
Attribute-Based Encryption for Arithmetic Circuits

Dan Boneh∗ Valeria Nikolaenko† Gil Segev‡

Abstract

We present an Attribute Based Encryption system where access policies are expressed as
polynomial size arithmetic circuits. We prove security against arbitrary collusions of users based
on the learning with errors problem on integer lattices. The system has two additional useful
properties: first, it naturally handles arithmetic circuits with arbitrary fan-in (and fan-out) gates.
Second, secret keys are much shorter than in previous schemes: secret key size is proportional
to the depth of the circuit where as in previous constructions the key size was proportional to
the number of gates or wires in the circuit. The system is well suited for environments where
access policies are naturally expressed as arithmetic circuits as is the case when policies capture
statistical properties of the data or depend on arithmetic transformations of the data. The system
also provides complete key delegation capabilities.

1 Introduction

(Key-policy) attribute-based encryption [SW05, GPS+06] is a public-key encryption mechanism
where every secret key skf is associated with some function f : X → Y and an encryption of a
message µ is labeled with a public attribute vector x ∈ X . The encryption of µ can be decrypted
using skf only if f(x) = 0 ∈ Y. We review the syntax and security requirements for an attribute-
based system in the next section. Intuitively, the security requirement is collusion resistance: a
coalition of users learns nothing about the plaintext message µ if none of their keys are authorized
to decrypt the ciphertext.

Attribute-based encryption (ABE) is a generalization of identity-based encryption [Sha84, BF03,
Coc01] and fuzzy IBE [SW05, ABV+12] and is a special case of functional encryption [BSW11].
It is used as a building-block in applications that demand complex access control to encrypted
data [PTM+06], in designing cryptographic protocols for verifiably outsourcing computations [PRV12],
and for single-use functional encryption [GKP+13]. Here we focus on key-policy ABE where the
access policy is embedded in the secret key. The dual notion called ciphertext-policy ABE can be
realized from this using universal circuits, as explained in [GPS+06, GGH+13b].

The past few years have seen much progress in constructing secure and efficient attribute-based
encryption from different assumptions and for different settings. The first constructions [GPS+06,
LOS+10, OT10, LW12, Wat12, Boy13, HW13] apply to predicates computable by boolean formu-
las which are a subclass of log-space computations. More recently important progress has been
made on constructions for the set of all polynomial size circuits: Gorbunov, Vaikuntanathan, and
Wee [GVW13] gave a construction from the Learning With Errors (LWE) problem and Garg, Gen-
try, Halevi, Sahai, and Waters [GGH+13b] gave a construction using multilinear maps. In both
constructions the circuits are represented as boolean circuits with fan-in 2.

∗Stanford University, Stanford, CA 94305, USA. Email: dabo@cs.stanford.edu.
†Stanford University, Stanford, CA 94305, USA. Email: valerini@stanford.edu.
‡School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:

segev@cs.huji.ac.il. This work was done while the author was visiting Stanford University.

1

Our results. Inspired by the work of Gorbunov, Vaikuntanathan, and Wee [GVW13] we con-
struct an LWE-based ABE for functions that are represented as polynomial-size arithmetic circuits.
Moreover, the system naturally handles circuits with arbitrary fan-in gates. The system is consid-
erably more efficient for ABE access policies that are naturally represented as arithmetic circuits.
An interesting aspect of the construction is that secret-keys are much shorter than in previous con-
structions. Secret keys in previous ABE constructions contained an element (such as a matrix) for
every gate or wire in the circuit. In our scheme the secret key is a single matrix corresponding only
to the final output wire from the circuit. Consequently, the size of our secret keys is a function of
the circuit depth, but not its size. We prove selective security of the system and observe that by a
standard complexity leveraging argument as in [BB11] the system can be made adaptively secure.

Let q be a prime. Our base system handles arithmetic circuits with weighted addition and
multiplication gates over Zq, namely gates of the form

g+(x1, . . . , xk) = α1x1 + . . .+ αkxk and g×(x1, . . . , xk) = α · x1 · · ·xk (1.1)

where the weights αi can be arbitrary elements in Zq. Addition gates g+ take arbitrary inputs
x1, . . . , xk ∈ Zq. However, for multiplication gates g×, we require that the inputs are somewhat
smaller than q, namely in the range [−p, p] for some p < q. (In fact, our construction allows for
one of the inputs to g× to be arbitrarily large in Zq). We discuss the relation between p and q at
the end of the section. Hence, while f : Z`q → Zq can be an arbitrary polynomial-size arithmetic
circuit, decryption will succeed only for attribute vectors x for which f(x) = 0 and the inputs to all
multiplication gates in the circuit are in [−p, p].

The construction naturally handles access policies expressed as boolean circuits with large fan-
in. An AND gate is implemented as ∧(x1, . . . , xk) = x1 · · ·xk and an OR gate is implemented
as ∨(x1, . . . , xk) = 1 − (1 − x1) · · · (1 − xk). The OR gate is a simple depth three arithmetic
circuit using a single k-way multiplication gate. While ABE for boolean circuits is the settings
of [GVW13, GGH+13b], our new system has considerably shorter secret keys and reduces the circuit
size and depth by allowing for high fan-in gates which in-turn allows for smaller overall parameters.

Applications. Before discussing how the new system works, we first describe a few applications
to illustrate the benefit of arithmetic circuits in the context of ABE.

Natural examples of arithmetic access policies come from linear algebra, graph algorithms, and
statistics. For example, suppose an attribute vector corresponds to a vector in [−B,B]k. A key skw
should decrypt a ciphertext only if the associated vector has `2 norm equal to w. Using q � kB2

this policy can be expressed as an arithmetic circuit of depth 4 and directly implemented in our
system. As another example, suppose the attribute vector is an adjacency matrix of a directed
graph and a key should decrypt a ciphertext only if in the associated graph there are exactly 10
paths from some specific node s to some other node t. Again, this can easily be expressed as an
arithmetic circuit since counting the number of paths from s to t amounts to raising the adjacency
matrix to a certain power.

To use an ABE built for boolean circuits (e.g.[GVW13, GGH+13b]) for these tasks we would
need to implement the arithmetic circuits as a boolean circuit with gates of fan-in 2. The depth of
the resulting circuits would be considerably larger than the depth of the given arithmetic circuit.
In [GVW13] the efficiency of the system degrades polynomially with the depth of the circuit so that
the resulting ABE would be less efficient than a direct implementation as an arithmetic circuit.

Key delegation. In Section 6 we show that our system supports key delegation. Using the master
secret, user Alice can be given a secret key skf for a function f that lets her decrypt whenever the

2

attribute vector x satisfies f(x) = 0. In our system, for any function g, Alice can then issue a
delegated secret key skf∧g to Bob that lets Bob decrypt whenever the attribute vector x satisfies
f(x) = g(x) = 0. Bob can further delegate to Charlie, and so on. The size of the secret key increases
quadratically with the number of delegations.

We note that Gorbunov et al. [GVW13] showed that their ABE system for Boolean circuits
supports a somewhat restricted form of delegation. Specifically, they demonstrated that using a
secret key skf for a function f , and a secret key skg for a function g, it is possible to issue a secret
key skf∧g for the function f ∧ g. In this light, our work resolves the naturally arising open problem
of providing full delegation capabilities (i.e., issuing skf∧g using only skf).

1.1 Building an ABE for arithmetic circuits

Key-homomorphic public-key encryption. We obtain our ABE by constructing a public-key
encryption scheme that supports computations on public keys. More precisely, public keys in our
system are tuples x over Zq and any such tuple is a public-key. Anyone can encrypt a message µ
under any public key x. Now, let x be a tuple in Z`q for some ` and let f : Z`q → Zq be a function
represented as a polynomial-size arithmetic circuit. Key-homomorphism means that:

anyone can transform an encryption under key x into an encryption under key f(x).

In other words, suppose c is an encryption of message µ under public-key x ∈ Z`q. There is a public
algorithm Evalct(f,x, c) −→ cf that outputs a ciphertext cf that is an encryption of µ under the
key f(x) ∈ Zq. In our constructions Evalct is deterministic and its running time is proportional to
the size of the arithmetic circuit for f .

If we give user Alice the secret-key for the public-key 0 ∈ Zq then Alice can use Evalct to decrypt c
whenever f(x) = 0, as required for ABE. Unfortunately, this ABE would be insecure because the
secret key is not bound to the function f : Alice could decrypt any ciphertext encrypted under x by
simply finding some function g such that g(x) = 0.

To construct a secure ABE we slightly extend the basic key-homomorphism idea. We treat public
keys as tuples over (Zq×PKT) where PKT is a finite set of public-key tags. That is, a public-key is a
tuple pk =

(
(x1, pkt1), . . . , (x`, pkt`)

)
for some ` and any such tuple is a public key. The encryptor

can encrypt a message µ to any such public key to obtain a ciphertext c. Key-homomorphism is
now described as follows:

Suppose c is an encryption of µ under public-key pk =
(

(xi, pkti)
)`
i=1

.

Then anyone can transform c to an encryption of µ under the public-key
(
f(x1, . . . , x`), pktf

)
.

Here pktf is a tag that is uniquely determined by the function f and the input tags pkt1, . . . , pkt`.
This pktf is efficiently computable by a deterministic algorithm called Evalpk: given f and tags
(pkt1, . . . , pkt`) the algorithm outputs pktf . Transforming the ciphertext c from one public-key to
another is done using algorithm Evalct(f, pk, c) −→ cf as before. The precise syntax and security
requirements for key-homomorphic public-key encryption are provided in Appendix A.

To build an ABE we simply publish random tags (pkt∗1, . . . , pkt
∗
`) in the ABE’s public parameters.

To encrypt a message µ with attribute vector x = (x1, . . . , x`) ∈ Z`q the encryptor encrypts µ under

the public-key pk =
(

(xi, pkt
∗
i)
)`
i=1

. Let c be the resulting ciphertext. Given an arithmetic
circuit f , the key-homomorphic property lets anyone transform c into an encryption of µ under key(
f(x), pktf

)
where pktf is the output of Evalpk

(
f, (pkt∗1, . . . , pkt

∗
`)
)
. The point is that now the secret

key for the function f can simply be set to the decryption key for the public-key (0, pktf). This key
enables the decryption of c when f(x) = 0 as follows: the decryptor first uses Evalct(f, pk, c) −→ cf to

3

transform the ciphertext to the public key (f(x), pktf). It can then decrypt cf using the decryption
key it was given whenever f(x) = 0. We will show that this results in a secure ABE.

Note that it is important that pktf be uniquely determined by f and (pkt∗1, . . . , pkt
∗
`) so that the

authority generating secret keys arrive at the same pktf as the decryptor.

