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Abstract

In the recent breakthrough paper by Barbulescu, Gaudry, Joux and
Thomé, a quasi-polynomial time algorithm (QPA) is proposed for the dis-
crete logarithm problem over finite fields of small characteristic. The time
complexity analysis of the algorithm is based on several heuristics presented
in their paper. We show that some of the heuristics are problematic in their
original forms, in particular, when the field is not a Kummer extension. We
believe that the basic idea behind the new approach should still work, and
propose a fix to the algorithm in non-Kummer cases, without altering the
quasi-polynomial time complexity. The modified algorithm is also heuristic.
Further study is required in order to fully understand the effectiveness of
the new approach.

1 Introduction

Many cryptography protocols rely on hard computational number theoretical
problems for security. The discrete logarithm problem over finite fields is one of
the most important candidates, besides the integer factorization problem. The
hardness of discrete logarithms underpins the security of the widely adopted
Diffie-Hellman key exchange protocol [5] and ElGamal’s cryptosystem [6].

The state-of-the-art general-purpose methods for solving the discrete loga-
rithm problem in finite fields are the number field sieve and the function field
sieve, which originated from the index-calculus algorithm. All the algorithms run
in subexponential time. Let

LN (α) = exp(O((logN)α(log logN)1−α)).
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For a finite field Fq, successful efforts have been made to reduce the heuristic
complexity of these algorithms from Lq(1/2) to Lq(1/3). See [16, 1, 14, 4, 8, 2,
12, 13].

A sequence of breakthrough results [10, 11, 7] recently on the discrete loga-
rithm problem over finite fields culminated in a discovery of a quasi-polynomial
algorithm for small characteristic fields [3]. For a finite field Fq2k with k < q,

their algorithm runs in heuristic time qO(log k). This result, if correct, essentially
removes the discrete logarithm over small characteristic fields from hard problems
in cryptography.

1.1 Where does the computation really happen?

Most serious attacks on the discrete logarithm problem over finite fields are based
on smoothness of integers or polynomials. A polynomial is m-smooth if all its
irreducible factors have degrees ≤ m. The probability that a random polynomial
of degree n (≥ m ) over a finite field Fq is m−smooth is about (n/m)−n/m [15].

Suppose that we need to compute discrete logarithm in the field Fq2k where
q > k > 1. A main technique in [3], which bases on smooth polynomials, is to
find a nice ring generator ζ of Fq2k = Fq2 [ζ] over Fq2 satisfying

xq = h0(x)/h1(x),

where h1 and h0 are polynomials of very small degree. In many places of the
computation, polynomial degrees can be dropped quickly by replacing xq with
h0(x)/h1(x), which allows an effective attack based on smoothness.

The main issue with this approach is that the computation really takes place
in the ring Fq2 [x]/(xqh1(x)−h0(x)), where in the analysis of [3], the computation
is assumed to be in Fq2 [x]/(f(x)), where f(x) is the minimal polynomial of ζ
over Fq2 . Since f(x) divides xqh1(x) − h0(x), there is a natural surjective ring
homomorphism

Fq2 [x]/(xqh1(x)− h0(x))→ Fq2 [x]/(f(x)).

But the former ring, which is a direct sum of the latter field (if f(x) is a simple
factor of xqh1(x)−h0(x)) and a few other rings, is much larger in many cases. The
computation thus can be affected by the other rings, rendering several conjectures
in [11, 3] problematic.

1.2 Our work

Interestingly, for the Kummer extension of the form Fq2 [x]/(xq−1−a), everything
is fine. This is because the difference between the ring Fq2 [x]/(xq − ax) and the
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field is rather small. The discrete logarithm of x, which is a zero divisor in
the former ring, can be computed easily in the latter field, since it belongs to a
subgroup of a small order ( dividing (q−1)(q2−1)) in the field. This is consistent
with all announced practical implementations.

