 of the

circuits ', . . ., C), disagree with C’maj on x. Since every C; is sampled independently from K (C') and
since ¢’ is super-polynomial we have that:

n n

Pr [-GOOD] < 2" - <"> : <p("))2 < <16p(")>2 = negl(n)

C+Cyp n

2

21

Proof of Lemma Fix C* . such that:

maj

o [Cmaj = Crmaj] > 0,

where recall that by Caj = C;r,, j» we mean that the circuits are not only functionally equivalent, but also
have the exact same structure. This structural equivalence implies that there exist circuits C7,...C}; €

Cr such that C . is of the form C'T.; = Majority;c,) C;". The next claim will be useful in the proof of
Lemmal.3]

Claim 4.1.

1. Forevery C* € C,, and every C,C’ € K(C*), the random variable Cyy; in the execution of O(C')
and the random variable Cyaj in the execution of O(C") are identically distributed.

2. For every CY,...C; € Cy, for C,
C*

maj

sy = Majority,cp, CF, and for every C' ¢ K(CT), Cmaj #
(C) where Crj is defined by the in the execution of O'.

In the proof of Claim §.T| we will use the following claim:
Claim 4.2. For every C* € C,, and every C' € K(C*) it holds that K (C) = K(C*).

Proof. Fix any C* € C,, and any C' € K (C*). Consider the set of oracle queries made by £¢ and by
LY and their answers. If the sets are equal then K (C) = K(C*). Else, both £¢ and £¢" make one
query z* such that C'(z*) # C*(z*). However, this contradicts the fact that C' € K (C*).

O

Proof of Claim[@.1] For Part[l] fix any C* € C, and any C,C’" € K(C*). Claim [4.2] implies that
K(C) = K(C") = K(C*). Since the output of £ is just a random element in K& (C) if follows that the
output of £¢ and the output of £E" are identically distributed, and therefore the random variable Chmaj
in the execution of O’(C') and the random variable Cyy,,; in the execution of O’(C") are also identically
distributed.

For Part fix any Cf,...C}; € Cp, and any C' ¢ K(CY) and let Cy . = Majority;ep, CF. If
Cmaj = C,; (that is, circuit are formally identical) then it must be that C7 € K (C). This, together with
Claim 4.2 implies that K (C') = K(Cf). Since it is always true that C' € K (C'), this also implies that
C € K(CY), contradicting our assumption.

O

We are now ready to prove Lemma Recall that C7; = Majority;c,) C. Denote the set K (cy)
by K*. By Claim [.1] (Part 2), the lemma statement is equivalent to the following, where we sample C
from K* instead of from C,,:

Proi+[A(2, (Cmaj, O(Caifr))) = P(C) | Cmaj = Ciip; A GOOD(C, C:)] —
Precre[A(z, (Chajy O(Chir)) = P(C) | O = Crigj A GOOD(C, Cr)

maj’ maj

‘ < mnegl(n) , (12)

aj

where Cyiff = Cmaj ® C and Cyie = Cy,; ® C” as defined by O’ and by Sim.

Let the adversary A’ be A with C’;;aj hard-coded to it. Thatis, A’(z, O(Cyif)) outputs A(z, (C’;;aj, O(Cyifr)))-
Now we can rewrite Equation as:

Procg+[A'(2,0(Cqirr)) = P(C) | Cmaj = C;:qaj A GOOD(C, C:naj)]_

maj maj

’ < negl(n) . (13)

maj

22

Let P’ be a predicate that has C’;;aj hardwired into it, and is defined as follows: On inputs of the
form Cyir = C,,; & C where GOOD(C, C:qaj) holds, the predicate P’(Cyisr) outputs P(C). On all
other inputs the output of P’ is arbitrarily defined to be 0. Now we can rewrite Equation (I3) as:

Proe e+ [A'(2, O(Cairr)) = P'(Cuifr) | Cmaj = Cpraj A GOOD(C, C)]—

maj <nmegl(n) . (14
Prc i+ |4/ (2, 0(Clyg)) = P'(Coir) | Clygy = g A GOOD(C, Cip)] | = 280 - (19
Recall that O’ sets Cgir = Cmaj ® C. Let Cgifr be the collection:
C+ K*
Caitt = { Cdif = Cimaj ® C'| Cmaj = Oy
GOOD(C, Cmaj) neNCr,