A construction from learning with errors. Fix some n ∈ Z+, prime q, and m = Θ(n log q).
Let A and G be matrices in Zn×mq that will be part of the system parameters. The set PKT
of public-key tags we use is the set Zn×mq of all n × m matrices. Then a public-key is a tuple

pk =
(

(x1,B1), . . . , (x`,B`)
)

where x = (x1, . . . , x`) ∈ Z`q and B1, . . . ,B` ∈ Zn×mq . To encrypt a
message µ under the public key pk we use a variant of dual Regev encryption [Reg05, GPV08] using
the following matrix as the public key:(

A | x1G + B1 | · · · | x`G + B`

)
∈ Zn×(`+1)m

q (1.2)

We obtain a ciphertext c. We note that this encryption algorithm is similar to encryption in the
hierarchical IBE system of [ABB10] and to encryption in the predicate encryption for inner-products
of [AFV11].

We show that, remarkably, this system is key-homomorphic: given a function f : Z`q → Zq
computed by a poly-size arithmetic circuit, anyone can transform the ciphertext c into a dual Regev
encryption for the public-key matrix(

A | f(x) ·G + Bf

)
∈ Zn×2m

q

where Bf ∈ Zn×mq is uniquely determined by f and B1, . . . ,B`. The work needed to compute Bf is
proportional to the size of the arithmetic circuit for f . We ensure that Bf is uniquely determined
(as necessary for correctness of the scheme) by relying on the deterministic nature of Babai’s nearest
plane algorithm [Bab86] to construct certain recoding matrices.

As explained above, this key-homomorphism gives us an ABE for arithmetic circuits: the public
parameters contain random matrices B1, . . . ,B` ∈ Zn×mq and encryption to an attribute vector x in

Z`q is done using dual Regev encryption to the matrix (1.2). A decryption key skf for an arithmetic

circuit f : Z`q → Zq is a decryption key for the public-key matrix (A | 0 ·G + Bf) = (A|Bf). This
key enables decryption whenever f(x) = 0. The key skf can be easily generated using a short basis
for the lattice Λ⊥q (A) which serves as the master secret key for the ABE system.

We prove selective security from the learning with errors problem (LWE) by using another
homomorphic property of the system implemented in an algorithm called Evalsim. Using Evalsim the
simulator responds to the adversary’s private key queries and then solves the given LWE challenge.

Parameters and performance. Applying algorithm Evalct(f, pk, c) to a ciphertext c increases
the magnitude of the noise in the ciphertext by a factor that depends on the depth of the circuit
for f . A k-way addition gate (g+) increases the norm of the noise by a factor of O(km). A k-way
multiplication gate (g×) where all (but one) of the inputs are in [−p, p] increases the norm of the
noise by a factor of O(pk−1m). Therefore, if the circuit for f has depth d, the noise in c grows in
the worst case by a factor of O((pk−1m)d). Note that the weights αi used in the gates g+ and g×
have no effect on the amount of noise added.

For decryption to work correctly the modulus q should be slightly larger than the noise in the
ciphertext. Hence, we need q on the order of Ω(B · (pk−1m)d) where B is the maximum magnitude
of the noise added to the ciphertext during encryption. For security we need the learning with errors
(LWE) problem to be hard. LWE hardness depends on the ratio q/B — the smaller the ratio the

4

harder the problem. In our settings q/B = Ω
(
(pk−1m)d

)
. Regev [Reg05] showed that n-dimensional

LWE is as hard on average as (quantumly) approximating certain worst case lattice problems to a
factor of Õ(n · q/B). These lattice problems are believed to be hard to approximate even when q/B
is 2(nε) for some fixed 0 < ε < 1/2. Then to support circuits of depth t(λ) for some polynomial t(·)
we choose n such that n ≥ t(λ)(1/ε) ·(2 log2 n+k log p)1/ε and set q = 2(nε). As usual m = Θ(n log q).
We set the LWE noise bound to B = O(n). This ensures correctness of decryption and hardness
of LWE since we have Ω((pkm)t(λ)) < q ≤ 2(nε), as required. The system of [GVW13] uses similar
parameters due to a similar growth in noise as a function of circuit depth.

Secret key size. A decryption key in our system is a single 2m × m low-norm matrix. Since
m = Θ(n log q) and log2 q grows linearly with the circuit depth d, the overall secret key size grows
as O(d2) with the depth. In previous ABE systems for circuits [GVW13, GGH+13b] secret keys
grew as O(d2s) where s is the number of boolean gates or wires in the circuit.

Polynomial gates. The modulus q used in our scheme depends on the maximum circuit depth
that we need to support. We show in Section 5 that the depth can be further reduced by using
gates that compute more general multivariate polynomials beyond the two polynomials g+ and g×
from (1.1). For example, we can implement the entire k-way OR polynomial 1− (1−x1) · · · (1−xk)
using a single gate thereby reducing overall circuit depth.

Other related work. Predicate encryption [BW07, KSW08] provides a stronger privacy guaran-
tee than ABE by additionally hiding the attribute vector x. Predicate encryption systems for inner
product functionalities can be built from bilinear maps [KSW08] and LWE [AFV11]. More recently,
Garg et al. [GGH+13a] constructed functional encryption (which implies predicate encryption) for
all polynomial-size functionalities using indistinguishability obfuscation.

The encryption algorithm in our system is similar to encryption in the hierarchical-IBE of
Agrawal, Boneh, and Boyen [ABB10]. We show that this system is key-homomorphic for polynomial-
size arithmetic circuits which gives us an ABE for such circuits. The first hint of the key homomor-
phic properties of the [ABB10] hierarchical-IBE was presented by Agrawal, Freeman, and Vaikun-
tanathan [AFV11] who showed that the system is key-homomorphic with respect to low-weight linear
transformations and used this fact to construct a predicate encryption system for inner-products.
To handle high-weight linear transformations [AFV11] used bit decomposition to represent the large
weights as bits. This expands the ciphertext by a factor of log2 q, but adds more functionality to
the system. Our ABE, when presented with a circuit containing only linear gates (i.e. only g+

gates), also provides a predicate encryption system for inner products in the same security model
as [AFV11], but can handle high-weight linear transformations directly, without bit decomposition,
thereby obtaining shorter ciphertexts and public-keys.

A completely different approach to building circuit ABE was presented by Garg, Gentry, Sahai,
and Waters [GGS+13] who showed that a general primitive they named witness encryption implies
circuit ABE when combined with witness indistinguishable proofs.

2 Preliminaries

For a random variable X we denote by x ← X the process of sampling a value x according to the
distribution of X. Similarly, for a finite set S we denote by x← S the process of sampling a value x
according to the uniform distribution over S. A non-negative function ν(λ) is negligible if for every
polynomial p(λ) it holds that ν(λ) ≤ 1/p(λ) for all sufficiently large λ ∈ N.

5

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a class of functions Fλ = {f : Xλ → Yλ} is
a quadruple Π = (Setup,KeyGen,E,D) of probabilistic polynomial-time algorithms: Setup takes a
unary representation of the security parameter λ and outputs public parameters mpk and a master
secret key msk; KeyGen(msk, f ∈ Fλ) output a decryption key skf ; E(mpk, x ∈ Xλ, µ) outputs
ciphertext c, the encryption of message µ labeled with attribute vector x; D(skf , c) outputs a
message µ or ⊥.

An attribute-based encryption (ABE) scheme for a class of functions Fλ = {f : Xλ → Yλ} is a
quadruple Π = (Setup,KeyGen,E,D) of probabilistic polynomial-time algorithms.

Correctness. We require that for every circuit f ∈ F , index x ∈ X where f(x) = 0, and message µ,
it holds that D(skf , c) = µ with an overwhelming probability over the choice of (mpk,msk) ←
Setup(λ), c← E(mpk, x, µ), and skf ← KeyGen(msk, f).

Security. We consider the standard notion of selective security for ABE schemes [GPS+06]. Specif-
ically, we consider adversaries that first announce a challenge index x∗, and then receive the public
parameters mpk of the scheme and oracle access to a key-generation oracle KG(msk, x∗, f) that re-
turns the secret key skf for f ∈ F if f(x∗) 6= 0 and returns ⊥ otherwise. We require that any such
efficient adversary has only a negligible probability in distinguishing between encryptions of two
different messages. Formally, security is captured by the following definition.

Definition 2.1 (Selectively-secure ABE). An attribute-based encryption scheme Π = (Setup,
KeyGen,E,D) for a class of functions Fλ = {f : Xλ → Yλ} is selectively secure if for all proba-
bilistic polynomial-time adversaries A where A = (A1,A2,A3), there is a negligible function ν(λ)
such that

AdvABE
Π,A(λ)

def
=
∣∣∣Pr
[
EXP

(0)
ABE,Π,A(λ) = 1

]
− Pr

[
EXP

(1)
ABE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP
(b)
ABE,Π,A(λ) is defined as follows:

1. (x∗, state1)← A1(λ), where x∗ ∈ Xλ // A commits to challenge index x∗

2. (mpk,msk)← Setup(λ)

3. (µ0, µ1, state2)← AKG(msk,x∗,·)
2 (mpk, state1) // A outputs challenge messages µ0, µ1

4. c∗ ← E(mpk, x∗, µb)

5. b′ ← AKG(msk,x∗,·)
3 (c∗, state2) // A outputs a guess b′ for b

6. Output b′ ∈ {0, 1}

where KG(msk, x∗, f) returns a secret key skf = KeyGen(msk, f) if f(x∗) 6= 0 and ⊥ otherwise.

2.2 Background on Lattices

Lattices. Let q, n,m be positive integers.
For a matrix A ∈ Zn×mq we let Λ⊥q (A) denote the lattice {x ∈ Zm : A x = 0 in Zq}.
More generally, for u ∈ Znq we let Λu

q (A) denote the shifted lattice {x ∈ Zm : A x = u in Zq}.

Observe that if the columns of TA ∈ Zm×m are a basis of the lattice Λ⊥q (A), then they are also a

basis for the lattice Λ⊥q (xA) for any nonzero x ∈ Zq.

6

Learning with errors (LWE) [Reg05]. Fix integers n,m, q and a noise distribution χ over Zq
with q prime. The (n,m, q, χ)-LWE problem is to distinguish the following two distributions:

(A, ATs + e) and (A,u)

where A ← Zn×mq , s ← Znq , e ← χm, u ← Zmq are independently sampled. Throughout the paper
we always set m = Θ(n log q) and simply refer to the (n, q, χ)-LWE problem.

We say that a noise distribution χ is B-bounded if its support is in [−B,B]. For any fixed d > 0
and sufficiently large q, Regev [Reg05] (through a quantum reduction) and Peikert [Pei09] (through
a classical reduction) show that taking χ as a certain q/nd-bounded distribution, the (n, q, χ)-LWE
problem is as hard as approximating the worst-case GapSVP to poly(n) factors, which is believed to
be intractable. More generally, let χmax < q be the bound on the noise distribution. The difficulty
of the LWE problem is measured by the ratio q/χmax. This ratio is always bigger than 1 and the
smaller it is the harder the problem. The problem appears to remain hard even when q/χmax < 2(nε)

for some fixed ε ∈ (0, 1/2).