However, in case of more difficult non-Kummer extensions, we discover that
there are multiple problems. First, if xqh1(x)−h0(x) has linear factors over Fq2 ,
the discrete logarithms of these linear factors cannot be computed in polynomial
time, invalidating a basic assumption in [3]. One can verify that most of poly-
nomials given in [11, Table 1] have linear factors. Second, even at the stage of
finding discrete logarithms of linear elements, we show that there are additional
serious restrictions on the choice of h0 and h1. For example, if xqh1(x) − h0(x)
has another irreducible factor over Fq2 of degree ki satisfying gcd(ki, k) > 1, we
do not see how the algorithm can work. We propose to select h0 and h1 such that
xqh1(x) − h0(x) has only one irreducible factor f(x) over Fq2 of degree k, and
all other irreducible factors over Fq2 have degrees bigger than one and relatively
prime to k. Under these assumptions, we give an algorithm which will find the
discrete logarithm of any linear element in polynomial time, under a heuristic
assumption supported by our theoretical results and numerical data.

For a non-linear element, a clever idea, the so-called QPA-descent, was pro-
posed in [3] to reduce its degree, until its relation to linear factors can be found.
While the above two problems about linear factors can be fixed under our newly
improved heuristic assumptions, another serious problem is that there are traps
in the QPA-descent. For these traps, the QPA-descent described in [3] will not
work at all. They will also block the descent of other elements, hence severely
affecting the usefulness of the new algorithm. We propose a descent strategy
that avoids the traps, without altering the quasi-polynomial time complexity.
The modified algorithm is also heuristic. We have done a few numerical studies
to confirm the heuristic.

In summary, for large non-Kummer fields, we believe that the problem can
be significantly more subtle than previously thought and further study needs to
be conducted in order to fully understand the effect of the new algorithm.

2 Finding the discrete logarithm of the linear factors

We first review the new algorithm in [3]. Suppose that the discrete logarithm is
sought over the field Fq2k with k < q. For other small characteristic fields, for
example, Fpk ( p < k ), one first embeds it into a slightly larger field:

Fpk → Fqk → Fq2k
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where q = pdlogp ke. A quasi-polynomial time algorithm for Fq2k implies a quasi-
polynomial time algorithm for Fpk . We assume that

Fq2k = Fq2 [ζ]

where ζq = h0(ζ)
h1(ζ)

. Here h0 and h1 are polynomials over Fq2 relatively prime to

each other, and of a constant degree. In particular, deg(h0) < q + deg(h1). To
find such a nice ring generator ζ, one searches over all the polynomials h0(x)
and h1(x) of a constant degree in Fq2 [x], until h1(x)xq−h0(x) has an irreducible
factor f(x) of degree k with multiplicity one. Let the factorization be

xqh1(x)− h0(x) = f(x)
l∏

i=1

(fi(x))ai (1)

where the polynomials f(x) and fi(x)’s are irreducible and pair-wise prime. De-
note the degree of fi(x) by ki.

Remark 1 In practice, it is enough to search only a quadratic polynomial h0 (not
necessarily monic) and a monic linear polynomial h1 in Fq2 [x]. However proving
the existence of such polynomials for any constant degree such that xqh1(x) −
h0(x) has the desired factorization pattern seems to be out of reach by current
techniques.

For simplicity we assume that h1(x) is monic and linear. Most of the known
algorithms start by computing the discrete logarithms of elements in a special
set called a factor base, which usually contains small integers, or low degree
polynomials. In the new approach [11, 3], the factor base consists of the linear
polynomials ζ + α for all α ∈ Fq2 , and an algorithm is designed to compute
the discrete logarithms of all the elements in the factor base. It is conjectured
that this algorithm runs in polynomial time. One starts the algorithm with the
identity: ∏

α∈Fq

(x− α) = xq − x.

Then apply the Mobius transformation

x 7→ ax+ b

cx+ d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2
is nonsingular. We have

∏
α∈Fq

(
ax+ b

cx+ d
− α) = (

ax+ b

cx+ d
)q − ax+ b

cx+ d
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Clearing the denominator:

(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (ax+ b)q(cx+ d)− (ax+ b)(cx+ d)q

= (aqxq + bq)(cx+ d)− (ax+ b)(cqxq + dq).

Multiplying both sides by h1(x) and replacing xqh1(x) by h0(x), we obtain

h1(x)(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (aqh0(x) + bqh1(x))(cx+ d)− (ax+ b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)).