Additionally, recall that Sim sets Cye = Cy . & C” where C” < LC. Let i be the collection:

C + K*
C'+ ¢
Caitr = | Clisr = Crnaj & C’ Crnaj = Crmaj
maj maj
GOOD(C, Cy) neN,C*
’~maj

Now we can rewrite Equation (I4) as:

‘ PreycanlA'(2, 0(Cair)) = P'(Caitr)] -
PrcéiffecdifhcdiffFcéliff ['A/(Z’ O(Céliff)) = 7),(C’diff)]

By the proof of Claim K(C) = K* and (' is just a random circuit in K*. Therefore, the
collections Cgigr and Cjj¢ are identical, and we can rewrite Equation (I3)) as:

' Prcdifr<—cdifr [.A/(Z, O(Cdiff)> = P/(Cdiff)]_
PrC:JifF7CdifF<_Cdiff [‘A/(Z’ O(Ccliiff)) = P/(Cdiff)]

Claim 4.3. The collection Cgi is evasive.

‘ < negl(n) , (15)

\ < negl(n) , (16)

Proof. If K* contains a single element (corresponding to Step @ of £) then Cyy5; = C and the collection
Cgife contains only the all-zero function and is therefore evasive. Assuming |K™*| > 1, the stopping
condition in Step 4| of £ grantees that for every x € {0, 1}™:

,=p"= Pr [Cz)=5b
Pe = D CHg(C){ (z)]<q,(n),

for p2. = min(p?, pl), or alternatively for:

b =1 — Majority C'(z) .
C'eK(C)

By the proof of Claim[d.1] K(C) = K* for every C € K*. Therefore, for every z € {0,1}",

A / p(n)
L [C2) # Mg‘);;lfyc (z)] < 7()

Now, plugging in the definitions of Cyir and of GOOD(C, C;;aj) and since ¢’ is super-polynomial, we
get that for every z € {0,1}",

i 1 . p(n) _
oP (Canla) =1] = _Pr_[0(x) # Crgi(@)] < 55 = negltn)
which implies that Cq;f is evasive.]

23

Using Lemma[4.3]and the fact that O is average-case VGB secure for all evasive collections, Equa-
tion[I6]and therefore also the lemma’s statement follow from Claim[2.1]in the proof of Theorem[2.1 [J

d

S Impossibility Results

Definitions and only consider circuit obfuscation with average-case security. In this section we
give impossibility results for obfuscating evasive Turing machines and for obfuscating evasive circuits
with worst-case security.

5.1 Impossibility of Turing Machine Obfuscation

Barak et. al. [BGIT01|] show the impossibility general obfuscation of circuits and Turing machines.
We show that the impossibility of Turing machines obfuscation can be extended to the case of evasive
functions. Similarly to the result of [BGIT01]], our negative result applies for VBB obfuscation as well
as for weaker notions such as average-case obfuscation (see [BGIT01]] for more details). In particular
we get an impossibility for the Turing machine versions of Definitions [2.5]and [2.4]

Let M = {M,}, cy be a collection of Turing machines such that every M € M,, has description
of size poly(n) and outputs a bit. We say that M is evasive if given oracle access to a random machine
in the collection it is hard to find an input that evaluates to 1.

Definition 5.1 (Evasive Turing Machine Collection). A collection of Turing machines M is evasive if
there exists a negligible function . such that for every n € N and every x € {0,1}*
Pr [M(z)=1]< .
JPr DM(@) = 1) < ()
We start by recalling the syntax, functionality, and polynomial slowdown requirements for Turing

machine obfuscation as defined in [BGIT01]. Then we give security definitions that are the Turing
machine versions of Definitions and[2.4]

Definition 5.2 (Turing Machine Obfuscation). An obfuscator O for M is a PPT algorithm that satisfies
the following requirements:

e Functionality: For every n € N and every M € M, , O(M) outputs a description of a Turing
machine that computes the same function as M.

e Polynomial Slowdown: There exists a polynomial p such that for every M € M and for every
x € {0, 1}* if the running time of M (x) is t, then the running time of (O(M))(x) is at most p(t).