Matrix norms. For a vector u we let ‖u‖ denote its `2 norm. For a matrix R ∈ Zk×m we define
three matrix norms:
‖R‖ denotes the `2 length of the longest column of R.
‖R‖GS denotes ‖R̃‖ where R̃ is the result of applying Gram-Schmidt to the columns of R.
‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that always ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Trapdoor generators. The following describes algorithms for generating short basis of lattices.

Lemma 2.2. Let n,m, q > 0 be integers with q prime. There are polynomial time algorithms such
that:

1. ([Ajt99, AP09]): TrapGen(1n, 1m, q) −→ (A,TA)
a randomized algorithm that, when m = Θ(n log q), outputs a full-rank matrix A ∈ Zn×mq and

basis TA ∈ Zm×m for Λ⊥q (A) such that A is negl(n)-close to uniform and ‖T‖GS = O(
√
n log q),

with all but negligible probability in n.

2. ([CHK+10]): ExtendRight(A,TA,B) −→ T(A|B)

a deterministic algorithm that given full-rank matrices A,B ∈ Zn×mq and a basis TA of Λ⊥q (A)

outputs a basis T(A|B) of Λ⊥q (A|B) such that ‖TA‖GS = ‖T(A|B)‖GS.

3. ([ABB10]): ExtendLeft(A,G,TG,S) −→ TH where H = (A | G + A S)
a deterministic algorithm that given full-rank matrices A,G ∈ Zn×mq and a basis TG of Λ⊥q (G)

outputs a basis TH of Λ⊥q (H) such that ‖TH‖GS ≤ ‖TG‖GS · (1 + ‖S‖2).

4. ([MP12]): For m = ndlog qe there is a fixed full-rank matrix G ∈ Zn×mq such that the lattice

Λ⊥q (G) has a publicly known basis TG ∈ Zm×m with ‖TG‖GS ≤
√

5.

To simplify the notation we will always assume that the matrix G from part 4 of Lemma 2.2 has the
same width m as the matrix A output by algorithm TrapGen from part 1 of the lemma. We do so
without loss of generality since G can always be extended to the size of A by adding zero columns
on the right of G.

7

Discrete Gaussians. Regev [Reg05] defined a natural distribution on Λu
q (A) called a discrete

Gaussian parameterized by a scalar σ > 0. We use Dσ(Λu
q (A)) to denote this distribution. For a

random matrix A ∈ Zn×mq and σ > Õ(
√
n), a vector x sampled from Dσ(Λu

q (A)) has `2 norm less
than σ

√
m with probability at least 1− negl(m).

For a matrix U = (u1| · · · |uk) ∈ Zn×kq we let Dσ(ΛU
q (A)) be a distribution on matrices in Zm×k

where the i-th column is sampled from Dσ(Λui
q (A)) for i = 1, . . . , k. Clearly if R is sampled from

Dσ(ΛU
q (A)) then AR = U in Zq.

Lemma 2.3. For integers n,m, k, q, σ > 0, matrices A ∈ Zn×mq and U ∈ Zn×kq , if R ∈ Zm×k is

sampled from Dσ(ΛU
q (A)) and S is sampled uniformly in {±1}m×m then

‖RT‖2 ≤ σ
√
mk , ‖R‖2 ≤ σ

√
mk , ‖S‖2 ≤ 20

√
m

with overwhelming probability in m.

Proof. For the {±1} matrix S the lemma follows from Litvak et al. [LPR+05] (Fact 2.4). For the
matrix R the lemma follow from the fact that ‖RT‖2 ≤

√
k · ‖R‖ <

√
k(σ
√
m).

Solving AX = U. We review two algorithms, one deterministic [Bab86] and one randomized [GPV08],
for finding a low-norm matrix X ∈ Zm×k such that AX = U. Both need a short basis T of Λ⊥q (A)
and both construct the matrix X one column at a time.

Lemma 2.4. Let A ∈ Zn×mq and TA ∈ Zm×m be a basis for Λ⊥q (A). Let U ∈ Zn×kq . There are

polynomial time algorithms that output X ∈ Zm×k satisfying AX = U such that:

1. ([Bab86]): SolveR(A,TA,U) −→ X
a deterministic algorithm that outputs an X satisfying ‖X‖ ≤ 1

2

√
m · ‖TA‖GS.

2. ([GPV08]): SampleD(A,TA,U, σ) −→ X
a randomized algorithm that, when σ = ‖TA‖GS ·ω(

√
logm), outputs a random sample X from

the distribution Dσ(ΛU
q (A)).

3. ([CHK+10]): RandBasis(A,TA, σ) −→ T′A
a randomized algorithm that, when σ = ‖TA‖GS · ω(

√
logm), outputs a basis T′A of Λ⊥q (A)

sampled from (Dσ(Λ⊥q (A)))m. Note that ‖T′A‖GS < σ
√
m with all but negligible probability.

Lemma 2.5. Let G be the matrix from Lemma 2.2 part 4. Then for all U ∈ Zm×nq , R ∈ Zm×mq ,

and R = SolveR(G,TG,U) we have that ‖R‖2 ≤ 2m and ‖RT‖2 ≤ 2m.

Proof. The lemma follows from the fact that ‖RT ‖2 and ‖R‖2 are upper-bounded by
√
m · ‖R‖

and the following gives an upper-bound on ||R||:

||R||
Lemma 2.4
≤ 1

2

√
m · ‖TG‖GS

Lemma 2.2
≤ 1

2

√
m ·
√

5 ≤ 2
√
m

as required.

8

Randomness extraction. We conclude with a variant of the left-over hash lemma from [ABB10].

Lemma 2.6. Suppose that m > (n+ 1) log2 q+ω(log n) and that q > 2 is prime. Let S be an m×k
matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let A and B
be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors e in Zmq , the

distribution (A, AS, STe) is statistically close to the distribution (A, B, STe).

Note that the lemma holds for every vector e in Zmq , including low norm vectors.

3 An ABE for arithmetic circuits from LWE

We now turn to building an ABE for arithmetic circuits from the learning with errors (LWE)
problem. Our construction follows the key-homomorphism paradigm outlined in the introduction,
but rather than describe it as a key-homomorphic system we directly describe the resulting ABE.

For integers n and q = q(n) let m = Θ(n log q). Let G ∈ Zn×mq be the fixed matrix from
Lemma 2.2 (part 4). For x ∈ Zq, B ∈ Zn×mq , s ∈ Znq , and δ > 0 define the set

Es,δ(x,B) =
{

(xG + B)Ts + e ∈ Zmq where ‖e‖ < δ
}

For now we will assume the existence of three efficient deterministic algorithms Evalpk,Evalct,Evalsim
that implement the key-homomorphic features of the scheme and are at the heart of the construction.
We present them in the next section. These three algorithms must satisfy the following properties
with respect to some family of functions F = {f : (Zq)` → Zq} and a function αF : Z→ Z.

• Evalpk(f ∈ F , ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq .

• Evalct(f ∈ F ,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq . Here xi ∈ Zq, Bi ∈ Zn×mq

and ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0. Note that the same s is used for all ci.
The output cf must satisfy

cf ∈ Es,∆(f(x),Bf) where Bf = Evalpk(f, (B1, . . . ,B`))

and x = (x1, . . . , x`). We further require that ∆ < δ · αF(n) for some function αF(n) that
measures the increase in the noise magnitude in cf compared to the input ciphertexts.

This algorithm captures the key-homomorphic property: it translates ciphertexts encrypted
under public-keys {(xi,Bi)}`i=1 into a ciphertext cf encrypted under public-key (f(x),Bf).

• Evalsim(f ∈ F ,
(
(x∗i ,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq . Here x∗i ∈ Zq and Si ∈ Zm×mq .

With x∗ = (x∗1, . . . , x
∗
n), the output Sf satisfies

ASf − f(x∗)G = Bf where Bf = Evalpk

(
f, (AS1 − x∗1G, . . . ,AS` − x∗`G)

)
.

We further require that for all f ∈ F , if S1, . . . ,S` are random matrices in {±1}m×m then
‖Sf‖2 < αF(n) with all but negligible probability.

Definition 3.1. The deterministic algorithms (Evalpk,Evalct,Evalsim) are αF-ABE enabling for some
family of functions F = {f : (Zq)` → Zq} if there are functions q = q(n) and αF = αF(n) for which
the properties above are satisfied.

We want αF -ABE enabling algorithms for a large function family F and the smallest possible αF .
In the next section we build these algorithms for polynomial-size arithmetic circuits. The function
αF(n) will depend on the depth of circuits in the family.

9

The ABE system. Given ABE-enabling algorithms (Evalpk,Evalct,Evalsim) for a family of func-
tions F = {f : (Zq)` → Zq} we build an ABE for the same family of functions F . We prove selective
security based on the learning with errors problem.

Parameters : Choose n and q = q(n) as needed for (Evalpk,Evalct,Evalsim) to be αF-ABE enabling
for the function family F . In addition, let χ be a χmax-bounded noise distribution for which
the (n, q, χ)-LWE problem is hard as discussed in Section 2.2. As usual, we set m = Θ(n log q).

Set σ = ω(αF ·
√

logm). We instantiate these parameters concretely in the next section.

For correctness of the scheme we require that α2
F ·m < 1

12 · (q/χmax) and αF >
√
n logm .

Setup(1λ, `) : Run algorithm TrapGen(1n, 1m, q) from Lemma 2.2 (part 1) to generate (A,TA) where
A is a uniform full-rank matrix in Zn×mq .
Choose random matrices D,B1, . . . ,B` ∈ Zn×mq and output the ABE parameters:

mpk = (A,D,B1, . . . ,B`) ; msk = (TA,D,B1, . . . ,B`)

KeyGen(msk, f) : Let Bf = Evalpk(f, (B1, . . . ,B`)).
Output skf := Rf where Rf is a low-norm matrix in Z2m×m sampled from the discrete
Gaussian distribution Dσ(ΛD

q (A|Bf)) so that (A|Bf) ·Rf = D.

To construct Rf build the basis TF for F = (A|Bf) ∈ Zn×2m
q as TF ← ExtendRight(A,TA,B)

from Lemma 2.2 (part 2).
Then run Rf ← SampleD(F, TF, D, σ). Here σ is sufficiently large for algorithm SampleD
(Lemma 2.4 part 2) since σ = ‖TF‖GS · ω(

√
logm). where ‖TF‖GS = ‖TA‖GS = O(

√
n log q).

Note that the secret key skf is always in Z2m×m independent of the complexity of the func-
tion f . We assume skf also implicitly includes mpk.

E(mpk, x ∈ Z`q, µ ∈ {0, 1}m) : Choose a random n dimensional vector s ← Znq and error vectors
e0, e1 ← χm. Choose ` uniformly random matrices Si ← {±1}m×m for i ∈ [`].