If the right-hand side can be factored into a product of linear factors over Fq2 ,
we obtain a relation of the form

λe0
q2∏
i=1

(x+ αi)
ei =

q2∏
i=1

(x+ αi)
e′i (mod xqh1(x)− h0(x)), (2)

where λ is a multiplicative generator of Fq2 , α1 = 0, α2, α3, . . . , αq2 is a natural
ordering of elements in Fq2 , and ei’s and e′i’s are non-negative integers.

Following the same notations in [3], let Pq be a set of representatives of the
left cosets of PGL2(Fq) in PGL2(Fq2). Note that the cardinality of Pq is q3 + q.
It was shown in [3] that the matrices in the same coset produce the same relation
(2).

Suppose that for some 1 ≤ g ≤ q2, ζ+αg is a known multiplicative generator
of Fq2 [ζ] = Fq2 [x]/(f(x)). Since (2) also holds modulo f(x), taking the discrete
logarithm w.r.t. the base ζ + αg, we obtain

e0 logζ+αg λ+
∑

1≤i≤q2,i 6=g

(ei − e′i) logζ+αg(ζ + αi) ≡ e′g − eg (mod q2k − 1). (3)

The above equation gives us a linear relation among the discrete logarithm of
linear factors. One hopes to collect enough relations such that the linear system
formed by those relations is non-singular over Z/(q2k− 1)Z. It allows us to solve
logζ+αg(ζ + αi) for all the ζ + αi in the factor base.

However, if for some 1 ≤ z ≤ q2,

(x+ αz)|xqh1(x)− h0(x),
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the algorithm will unlikely compute logζ+αg(ζ +αz). It is because that x+αz is
zero or nilpotent (w.l.o.g. let f1 = x+αz) in the Fq2 [x]/((x+αz)

a1) component
of the ring

Fq2 [x]/(xqh1(x)− h0(x)) = Fq2 [x]/(f(x))⊕
l⊕

i=1

Fq2 [x]/(fi(x)ai).

Hence in (2), if ez > 0, e′z is positive as well. Most likely we will have ez = e′z, so
the coefficient for logζ+αg(ζ + αz) in (3) will always be 0.

Remark 2 If e′z > ez ≥ 1, it is possible to compute logζ+αg(ζ + αz). However,
this requires the low degree polynomial in the right hand side of (2) to have the
factor (x + αz)

2, which is unlikely. Our numerical data confirm that it never
happens when q is sufficiently large.

To compute the discrete logarithm of ζ + αz, we have to use additional
relations which hold for the field Fq2 [ζ] but may not hold for the bigger ring
Fq2 [x]/(xqh1(x)− h0(x)). The equation

(ζ + αz)
q2k−1 = 1

is such an example. But this does not help in computing its discrete logarithm
in the field Fq2 [ζ], if it is the only relation involving ζ + αz.

In general, it is hard to find useful additional relations for x+αz, since for the
algorithm to work, it is essential that we replace xq by h0(x)/h1(x) (not replace
f(x) by zero) in the relation generating stage. Hence it is not clear that the
discrete logarithm of ζ + αz can be computed in polynomial time, invalidating a
conjecture in [3].

Remark 3 An exception is in the case of a Kummer extension, where the zero
divisor x in the ring has a small order in the field.

3 The tale of two lattices

To fix the above problem in a non-Kummer case, we can either change our factor
base to not include the linear factors of xqh1(x)− h0(x), or we can search for h0
and h1 such that xqh1(x) − h0(x) does not have linear factors. In the following
discussion, we will assume that xqh1(x)−h0(x) has no linear factor for simplicity.
That is,

ki := deg(fi) ≥ 2 (1 ≤ i ≤ l).
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In this case, the linear factors x+αi’s are invertible in the ring Fq2 [x]/(xqh1(x)−
h0(x)) and equation (2) reduces to

λe0
q2∏
i=1

(x+ αi)
ei−e′i = 1 (mod xqh1(x)− h0(x)). (4)

We define two fundamental lattices in Zq
2+1:

L1 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ αi)
ei = 1 (mod f(x))},

L2 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ α1)
ei = 1 (mod xqh1(x)− h0(x))}.