Definition 5.3 (Perfect Turing-Machine-Hiding). An obfuscator O for a collection of Turing machines
M is perfect circuit-hiding if for every PPT adversary A there exist a PPT simulator Sim and a negli-
gible function p such that for every n € N and every efficiently computable predicate P:

P, A©OOD) = PO - | Py (Sim(1") = P(M)]| < u(n) -

Definition 5.4 (Input Hiding). A obfuscator O for a collection of Turing machines M is input hiding if
there exists a negligible function 1 such that for every n € N and for every PPT adversary A

| Pr DIA©QD) = 1) < () -

24

The impossibility. The impossibility of [BGIT01] demonstrates a pair of functions Ca.8,Da,p such
that given oracle access to these functions, it is impossible to learn the key (o,). However, given any
efficient implementation of C,, 3 and D, s as a pair of Turing machines, it is possible to learn (a, /3).
The two functions are then combined into a single function that cannot be obfuscated. The idea is to
“embed” the functions C, g and D, g of [BGIT01] inside an evasive Turing machine.

For akey a, 8 € {0,1}" define the machine C, g as follows:

B; ifr=«a
0 otherwise

Caplz;i) = {

The machine D,, 5 takes as input a description of a machine C' that is suppose to run in time p(n)
and checks whether C' computes the same function as C, g on the inputs {(c, i) };c[,)- Namely,

Do 5(C) = 1 ifVi € [n],C(a, 1) outputs 3; within p(n) steps
o 10 otherwise

The polynomial p is defined to be greater than the running time of O(C,). Next we define a single
machine M, 3 combining the machines C,, g and D, g, as follows:

Cop(z) ifb=0

M, 5(b,z) =
o(0.2) {Da,ﬁ(z) ifh=1

It is straightforward to verify that C,, g3 and D,, g are evasive, and therefore M, g is also evasive.
By construction, an adversary that is given O(M,, 3) can compute a description of machines M¢ and
Mp, computing C,, g and D,, g respectively, where the running time of M¢ is at most p. The adver-
sary can therefore execute Mp(M¢) and obtain 31 with probability 1. Note that a simulator (with no
access to M, g) can guess (31 with probability at most 1/2 and therefore O is not perfect circuit-hiding
(Definition[5.3).

To show that O is not input hiding (Definition[5.4)) we consider an adversary that produces the input
(1, M¢) to M, g. Since f, g(1, Mc) = (1 and (8 is random, the adversary outputs a preimage of 1 with
probability 1/2.

5.2 Impossibility of Worst-Case Obfuscation

The impossibility of [BGIT01] for circuit obfuscation demonstrates a collection of circuits C, = {C} se{0,1}
such that given oracle access to Cs for a random seed s it is impossible to learn s. However, given any
circuit computing the same function as C§, an adversary can learn s. In general we do not know how to
“embed” C inside an evasive collection without loosing the above learnability property. However, such
embedding is possible when the adversary has some partial knowledge about the seed of the circuit taken
from the evasive collection. This type of attack can be used to rule out a worst-case security definition.

We recall the definition of worst-case VBB from [BGI01]]. We present an equivalent version of the
definition that uses a predicate and resembles Definition for average-case VBB. Note that a worst-
case version of the input-hiding security definition (Definition [2.4) cannot hold against non-uniform
adversaries.

Definition 5.5 (Worst-Case Virtual Black-Box (VBB) from [BGIT01]]). An obfuscator O for a collection
of circuits C is perfect circuit-hiding in the worst-case if for every PPT adversary A there exists a PPT

simulator Sim and a negligible function i such that for every n € N, every C' € C,, and every predicate
P:

[PHA(O(C)) = P(C)] - PrlSimC(1") = P(C)]| < pu(n) -

25

Let Cy = {Cis}4eq0,1)n be the collection defined by [BGIT01]. For i, s € {0,1}"™ we define C}, , as

follows:

[Cs(l'l)]z ifJ}Q =
0 otherwise

C&15($1,$2,Z’) = {

First note that the collection C is evasive, since for every input (x1,x2,%) the probability over a
random key («, s) that zo = « is negligible. However, this circuit cannot be VBB obfuscated. There
is an adversary that given an obfuscation of C, ; for o = 0" and for a random s, can transform this
obfuscation into a circuit computing the same function as C; and thereby learn s. Conversely, every
simulator that is given oracle access to Cy, , for = 0™ and for a random s, cannot learn more than what
can be learned with oracle access to C', and in particular cannot learn s.