Set H ∈ Zn×(`+1)m
q and e ∈ Z(`+1)m

q as

H = (A | x1G + B1 | · · · | x`G + B`) ∈ Zn×(`+1)m
q

e = (Im|S1| . . . |S`)T · e0 ∈ Z(`+1)m
q

Let c = (HT s + e, DT s + e1 + dq/2eµ) ∈ Z(`+2)m
q . Output the ciphertext (x, c).

D
(
skf , (x, c)

)
: If f(x) 6= 0 output ⊥. Otherwise, let c = (cin, c1, . . . , c`, cout) ∈ Z(`+2)m

q .

Set cf = Evalct

(
f, {(xi,Bi, ci)}`i=1

)
∈ Zmq .

Let c′f = (cin|cf) ∈ Z2m
q and output Round(cout −RT

f c′f) ∈ {0, 1}m.

This completes the description of the system.

Correctness. The correctness of the scheme follows from our choice of parameters and, in partic-
ular, from the requirement α2

F ·m < 1
12 · (q/χmax). Specifically, to show correctness, first note that

when f(x) = 0 we know by the requirement on Evalct that cf is in Es,∆(0,Bf) so that cf = BT
f s+e

with ‖e‖ < ∆. Consequently,

c′f = (cin|cf) = (A|Bf)Ts + e′ where ‖e′‖ < ∆ + χmax < (αF + 1)χmax .

10

Since Rf ∈ Z2m×m is sampled from the distribution Dσ(ΛD
q (A|Bf)) we know that (A|Bf) ·Rf = D

and, by Lemma 2.3, ‖RT
f ‖2 < 2mσ with overwhelming probability. Therefore

cout −RT
f c′f = (DTs + e1)− (DTs + RT

f e′) = e1 −RT
f e′

and ‖e1 −RT
f e′‖ ≤ χmax + 2mσ · (αF + 1)χmax ≤ 3α2

F · χmax ·m with overwhelming probability.
By the bounds on αF this quantity is less than q/4 thereby ensuring correct decryption of all bits
of µ ∈ {0, 1}m.

Security. Next we prove that our ABE is selectively secure for the family of functions F for which
algorithms (Evalpk,Evalct,Evalsim) are ABE-enabling.

Theorem 3.2. Given the three algorithms (Evalpk,Evalct,Evalsim) for the family of functions F , the
ABE system above is selectively secure with respect to F , assuming the (n, q, χ)-LWE assumption
holds where n, q, χ are the parameters for the ABE.

Proof idea. Before giving the complete proof we first briefly sketch the main proof idea which
hinges on the properties of algorithms (Evalpk,Evalct,Evalsim). The proof employs some of the
techniques from [CHK+10, ABB10].

We build an LWE algorithm B that uses a selective ABE attacker A to solve LWE. Algorithm
B is given an LWE challenge matrix (A|D) ∈ Zn×2m

q and two vectors cin, cout ∈ Zmq that are either

random or their concatenation equals (A|D)Ts + e for some small noise vector e.
A starts by committing to the target attribute vector x = (x∗1, . . . , x

∗
`) ∈ Z`q. In response B

constructs the ABE public parameters by choosing random matrices S∗1, . . . ,S
∗
` in {±1}m×m and

setting Bi = A S∗i − x∗iG. It gives A the public parameters mpk = (A,D,B1, . . . ,B`). A standard
argument shows that each of A S∗i is uniformly distributed in Zn×mq so that all Bi are uniform as
required for the public parameters.

Now, consider a private key query from A for a function f ∈ F . Only functions f for which
y∗ = f(x∗1, . . . , x

∗
`) 6= 0 are allowed. Let Bf = Evalpk

(
f, (B1, . . . ,B`)

)
. Then B needs to produce a

matrix Rf in Z2m×m satisfying (A|Bf) ·Rf = D. To do so B needs a short basis for the lattice
Λ⊥q (F) where F = (A|Bf). In the real key generation algorithm this short basis is derived from a

short basis for Λ⊥q (A) using algorithm ExtendRight. Unfortunately, B has no short basis for Λ⊥q (A).
Instead, as explained below, B builds a low-norm matrix Sf ∈ Zm×mq such that Bf = ASf−y∗G.

Then F = (A | ASf − y∗G). Because y∗ 6= 0, algorithm B can construct the short basis TF for
Λ⊥q (F) using algorithm ExtendLeft(y∗G,TG,A,Sf) from Lemma 2.2 part 3. Using TF algorithm
B can now generate the required key as Rf ← SampleD(F,TF,D, σ). Note that when y∗ = 0
algorithm ExtendLeft cannot be applied and B cannot generate secret keys for such functions f .

The remaining question is how does algorithm B build a low-norm matrix Sf ∈ Zm×mq such that
Bf = ASf − y∗G. To so B uses Evalsim giving it the secret matrices S∗i . More precisely, B runs

Evalsim(f,
(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains the required Sf . This lets B answer all private key queries.

To complete the proof it is not difficult to show that B can build a challenge ciphertext c∗ for the
attribute vector x ∈ Z`q that lets it solve the given LWE instance using adversary A. An important
point is that B cannot construct a key that will let it decrypt c∗. The reason is that it cannot build
a secret key skf for functions where f(x) = 0 and these are the only keys that will decrypt c∗.

Proof of Theorem 3.2. The proof proceeds in a sequence of games where the first game is identical
to the ABE game from Definition 2.1. In the last game in the sequence the adversary has advantage

11

zero. We show that a PPT adversary cannot distinguish between the games which will prove that the
adversary has negligible advantage in winning the original ABE security game. The LWE problem
is used in proving that Games 2 and 3 are indistinguishable.

Game 0. This is the original ABE security game from Definition 2.1 between an attacker A against
our scheme and an ABE challenger.

Game 1. Recall that in Game 0 part of the public parameters mpk are generated by choosing
random matrices B1, . . . ,B` in Zn×mq . At the challenge phase (step 4 in Definition 2.1) a challenge
ciphertext c∗ is generated. We let S∗1, . . . ,S

∗
` ∈ {−1, 1}m×m denote the random matrices generated

for the creation of c∗ in the encryption algorithm E.
In Game 1 we slightly change how the matrices B1, . . . ,B` are generated for the public param-

eters. Let x∗ = (x∗1, . . . , x
∗
`) ∈ Z`q be the target point that A intends to attack. In Game 1 the

random matrices S∗1, . . . ,S
∗
` in {±1}m×m are chosen at the setup phase (step 2) and the matrices

B1, . . . ,B` are constructed as
Bi := A S∗i − x∗iG (3.1)

The remainder of the game is unchanged.
We show that Game 0 is statistically indistinguishable from Game 1 by Lemma 2.6. Observe

that in Game 1 the matrices S∗i are used only in the construction of Bi and in the construction of the
challenge ciphertext where e := (Im|S∗1| · · · |S∗`)T · e0 is used as the noise vector for some e0 ∈ Zmq .
Let S∗ = (S∗1| · · · |S∗`), then by Lemma 2.6 the distribution (A, A S∗, e) is statistically close to the
distribution (A, A′, e) where A′ is a uniform matrix in Zn×`mq . It follows that in the adversary’s
view, all the matrices A S∗i are statistically close to uniform and therefore the Bi as defined in (3.1)
are close to uniform. Hence, the Bi in Games 0 and 1 are statistically indistinguishable.

Game 2. We now change how A in mpk is chosen. In Game 2 we generate A as a random matrix
in Zn×mq . The construction of B1, . . . ,B` remains as in Game 1, namely Bi = A S∗i − x∗iG.

The key generation oracle responds to private key queries (in steps 3 and 5 of Definition 2.1)
using the trapdoor TG. Consider a private key query for function f ∈ F . Only f such that
y∗ = f(x∗1, . . . , x

∗
`) 6= 0 are allowed. To respond, the key generation oracle computes Bf =

Evalpk

(
f, (B1, . . . ,B`)

)
and needs to produce a matrix Rf in Z2m×m satisfying

(A|Bf) ·Rf = D in Zq .

To do so the key generation oracle does:

• It runs Sf ← Evalsim(f,
(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains a low-norm matrix Sf ∈ Zm×mq such

that ASf − y∗G = Bf . By definition of Evalsim we know that ‖Sf‖2 ≤ αF .

• Let F = (A|Bf) = (A|ASf − y∗G). Because y∗ 6= 0 the key generation oracle can obtain a
trapdoor TF by running

TF ← ExtendLeft(y∗G,TG,A,Sf)

By Lemma 2.2 (part 3) this trapdoor satisfies

‖TF‖GS ≤ ‖TG‖GS · (1 + ‖Sf‖2) ≤
√

5 (1 + αF(n))

where the bound on ‖TG‖GS is from Lemma 2.2 (part 4).

• Finally, it responds with Rf = SampleD(F, TF, D, σ).
By definition of SampleD we know that Rf is distributed as Dσ(ΛD

q (F)) as required. Indeed
σ = ‖TF‖GS · ω(

√
logm) as needed for algorithm SampleD in Lemma 2.4 (part 2).

12

Game 2 is otherwise the same as Game 1. Since the public parameters and responses to private key
queries are statistically close to those in Game 1, the adversary’s advantage in Game 2 is at most
negligibly different from its advantage in Game 1.

Game 3. Game 3 is identical to Game 2 except that in the challenge ciphertext (x∗, c∗) the vector

c∗ = (cin|c1| · · · |c`|cout) ∈ Z(`+2)m
q is chosen as a random independent vector in Z(`+2)m

q . Since the
challenge ciphertext is always a fresh random element in the ciphertext space, A’s advantage in this
game is zero.

It remains to show that Game 2 and Game 3 are computationally indistinguishable for a PPT
adversary, which we do by giving a reduction from the LWE problem.

Reduction from LWE. Suppose A has non-negligible advantage in distinguishing Games 2 and 3.
We use A to construct an LWE algorithm B.

LWE Instance. B begins by obtaining an LWE challenge consisting of two random matrices A,D
in Zn×mq and two vectors cin, cout in Zmq . We know that cin, cout are either random in Zmq or

cin = ATs + e0 and cout = DTs + e1 (3.2)

for some random vector s ∈ Znq and e0, e1 ← χm. Algorithm B’s goal is to distinguish these
two cases with non-negligible advantage by using A.

Public parameters. A begins by committing to a target point x = (x∗1, . . . , x
∗
`) ∈ Zmq where it

wishes to be challenged. B assembles the public parameters mpk as in Game 2: choose random
matrices S∗1, . . . ,S

∗
` in {±1}m×m and set Bi = A S∗i − x∗iG. It gives A the public parameters

mpk = (A,D,B1, . . . ,B`)

Private key queries. B answers A’s private-key queries (in steps 3 and 5 of Definition 2.1) as in
Game 2.

Challenge ciphertext. When B receives two messages µ0, µ1 ∈ {0, 1}m from A, it prepares a
challenge ciphertext by choosing a random b← {0, 1} and computing

c∗0 = (Im|S∗1| . . . |S∗`)T · cin ∈ Z(`+1)m
q (3.3)

and c∗ = (c∗0, cout + dq/2eµb) ∈ Z(`+2)m
q . B sends (x∗, c∗) as the challenge ciphertext to A.