It is easy to see that L2 ⊆ L1. Consider the group homomorphism

ψ1 : Zq
2+1 → (Fq2 [x]/(f(x)))∗

given by

(e0, e1, . . . , eq2) 7→ λe0
q2∏
i=1

(x+ αi)
ei .

The group homomorphism ψ2 is defined in the same way, except that modulo
f(x) is replaced by modulo (xqh1(x)− h0(x)) respectively.

Theorem 1 If deg(h1) ≤ 2, then the maps ψ1 and ψ2 are surjective.

Proof: It is enough to prove that ψ2 is surjective. If not, the image H of ψ2

would be a proper subgroup of (Fq2 [x]/(xqh1(x)− h0(x)))∗. We can then choose
a non-trivial character χ of (Fq2 [x]/(xqh1(x) − h0(x)))∗ which is trivial on the
subgroup H. Since χ is trivial on H which contains F∗q2 , we can use the Weil
bound as given in Theorem 2.1 in [17] and deduce that

1 + q2 = |1 +
∑

α∈Fq2

χ(x+ α)| ≤ (q + deg(h1)− 2)
√
q2 ≤ q2.

This is a contradiction. It follows that ψ2 must be surjective. 2

Note that in the application of computing discrete logarithms, it is important
that ψ1 is surjective. As a corollary, we deduce

Corollary 1 If deg(h1) ≤ 2, then
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• the group Zq
2+1/L1 is isomorphic to the cyclic group Z/(q2k − 1)Z.

• the group Zq
2+1/L2 is isomorphic to

Z/(q2k − 1)Z⊕
l⊕

i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

In particular, the group Zq
2+1/L2 is not cyclic when l ≥ 1. The relation

generation stage only gives lattice vectors in L2, which is far from the L1 if l ≥ 1.
Thus, we need to add more relations to L2 in order to get close to L1.

Since λq
2−1 = 1, the vector (q2 − 1, 0, · · · , 0) is automatically in L2. Let L∗2

be the lattice in Zq
2+1 generated by L2 and the following q2 vectors

(0, q2k − 1, 0, · · · , 0), · · · , (0, 0, · · · , 0, q2k − 1),

corresponding to the relations (x+ αi)
q2k−1 = 1 modulo f(x) for αi ∈ Fq2 . It is

clear that
L∗2 = L2 + (q2k − 1)Zq

2+1.

The next resultgives the group structure for the quotient Zq
2+1/L∗2.

Theorem 2 For deg(h1) ≤ 2, there is a group isomorphism

Zq
2+1/L∗2 ∼= Z/(q2k − 1)Z⊕

⊕
1≤i≤l

Z/(q2 gcd(k,ki) − 1)Z.

Proof: Recall that

Zq
2+1/L2 ∼= A

def
= Z/(q2k − 1)Z⊕

l⊕
i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

It is clear that

A/(q2k − 1)A ∼= Z/(q2k − 1)Z⊕
⊕
1≤i≤l

Z/(q2 gcd(ki,k) − 1)Z.

The kernel of the surjective composed homomorphism

Zq
2+1 −→ Zq

2+1/L2 ∼= A −→ A/(q2k − 1)A

is precisely L2 + (q2k − 1)Zq
2+1 = L∗2. The desired isomorphism follows.

2

If gcd(ki, k) > 1 for some i, then L∗2 is still far from L1. We would like L∗2 to
be as close to L1 as possible in a smooth sense. For us, the more interesting case
is the following
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Corollary 2 Let deg(h1) ≤ 2. If gcd(ki, k) = 1 for all 1 ≤ i ≤ l, we have an
isomorphism

Zq
2+1/L∗2 ∼= Z/(q2k − 1)Z⊕ (Z/(q2 − 1)Z)l.

This corollary shows that under the same assumption, the lattice L∗2 is a
smooth approximation of L1 in the sense that the quotient L1/L∗2 is a direct sum
of small order cyclic groups.