6 Acknowledgement

We thank Vijay Ganesh for suggesting to us the “software patch” problem.

References

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation.
In CRYPTO, pages 520-537, 2010.

[BCIt13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Suc-
cinct non-interactive arguments via linear interactive proofs. In TCC, pages 315-333,
2013.

[BGIT01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages
1-18, 2001.

[BGK*13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631, 2013.
http://eprint.iacr.org/l

[BR13a] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In CRYPTO, pages
416-434,2013.

[BR13b] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013. http:
//eprint.iacr.org/.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In CRYPTO, pages 455-469, 1997.

[CG8S] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230-261, 1988.

[CGHO04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557-594, 2004.

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps

over the integers. In CRYPTO (1), pages 476493, 2013.

26

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[CRV10]

[CV13]

[DF11]

[GCR12]

[GGH13a]

[GGH'13b]

[GKO5]

[GL89]

[GRO7]

[GR12]

[HSW13]

[SW13]

[VSBR&3]

[Wee05]

Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane member-
ship. In TCC, pages 72—-89, 2010.

Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-
box pseudo-free groups. Cryptology ePrint Archive, Report 2013/500, 2013. http:
//eprint.iacr.org/l

Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the inner-
product extractor. In ASTACRYPT, pages 702-721, 2011.

Vijay Ganesh, Michael Carbin, and Martin C. Rinard. Cryptographic path hardening:
Hiding vulnerabilities in software through cryptography. CoRR, abs/1202.0359, 2012.

Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1-17, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS, 2013.

Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxil-
iary input. In FOCS, pages 553-562, 2005.

O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC
'89: Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 25-32, New York, NY, USA, 1989. ACM.

Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages
194-213, 2007.

Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In
FOCS, pages 31-40, 2012.

Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2013:509, 2013.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. IJACR Cryptology ePrint Archive, 2013:454, 2013.

Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel compu-
tation of polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983.

Hoeteck Wee. On obfuscating point functions. IACR Cryptology ePrint Archive, 2005:1,
2005.

A Proof of Claim 3.1

Given an arithmetic circuit computing a multivariate polynomial p : Zf; — Zy of total degree d such that
p Z 0, the procedure Simplify is as follows:

1. Setpp

= p. repeat the following for j = 1 to /.

27

http://eprint.iacr.org/
http://eprint.iacr.org/

2. Decompose p; as follows:
d .
p](kjv B kf) = Z k; 'pj,i(kj-i-la s kf)
i=1

3. Set pj41 to be the non-zero polynomial p;; with the minimal s.

Note that decomposing an arithmetic circuit into homogeneous components can be done efficiently.
It is left to show that for every r € Zf; if P(r) = 0 then there exists j € [¢] such that

p(x) =pj(x,rj41,...,7¢) Z0

and
pj(TjaTj—i—l; e ,’I“g) = 0

The proof is by induction on j. The base case is when j = 1, for which it holds that:

pl(aj‘l,...,l}giéo
p1(ri,...,re) =0 .

For any 1 < j < ¢, suppose that:
pj(xj, ce. ,Z‘g) 5_'5 0

pj(Tj,...,’f’g> =0
pj(x7rj+17-"arf) =0 ;

then, by the construction of p; 1 from p;,

Pj+1(@jt1, ..., 2e) 0
pj+1(?“j+1,...,7’g) =0 .

If this inductive process reaches py, then it holds that:

pe(xe) Z0
pe(re) =0,

which already satisfies the claim.

28

	Introduction
	Our results
	Alternative approaches to obfuscation
	Organization of the paper

	Evasive Circuit Obfuscation
	Definitions of Evasive Circuit Obfuscation
	On the Relations Between the Definitions
	Counterexample for General Evasive Collection
	Proof for the Case of Polynomially-Sparse Evasive Collection

	Perfect Circuit-Hiding Obfuscation is Equivalent to Existing Notions

	Obfuscating Root Sets of Low Degree Polynomials
	Graded Encoding
	Input-hiding Obfuscation
	Perfect Circuit-Hiding Obfuscation

	Evasive Function and Virtual Grey Box Obfuscation
	Impossibility Results
	Impossibility of Turing Machine Obfuscation
	Impossibility of Worst-Case Obfuscation

	Acknowledgement
	Proof of Claim 3.1