We argue that when the LWE challenge is pseudorandom (namely (3.2) holds) then c∗ is
distributed exactly as in Game 2. First, observe that when encrypting (x∗, µb) the matrix H
constructed in the encryption algorithm E is

H = (A | x∗1G + B1 | · · · | x∗`G + B`)

=
(
A | x∗1G + (AS∗1 − x∗1G) | · · · | x∗`G + (AS∗` − x∗`G)

)
= (A | AS∗1 | · · · | AS∗`)

Therefore, c∗0 defined in (3.3) satisfies:

c∗0 = (Im|S∗1| . . . |S∗`)T · (ATs + e0)

= (A|AS∗1 | · · · | AS∗`)
T · s + (Im|S∗1| · · · |S∗`)T · e0 = HTs + e

where e = (Im|S∗1| · · · |S∗`)T · e0. This e is sampled from the same distribution as the noise
vector e in algorithm E. We therefore conclude that c∗0 is computed as in Game 2. Moreover,

13

since cout = DTs + e1 we know that the entire challenge ciphertext c∗ is a valid encryption of
(x∗, µb) as required.

When the LWE challenge is random we know that cin and cout are uniform in Zmq . Therefore

the public parameters and c∗0 defined in (3.3) are uniform and independent in Z(`+1)m
q by a

standard application of the left over hash lemma (e.g. Theorem 8.38 of [Sho08]) where the
universal hash function is defined as multiplication by the random matrix (AT|cin)T. Since

cout is also uniform, the challenge ciphertext overall is uniform in Z(`+2)m
q , as in Game 3.

Guess. Finally, A guesses if it is interacting with a Game 2 or Game 3 challenger. B outputs A’s
guess as the answer to the LWE challenge it is trying to solve.

We already argued that when the LWE challenge is pseudorandom the adversary’s view is as
in Game 2. When the LWE challenge is random the adversary’s view is as in Game 3. Hence,
B’s advantage in solving LWE is the same as A’s advantage in distinguishing Games 2 and 3, as
required. This completes the description of algorithm B and completes the proof.

4 Evaluation Algorithms for Arithmetic Circuits

In this section we build the ABE-enabling algorithms (Evalpk,Evalct,Evalsim) that are at the heart of
the ABE construction in Section 3. We do so for the family of polynomial depth, unbounded fan-in
arithmetic circuits.

4.1 Evaluation algorithms for gates

We first describe Eval algorithms for single gates, i.e. when G is the set of functions that each takes
k inputs and computes either weighted addition or multiplication:

G =
⋃

α,α1,α2,...,αk∈Zq

g | g : Zkq → Zq,
g(x1, . . . , xk) = α1x1 + α2x2 + . . .+ αkxk

or
g(x1, . . . , xk) = α · x1 · x2 · . . . · xk

 (4.1)

We assume that all the inputs to a multiplication gate (except possibly one input) are integers in
the interval [−p, p] for some bound p < q.

We present all three deterministic Eval algorithms at once:

Evalpk(g ∈ G, ~B ∈ (Zn×mq)k) −→ Bg ∈ Zn×mq

Evalct(g ∈ G,
(
(xi,Bi, ci)

)k
i=1

) −→ cg ∈ Zmq
Evalsim(g ∈ G,

(
(xi,Si)

)k
i=1
, A) −→ Sg ∈ Zm×mq

• For a weighted addition gate g(x1, . . . , xk) = α1x1 + · · ·+ αkxk do:
For i ∈ [k] generate matrix Ri ∈ Zm×mq such that

GRi = αiG : Ri = SolveR(G,TG, αiG) (as in Lemma 2.4 part 1). (4.2)

Output the following matrices and the ciphertext:

Bg =

k∑
i=1

BiRi, Sg =

k∑
i=1

SiRi, cg =

k∑
i=1

RT
i ci (4.3)

14

• For a weighted multiplication gate g(x1, . . . , xk) = αx1 · . . . · xk do:
For i ∈ [k] generate matrices Ri ∈ Zm×mq such that

GR1 = αG : R1 = SolveR(G,TG, αG) (4.4)

GRi = −Bi−1Ri−1 : Ri = SolveR(G,TG,−Bi−1Ri−1) for all i ∈ {2, 3, . . . , k} (4.5)

Output the following matrices and the ciphertext:

Bg = BkRk, Sg =

k∑
j=1

 k∏
i=j+1

xi

SjRj , cg =

k∑
j=1

 k∏
i=j+1

xi

RT
j cj (4.6)

For example, for k = 2, Bg = B2R2, Sg = x2S1R1 + S2R2, cg = x2R
T
1 c1 + RT

2 c2.

For multiplication gates, the reason we need an upper bound p on all but one of the inputs xi is
that these xi values are used in (4.6) and we need the norm of Sg and the norm of the noise in the
ciphertext cg to be bounded from above.

The next two lemmas show that these algorithms satisfy the required properties to be ABE enabling.

Lemma 4.1. Let βg(m) = 2km. For a weighted addition gate g(x) = α1x1 + . . .+αkxk we have:

1. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0, then cg ∈ Es,∆(g(x),Bg) where ∆ ≤ βg(m) ·δ
and Bg = Evalpk(g, (B1, . . . ,Bk)).

2. The output Sg satisfies ASg − g(x)G = Bg where ‖Sg‖2 ≤ βg(m) ·maxi∈[k] ‖Si‖2

and Bg = Evalpk
(
g, (AS1 − x1G, . . . ,ASk − xkG)

)
.

Proof. By Eq. 4.3 the output ciphertext is computed as follows:

cg =
k∑
i=1

RT
i · ci =

k∑
i=1

RT
i ·
(

(xiG + Bi)
T s + ei

)
= // substitute for ci = (xiG + Bi)

T s + ei

=
k∑
i=1

(xiGRi)
T s +

k∑
i=1

(BiRi)
T s +

k∑
i=1

(RT
i ei) = // break the product into components

=

(
k∑
i=1

αixi

)
GT s + BT

g s + eg = // GRi = αiRi from Eq. 4.2 and Bg =

k∑
i=1

BiRi from Eq. 4.3

= [g(x)G + Bg]
T s + eg

The noise bound is: ‖eg‖ = ‖RT
1 e1 + · · · + RT

k ek‖ ≤ k ·maxj∈[k]

(
‖RT

j ‖2 · ‖ej‖
) Lemma 2.5

≤ 2km · δ.
This completes the proof of the first part of the lemma.

In the second part of the lemma, by Eq. 4.3 the output matrix Bg is computed as follows:

Bg =

k∑
i=1

(ASi − xiG)Ri = // plug-in matrices given in the lemma into Eq. 4.3

=A
k∑
i=1

SiRi −
k∑
i=1

αixiG = ASg − g(x)G // GRi = αiRi from Eq. 4.2

Moreover ‖Sg‖2 = ‖
∑k

i=1 SiRi‖2 ≤ k ·maxi∈[k] (‖Si‖2 · ‖Ri‖2)
Lemma 2.5
≤ 2km ·maxi∈[k] (‖Si‖2)

as required.

15

The next Lemma proves similar bounds for a multiplication gate.

Lemma 4.2. For a multiplication gate g(x) = α
∏k
i=1 xi we have the same bounds on cg and Sg

as in Lemma 4.1 with βg(m) = 2p
k−1
p−1 m = O(pk−1m).

Proof. Set eg =
∑k

j=1

(∏k
i=j+1 xi

)
RT
j ej . Then the output ciphertext is computed as follows:

cg =
k∑
j=1

 k∏
i=j+1

xi

RT
j cj =

k∑
j=1

 k∏
i=j+1

xi

RT
j

(
(xjG + Bj)

T s + ej

)
= // substitute for cj

=

(k∏
i=1

xi

)
GR1 +

k∑
j=2

 k∏
i=j

xi

(((

((((
(((

(GRj + Bj−1Rj−1) + BkRk

T s + eg = // regroup

=

[(
k∏
i=1

xi

)
GR1 + BkRk

]T
s + eg = // use Eq. 4.5 to cancel terms

= [g(x)G + Bg]
T s + eg // use the facts GR1 = αG (Eq. 4.4), Bg = BkRk (Eq. 4.6)

The bound on the noise ‖eg‖ is:

‖eg‖ =

∥∥∥∥∥∥
k∑
j=1

 k∏
i=j+1

xi

RT
j ej

∥∥∥∥∥∥ ≤
(

1 + p+ . . .+ pk−1
)
·max
j∈[k]

[
‖RT

j ‖2 · ‖ej‖
] Lemma. 2.5

≤ pk − 1

p− 1
2m · δ

This completes the first part of the lemma. In the second part of the lemma, the output matrix Bg

is computed as follows:

Bg =(ASk − xkG)Rk
Eq. 4.5

= // by (4.5) we have GRk = −(ASk−1 − xk−1G)Rk−1

= (ASkRk + xkASk−1Rk−1 − xk · xk−1GRk−1)
Eq. 4.5

= . . .
Eq. 4.5

=

= (ASkRk + xkASk−1Rk−1 + xk · xk−1ASk−2Rk−2 + . . .+ (−x1 · · ·xkGR1))
Eq. 4.4

=

= (ASg − αx1 · · ·xkG) = (ASg − g(x)G)

Moreover, the bound on the norm of Sg is:

‖Sg‖2 =

∥∥∥∥∥∥
k∑
j=1

 k∏
i=j+1

xi

SjRj

∥∥∥∥∥∥
2

≤
(

1 + p+ . . .+ pk−1
)

max
i∈[k]

(‖Si‖2 · ‖Ri‖2)
Lemma. 2.5
≤ pk − 1

p− 1
2m ·max

i∈[k]
(‖Si‖2)

as required.

4.2 Evaluation algorithms for circuits

We will now show how using the algorithms for single gates, that compute weighted additions and
multiplications as described above, to build algorithms for the depth d, unbounded fan-in circuits.

Let {Cλ}λ∈N be a family of polynomial-size arithmetic circuits. For each C ∈ Cλ we index the
wires of C following the notation in [GVW13]. The input wires are indexed 1 to `, the internal wires

16

have indices ` + 1, ` + 2, . . . , |C| − 1 and the output wire has index |C|, which also denotes the size
of the circuit. Every gate is indexed as a tuple (w1, . . . , wkw , w) where kw is the fan-in of the gate,
w1, . . . , wkw are the incoming wire indices, and w > max{w1, . . . , wk} is the outgoing wire index.
The gate computes the function gw : Zkwq → Zq in G, where G is defined in (4.1). We assume that all
(but possibly one) of the input values to the multiplication gates are bounded by p which is smaller
than scheme modulus q. The “fan-out wires” in the circuit are given a single number. That is, if
the outgoing wire of a gate feeds into the input of multiple gates, then all these wires are indexed
the same.

For some λ ∈ N, define the family of functions F = {f : f can be computed by some C ∈ Cλ}.
Again we will describe the three Eval algorithms together, but it is easy to see that they can be
separated.