The algorithm to compute the discrete logarithms in the factor base essen-
tially samples vectors from the lattice L2. Let r1, r2, . . . , be the vectors in L2
obtained by the relation-finding algorithm, i.e., from the relations in (4). Let L̂2
be the lattice generated by those vectors. Let L̂1 be the lattice generated by L̂2
and the following q2 + 1 vectors:

(q2 − 1, 0, · · · , 0), (0, q2k − 1, 0, · · · , 0), · · · , (0, 0, · · · , 0, q2k − 1).

Computing the Hermite (or Smith) Normal Form of L̂1 is equivalent to solving
the linear system L̂2 in the ring Z/(q2k − 1)Z. It is in general difficult to find
bases for the two lattices L1 and L2 directly. One can think that L̂1 and L̂2
are the approximations of L1 and L2 respectively. These approximations can be
computed by the polynomial time algorithm. Obviously,

L̂2
⊆ L2 ⊆
⊆ L̂1 ⊆

L∗2 ⊆ L1.

These inclusions induce surjective group homomorphisms

Zq
2+1/L̂2

→ Zq
2+1/L2 →

→ Zq
2+1/L̂1 →

Zq
2+1/L∗2 → Zq

2+1/L1.

If Zq
2+1/L̂2 is cyclic, then its quotient Zq

2+1/L2 will be cyclic. This is false if

l ≥ 1 as we have seen before. Similarly, Zq
2+1/L̂1 is not cyclic as its quotient

Zq
2+1/L∗2 is not cyclic if l ≥ 1. Hence the conjecture in [9] also needs modification.

It seems reasonable to hope that L̂1 is a good approximation to L∗2 in the sense
that the quotient L∗2/L̂1 is a direct sum of small order cyclic groups. In the
interesting case when gcd(k, ki) = 1 for all 1 ≤ i ≤ l, our numerical data suggest
the following highly plausible

Heuristics 1 Assume that xqh1(x) − h0(x) does not have linear factors, and
gcd(k, ki) = 1 for all 1 ≤ i ≤ l. Then in the Smith Normal Form of L̂1, the
diagonal elements are

1, 1, · · · , 1, s1, · · · , st, q2k − 1,

where for 1 ≤ i ≤ t, si > 1 and si|q2 − 1.
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Assuming the heuristics, Zq
2+1/L̂1 is not much bigger than Zq

2+1/L1, namely,

Zq
2+1/L̂1 ∼= Z/s1Z⊕ Z/s2Z⊕ · · · ⊕ Z/stZ⊕ Z/(q2k − 1)Z.

We can find a generator for each component, as a product of linear polynomials
from the computation of the Smith Normal Form. Suppose that for 1 ≤ i ≤ t,
the generator for the i-th component is

λei0
∏

1≤j≤q2
(x+ αj)

eij .

Since si|q2 − 1, the above generator belongs to Fq2 in Fq2 [x]/(f(x)). Assuming

that it is λe
′
i0 , we have

λei0−e
′
i0

∏
1≤j≤q2

(x+ αj)
eij = 1 (mod f(x)).

There are t such relations. Adding them to L̂1, we will finally arrive at the lattice
L1. It allows us to find a generator for (Fq2 [x]/(f(x)))∗, and to solve the discrete
logarithms for the factor base, w.r.t. this generator.

4 The trap to the QPA-descent

Now we review the QPA-descent. Suppose that we need to compute the discrete
logarithm of W (ζ) ∈ Fq2k [ζ], where W is a polynomial over Fq2 of degree w > 1.
The QPA-descent, firstly proposed in [3], is to represent W (ζ) as a product of
elements of smaller degree, e.g. ≤ w/2, in the field Fq2 [x]/(f(x)). To do this,
one again starts with the identity:∏

α∈Fq

(x− α) = xq − x.

Then apply the transformation

x 7→ aW (x) + b

cW (x) + d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2
is nonsingular. We have

∏
α∈Fq

(
aW (x) + b

cW (x) + d
− α) = (

aW (x) + b

cW (x) + d
)q − aW (x) + b

cW (x) + d
.