Evalpk(f ∈ F , ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq

Evalct(f ∈ F ,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq
Evalsim(f ∈ F ,

(
(xi,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq

Let f be computed by some circuit C ∈ Cλ, that has ` input wires. We construct the required
matrices gate-by-gate: we construct the matrix for the output wire of every gate once the matrices
on the input wires to this gate are computed.

For all w ∈ [C] denote the value that wire w carries when circuit C is evaluated on x to be xw.
Consider an arbitrary gate of fan-in kw (we will omit the subscript w where it is clear from the
context): (w1, . . . , wk, w) that computes the function gw : Zkq → Zq. Suppose we already computed
Bw1 , . . . ,Bwk , Sw1 , . . . ,Swk and cw1 , . . . , cwk , note that if w1, . . . , wk are all in {1, 2, . . . , `} then
these matrices and vectors are the inputs of the corresponding Eval functions.

Using Eval algorithms described in Section 4.1, compute

Bw = Evalpk(gw, (Bw1 , . . . , Bwk))

cw = Evalct(gw,
(
(xwi ,Bwi , cwi)

)k
i=1

)

Sw = Evalsim(gw,
(
(xwi ,Swi)

)k
i=1
, A)

Output Bf := B|C|, cf := c|C|, Sf := S|C|. Next we show that these outputs satisfy the required
properties.

Lemma 4.3. Let β(m) = 2p
k−1
p−1 m. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0, then

cf ∈ Es,∆(f(x),Bf) where ∆ < (β(m))d · δ and Bf = Evalpk(f, (B1, . . . ,B`)).

Proof. By Lemma 4.1 and 4.2, after each level of the circuit the noise is multiplied by βgw(m),
which is upperbounded by β(m) and the total number of levels is equal to the depth d of the circuit.
The lemma follows.

Lemma 4.4. Let β(m) be as defined in Lemma 4.3. If S1, . . . ,S` are random matrices in {±1}m×m,
then the output Sf satisfies ASf − f(x)G = Bf where ‖Sf‖2 ≤ (β(m))d · 20

√
m and

Bf = Evalpk
(
f, (AS1 − x1G, . . . ,AS` − x`G)

)
.

Proof. Since the input Si for i ∈ [`] are random matrices in {±1}m×m, by Lemma 2.3 for all i ∈ [`],
‖Si‖2 < 20

√
m. By Lemma 4.1 and 4.2, after each level of the circuit the bound on S gets multiplied

by at most β(m), therefore after d levels, which is the depth of the circuit, the bound on the output
matrix will be ‖Sf‖2 ≤ (β(m))d · 20

√
m. The lemma follows.

17

In summary, algorithms (Evalpk,Evalct,Evalsim) are αF -ABE enabling for

αF(n) = (β(m))d · 20
√
m = O

(
(pk−1m)d

√
m
)
, where m = Θ(n log q). (4.7)

This is sufficient for polynomial depth arithmetic circuits as discussed in the introduction.

5 Extension: Polynomial gates

We can further reduce the depth of a given arithmetic circuit (and thereby shrink the required lattice
sizes) by allowing the circuit to use more general gates than simple addition and multiplication. For
example, the k-way OR gate polynomial can be implemented using a single gate.

Definition 5.1. An `-variate polynomial is said to have restricted arithmetic complexity (`, d, g) if
it can be computed by a depth-d circuit that takes ` inputs x1, . . . , x` ∈ Zq and outputs a single
x ∈ Zq. The circuit contains g gates, each of them is either a fan-in 2 addition gate or a fan-in 2
multiplication gate. Multiplication gates are further restricted to have one of their two inputs be
one of the inputs to the circuit: x1, . . . , x`.

We build the Eval algorithms for polynomials with complexity (`, d, g) whose running time is
proportional to g and that increase the magnitude of the noise in a given ciphertext by a factor of
at most O(pd · m), where p is the bound on all the intermediate values. Were we to directly use
the Eval algorithms from the previous section on this polynomial, the magnitude of the noise would
increase by O((pm)d) which is considerably larger, especially when p is small (e.g. p = 1).

We can build arithmetic circuits using polynomials with complexity (`, d, g) as gates. Evaluating
a depth D arithmetic circuit with such polynomial gates would increase the magnitude of the noise
by at most a factor of O((pd · m)D). Again, if we were to simply treat the circuit as a standard
arithmetic circuit with basic addition and multiplication gates the noise would instead grow as
O((pm)dD) which is larger.

Next we present ABE-enabling algorithms Evalpk,Evalct,Evalsim for these enhanced polynomial
gates with the noise bounds discussed in the previous paragraph. To support multiplication and
addition of constants, we may assume that we have an extra 0-th input to the circuit that always
carries the value 1. We present all three algorithms at the same time. Suppose that f is a polynomial
with complexity (`, d, g), then the three algorithms work as follows:

Evalpk(f, ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq

Evalct(f,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq
Evalsim(f,

(
(xi,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq

For each wire w ∈ [|f |] (here |f | denotes the total number of wires in the circuit and the notation
of naming the wires is as described in Section 4.2) starting from the input wires and proceeding to
the output we will construct the matrices Bw ∈ Zn×mq , Sw ∈ Zm×mq , cw ∈ Zmq . Finally we output
Bf = B|f |, Sf = S|f |, cf = c|f |. Consider an arbitrary gate and suppose that matrices on the input
wires are computed, then to compute the matrices on the output wire do the following:

• Suppose the gate computes addition, has input wires w1 and w2 and output wire w. Then set
the output matrices on wire w to be:

Bw = Bw1 + Bw2 , Sw = Sw1 + Sw2 , cw = cw1 + cw2 .

18

• Suppose the gate computes the multiplication by xi for some i ∈ [`], the input wires are u
and i, the output wire is w. Then generate matrix R ∈ Zm×mq to satisfy GR = −Bu by
running R = SolveR(G,TG,−Bu). Output

Bw = BiR, Sw = SiR + xwSu, cw = xicu + RT ci .

Note that the amount of work required to run the Eval algorithms is proportional to the number of
gates g in the circuit.

The following lemma shows that the noise in the output ciphertext grows by at most the factor
of O(pdm), where p is the upper bound on the intermediate values in the circuit.

Lemma 5.2. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq , δ > 0 and the bound on the numbers p ≥ 2, then

for the polynomial f of complexity (`, d, g) with βd = (1 + p+ . . .+ pd) · 2m we have:

• cf satisfies cf ∈ Es,∆(f(x),Bf) where Bf = Evalpk(f, (B1, . . . ,B`)) and ∆ < βd(m) · δ,

• Sf satisfies ASf − f(x)G = Bf where Bf = Evalpk
(
f, (AS1−x1G, . . . ,AS`−x`G)

)
and

||Sf ||2 ≤ βd(m) · γ where γ = maxi∈[`] ||Si||2.

Proof. We prove the lemma by induction.

• Consider an addition gate at level i with input wires w1 and w2 and output wire w. Suppose
for j ∈ [2], the noise in the ciphertexts ||ewj || ≤ βi−1(m)δ and ||Swi ||2 ≤ βi−1(m) · γ.

– cw = cw1 + cw2 = (xw1G + Bw1)T s+ ew1 + (xw2G + Bw2)T s+ ew2 = (xwG + Bw)T s+ ew

– ||ew|| = ||ew1 + ew2 || ≤ ||ew1 ||+ ||ew2 || ≤ (βi−1(m) + βi−1(m))δ ≤ βi(m)δ

– Bw = Bw1 +Bw2 = (ASw1−xw1G)+(ASw2−xw2G) = A(Sw1 +Sw2)− (xw1 +xw2)G =
ASw − xwG

– ||Sw||2 = ||Sw1 + Sw2 ||2 ≤ ||Sw1 ||2 + ||Sw2 ||2 ≤ (βi−1(m) + βi−1(m)) · γ ≤ βi(m) · γ.

• Consider a gate which has input wires u and i ∈ [`], output wire w and which computes
multiplication. Suppose ||eu|| ≤ βi−1(m) and ||Su||2 ≤ βi−1(m) · γ, then the following holds

– cw = xicu + RT ci = xi(xuG + Bu)T s+ xieu + RT (xiG + Bi)
T s+ RTei =

(xwG + xi���
���(Bg + GR) + Bw)T s+ ew

– ||ew||2 = ||xieu + RTei||2 ≤ p||eu||2 + 2m||ei||2 ≤ (pβi−1(m) + 2m)δ ≤ βi(m) · δ
– Bw = BiR = (ASi − xiG)R = ASiR + xiBu = ASiR + xi(ASu − xuG) =

A(xiSu + SiR)− (xixu)G = ASw − xwG

– ||Sw||2 = ||xiSu + SiR||2 ≤ (pβi−1(m) + 2m) · γ ≤ βi(m) · γ.

as required.

Now combining Lemma 5.2 and lemmas analogous to Lemmas 4.3, 4.4 we can build an ABE
system for a set of functions F which can be computed by depth D circuits with (k, d, g)-complexity
gates. The bound function will then be

αF(n) = (βd(m))D · 20
√
m = O((pdm)D

√
m).

The time complexity of the Eval algorithms for circuit C that consists of (k, d, g)-complexity
gates will be O(g · |C|).

19

5.1 Example applications for polynomial gates

Unbounded fan-in OR gate. Assuming that boolean inputs are interpreted as integers in {0, 1},
the OR gate of ` inputs can be computed with the following recursive formula:

OR`+1(x1, . . . , x`, x`+1) = x`+1 + (1− x`+1) · OR`(x1, . . . , x`), where OR1(x1) = x1.

It is easy to see that OR` has restricted complexity (`, 3`, 3`), since at each of the ` iterations we
do one multiplication by x`+1 and two fan-in 2 additions. Therefore, by Lemma 5.2, an OR` gate
increases the noise in the ciphertext by a factor of O(` ·m).

If we were computing the OR` function with addition and multiplication gates as in Section 4.2,
the most efficient way would be to use the De Morgan’s law:

OR`+1(x1, . . . , x`, x`+1) = 1− (1− x1)(1− x2) . . . (1− x`).

This function can be computed with one level of ` fan-in-2 addition gates (to compute (1− xi) for
i ∈ [`]), one level of a single fan-in-` multiplication gate (to compute

∏`
i=1(1 − xi)) and one more

level of a single fan-in-2 addition gate. The noise then will grow by a factor of O(` ·m3), which will
make the scheme 3 times less efficient.

The Fibonacci polynomial. Consider the following polynomial, defined for x ∈ [−p, p]` using
the following recurrence:

Π1(x) = x1, Π2(x) = x2

Πi+2(x) = Πi+1(x) + Πi(x) · xi+2 for i ∈ {1, . . . , `− 2}

If expanded, the number of monomials in Π` is equal to the `-th Fibonacci number, which is ex-
ponential in `. The degree of the polynomial is b `2c. The recurrence shows that the restricted
arithmetic complexity of this polynomial is (`, `, 2`). Therefore, we can compute it with a single
polynomial gate and, by Lemma 5.2, the growth in ciphertext noise will be proportional to p` ·m.

We conjecture that computing this polynomial with a polynomial-size arithmetic circuit requires
linear depth in `. Therefore, the growth in ciphertext noise using the approach of Section 4.2 will
be proportional to (pm)O(`) which is much worse.

6 Extension: Delegatable ABE

Our ABE easily extends to support full key delegation. We first sketch the main idea for adding
key delegation and then describe the resulting ABE system.

In the ABE scheme from Section 3, a secret key for a function f is a matrix Rf that maps (A|Bf)
to some fixed matrix D. Instead, we can give as a secret key for f a trapdoor (i.e. a short basis) TF

for the matrix F = (A|Bf). The decryptor could use TF to generate the matrix Rf herself using
algorithm SolveR. Now, for a given function g, to construct a secret key that decrypts whenever
the attribute vector x satisfies f(x) = g(x) = 0 we extend the trapdoor for F into a trapdoor for
(F|Bg) = (A|Bf |Bg) using algorithm ExtendRight. We give a randomized version of this trapdoor
as a delegated secret key for f ∧ g. Intuitively this trapdoor can only be used to decrypt if the
decryptor can obtain the ciphertexts under matrices Bf and Bg which by security of ABE can only
happen if the ciphertexts was created for an attribute vector x satisfying f(x) = g(x) = 0.

The top level secret key generated by KeyGen is a (2m × 2m) matrix in Z. After k delegations
the secret key becomes a ((k+1)m×(k+1)m) matrix. Hence, the delegated key grows quadratically
with the number of delegations k.

20

Definition. Formally, a delegatable attribute-based encryption (DABE) scheme is an attribute-
based encryption scheme that in addition to four standard algorithms (Setup,KeyGen,E,D) offers a
delegation algorithm Delegate. Consider a ciphertext c encrypted for index vector x. The algorithm
KeyGen returns the secret key skf for function f and this key allows to decrypt the ciphertext c only
if f(x) = 0. The delegation algorithm given the key skf and a function g outputs a “delegated”
secret key that allows to decrypt the ciphertext only if f(x) = 0 ∧ g(x) = 0, which is a more
restrictive condition. The idea can be generalized to arbitrary number of delegations:

Delegate(mpk, skf1,...,fk , fk+1)→ skf1,...,fk+1
:

Takes as input the master secret key msk, the function fk+1 ∈ F and the secret key skf1,...,fk

that was generated either by algorithm KeyGen, if k = 1 or by algorithm Delegate, if k > 1.
Outputs a secret key skf1,...,fk+1

.

Correctness. We require the scheme to give a correct ABE as discussed in Section 2.1 and in
addition to satisfy the following requirement. For all sequence of functions f1, . . . , fk ∈ F , a message
m ∈M and index x ∈ Z`q, s.t. f1(x) = 0 ∧ . . . ∧fk(x) = 0 it holds that µ = D(skf1,...,fk , (x, c)) with

an overwhelming probability over the choice of (mpk,msk)← Setup(1λ, `), c← E(mpk, x ∈ X `, µ),
skf1 ← KeyGen(msk, f1) and skf1,...,fi+1

← Delegate(mpk, skf1,...,fi , fi+1) for all i ∈ [k].

Security. The security of DABE schemes is derived from definition of selective security for ABE
scheme (see Definition 2.1) by providing the adversary with access to a key-generation oracle.

Definition 6.1 (Selectively-secure DABE). A DABE scheme Π = (Setup,KeyGen,E,D,Delegate)
for a class of functions F = {Fλ}λ∈N with ` = `(λ) inputs over an index space X ` = {X `λ}λ∈N and a
message spaceM = {Mλ}λ∈N is selectively secure if for any probabilistic polynomial-time adversary
A, there exists a negligible function ν(λ) such that

AdvsDABE
Π,A (λ)

def
=
∣∣∣Pr
[
Expt

(0)
sDABE,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDABE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
sDABE,Π,A(λ) is defined as follows:

1. (x∗, state1)← A(λ), where x∗ ∈ X `.
2. (mpk,msk)← Setup(λ).

3. (µ0, µ1, state2)← AKG(msk,x∗,·)(mpk, state1), where µ0, µ1 ∈Mλ.

4. c∗ ← E(mpk,x∗, µb).

5. b′ ← AKG(msk,x∗,·)(c∗, state2).

6. Output b′ ∈ {0, 1}.

Here the key-generation oracle KG(msk,x∗, (f1, . . . , fk)) takes a set of functions f1, . . . , fk ∈ F and
returns the secret key skf1,...,fk if f1(x∗) 6= 0∨ . . .∨ fk(x∗) 6= 0 and otherwise the oracle returns ⊥.
The secret key skf1,...,fk is defined as follows: skf1 = KeyGen(msk, f1) and for all
i ∈ {2, . . . , k} skf1,...,fi = Delegate(mpk, skf1,...,fi−1

, fi).

6.1 A delegatable ABE scheme from LWE

The DABE scheme will be almost identical to ABE scheme described earlier, except as a secret key
for function f instead of recoding matrix from (A|Bf) to D we will give the rerandomized trapdoor
for (A|Bf) and then the decryptor can build the recoding matrix to D himself.

21

KeyGen(msk, f) :
Let Bf = Evalpk(f, (B1, . . . ,B`)).
Build the basis Tf for F = (A|Bf) ∈ Zn×2m

q as Tf ← RandBasis(F,ExtendRight(A,TA,Bf), σ),
for big enough σ = ‖TA‖GS · ω(

√
logm) (we will set σ as before: σ = ω(αF ·

√
logm)).

Output skf := Tf .

Delegate(mpk, skf1,...,fk , g) :

Parse the secret key skf1,...,fk as a matrix Tk ∈ Z(k+1)m×(k+1)m
q which is a trapdoor for the

matrix (A|Bf1 | . . . |Bfk) ∈ Zn×(k+1)m
q .

Let Bg = Evalpk(g, (B1, . . . ,B`)).

Build the basis for matrix F = (A|Bf1 | . . . |Bfk |Bg) ∈ Zn×(k+2)m
q :

Tk+1 = RandBasis(F,ExtendRight((A|Bf1 | . . . |Bfk),Tk,Bg), σk).

Here σk = σ · (
√
m logm)k. Output skf1,...,fk,g := Tk+1 ∈ Z(k+2)m×(k+2)m

q . Note that the size
of the key grows quadratically with the number of delegations k.

Dec
(
skf1,...,fk , (x, c)

)
: If f1(x) 6= 0 ∨ . . . ∨ fk(x) 6= 0 output ⊥.

Otherwise parse the secret key skf1,...,fk as a matrix Tk ∈ Z(k+1)m×(k+1)m
q which is a trapdoor

for the matrix (A|Bf1 | . . . |Bfk).
Run R← SampleD((A|Bf1 | . . . |Bfk), Tk, D, σk) to generate a low-norm matrix

R ∈ Z(k+1)m×m
q such that (A|Bf1 | . . . |Bfk) ·R = D.

For all j ∈ [k], compute (cin, cj , cout) = Evalct

(
{(xi,Bi)}`i=1, c, fi

)
∈ Z3m

q . Note that cin
and cout stay the same across all i ∈ [k].

Let c′ = (cin|c1| . . . |ck) ∈ Z(k+1)m
q . Output µ = Round(cout −RT c′).

Correctness. To show correctness, note that when f1(x) = 0∧ . . .∧fk(x) = 0 we know by the
requirement on Evalct that the resulting ciphertexts cfi ∈ Es,∆(0,Bfi) for ∀i ∈ [k]. Consequently,

(cin|cf1 | . . . |cfk) = (A|Bf1 | . . . |Bfk)T s + e′ where ||e′|| < k∆ + χmax < (kαF + 1)χmax.

We know that (A|Bf1 | . . . |Bfk) ·R = D and ||RT ||2 < (k + 1)mσk with overwhelming probability
by Lemma 2.3. Therefore

cout −RTc′f = (DTs + e1)− (DTs + RTe′) = e1 −RTe′ .

Finally,

‖e1 −RTe′‖ ≤ χmax + (k + 1)mσk · (αF + 1)χmax ≤ (k + 2)α2
F · χmax ·mk/2+1

with overwhelming probability. The bound on αF : α2
Fm

k/2+1 < 1
4(k+2) · (q/χmax) ensures that this

quantity is less than q/4 thereby ensuring correct decryption of all bits of µ ∈ {0, 1}m.

Security. The security game is the same as the security game for ABE, described in Section 3,
except in Game 2 we need to answer delegated key queries. Consider a private key query skf1,...,fk ,
where f1, . . . , fk ∈ F . This query is only allowed when f1(x∗) 6= 0 ∨ . . . ∨ fk(x∗) 6= 0. Without loss
of generality, assume that f1(x∗) = 0∧ . . .∧fk−1(x∗) = 0 and fk(x

∗) 6= 0. Indeed for all other cases,
the adversary may ask for the key for a smaller sequence of functions and delegate herself. The key
generation oracle for all i ∈ [k] computes Bfi = Evalpk

(
fi, (B1, . . . ,B`)

)
and needs to produce a

trapdoor Tk ∈ Z(k+1)m×(k+1)m for the matrix (A|Bf1 | . . . |Bfk) ∈ Zn×(k+1)m
q .

To do so the key generation oracle does:

22

• Run Sfk ← Evalsim(fk,
(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains a low-norm matrix Sfk ∈ Zm×mq such

that ASfk − fk(x∗)G = Bfk . By definition of Evalsim we know that ‖Sfk‖2 ≤ αF .

• Let F = (A|Bf1 | . . . |Bfk) = (A|Bf1 | . . . |Bfk−1
|ASfk − y∗G). Because y∗ 6= 0 the key genera-

tion oracle can obtain a trapdoor T(A|Bfk) by running

T(A|Bfk) ← ExtendLeft(y∗G,TG,A,Sfk)

And then produce T(A|Bfk |Bf1 |...|Bfk−1
) by running

T(A|Bfk |Bf1 |...|Bfk−1
) ← ExtendRight(G,TG, (Bf1 | . . . |Bfk−1

))

Now we can switch the rows of the matrix T(A|Bfk |Bf1 |...|Bfk−1
) to get the matrix TF , which

is a trapdoor for (A|Bf1 | . . . |Bfk). This operation, as well as ExtendRight function (according
to Lemma 2.2, part 2) does not change the Gram-Schmidt norm of the basis, therefore this
trapdoor satisfies

‖TF‖GS ≤ ‖TG‖GS · ‖Sfk‖2 ≤
√

5αF(n)

where the bound on ‖TG‖GS is from Lemma 2.2 (part 4).

• Finally, it responds with rerandomized trapdoor Tk = RandBasis(F,TF, σk).
By definition of RandBasis we know that Tk is distributed as Dσk(ΛF

q (F)) as required. Indeed
σk = ‖TF‖GS · ω(

√
logm) as needed for algorithm RandBasis in Lemma 2.4 (part 3).