10



Clearing the denominator:

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aW (x) + b)q(cW (x) + d)− (aW (x) + b)(cW (x) + d)q

= (aqW̃ (xq) + bq)(cW (x) + d)− (aW (x) + b)(cqW̃ (xq) + dq),

where W̃ (x) is a polynomial obtained by raising the coefficients of W (x) to the
q-th power. Replacing xq with h0(x)/h1(x), we obtain

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aqW̃ (h0(x)/h1(x)) + bq)(cW (x) + d)

−(aW (x) + b)(W̃ (h0(x)/h1(x)) + dqh1(x))

(mod xqh1(x)− h0(x)).

It was shown in [3] that matrices in the same left coset of PGL2(Fq) of PGL2(Fq2)
generate the same equations. The denominator of the right-hand size is a power
of h1(x). Denote the numerator of the right-hand side polynomial by Nm,W (x).
If the polynomial Nm,W (x) is w/2-smooth, namely, it can be factored completely
into a product of irreducible factors over Fq2 , all have degree w/2 or less, we
obtain a relation of the form

q2∏
i=1

(W (x) + αi)
ei = λe0

∏
g(x)∈S

g(x)e
′
g (mod xqh1(x)− h0(x)), (5)

where S ⊆ Fq2 [x] is a set of monic polynomials of degrees less than w/2 and
with cardinality at most 3w. Denote the vector (e1, e2, . . . , eq2) by vm. Note
that it is a binary vector, and it is independent of W (x). Collecting enough
number of relations will allow us to represent W (x) as a product of elements of
smaller degrees. This process is the QPA-descent. A heuristic, made in [3], is
that repeating the process, one can represent any element in Fq2 [x]/(f(x)) as a
product of linear factors. Combining it with the fact that the discrete logarithm
of the linear factors are known, one solves the discrete logarithm for any element.

However the descent will not work if W (x) is a factor of xqh1(x) − h0(x).
Recall that α1 = 0.

Theorem 3 If W (x)|xqh1(x)− h0(x), e1 will always be 0 in (5).

In other words, if W (x) is a factor of xqh1(x)− h0(x), then it will never appear
in the left-hand side of (5) as a factor. So the descent for W (ζ) is not possible.
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Proof: The polynomial W (x) is a zero divisor in the ring Fq2 [x]/(xqh1(x) −
h0(x)). Hence if W (x) appears in the left-hand side of (5) as a factor, it will also
appear in the right-hand side. This contradicts the requirement that the factors
in the right-hand side have degrees smaller than the degree of W (x). 2

Note that the trap factor W (ζ) can appear in the descent paths of other
elements, which essentially blocks the descents. It is especially troublesome if
xqh1(x)− h0(x) has many small degree factors.

5 The trap-avoiding descent

Now we have discovered traps for the original QPA-descent. How can we work
around them? From the above discussion, we assume that we work in a non-
Kummer extension, and the polynomial xqh1(x) − h0(x) with the factorization
as (1) satisfies

• deg(h0) ≤ 2,deg(h1) ≤ 1;

• ki > 1 for all 1 ≤ i ≤ l; In other words, it is free of linear factors;

• gcd(k, ki) = 1 for all 1 ≤ i ≤ l.

In the most interesting case when k is a prime, our numerical data show that the
above requirements can be easily satisfied.

Heuristics 2 Let q be a prime power and k < q be a prime. Then there exist
polynomials h0 and h1 satisfying the above requirements.

Assume that the discrete logarithms of all linear polynomials have been com-
puted. Suppose that we need to compute the discrete logarithm of W (ζ), where
W (x) is an irreducible polynomial of degree less than k, and it is relatively prime
to f(x). If W (x)|xqh1(x)−h0(x), we will search for an integer i such that W (x)i

(mod f(x)) is relatively prime to xqh1(x)− h0(x). Such i can be found easily by
a random process.

Now we can assume that gcd(W (x), xqh1(x) − h0(x)) = 1. If there are not
many traps, we will use a trap-avoiding strategy for the descent. The basic idea is
simple. Whenever we find a relation (5), we will not use it unless the right-hand
side is relatively prime to xqh1(x)− h0(x).