7 Conclusions and open problems

We presented an ABE for arithmetic circuits with short secret keys whose security is based on the
LWE problem. At the heart of our construction is a method for transforming a noisy vector of
the form c = (A|x1G + B1| · · · |x`G + B`)

Ts + e into a vector (A|yG + Bf)Ts + ef where
y = f(x1, . . . , x`) and ef is not much longer than e. The short decryption key skf provides a way
to decrypt when y = 0. We refer to this property as a public-key homomorphism and expect it to
find other applications.

Natural open problems that remain are a way to provide adaptive security from LWE with a
polynomial-time reduction. It would also be useful to construct an efficient ABE for arithmetic
circuits where multiplication gates can handle inputs as large as the modulus q.

Acknowledgements. This work was supported by NSF, the DARPA PROCEED program, an
AFO SR MURI award, a grant from ONR, an IARPA project provided via DoI/NBC, and by
Samsung. Opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA or IARPA.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model.
In Advances in Cryptology – EUROCRYPT ’10, pages 553–572, 2010.

[ABV+12] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional encryp-
tion for threshold functions (or fuzzy ibe) from lattices. In Public Key Cryptography,
pages 280–297, 2012.

23

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In Advances in Cryptology – ASIACRYPT
’11, pages 21–40, 2011.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In Proceedings of the
26th International Colloquium on Automata, Languages and Programming, pages 1–9,
1999.

[AP09] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In STACS,
pages 75–86, 2009.

[Bab86] L. Babai. On lovsz lattice reduction and the nearest lattice point problem. Combina-
torica, 6(1):1–13, 1986.

[BB11] D. Boneh and X. Boyen. Efficient selective identity-based encryption without random
oracles. Journal of Cryptology, 24(4):659–693, 2011.

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003. Preliminary version in Advances in Cryp-
tology – CRYPTO ’01, pages 213–229, 2001.

[Boy13] X. Boyen. Attribute-based functional encryption on lattices. In TCC, pages 122–142,
2013.

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In Proceedings of the 8th Theory of Cryptography Conference, pages 253–273, 2011.

[BW07] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.
In Proceedings of the 4th Theory of Cryptography Conference, pages 535–554, 2007.

[CHK+10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In Advances in Cryptology – EUROCRYPT ’10, pages 523–552, 2010.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues. In Pro-
ceedings of the 8th IMA International Conference on Cryptography and Coding, pages
360–363, 2001.

[GGH+13a] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. Cryptology
ePrint Archive, Report 2013/451, 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for
circuits from multilinear maps. In CRYPTO (2), pages 479–499, 2013.

[GGS+13] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications.
In STOC, pages 467–476, 2013.

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC, pages 555–564, 2013.

[GPS+06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM Conference on Computer and Com-
munications Security, pages 89–98, 2006.

24

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the 40th Annual ACM Symposium on
Theory of computing, pages 197–206, 2008.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits.
In Proceedings of the 45t Annual ACM Symposium on Theory of Computing, pages
545–554, 2013.

[HW13] S. Hohenberger and B. Waters. Attribute-based encryption with fast decryption. In
Public Key Cryptography, pages 162–179, 2013.

[KSW08] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In Advances in Cryptology – EUROCRYPT ’08,
pages 146–162, 2008.

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In EUROCRYPT, pages 62–91, 2010.

[LPR+05] A. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann. Smallest singular
value of random matrices and geometry of random polytopes. Advances in Mathematics,
195(2):491–523, 2005.

[LW12] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In D. Pointcheval and T. Johansson, editors, Advances in Cryptology EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718. Springer
Berlin Heidelberg, 2012.

[OT10] T. Okamoto and K. Takashima. Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages
333–342, 2009.

[PRV12] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[PTM+06] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems.
In ACM Conference on Computer and Communications Security, pages 99–112, 2006.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
84–93, 2005.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryp-
tology – CRYPTO ’84, pages 47–53, 1984.

[Sho08] V. Shoup. A Computational Introduction to Number Theory and Algebra, second
edition. Cambridge University Press, 2008.

25

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[Wat12] B. Waters. Functional encryption for regular languages. In Advances in Cryptology –
CRYPTO ’12, pages 218–235, 2012.

A Key-Homomorphic Public-Key Encryption (KH-PKE): Definition

To help explain our ABE construction for arithmetic circuits we first describe a slightly more general
mechanism we call key-homomorphic public-key encryption (KH-PKE). Such systems are public-key
encryption schemes that are homomorphic with respect to the public encryption key. We show
below that a key-policy ABE arises trivially from such a system.

Let X = {Xλ}λ∈N and PKT = {PKTλ}λ∈N be sequences of finite sets. Public keys in a KH-PKE
are pairs (x, pkt) ∈ Xλ × PKTλ. We call x the “value” and pkt the “public-key tag.” All such pairs
are valid public keys as are tuples of pairs ((x1, pkt1), . . . , (x`, pkt`)) for some ` > 0. To simplify the
notation we often drop the subscript λ and simply refer to sets X and PKT.

A KH-PKE is defined with respect to some family of multi-variate functions F = {f : X ` → X}
for some ` > 0. In our ABE construction we set X = Z/qZ for some q and let F be the set of
functions on Zq computable by polynomial size arithmetic circuits.

Now, A KH-PKE for a family of functions F comprises five PPT algorithms:

SetupKH(1λ)→ (mpkKH,mskKH) : outputs a master secret key mskKH and public parameters mpkKH.

KeyGenKH
(
mskKH, (x, pkt)

)
→ sk : outputs a decryption key for the public key (x, pkt) ∈ X ×PKT.

EKH

(
mpkKH, {(xi, pkti)}`i=1, µ

)
−→ c : encrypts a message µ to the public-key {(xi, pkti)}`i=1.

DKH(sk, c) : decrypts a ciphertext c with key sk.

Eval : key-homomorphism is captured by two deterministic algorithms: Evalpk and Evalct.
For x1, . . . , x` ∈ X and pkt1, . . . , pkt` ∈ PKT, ciphertext c, and function f : X ` → X ∈ F these
algorithms do:

Evalpk

(
f, (pkti)

`
i=1

)
−→ pktf ; Evalct

(
f, {(xi, pkti)}`i=1, c

)
−→ cf

If c is an encryption of message µ under public-key {(xi, pkti)}`i=1 then cf is an encryption
of µ under public key (y, pktf) where y = f(x1, . . . , x`).

Algorithm Evalct captures the key-homomorphic property of the system: a ciphertext c encrypted
with key {(xi, pkti)}`i=1 is translated to a ciphertext cf encrypted under key

(
f(x1, . . . , x`), pktf

)
.

Correctness. The key-homomorphic property is stated formally in the following requirement:
For all (mpkKH,mskKH) output by Setup, all messages µ, and all f ∈ F :

If c← EKH

(
mpkKH, {(xi, pkti)}`i=1, µ

)
, y = f(x1, . . . , x`), pktf = Evalpk

(
f, {pkti}`i=1

)
,

cf = Evalct

(
f, {(xi, pkti)}`i=1, c

)
, sk← KeyGenKH(mskKH, (y, pktf))

Then DKH(sk, cf) = µ.

26

An ABE from a KH-PKE. A KH-PKE for a family of functions F = {f : X ` → X} immediately
gives a key-policy ABE. Indexes for the ABE are `-tuples over X and the supported key-policies are
functions in F . The ABE system works as follows:

Setup(1λ, `) : Run SetupKH(1λ) to get public parameters mpkKH and master secret mskKH. Choose `
random tags pkt1, . . . , pkt` in PKT and output the ABE public parameters and master secret:

mpk =
(
mpkKH, (pkt∗1, . . . , pkt

∗
`)
)

; msk =
(
mskKH, (pkt∗1, . . . , pkt

∗
`)
)

KeyGen(msk, f) : Let pktf = Evalpk

(
f, (pkt∗i)

`
i=1

)
. output skf ← KeyGenKH

(
mskKH, (0, pktf)

)
.

We assume skf also implicitly includes mpk. Note that the size of the secret key skf is
independent of the complexity of the function f .

E(mpk, x ∈ X `, µ) : output (x, c) where c← EKH(mpkKH, {(xi, pkt∗i)}`i=1, µ
)

and x = (x1, . . . , x`).

D
(
skf , (x, c)

)
: if f(x) = 0 set cf = Evalct

(
f, {(xi, pkt∗i)}`i=1, c

)
and output DKH(skf , cf).

Note that cf is the encryption of the plaintext under the public key (f(x), pktf). Since skf is
the decryption key for the public key (0, pktf), decryption will succeed whenever f(x) = 0 as
required.

The security of KH-PKE systems. Security for a key-homomorphic PKE is defined so as to
make the ABE system above secure. More precisely, we define security as follows.

Definition A.1 (Selectively-secure KH-PKE). A KH-PKE scheme Π = (SetupKH,KeyGenKH,EKH,

Evalpk,Evalct) for a class of functions Fλ = {f : X `(λ)
λ → Yλ} is selectively secure if for all probabilistic

polynomial-time adversaries A where A = (A1,A2,A3), there is a negligible function ν(λ) such that

AdvKHPKE
Π,A (λ)

def
=
∣∣∣Pr
[
EXP

(0)
KHPKE,Π,A(λ) = 1

]
− Pr

[
EXP

(1)
KHPKE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP
(b)
KHPKE,Π,A(λ) is defined as follows:

1.
(
x∗ ∈ X `(λ)

λ , state1

)
← A1(λ)

2. (mpkKH,mskKH)← SetupKH(λ) , Pkt← PKT`(λ)

3. (µ0, µ1, state2)← AKGKH(mskKH,x
∗,·)

2 (mpkKH, Pkt, state1)

4. c∗ ← EKH(mpkKH, (x∗,Pkt), µb)

5. b′ ← AKGKH(mskKH,x
∗,·)

3 (c∗, state2) // A outputs a guess b′ for b

6. Output b′ ∈ {0, 1}

where KGKH(mskKH, x
∗, f) is an oracle that on input f ∈ F with f(x∗) = 0 returns ⊥ and otherwise

with pkt← Evalpk(f,Pkt) returns KeyGenKH
(
mskKH, (0, pkt)

)
.

With Definition A.1 the following theorem is now immediate.

Theorem A.2. The ABE system above is selectively secure provided the underlying KH-PKE is
selectively secure.

27

	Introduction
	Building an ABE for arithmetic circuits

	Preliminaries
	Attribute-Based Encryption
	Background on Lattices

	An ABE for arithmetic circuits from LWE
	Evaluation Algorithms for Arithmetic Circuits
	Evaluation algorithms for gates
	Evaluation algorithms for circuits

	Extension: Polynomial gates
	Example applications for polynomial gates

	Extension: Delegatable ABE
	A delegatable ABE scheme from LWE

	Conclusions and open problems
	Key-Homomorphic Public-Key Encryption (KH-PKE): Definition