Definition 1 Define the trap-avoiding descent lattice L(W ) associated with W (x)
to be generated by

{vm|Nm,W is w/2− smooth, and gcd(Nm,W , x
qh1(x)− h0(x)) = 1}.
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Note that we use less relations than [3] does, since we have to avoid traps. If the
vector (1, 0, . . . , 0) is in the trap-avoiding descent lattice of W (x), then W (x) can
be written as a product of low degree polynomials in Fq2 [x]/(f(x)) that are not
traps. We believe that the following heuristics is very likely to be true.

Heuristics 3 The trap-avoiding descent lattice for W (x) contains the vector
(1, 0, . . . , 0) if gcd(W (x), xqh1(x)− h0(x)) = 1.

To provide a theoretical evidence, we will show that (1, 0, . . . , 0) is in its super
lattice that is generated by vm for all m ∈ Pq, regardless whether Nm,W (x) is
w/2-smooth or not. This is a slight improvement over [3], where it is proved
that (q3 − q, 0, . . . , 0) is in the super lattice. To proceed, we first make some
definitions following [3]. There are two matrices in consideration. The matrix H

is composed by the binary row vectors vm for all m =

(
a b
c d

)
∈ Pq. It is a

matrix of q3 + q rows and q2 columns. If we view m−1 as a map from P1(Fq) to
P1(Fq2) given by

(β1 : β2)→ (−dβ1 + bβ2 : cβ1 − aβ2),

then the i-th component of vm is 1 iff there is a point P ∈ P1(Fq) such that
m−1(P ) = (αi : 1). We define a binary vector v+

m = (e1, . . . , eq2 , eq2+1) for
m ∈ Pq, where (e1, . . . , eq2) = vm, and

eq2+1 =

{
1 if (a : c) ∈ P1(Fq)
0 otherwise.

One can verify that the last component of v+
m corresponds to whether there is a

point P ∈ P1(Fq) such that m−1(P ) = (1 : 0) =∞. The matrix H+ is composed
by the vectors v+

m,m ∈ Pq. H+ is a matrix of q3 + q rows and q2 + 1 columns.
All the row vectors have exactly q + 1 many coordinates which are 1’s.

Denote the lattices generated by the row vectors of H and H+ by L(H) and
L(H+) respectively. In [3], the authors showed that v1 = (q2 + q, . . . , q2 + q) ∈
L(H+) and v2 = (q2 + q, q + 1, . . . , q + 1) ∈ L(H+).

Theorem 4 The vector (1, 0, . . . , 0) is in the lattice L(H).

Proof: Fix a γ such that Fq2 = Fq[γ]. Firstly, observe that v3 = (1, . . . , 1, q) ∈

L(H+). This follows from v3 =
∑

β∈Fq
vmβ ∈ L(H+), where mβ =

(
1 βγ
0 1

)
∈

Pq. There are q + 1 row vectors in H+ such that both the first and the last
coordinates are 1. Since the projective linear map on a projective line is sharply
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3-transitive, a third coordinate with value 1 will uniquely determine the coset in
Pq. Thus the sum of these q + 1 vectors is v4 = (q + 1, 1, . . . , 1, q + 1) ∈ L(H+).

From the above observations, we have

v5 = v2 − (q + 1)v3 = (q2 − 1, 0, . . . , 0, 1− q2) ∈ L(H+),

v6 = v4 − v3 = (q, 0, . . . , 0, 1) ∈ L(H+).

We deduce

v7 = qv6 − v5 = (1, 0, . . . , 0, q2 + q − 1) ∈ L(H+),

which implies (1, 0, . . . , 0) ∈ L(H). 2

6 Concluding Remarks and Open problems

In this paper, we study the validation of the heuristics made in the quasi-
polynomial time algorithm solving the discrete logarithms in the small charac-
teristic fields [3]. We find that the heuristics are problematic in the cases of non-
Kummer extensions. We propose a few modifications to the algorithm, including
some extra requirements for the polynomials h0 and h1, and a trap-avoiding
descent strategy. The modified algorithm relies on three improved heuristics.

Proposition 1 If Heuristics 1, 2 and 3 hold, then the discrete logarithm problem
over Fqk (k < q) can be solved in time qO(log(k)).

We believe that proving (or disproving ) them are interesting open problems that
help to understand the effectiveness of the new algorithm.
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